WO1992018672A1 - Dispositif et procede pour la croissance de cristaux - Google Patents

Dispositif et procede pour la croissance de cristaux Download PDF

Info

Publication number
WO1992018672A1
WO1992018672A1 PCT/JP1991/001450 JP9101450W WO9218672A1 WO 1992018672 A1 WO1992018672 A1 WO 1992018672A1 JP 9101450 W JP9101450 W JP 9101450W WO 9218672 A1 WO9218672 A1 WO 9218672A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
pulling
melt
control plate
temperature control
Prior art date
Application number
PCT/JP1991/001450
Other languages
English (en)
Japanese (ja)
Inventor
Nobuyuki Akiyama
Original Assignee
Komatsu Electronic Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co., Ltd. filed Critical Komatsu Electronic Metals Co., Ltd.
Publication of WO1992018672A1 publication Critical patent/WO1992018672A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Definitions

  • the present invention is applied to a crystal growth technique by a pulling method, particularly a single crystal pulling technique of a semiconductor, and is used to determine a radial temperature distribution of a surface temperature of a material melt filled in a crucible.
  • the present invention relates to a technology for controlling a temperature control plate on the top to improve the pulling speed of a single crystal and the quality of the obtained crystal.
  • semiconductor single crystal pulling technology especially silicon single crystal pulling technology using the Czochralski (CZ) method
  • CZ Czochralski
  • a pulling crystal as disclosed in Japanese Patent Publication No. 57-40119 or Japanese Patent Publication No. 2-310400 is used.
  • something like a kind of heat radiation plate in the shape of an inverted cone is provided. These increase the cooling rate of the pulled crystal by cutting off or reflecting the heat from the heating heater that passes through the crucible and the radiant heat from the melt surface. It is a thing.
  • the heat radiated by the heat radiating plate partially heats the melt surface, and the temperature distribution of the entire melt is not normal. In some cases, the crystal properties were adversely affected. Also raise Further improvement in speed is also desired from the standpoint of productivity.
  • the operator who actually pulls the melt surface based on the temperature distribution state of the melt surface knows that the pattern changes even while pulling a single crystal. ing. Normally, this pattern progresses from the top side (at the beginning of pulling) to the tail side (at the end of pulling) of the single crystal. Therefore, in Fig. 4, the pattern changes from X to Z, but it changes to a state like Z. At that point, it will be difficult to pull up the monozong crystals, and in some cases it may be necessary to raise them on the way.
  • the present invention provides a new pulling technique that enables control of the temperature distribution of the melt in the radial direction in order to solve the problems of the prior art, and the crucible is filled in the crucible.
  • a technique for growing crystals by immersing a seed crystal in a material melt melted by a heater as an external heating means and gradually pulling it up.
  • the temperature distribution on the melt surface is the lowest at the solid-liquid interface below the pulled crystal during pulling of the crystal.
  • it is a method and a device for constantly maintaining the height gradually in the direction toward the inner wall surface of the crucible.
  • the temperature control plate when the temperature control plate is moved so that the distance from the melt surface during the crystal pulling is variable according to the pulling condition, the temperature distribution on the melt surface is controlled to the above-mentioned state. Become.
  • the temperature control plate has a holding portion along the crystal pulling region, and an umbrella-shaped portion provided at a lower end portion thereof and extending to the vicinity of the inner wall surface of the crucible which opens downward or horizontally.
  • FIG. 1 is a vertical front view of a single crystal growth apparatus showing an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of a single crystal growth apparatus showing a different embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view of a single crystal growth apparatus showing still another embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the temperature distribution on the melt surface.
  • FIG. 5 is a longitudinal sectional view of a conventional single crystal growth apparatus.
  • the temperature distribution state of the surface of the material melt heated and melted by the heater from a portion immediately below the crystal to a portion in contact with the inner wall of the crucible is determined by the temperature distribution during the pulling. Even at this point, it is intended to realize a high-speed pulling of a crystal of good quality by controlling the temperature directly below the crystal to be the lowest, and increasing toward the outside.
  • the reason that the present invention uses such an action is that, in order to obtain a large-diameter silicon single crystal of excellent quality for IC, for example, in the CZ method, the most important point is that the crystal is a melt.
  • the temperature history of the pulled silicon single crystal is determined around the position A (Fig. 4) where it solidifies from the center, which affects the so-called vertical temperature distribution state and the solidification state from the melt. Is there a temperature distribution in the lateral direction of the melt surface toward the inner wall of the crucible? It is.
  • the optimum temperature of a silicon melt can only be the temperature of the melt immediately below the silicon single crystal, but when it is manufactured industrially, the melt in the crucible is required. Control of the temperature distribution on the whole, especially on the surface, is important.
  • the umbrella-shaped portions 9, 99 ⁇ of the temperature control plates 7, 77 suppress heat dissipation on the melt surface, Since the holding parts 8 and 8 8 "around the crystal dissipate heat upward by conduction and increase the cooling rate at the solid-liquid interface, the temperature distribution in the radial direction of the melt surface is shown in FIG. It is considered that the temperature control plate will not fall into the state of Y or Z in any situation during the withdrawal, so that this temperature control plate can follow the fluctuation of the melt surface level. If it is made movable, this effect will be more stable.
  • the quartz crucible (16 inches) 2 was placed in the graphite crucible 1 of the single crystal growth apparatus by the CZ method shown in Fig. 5, and the cylindrical graphite heater (16 inch inside diameter) that had been set in advance was used. 3 Place the silicon material inside the quartz crucible. 45kg of nannageite was loaded. The inside of the apparatus is evacuated, purged with argon gas, the material is heated and melted by the graphite heater 3 to form a melt, and a 5 mm X 5 mm seed crystal 4 is immersed in the melt surface. , Got accustomed. By gradually pulling the seed crystal, a single crystal 5 was started and grown to a diameter of 6 inches.
  • the calorific value of the graphite heater was adjusted so that the pulling speed was 1.3 mm / min., And the growth continued.
  • the growth length of the single crystal approached 400 mm, a part of the silicon melt began to solidify from a part of the inner wall 6 of the crucible into an island shape.
  • the island gradually grew larger, extended toward the center of the crucible, and abandoned pulling because of the danger of contact between the crystal and the island at a crystal length of 48 ram.
  • a temperature control plate 7 was loaded in the lifting apparatus.
  • the temperature control plate 7 has a cylindrical holding portion ⁇ and an umbrella-shaped portion 9, and the holding portion 8 surrounds the periphery of the single crystal to be pulled.
  • a support portion 14 for supporting the temperature control plate is provided at an intermediate height of the holding portion 8, and is fixed to an upper portion of a heat insulating cylinder 15 of the single crystal growth apparatus.
  • the outer surface 10 of the umbrella-shaped portion 9 reaches near the boundary surface between the inner wall of the quartz crucible and the melt.
  • the inner diameter of the holding part is 229 mm ⁇
  • the angle ⁇ formed on the horizontal plane of the umbrella-shaped part is 5 °
  • the shortest distance from the melt surface is 25 mm
  • the distance between the outer diameter 10 and the quartz crucible 2 Is 25mm.
  • the umbrella-shaped part 9 keeps the temperature of the melt surface, and the holding part radiates heat at the solid-liquid interface by transmission.
  • the inner contact surface of the inner wall surface of the crucible and the circumferential contact region of the melt can be more effectively kept warm than the solid-liquid interface portion. It was found that the effect was not particularly noticeable when the angle was set more than 15 ° from the horizontal plane.
  • a silicon single crystal with a length of 642 ⁇ was obtained.
  • the temperature control plate 7 ′ has a shaft 11 fixed to the upper end of the holding portion 8 ′, which is provided on the inner wall 12 of the lifting device chamber 1, so that the temperature control plate 7 ′ can be swung from outside the chamber.
  • the gear 13 rotates by a source (not shown), and moves up and down in conjunction with JP91 / 01450 1 g-1
  • the temperature control plate employed in the present embodiment has an umbrella-shaped portion 9 "set horizontally and a holding portion 8 ⁇ having a thickness.
  • the surface of the melt is umbrella-shaped.
  • the high temperature is maintained by the reflection and heat retaining action of the part 9 ⁇ , and the vicinity of the solid-liquid interface, on the contrary, is effectively radiated by the conduction action of the thick retaining part 8 ⁇ and is maintained at a low temperature. Since the source is outside the crucible, an ideal temperature gradient pattern of the melt surface rising from the center of the crucible to the outside is formed.
  • graphite is used as the material of the temperature control plate.
  • a metal material such as molybdenum may be used.
  • a multilayer structure may be used.
  • the pattern of the temperature distribution in the crucible radial direction on the surface of the melt gradually increases from the solid-liquid interface to the crucible inner wall surface at any stage from the start to the end of the pulling. Can be maintained Therefore, even if the pulling speed of the single crystal is increased, the melt temperature on the crucible side does not decrease. Therefore, it is possible to pull crystals at a speed at which solidification islands are conventionally formed on the melt and pulling is impossible, thereby improving the productivity.
  • the present invention is applied to semiconductor single crystal pulling technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention se rapporte à un dispositif et à un procédé pour la croissance de cristaux, qui offrent une nouvelle technique de prélèvement du cristal formé destinée à permettre la régulation de la répartition de la température du liquide du bain de fusion dans le sens radial du creuset. Dans ce procédé, lors de l'immersion dans le creuset rempli de matière du cristal d'ensemencement, lequel fond sous l'action d'un organe chauffant externe entourant le creuset et croît jusqu'à devenir un cristal pouvant être progressivement prélevé, une plaque de régulation de la température est disposée dans une zone située au-dessus du liquide et autour du cristal à prélever, de sorte que, pendant le prélèvement du cristal, le degré de distribution de la température du liquide peut être maintenu constamment à son niveau le plus bas à l'interface solide-liquide située sous le cristal et être amené en même temps à augmenter graduellement au fur et à mesure qu'on s'approche de la paroi interne du creuset.
PCT/JP1991/001450 1991-04-20 1991-10-23 Dispositif et procede pour la croissance de cristaux WO1992018672A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3115236A JP2509477B2 (ja) 1991-04-20 1991-04-20 結晶成長方法及び結晶成長装置
JP3/115236 1991-04-20

Publications (1)

Publication Number Publication Date
WO1992018672A1 true WO1992018672A1 (fr) 1992-10-29

Family

ID=14657715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001450 WO1992018672A1 (fr) 1991-04-20 1991-10-23 Dispositif et procede pour la croissance de cristaux

Country Status (2)

Country Link
JP (1) JP2509477B2 (fr)
WO (1) WO1992018672A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866150A1 (fr) * 1997-03-21 1998-09-23 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Appareillage et procédé pour le tirage d'un monocristal
EP0890662A1 (fr) * 1997-07-09 1999-01-13 Shin-Etsu Handotai Company Limited Methode et procédé de production d'un monocristal de silicium a defauts cristallins reduits et le monocristal et plaquette de silicium ainsi obtenus
EP0926270A1 (fr) * 1997-12-18 1999-06-30 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Procédé et appareillage pour la fabrication d'un monocristal
EP0964082A1 (fr) * 1998-06-11 1999-12-15 Shin-Etsu Handotai Company Limited Plaquette de silicium monocristallin et procédé pour sa production

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285111B2 (ja) * 1994-12-05 2002-05-27 信越半導体株式会社 結晶欠陥の少ないシリコン単結晶の製造方法
US5824152A (en) * 1996-07-09 1998-10-20 Komatsu Electronic Metals Co., Ltd. Semiconductor single-crystal pulling apparatus
JP4736401B2 (ja) * 2004-11-02 2011-07-27 住友金属工業株式会社 炭化珪素単結晶の製造方法
JP4844127B2 (ja) * 2006-01-11 2011-12-28 株式会社Sumco 単結晶製造装置および製造方法
CN106048723A (zh) * 2016-08-01 2016-10-26 中国电子科技集团公司第四十六研究所 一种采用提拉法生长氧化镓晶体的固液界面控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168389A (ja) * 1984-09-06 1986-04-08 Sony Corp 単結晶成長装置
JPS6350391A (ja) * 1986-08-18 1988-03-03 Sony Corp 単結晶成長装置
JPH0297478A (ja) * 1988-10-05 1990-04-10 Mitsubishi Metal Corp 単結晶引上装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012318B2 (ja) * 1976-07-12 1985-04-01 ソニー株式会社 単結晶引上げ方法及びその装置
DE3027262A1 (de) * 1980-07-18 1982-02-11 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Im ziehverfahren hergestellte, duennwandige lagerbuechse
NO148267C (no) * 1981-06-16 1983-09-07 Norsk Hydro As Diafragma for vannelektrolyse
JPS6461383A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Method for pulling up single crystal rod and apparatus therefor
JPH0639351B2 (ja) * 1987-09-05 1994-05-25 信越半導体株式会社 単結晶棒の製造装置及び方法
JPH0231040A (ja) * 1988-07-20 1990-02-01 Tokico Ltd 油圧緩衝器
JP2640683B2 (ja) * 1988-12-12 1997-08-13 信越半導体株式会社 単結晶棒の引上げ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168389A (ja) * 1984-09-06 1986-04-08 Sony Corp 単結晶成長装置
JPS6350391A (ja) * 1986-08-18 1988-03-03 Sony Corp 単結晶成長装置
JPH0297478A (ja) * 1988-10-05 1990-04-10 Mitsubishi Metal Corp 単結晶引上装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866150A1 (fr) * 1997-03-21 1998-09-23 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Appareillage et procédé pour le tirage d'un monocristal
US6153008A (en) * 1997-03-21 2000-11-28 Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag Device and method for pulling a single crystal
US6364947B1 (en) 1997-07-09 2002-04-02 Shin-Etsu Handotai Co., Ltd. Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same
EP0890662A1 (fr) * 1997-07-09 1999-01-13 Shin-Etsu Handotai Company Limited Methode et procédé de production d'un monocristal de silicium a defauts cristallins reduits et le monocristal et plaquette de silicium ainsi obtenus
JPH1179889A (ja) * 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd 結晶欠陥が少ないシリコン単結晶の製造方法、製造装置並びにこの方法、装置で製造されたシリコン単結晶とシリコンウエーハ
US5968264A (en) * 1997-07-09 1999-10-19 Shin-Etsu Handotai Co., Ltd. Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same
KR100558177B1 (ko) * 1997-07-09 2006-07-10 신에쯔 한도타이 가부시키가이샤 결정결함을가지지않는실리콘단결정제조방법과장치,및이에의해제조된실리콘단결정과실리콘웨이퍼
US6159438A (en) * 1997-07-09 2000-12-12 Shin-Etsu Handotai Co., Ltd. Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same
US6132507A (en) * 1997-12-01 2000-10-17 Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag Process and device for the production of a single crystal
EP0926270A1 (fr) * 1997-12-18 1999-06-30 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Procédé et appareillage pour la fabrication d'un monocristal
US6238477B1 (en) 1997-12-18 2001-05-29 WACKER SILTRONIC GESELLSCHAFT FüR HALBLEITERMATERIALIEN AG Process and device for the production of a single crystal
US6190452B1 (en) 1998-06-11 2001-02-20 Shin-Etsu Handotai Co., Ltd. Silicon single crystal wafer and method for producing it
US6482260B2 (en) 1998-06-11 2002-11-19 Shin-Etsu Handotai Co., Ltd. Silicon single crystal wafer and a method for producing it
EP0964082A1 (fr) * 1998-06-11 1999-12-15 Shin-Etsu Handotai Company Limited Plaquette de silicium monocristallin et procédé pour sa production

Also Published As

Publication number Publication date
JP2509477B2 (ja) 1996-06-19
JPH05279172A (ja) 1993-10-26

Similar Documents

Publication Publication Date Title
US5714004A (en) Process for producing polycrystalline semiconductors
US5849080A (en) Apparatus for producing polycrystalline semiconductors
KR20180101586A (ko) 실리콘 단결정의 제조 방법
WO1992018672A1 (fr) Dispositif et procede pour la croissance de cristaux
WO2001063023A1 (fr) Procede permettant de faire pousser des monocristaux de semi-conducteur
KR20110036896A (ko) 단결정 제조장치 및 단결정의 제조방법
US6755910B2 (en) Method for pulling single crystal
EP1538242B1 (fr) Dispositif de chauffage, appareil et procede permettant de former des cristaux
JP3533812B2 (ja) チョクラルスキー法による結晶製造装置、結晶製造方法、およびこの方法から製造される結晶
KR101596550B1 (ko) 잉곳성장장치 및 잉곳성장방법
JPH09249492A (ja) 単結晶引き上げ用種結晶及び該種結晶を用いた単結晶引き上げ方法
JP4272449B2 (ja) 単結晶引上方法
JP6451478B2 (ja) シリコン単結晶の製造方法
JP3129187B2 (ja) 単結晶製造装置および単結晶製造方法
JP2000007496A (ja) シリコン単結晶の引上げ装置及びその引上げ方法
CN111379018A (zh) 半导体硅晶棒的生长方法
JP3079991B2 (ja) 単結晶の製造装置および製造方法
TW526299B (en) Method for producing silicon single crystal
JPH05294784A (ja) 単結晶成長装置
JPH0497989A (ja) 単結晶の製造方法および単結晶引上げ装置
US20240158952A1 (en) Apparatus and Method for Regulating Hot Zone for Single Crystal Growth
JP2004277267A (ja) 化合物半導体単結晶の製造装置
JP2939603B2 (ja) 半導体単結晶の製造方法
JPH06279168A (ja) 単結晶の製造装置
JP2022010815A (ja) 輻射シールド

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: EUROPEAN PATENT(FR,IT)

122 Ep: pct application non-entry in european phase