WO1992015901A1 - Optical transmitter made of graded index type plastic, and method of producing the same - Google Patents

Optical transmitter made of graded index type plastic, and method of producing the same Download PDF

Info

Publication number
WO1992015901A1
WO1992015901A1 PCT/JP1992/000210 JP9200210W WO9215901A1 WO 1992015901 A1 WO1992015901 A1 WO 1992015901A1 JP 9200210 W JP9200210 W JP 9200210W WO 9215901 A1 WO9215901 A1 WO 9215901A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical transmission
index distribution
optical transmitter
transmission body
Prior art date
Application number
PCT/JP1992/000210
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Uozu
Kouzou Mise
Nobuhiko Toyoda
Yoshihiko Hoshide
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to JP50606592A priority Critical patent/JP3301760B2/ja
Priority to DE69213866T priority patent/DE69213866T2/de
Priority to EP92906216A priority patent/EP0527239B1/en
Priority to KR1019920702704A priority patent/KR100260568B1/ko
Publication of WO1992015901A1 publication Critical patent/WO1992015901A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00721Production of light guides involving preforms for the manufacture of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Definitions

  • the present invention relates to a graded index (type) that can be usefully used as various optical transmission lines such as an optical converging optical fiber, an optical converging rod lens, and an optical sensor.
  • the present invention relates to an optical transmitter made of blast and a method of manufacturing the same, and more particularly to an optical transmitter capable of transmitting a high-quality image with high resolution and little chromatic aberration, and a method of manufacturing the same.
  • the refractive index is continuously reduced from the center to the outer periphery in the cross section of the optical transmission body, and the distribution has a mountain-shaped inclination.
  • the attached GI optical transmitter is used.
  • Such GI-type optical transmission suspensions are disclosed in Japanese Patent Publication No. 47-816, Japanese Patent Publication No. 47-28059, EP Publication No. 2008-159, etc. .
  • the GI type optical transmitter disclosed in Japanese Patent Publication No. 47-1816 was made of glass and was made by the ion exchange method. Therefore, it is difficult to produce products with the same shape and the same performance between different lots because of low productivity, especially rods of the same length with a certain total conjugate length. It is difficult to make the same lens with the same performance between different rods. As a result, the length of the GI type optical transmitter with the same performance is not uniform, and the handling is difficult. There was a drawback that it became difficult.
  • the GI-type plastic optical transmitter disclosed in JP-B-47-28059 is a mixture of two or more transparent polymers having different refractive indices and different solubilities in a specific solvent.
  • a rod-shaped or fiber-shaped shaped article is immersed in the above-mentioned solvent, and the mixing ratio of the above-mentioned polymer is changed from the surface to the center of the shaped article. It is made by doing.
  • a plastic GI optical transmitter can be produced for the time being, but a mixture of two or more polymers having different refractive indices tends to cause a disorder in the refractive index distribution. It is difficult to make the refractive index distribution from the part toward the outer periphery follow the optimum distribution curve.
  • the transparency of the optical transmitter is reduced, and light scattering is likely to occur.
  • the characteristics of the GI type optical transmitter are not sufficient, and the application development thereof is not progressing.
  • EP Publication No. 0 218 159 discloses that at least one kind of thermoplastic polymer (A) is compatible with the polymer (A) when polymerized, and the polymer (A)
  • the monomer (B) is volatilized from the surface of the molded article obtained by molding a homogeneous mixture of the monomer (B), which is a polymer having a different refractive index from that of the polymer (B), into a rod shape. This gives a continuous concentration distribution of the monomer (B) from the surface of the molded article to the center thereof, and then polymerizes the unpolymerized monomer in the molded article.
  • a method of making a GI type plastic optical transmission medium is shown.
  • the refractive index distribution curve of a GI optical transmission medium should have a quadratic distribution curve expressed by the following equation (3), and such a curve is indicated by the curve indicated by A in Fig. 2. It is said that
  • N N 0 (1-ar 2 ) (3)
  • the refractive index distribution curve measured with a microscope is shown at B in Fig. 2 and is 0.5 r from the center in the radial direction. ⁇ 0.75 r. (In the same figure, the range from c to d, and e indicates the outer periphery).
  • the refractive index distribution curve has a shape relatively close to the optimal curve shown by equation (3).
  • the outer and inner refractive index distributions have shapes that deviate significantly from the optimal curve.
  • the light of the light source (42) is adjusted by the lens (43), as shown in FIG. 4, to calculate the MTF values of the optical transmitter of the prior art and the optical transmitter of the present invention.
  • the light passing through the grating (45) having a lattice constant of 4 (Limpano mm) is applied to the GI-type optical transmitter (41), and the lattice image passing through the optical transmitter is applied to the CCD sensor (46).
  • the maximum value i réelle X and the minimum value i of the measured light quantity were measured as shown in FIG. 5 and determined by the following equation (4).
  • MTF (3 ⁇ 4) ⁇ (im, xi »ln) / (im.x + im in) ⁇ X 100 (4) has a refractive index distribution that almost exactly follows the optimal curve defined by the above equation (3) GI-type plastic optical transmitters have not been developed yet.
  • the present inventors Prior to the present invention, the present inventors used a monochromatic light source such as an LED, and had a resolution high enough to be usefully used as an optical transmitter for a facsimile image sensor and chromatic aberration.
  • a monochromatic light source such as an LED
  • a refractive index distribution approximating the refractive index distribution curve to be obtained is provided, and a grid image of 4 line Pano mm is formed on the CCD line sensor through the light transmitting body and measured.
  • the refractive index distribution in the radial direction of the GI optical transmission body achieved by the present invention is as shown in [[] of FIG. 1 and is a curve [I] that follows the optimal curve of equation (3).
  • the number of parts that correspond to the number increases, and when image transmission is actually performed with this optical transmitter, its performance is higher than the image transmission characteristics of a conventionally developed optical transmitter made of plastic. Has been significantly improved.
  • a method of making the outer peripheral area blacker has been studied, and although some effects have been obtained, the image transmission effect of the entire optical transmission body is reduced by blackening accordingly. There is a problem of doing so and it is not enough.
  • the present inventors assumed the bending as shown in [I] in FIG. A GI-type plastic optical transmission medium with a refractive index distribution is made to remove the areas C to D (F) from the areas C to E shown in Fig. 1. As a result, the present inventors have found that a GI-type optical transmitter can be obtained in which the above-mentioned difficulties have been remarkably improved, and the present invention has been completed.
  • the gist of the present invention is the radius r.
  • the GI type plastic optical transmission body is characterized in that the refractive index distribution in the range of (1) has an approximate refractive index distribution to the refractive index distribution curve defined by the following equation (1).
  • n (r) n 0 ⁇ l- (gV2) r 2 ⁇ (1)
  • is the refractive index of the central axis of the optical transmission member, and is an arbitrary value within the range of 1.5 ⁇ 0.1.
  • ⁇ (r) is the optical transmission member.
  • the refractive index at a position at a distance r from the center axis of the optical transmission member to the outer peripheral direction, g represents the refractive index distribution constant of the optical transmission body, and is a value of 0.3 to 0.7, and r is the light transmission coefficient. Indicates the distance from the center axis of the transmission body toward the outer periphery.
  • the radius L At least 0.25 from the central axis to the outer peripheral surface of the GI-type plastic optical transmission body preform having a circular cross section within the range of 0.5 ⁇ 0.1 mm. L. ⁇ 0.7 L.
  • the feature is to remove the outer periphery of the optical transmitter preform having a refractive index distribution whose refractive index distribution approximates the refractive index distribution curve defined by the following equation (2). The method of manufacturing the GI-type plastic optical transmission body described above.
  • n (L) No ⁇ l- (g 2/2) L 2 ⁇ (2)
  • N. is a refractive index of the central axis portion of the optical transmission medium, and is an arbitrary value within a range of 1.5 ⁇ 0.1.
  • the GI-type plastic optical transmission body of the present invention has at least 0.25r from the central axis toward the outer peripheral surface. ⁇ 0.8 r. , Preferably 0 ⁇ 25 ⁇ . ⁇ 0 ⁇ 85 ⁇ . Since the refractive index distribution in the range of has a refractive index distribution approximating the optimal curve of the refractive index distribution defined by the above equation (1), a grid image of 4 line pairs mm is transmitted through the optical transmission body to the CCD line. The maximum light intensity value i « ⁇ ⁇ and the minimum light intensity value i ⁇ measured by imaging on the sensor are measured, and the characteristic that the MTF calculated by the above equation (4) is 60% or more is provided. This and force 5 can and Do Ri, compared to the GI optical transmission article have been conventionally developed can and this performing quality image transmission, becomes excellent light transmission member, especially no image Bo Ke peripheral portion.
  • the optical transmitter of the present invention has a radius r.
  • Has a circular cross-section in the range of 0.45 ⁇ 0.1 mm, so that at least r 0.25r. ⁇ 0.8 r. Within this range, the refractive index distribution can be made the optimum distribution.
  • Radius r. Is in the above range For larger values, 0.25 r. ⁇ 0.8 r. It is difficult to satisfy Equation (1) in the range of.
  • Radius r. Is in the above range For larger values, 0.25 r. ⁇ 0.8 r. It is difficult to satisfy Equation (1) in the range of.
  • the refractive index n of the central axis portion If it is outside the above specified range, it will be difficult to increase the MTF to 60% or more. If the refractive index distribution constant g is larger than the above specified range, the conjugation length becomes too short and it becomes difficult to set a distance for operation. Conversely, if it is too small, the conjugate length will be long, and it will be difficult to reduce the size of a facsimile medium-scanner or the like incorporating an optical transmitter.
  • the GI optical transmitter of the present invention will be further described together with the method of manufacturing the GI optical transmitter of the present invention.
  • the optical transmitter according to the present invention produces an optical transmitter preform having a specific performance, and then removes the outer periphery of the preform by, for example, physically peeling off the outer periphery. It is obtained by
  • the pli off O over arm is depends refractive index after curing each other, the viscosity at uncured state is prepared 3 or more uncured liquid substance is 1 0 3 to 1 0 8 Boi's, the non The cured liquid material is supplied to a multilayer composite spun nozzle, for example, so that the refractive index decreases gradually from the center to the outer peripheral surface, and is concentrically laminated. Trandoff Eye When the refractive index after curing of each layer and the thickness of the layer are made into a strand fin, the center position of each layer is the center from the strand fiber.
  • the equation (2) should be made to match, and then this strand fiber An uncured strand fiber is applied while inter-diffusion treatment of the material between adjacent layers is performed or after inter-diffusion treatment so that the refractive index distribution between the layers becomes a continuous refractive index distribution. Can be obtained by hardening.
  • Viscosity Yes displacement of the uncured liquid material used in the present invention also have 1 0 3 ⁇ 1 0 ⁇ and is not to like this in the range of Boi's.
  • the viscosity tends to the formation of 1 0 3 Ri by Boi's small and Itosetsu Re filamentous product frequently during shaping becomes difficult. If the viscosity is greater than 10 ⁇ - voids, the shaping operability will be poor, making it difficult to arrange each layer concentrically, and shaping with large unevenness in thickness. It becomes easy to become things.
  • the uncured liquid substance used in the present invention is a substance that can be cured, that is, polymerizable and cross-linkable, and may be a radically polymerizable vinyl monomer or the same.
  • a composition comprising a monomer and a polymer soluble in the monomer can be used.
  • the above-mentioned uncured liquid is used.
  • Substance is on It is preferably composed of a vinyl monomer as described above, and a polymer and a force soluble in the butyl monomer.
  • polymers having the same refractive index for each layer in order to adjust the viscosity, since a blast optical transmitter having a continuous refractive index distribution from the center toward the surface can be easily obtained.
  • polymer methyl acrylate is excellent in transparency and has a high refractive index of itself, so that it is suitable as a polymer used in producing the GI type optical transmission body of the present invention. It is.
  • the strand fiber formed from the uncured material it is preferable to add a heat curing catalyst and a photo-curing catalyst to the uncured material. No. That is, the thermosetting catalyst and Then, the strand fiber containing the photocuring catalyst is heated or heat-treated, or irradiated with light, preferably ultraviolet light, from the surroundings.
  • thermosetting catalyst an ordinary peroxyside catalyst is used.
  • Benzofuenone benzoin alkyl ether, 4'-isoprobiyl-1 2 -hydroxyl 2 -methyl-ropiophenone, light-curing catalysts as light curing catalysts Phenyl ketone, benzyl methyl ketone, 2,2-diethoxyacetophenone, chlorothioxanthone, thioxanthonone compound, benzophenone compound, benzophenone compound, 4-dimethylamino Ethyl benzoate, 41-dimethylaminoisoamyl benzoate, N-methyljetanolamine, triethylamine, and the like.
  • Light sources used for photopolymerization include carbon arc lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, low-pressure mercury lamps, chemical lamps, and xenon lamps that emit light with a wavelength of 150 to 600 nm. , Laser light and the like.
  • the radius of the rod of the optical transmission medium must be in the range of 0.5 ⁇ 0 ⁇ lmm, and if the radius is larger than this range, the radius of the bridge becomes larger. 0.25 L of home rod. ⁇ 0.70 L. It is difficult to obtain a refractive index distribution that is close to the highest expression represented by the expression (2) within the range described above, and the preform for manufacturing a high-resolution GI optical transmission body, which is the object of the present invention, is obtained. It becomes difficult to make a game.
  • the composition of each uncured substance (monomer polymer ratio, refractive index, etc.)
  • the refractive index of the preform rod can be set to 0.2 by appropriately combining the output ratio, the discharge nozzle temperature, the temperature at the time of mutual diffusion, time, light or heat curing (polymerization) conditions, and the like. 5 L. ⁇ 0.70 L. It can be approximated to the quadratic equation of equation (2) within the range of.
  • the method of removing the outer periphery of the optical transmitter preform is as follows: (1) The outer periphery of the optical transmitter preform is swollen with a solvent and a predetermined size is obtained in that state. (2) a method of cutting the outer periphery of the optical transmission body preform with a cutting tool, (3) a method of cutting the swollen portion through a hole having a hole diameter of (3) Examples of the method include immersing the reform in an alkaline solution or the like, and dissolving and removing the outer peripheral portion.
  • the method of swelling the optical transmission medium of (1) with a solvent is to put the plastic optical transmission medium in a solvent capable of dissolving the plastic. After immersion and swelling within a predetermined range, the swelled part is cut through a circular hole with a predetermined diameter, and the type of solvent used, immersion time in the solvent, swelling Depending on the temperature and the size of the circular hole, the cutting width can be adjusted.
  • Solvents for dissolving the plastic for optical transmission medium such as black mouth form, methylene chloride, carbon tetrachloride, methyl ethyl ketone, acetate, and ethyl acetate. Can be mentioned.
  • the method of shaving the outer periphery of the optical transmission body foam with the cutter of (2) can be performed, for example, by a method as shown in the perspective view of the cutter in FIG. it can.
  • (10) is This is an optical transmission body form
  • (11) is a GI type optical transmission body having high resolution characteristics of the present invention.
  • the number of cutting teeth (22) may be one, but it is preferable to use them in combination.
  • a plurality of cutting teeth are attached to the rotating body (21) and the driving source (24) is used. By rotating, the outer circumference of the optical transmission medium preform that passes through the hole at the center of rotation is efficiently cut and without causing unnecessary damage to the briform. it can.
  • (12) is a cutting oil spraying device for preventing the preform from being cut poorly due to heat generated when cutting the optical transmission medium (10).
  • (30) is a new blower for pulling out the GI-type optical transmission line of the present invention, and the cutting speed of the preform is the same as the rotation speed of the rotating tooth (22). This can be done by adjusting the take-off speed of the blower (30).
  • Fig. 1 is a diagram showing the refractive index distribution of the optical transmission body of the present invention
  • Fig. 2 is a diagram showing the refractive index distribution of an optical transmission body developed conventionally
  • Fig. 3 is a lattice image observed with the optical transmission body.
  • (A) is a grid image observed using an optical transmission body whose refractive index distribution approximates the quadratic curve defined by equation (3)
  • (b) c) is a lattice image observed using an optical transmitter whose refractive index distribution is farther from the ideal refractive index distribution.
  • Fig. 4 shows the maximum (i « ⁇ ⁇ ) and minimum (i min) values of transmitted light using a CCD sensor when observing a lattice image with an optical transmitter.
  • FIG. 5 shows a device for measuring Fig. 6 shows the measurement results of the maximum light quantity and the minimum light quantity, and Fig. 6 shows the outer peripheral cutting device of the optical transmitter preform used to create the optical transmitter of the present invention.
  • FIG. 7 is a diagram showing a refractive index distribution of the optical transmitter of the present invention.
  • the width of each layer of the composite spinning nozzle used was such that the refractive index of the cured product of a plurality of types of uncured liquid material decreased gradually from the center, and the center position of each layer is the distance from the center axis to the strand fiber on the horizontal axis.
  • the refractive index of each layer was plotted on the vertical axis, the one designed to follow the quadratic curve represented by the above equation (2) was used.
  • the mixture was heated and mixed with C to obtain an unhardened liquid material for forming the first layer (center).
  • a fiber optic with a radius (L.) of 0.5 mm is run at a speed of 50 cmZ at a speed of 50 cmZ so that it passes through the center of the illuminated section.
  • the reform was taken off with a mini-proler.
  • the refractive index distribution was 1.512 at the center (N.) and 1.470 at the periphery, and the refractive index distribution constant (g) was 0.52. 0.25 L from the center to the outer surface as shown in the figure. ⁇ 0.75 L.
  • the end faces of the optical transmitter body were polished to a lens length of 7.2 mm, and the MTF measured using a 4-line Pano mm grid was 57%. Had a conjugate length of 15.4 mm.
  • the image of the obtained lattice was a clear image with little distortion, but distortion was observed in the peripheral part.
  • a plurality of the optical transmitters are assembled into an optical transmitter array having a lens length of 7.1 mm having a structure as shown in FIG.
  • the MTF measured using a 4-line-pair Zmm mm grid of the body array was 49% and the conjugate length was 15.4 mm.
  • the above-mentioned optical transmission medium was immersed for 45 seconds in a black-hole hologram in which the temperature was kept at 10, and passed through a small hole made in a 1-mm-thick silicone rubber sheet.
  • the portion swollen with the mouth holm portion F in Fig. 1 was removed to obtain an optical transmitter with a radius (r) of 0.448 mm.
  • the refractive index distribution of the optical transmission body is 1.512 at the central axis (n.) And 1.474 at the periphery, and the refractive index distribution constant ()
  • the value of 0.52 is 0.24r from the central force toward the outer peripheral surface.
  • ⁇ 0.82 r. Has a refractive index distribution that approximates the quadratic curve I that satisfies Eq. (1).
  • Both ends of the optical transmission body were polished to a lens length of 7.2 mm, and the MTF measured using a 4-line pair / mm grating was 65%, with a conjugate length of 1.5 mm. It was 4 mm.
  • the image of the obtained grating is the light before the surface is scraped. It was a clear image with very little distortion including the peripheral part as compared with the transmission body form. .
  • a plurality of these optical transmitters are assembled into an optical transmitter array having a lens length of 7.2 mm having a structure as shown at 47 in FIG.
  • the MTF measured using a grating with a line pair of Zmm was 56%, and its conjugate length was 15.4.
  • An image scanner was assembled by combining an LED with a light source and a CCD as a light receiving element on this optical transmitter array. This image scanner had a high resolution and was able to transmit clear images.
  • the mixture obtained by heating and kneading parts by weight at 65 was used as the liquid material for forming the second layer, and the liquid material for the second layer used in Example 1 was used for the third layer.
  • the mixture was heated and kneaded in the above to form a liquid material for forming the fourth layer.
  • a concentric four-layer composite nozzle is made from the above four types of liquid substances.
  • an extruded strand fiber was used at the same time.
  • the viscosity of the Shi pushed out liquid material of the first layer is 4. 5 X 1 0 4 Boi's
  • liquid material of the second layer is 4.0 1 0 4 Boi's
  • liquid material of the third layer is 2.0 X 1 0 "
  • the liquid-like material of the fourth layer is 2. was 2 X 1 0 4 Boi's. temperature of the composite Roh nozzle met 6 0 e C.
  • an optical transmission body foam having a hardening (L.) of 0.48 mm was obtained by curing in the same manner as in Example 1.
  • the optical transmission medium obtained when the discharge ratio is (first layer): (second layer): (third layer): (fourth layer) is set to 2: 1: 1: 1.
  • the refractive index distribution measured with an interface microscope is the central axis (N.
  • the peripheral part is 1.479, and the refractive index distribution constant (g) is 0.53. From the center to the outer peripheral surface as shown in ⁇ in FIG. 0.2 L towards you. ⁇ 0.75 L. The refractive index distribution approximated to the quadratic curve IV shown by the equation (2) in the range of (2).
  • the MTF measured using a 4-line-pair Z mm grid was 5.7% at a lens length of 7.1 mm and a conjugate length of 14.9 mm.
  • the MTF was 53%.
  • Both ends of the optical transmission body were polished to a lens length of 7.1 mm, and the MTF measured using a 4-lane Zmm grating was 71%, with a conjugate length of 14.9. mm.
  • the obtained image of the grating was a clear image with very little distortion including the peripheral part, compared to the optical transmission medium before shaving the surface.
  • a plurality of these optical transmitters are assembled into an optical transmitter array having a lens length of 7.1 mm and having a structure as shown in FIG. 4 at 47, and the optical transmitter array is assembled into four line pairs.
  • the MTF measured using a lattice of Zmm was 63% at a conjugate length of 14.9.
  • An image scanner was assembled by combining an LED with a light source and a CCD as a light receiving element on this optical transmitter array. This image scanner has a high resolution and was able to transmit clear images.
  • Example 1 Each of the liquid materials for forming the first to fourth layers used in Example 2 and the solution material for forming the fifth layer were used for forming the third layer in Example 1. These liquid materials for each layer are supplied to five layers of concentric composite nozzles, extruded at the same time, made into a strand fiber, cured, and cured to form an optical transmitter preform. I got it.
  • the refractive index distribution of the briform (L .: 0.48 mm) measured by an interferometer interference microscope was 1.514 at the central axis (N.) and around the periphery.
  • the refractive index distribution constant (g) is 0.57, and 0.15 L from the center toward the outer peripheral surface. ⁇ 0.79 L. In the range, the refractive index distribution approximated the optimum curve shown by the equation (2).
  • the MTF measured using a 4-line pair Z mm lattice was 5.9% with a lens length of 8.0 mm and a conjugate length of 15.9 mm. Furthermore, the MTF of the optical transmitter array prepared in the same manner as in Example 1 using this optical transmitter preform was 57% (measured with a grid of 4 line pairs / mm). Was.
  • the optical transmitter preform was removed from the outer peripheral surface using a water-resistant sandpaper (No. 200), and the optical transmitter having a radius (r.) Of 0.44 mm was used. I got The refractive index distribution of this optical transmission body is 1.514 at the central axis ( n .) And si.4722 at the peripheral portion, and the refractive index distribution constant (g) is 0.57. 0.13 L from center to outer circumference. ⁇ 0.89 L. The refractive index distribution approximated to the optimal curve represented by the equation (1) in the range of (1).
  • the MTF measured in the same manner as in Example 1 had a lens length of 8.0 mm and a conjugate length of 15.9. It was 75% in mm.
  • the MTF of the optical transmitter array prepared using this optical transmitter in the same manner as in Example 1 was 71% (measured on a 4-line-pair mm grid). Image scanners are not always used, and always transmit high-resolution images. I was able to do it.
  • the GI-type plastic optical transmission body of the present invention has at least 0.25 mm from the center thereof. ⁇ 0 '8 0 ⁇ . Since the refractive index distribution in the range of is very similar to the distribution curve shown in equation (1), it is possible to perform high-quality image transmission with no image blur at the periphery and particularly high resolution. It is extremely useful as an optical transmitter for copiers, facsimiles, and LED printers that require a high speed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Lenses (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

明 細 書
グ レ ーデッ ドイ ンデ ッ クス型 ブラスチ ッ ク製光伝送体及びその製法
技 術 分 野
本発明 は、 光集束性光フ ァ イ バ、 光集束性棒状 レ ン ズ、 光セ ンサ ー な ど種々の光伝送路 と して有用 に利用 し 得る グ レ ー デ ッ ドイ ンデッ クス型 (以下 G I 型と いう ) ブラスチ ッ ク製光伝送体及びその製法に係 り 、 特に高解 像度で色収差の少ぃ良質の画像伝送を可能と させる光伝 送体及びその製法に関する。
背 景 技 術
近年、 フ ァ ク シ ミ リ 、 複写機、 イ メ ー ジセ ンサ ー等 の画像伝送用 と して棒状光伝送体を使用する こ とが多 く な っ ている。 かかる光伝送体は高解像で色収差も少ない 良質の画像伝送を可能と させる ものである こ と 、 及び、 大量生産 して も光伝送体間の品質のばらつきが少ない製 法が採用可能である こ とが望まれていた。
こ の よ う な画像伝送用光伝送体には、 光伝送体断面内 において、 その中心部から外周部に向かって連続的に屈 折率を小さ く して、 その分布に山型の傾斜を付けた G I 型光伝送体が使用される。 かかる G I 型光伝送休が日本 特公昭 4 7 - 8 1 6 号公報、 同 4 7 - 2 8 0 5 9 号公 報、 E P公開公報第 2 0 8 1 5 9号公報等に示されてい る。
特公昭 4 7 — 8 1 6号公報に示された G I 型光伝送体 は ガラ ス を素材 と し 、 イ オ ン交換法で作成 し ている た め、 その生産性は低 く 同一形状で同一性能を備えたもの を、 異なる ロ ッ ト 間で生産する こ と は難し く 、 特に一定 の共役長 ( total conjugate length) で同一の長さの棒 状レ ンズで同一性能を備えたものを異なる ロ ヅ 卜 間で作 る こ と は難し く 、 その結果、 同一性能を備えた G I 型光 伝送体の長さは不揃いと な り 、 その取扱いが困難になる と いう難点があった。
特公昭 4 7 — 2 8 0 5 9号公報に示された G I型ブラ スチ ッ ク光伝送体は、 屈折率が異な り 、 かつ特定の溶剤 に対する溶解度が異なる二以上の透明な重合体の混合物 よ り なる棒状ま たはフ ァ イ バ状賦形物を、 前記溶剤に浸 漬し、 該成形物の表面からその中心部にかけて前記ニ以 上の重合体の混合割合を変化させたものとする こ と によ つて作られている。 この方法によ って一応プラスチ ッ ク 製 G I型光伝送体を作る こ とはできるが、 屈折率の異な る二以上の重合体を混合した ものは屈折率分布に乱れを 生じ易 く 、 中心部から外周方向に向かっての屈折率分布 を最適の分布曲線に沿っ た形のものとする こ とが困難で ある。 また光伝送体の透明性が低下する と と も に光散乱 を起こ し易いもの と な り 、 G I 型光伝送体と しての特性 が十分でな く その用途開発は進んでいない。
E P公開特許 0 2 0 8 1 5 9号公報には、 少な く と も 一種の熱可塑性重合体 ( A ) と、 重合した場合に重合体 ( A ) と相溶し得、 かつ重合体 ( A ) と は異なっ た屈折 率の重合体 と なる単量体 ( B ) と の均一混合物をロ ッ ド 状に成形した成形体の表面よ り 、 単量体 ( B ) を揮散せ しめる こ と によ って、 該成形物の表面から中心部にかけ て単量体 ( B ) の連続的な濃度分布を与えた後、 該成形 物中の未重合単量体を重合する こ と によ り G I 型ブラス チ ヅ ク光伝送体を作る方法が示されている。
G I 型光伝送体の屈折率分布曲線は理想的 に は次式 ( 3 ) に よ っ て表わされる二次分布曲線を有すべき と さ れ、 かかる曲線は図 2 中の Aに示した曲線と なる と いわ れている。
N = N 0 ( 1 - a r 2 ) ( 3 ) と こ ろが本発明者等の検討による と上記の従来方法に よ っ て作られた G I 型光伝送体のイ ンタ ー フ ア コ干渉顕 微鏡にて測定した屈折率分布曲線は図 2 中の B に示すご と く 、 その中心から半径方向 0. 5 r 。 〜 0 . 7 5 r 。 までの範囲 (同図中、 c〜 dの範囲、 ちなみに e は外周 部を示す。 ) は比較的式 ( 3 ) で示される最適曲線に近 い形状の屈折率分布曲線 と なるが、 それよ り も外側及び 内側の屈折率分布はその形状が最適曲線から大き く はず れた もの と なっ ている。
式 ( 3 ) で規定する最適曲線にほぼ正確に従う よ う な 屈折率分布曲線を有する光伝送体を用いて格子模様を観 察する と 図 3 ( a ) に示すよ う な正常な格子像を得る こ と ができ るが、 上述の図 2 B に示すよ う に屈折率分布が 理想的な屈折率分布からはずれたものである光伝送体を 用いて格子像を観察する と図 3 ( b ) 又は ( c ) に示す よ う に大き く ゆがんだ格子.像しか得られず、 正確な画像 伝送を行い得ないもの と なっている。 こ のよ う な光伝送 体の解像度はモデュ レー シ ョ ン ' ト ラ ンスフ ァ ー ' フ ァ ク タ一 (以下、 M T F と いう ) で示すこ とができる。 従 来技術の光伝送体、 及び、 本発明の光伝送体の M T F値 の算出は、 先ず図 4に示すごと く 、 光源 ( 4 2 ) の光を レ ンズ ( 4 3 ) にて調整し、 格子定数 4 (ライ ンペアノ m m ) を有する格子 ( 4 5 ) を通っ た光を G I型光伝送 体 ( 4 1 ) に当て、 この光伝送体を通過した格子像を C C Dセ ンサ ( 4 6 ) にて読取 り 、 その測定光量の最大値 i ». x と最小値 i を図 5 に示すごと く 測定し、 下記 ( 4 ) 式によ り求めた。 こ こで格子定数と は図 4の格子 に示すごと く 、 白ライ ン と黒ライ ンとの 1組の組合わせ を 1 ラ イ ンペア と し こ のラ イ ンペア力 s l m mの巾内に何 本設けられているかを示す値であ り 、 このライ ンペアが 4本 Zm mのものを 4 ライ ンペアノ m m と して表示した
MTF (¾) = { (im, x-i»l n) / (im.x + im i n) } X 100 ( 4 ) 前述の式 ( 3 ) で規定する最適曲線にほぽ正確に従う 屈折率分布を有している G I型ブラスチ ッ ク製光伝送体 は未だ開発されていない。
本発明者等は本発明以前に LED 等の単色光源を用い、 フ ァ ク シミ リ ゃイ メ ー ジセ ンサー用の光伝送体と して有 用 に使用 し得る程に解像度が高く 、 色収差が少ない G I 型ブラスチ ッ ク製光伝送体を得る こ と を目的と して検討 し、 半径 r 。 が 0 . 5 ± 0. 1 m mの範囲内にあ り 、 中 心軸部から外周面に向かつ.て少な く と も 0 . 2 5 r 。 〜 0 . 7 0 r 。 の範囲の屈折率分布が前記式 ( 3 ) で規定 する屈折率分布曲線に近似の屈折率分布を備えてお り 、 かつ、 4 ラ イ ンペアノ m mである格子像を該光伝送体を 通 して C C Dラ イ ンセ ンサ上に結像させて測定した最大 光量値 i m と 最小光量値 i »i n と を測定 し 、 前記式 ( 4 ) で算出 した M T Fが 4 0 %以上である と い う特性 を備えている こ と を特徴と する G I 型ブラスチ ッ ク製光 伝送体を 日本特願平 1 一 3 0 7 6 3 6号で提案した。
こ の発明で達成された G I 型光伝送体の半径方向の屈 折率分布は図 1 の [ Π ] に示した通 り であ り 、 ( 3 ) 式 の最適曲線に従 う 曲線 [ I ] に一致 し た部分が多 く な り 、 実際に こ の光伝送体にて画像伝送を行っ た場合、 従 来開発されていたブラスチ ッ ク製光伝送体の画像伝送特 性に比べ、 その性能は著し く 改良された もの と なっ た。
しかし こ の G I 型光伝送体の外周近傍、 特に光伝送体 の中心からの半径を r 。 と した と き、 0 . 7 0 r 。 よ り 外周部の屈折率は式 ( 3 ) の最適曲線から大き く はずれ た もの と な り 、 このよ う な光伝送体によ って伝送された 画像の周辺部は歪んだ り 、 ぼけた り し、 高画質の画像伝 送用の光伝送体と しては必ずし も満足したもの と は言え ない。 こ の よ う な不都合を除 く ため、 0 . 7 0 r 。 よ り 外周部の領域を黒色化する方法が検討され、 それな り の 効果は得られてはいるが、 光伝送体全体と しての画像伝 送効果は黒色化によ り その分だけ低下する と い う 問題が あ り 充分な もの と は言えない。
発 明 の 開 示
そ こ で本発明者等は図 1 中の [ I ] に示したご と き屈 折率分布を備えた G I 型ブラスチ ッ ク製光伝送体ブ リ フ オ ー ムを作 り 、 図 1 に示す C〜 Eの領域よ り C〜 Dの領 域 ( F ) を除去する こ と によ り 、 上述した難点を著し く 改良し得た G I 型光伝送体が得られる こ と を見出 し本発 明を完成した。
本発明の要旨 と する と こ ろは、 半径 r 。 が 0 . 4 5 士 0 . 1 m mの範囲内にある円形断面を有する G I 型ブラ スチ ッ ク製光伝送体であ り 、 該光伝送体の中心軸部から 外周面 に 向か っ て少な く と も 0 . 2 5 r 。 〜 0 . 8 r o 、 好ま し く は 0 . 2 5 r 。 〜 0 . 8 5 r 。 の範囲の 屈折率分布が下記式 ( 1 ) で規定する屈折率分布曲線に 近似の屈折率分布を備えている こ と を特徴と する G I 型 ブラスチ ッ ク製光伝送体にある。
n (r) =n0{l- (gV2)r2} ( 1 )
(上記式中、 η。 は該光伝送体の中心軸部の屈折率であ り 、 1 . 5 ± 0 . 1 の範囲内にある任意の値である。 η ( r ) は該光伝送体の中心軸部よ り外周方向への距離 r の位置部の屈折率、 gは該光伝送体の屈折率分布定数を 示し、 0 . 3〜 0 . 7 の値であ り 、 r は該光伝送体の中 心軸よ り外周方向への距離を示す。 )
更に、 半径 L 。 が 0 . 5 ± 0 . 1 m mの範囲内にある 円形断面を有する G I 型ブラスチ ッ ク製光伝送体プリ フ オ ー ムの中心軸部から外周面に向かって少な く と も 0 . 2 5 L 。 〜 0 . 7 0 L 。 の範囲の屈折率分布が下記式 ( 2 ) で規定する屈折率分布曲線に近似の屈折率分布を 備えた光伝送体プ リ フ ォ ー ムの外周を除去する こ と を特 徵 と する上記の G I 型ブラスチ ッ ク製光伝送体の製造方 法にある。
n(L) =No{l- (g2/2) L2} ( 2 )
(上記式中、 N 。 は該光伝送体ブ リ フ ォ ー ムの中心軸部 の屈折率であ り 、 1 . 5 ± 0 . 1 の範囲内にある任意の 値である。 n ( L ) は該光伝送体ブ リ フ ォ ー ムの中心軸 部よ り外周方向への距離 Lの位置部の屈折率、 gは該光 伝送体ブ リ フ ォ ー ムの屈折率分布定数を示し、 0 . 3〜 0 . 7の値であ り 、 Lは該光伝送体の中心軸部よ り外周 方向への距離を示す。 )
本発明の G I 型ブラスチ ッ ク製光伝送体は、 その中心 軸部から外周面に向かって少な く と も 0 . 2 5 r 。 〜 0 . 8 r 。 、 好ま し く は 0 · 2 5 Γ。 〜 0 · 8 5 Γ 。 の範 囲の屈折率分布が上記式 ( 1 ) で規定する屈折率分布の 最適曲線に近似の屈折率分布を備えているため、 4 ライ ンペアノ m mである格子像を該光伝送体を通して C C D ライ ンセ ンサ上に結像させて測定した最大光量値 i «·χ と最小光量値 i η と を測定し、 上記式 ( 4 ) で算出 し た M T Fが 6 0 %以上である と いう特性を備える こ と力5 可能と な り 、 従来開発されてきた G I 型光伝送体に比べ 良質な画像伝送を行う こ とができ、 特に周辺部の画像ボ ケのない優れた光伝送体 と なる。
本発明の光伝送体は半径 r 。 が 0 . 4 5 ± 0 . 1 m m の範囲内にある 円形断面を有しているため、 少な く と も r = 0 . 2 5 r 。 〜 0 . 8 r 。 の範囲で屈折率分布を最 適分布の もの と する こ とができ る。 半径 r 。 が上記範囲 よ り大きい と 0 . 2 5 r 。 〜 0 . 8 r 。 の範囲で式 ( 1 ) 満足する もの とする こ とが困難になる。 一方、 半径 r
0 が上記下限未満である とハン ド リ ング性が劣る よ う に なる。
本発明において、 屈折率分布の最適曲線に 「近似 J し ている と はその規定された範囲において屈折率が最適曲 線力 ら ± 0 . 0 0 0 1 の範囲内にある こ と を言う 。
上記式 ( 1 ) において、 中心軸部の屈折率 n。 が上記 規定範囲外である と M T F を 6 0 %以上にする こ とが困 難と なる。 又、 屈折率分布定数 gが上記規定範囲よ り大 きい と共役長が短く な り すぎて作動するための距離を設 定するのが困難となる。 逆に小さ く な り すぎる と共役長 が長く なるため光伝送体を組み込んだフ ァ ク シミ リ ゃィ メ ー ジスキ ャナ等を小型化する こ とが困難と なる。
以下、 本発明の G I 型光伝送体の製法と共に本発明の G I 型光伝送体について更に説明する。
本発明の光伝送体は特定の性能を備えた光伝送体プ リ フ ォ ームを製造し、 次いでそのプ リ フ ォ ームの外周部を 例えば物理的にはぎ取る等して除去する こ と によ って得 られる。
このプ リ フ ォ ームは硬化後の屈折率が互いに異な り 、 未硬化状態での粘度が 1 0 3 〜 1 0 8 ボイ ズである 3種 以上の未硬化液状物質を用意し、 この未硬化液状物質を 中心部から外周面に向かって順次屈折率が低く なる よ う に し、 かつ、 同心円状に積層する よ う に、 例えば多層複 合紡糸ノ ズルに供給して未硬化状態のス ト ラ ン ドフ アイ バに賦形 し、 各層の硬化後の屈折率と層の厚みをス ト ラ ン ド フ ア イ ノ に し た と き の各層の中心位置をス 卜 ラ ン ド フ ァ イ バからの中心軸からの距離を横軸に、 各眉の屈折 率を縦軸にブロ ッ 卜 した と き、 前記式 ( 2 ) に一致する よ う に し、 次いで、 このス ト ラ ン ドフ ァ イ バの各層間の 屈折率分布が連続的屈折率分布と なる よ う に隣接層間の 物質の相互拡散処理を施しながら、 あるいは相互拡散処 理を施した後、 未硬化ス ト ラ ン ド フ ァ イ バを硬化せ しめ る こ と によ っ て得る こ とができ る。
互いに屈折率の異なる未硬化液状物質を 2 種のみ用い た場合はブ リ フ ォ ー ムの中心部から 0 . 2 5 L。 〜 0 . 7 0 L 。 の範囲内で屈折率分布を式 ( 2 ) の二次曲線に 近似した もの と する こ とが困難と なる。 従って、 互いに 屈折率の異なる未硬化液状物質は 3種以上である こ とが 好ま し い。 逆に種類を多 く して も屈折率分布の調整が難 し く 、 結局 3〜 7種である こ とがよ り好ま し く 、 3〜 5 種である こ とが更に好ま しい。
本発明において用いられる未硬化液状物質の粘度はい ずれもが 1 0 3 〜 1 0 β ボイ ズの範囲にある こ とが好ま し い。 粘度が 1 0 3 ボイ ズよ り 小さいと賦形の際に糸切 れが多発して糸状物の形成が困難 と なる傾向にある。 粘 度が 1 0 β ボイ ズよ り 大 き い と 賦形操作性が不良 と な り 、 各層を同心円状に配置さ せる こ と が困難 にな っ た り 、 太さ斑の大き い賦形物にな り易 く なる。
本発明で用いる未硬化液状物質は硬化即ち重合 · 架橋 可能な物質であ り 、 ラ ジカル重合性 ビニル単量体又は該 単量体と該単量体に可溶なポ リ マー とからなる組成物な どを用いる こ とができる。
用い得る ラ ジカル重合性ビニル単量体の具体例と して は、 メ チルメ タ ク リ レー ト ( η = 1 · 4 9 ) 、 スチ レ ン ( η = 1 . 5 9 ) 、 ク ロルスチ レ ン ( η = 1 . 6 1 ) 、 酢酸ビュル ( η - 1 . 4 7 ) 、 2, 2,3, 3-テ ト ラ フルォロ ブロ ピル (メ タ ) ァク リ レー ト、 2, 2, 3, 3, 4, 4,5, 5 -ォク タ フルォロペンチル (メ タ) ァク リ レー ト 、 2, 2, 3, 4, 4, 4-へキサフルォロ ブチル (メ タ) ァク リ レー ト 、 2, 2, 2- ト リ フルォロェチル (メ タ) ァク リ レー ト等のフ ッ素化 アルキル (メ タ ) ァク リ レー 卜 ( η - 1 . 3 7〜 ; L . 4 4 ) 、 屈折率 1 . 4 3〜 : I . 6 2 の (メ タ) ァク リ レー ト類、 例えばェチル (メ タ ) ァ ク リ レ ー ト 、 フ エ ニル (メ タ) ァク リ レー ト 、 ベンジル (メ タ) ァク リ レー ト 、 ヒ ド ロ キシアルキル (メ タ) ァク リ レー ト、 アルキ レ ングリ コ ールジ (メ タ) ァク リ レー ト、 ト リ メ チロ ール プロパンジ (メ タ) ァク リ レー ト、 ト リ メ チロ ールプロ ノ \·ン ト リ (メ タ) ァク リ レー ト 、 ペンタエ リ ス リ ト ール ジ、 ト リ 又はテ ト ラ (メ タ) ァク リ レー ト、 ジグ リ セ リ ンテ ト ラ (メ タ) ァク リ レー ト 、 ジペンタエ リ ス リ 卜 ー ルへキサ (メ タ ) ァク リ レー ト並びにジエチ レ ング リ コ 一ルビスァ リ ルカ ー ボネー ト 、 フ ッ素化アルキ レ ング リ コ ールポ リ (メ タ) ァク リ レー ト等が挙げられる。
これら未硬化液状物質の粘度を調整し、 かつ、 得られ るス ト ラ ン ド フ ァ イ バ状賦形物の中心部から外周へ向か つ て屈折率分布を もたせるため、 前記の未硬化物質は上 述の よ う な ビニル系単量体 と該ビュル単量体に可溶なボ リ マ ー と力 ら構成されている こ とが好ま しい。 こ こ に用 い う るポ リ マ ー は前記のラ ジカ ル重合性 ビュル単量体力 > ら生成するポ リ マー と相溶性が良いこ とが必要であ り 、 そのよ う なポ リ マ ー と しては、 例えばポ リ メ チルメ タ ク リ レ ー ト ( n = l . 4 9 ) 、 ボ リ メ チルメ タ ク リ レ ー 卜 系 コ ポ リ マ ー ( n = l . 0 4 7〜 1 . 5 0 ) 、 ボ リ 一 4 ー メ チルペ ン テ ン一 1 ( n = l . 4 6 ) 、 エチ レ ン /酢 酸 ビュルコ ポ リ マ ー ( n = l . 4 6〜 ; I . 5 0 ) 、 ポ リ カ ー ボネ ー ト ( n = l . 5 0〜 : I . 5 7 ) 、 ポ リ フ ツイヒ ビニ リ デン ( n = l . 4 2 ) 、 フ ッ化 ビニ リ デン テ ト ラ フルォロエチ レ ン コ ボ リ マ ( n = l . 4 2〜 : I . 4 6 ) 、 フ ッ 化 ビニ リ デン テ ト ラ フルォロエチ レ ン /へキ サフルォロ ブロ ビ レ ン コ ポ リ マー ( n = l . 4 0〜 ; I . 4 6 ) 、 ポ リ フ ヅ化アルキル (メ タ ) ァ ク リ レ ー ト ポ リ マ ー な どがあげられる。
粘度を調整するため各層に同一の屈折率を有するポ リ マ ー を用いる と 、 中心から表面に向かって連続的な屈折 率分布を有するブラスチ ヅ ク光伝送体が得られ易いので 好ま し い。 と く に、 ポ リ メ チルメ タ ク リ レ ー ト は透明性 に優れ、 かつ、 それ自体の屈折率も高いので本発明の G I 型光伝送体を作る に際して用いるポ リ マ ー と して好適 である。
前記未硬化物よ り形成されたス ト ラ ン ド フ ァ イ バを硬 化する には未硬化物中に熱硬化触媒及びノ又は光硬化触 媒を添加 してお く こ とが好ま し い。 即ち、 熱硬化触媒及 びノ又は光硬化触媒を含有するス 卜 ラ ン ドフ ァ イ バを加 熱処理するか又は光照射、 好ま し く は紫外線を周囲から 照射する。
熱硬化触媒と しては、 通常のパ ーォキサイ ド系触媒が 用いられる。 光硬化触媒と してはべンゾフ エノ ン、 ベン ゾイ ンアルキルエー テル、 4 ' 一イ ソプロ ビル一 2 — ヒ ド ロ キ シー 2 —メ チルーブロ ピオフ エノ ン、 1 ー ヒ ド ロ キ シシク ロへキ シルフ ェニルケ ト ン、 ベンジルメ チルケ タ ール、 2, 2 — ジエ ト キシァセ ト フ エ ノ ン、 ク ロ ロ チ ォキサン ト ン、 チォキサン ト ン系化合物、 ベンゾフ エ ノ ン系化合物、 4 ー ジメ チルァ ミ ノ 安息香酸ェチル、 4一 ジメ チルァ ミ ノ安息香酸イ ソァ ミル、 N—メ チルジェタ ノ ールァ ミ ン、 ト リ ェチルァ ミ ン、 などが挙げられる。
光重合に用いる光源と しては、 1 5 0〜 6 0 0 n mの 波長の光を発する炭素アー ク灯、 高圧水銀灯、 超高圧水 銀灯、 低圧水銀灯、 ケ ミ カ ルラ ンプ、 キセノ ンラ ンプ、 レ ーザー光などがあげられる。
光伝送体ブ リ フ ォ ー ムのロ ッ ドの半径は 0. 5 ± 0 · l m mの範囲にある こ とが必要であ り 、 この範囲よ り半 径が大き く なる と、 ブ リ フ ォ ームロ ッ ドの 0 . 2 5 L。 〜 0 . 7 0 L。 の範囲で式 ( 2 ) で示す最高式に近似し た屈折率分布の もの とする こ とが難し く な り 、 本発明の 目的 とする高解像度の G I型光伝送体製造用のプリ フ ォ ー ム と する こ とが難し く なる。
プ リ フ ォ ーム ロ ツ ドの製造にあたって、 各未硬化物質 の組成 (モノ マーノポ リ マー比、 屈折率な ど) 各層の吐 出割合、 吐出ノ ズル温度、 相互拡散時の温度、 時間、 光 又は熱硬化 (重合) 条件等を適切に組み合わせる こ と に よ り プ リ フ ォ ー ム ロ ッ ドの屈折率が 0 . 2 5 L。 〜 0 . 7 0 L。 の範囲で式 ( 2 ) の二次式に近似した もの と す る こ とができ る。
こ の光伝送体プ リ フ ォ ー ムの外周部を除去する方法と し ては、 ( 1 ) 光伝送体ブ リ フ ォ ー ムの外周を溶剤で膨 潤させてその状態で所定の寸法の孔径を有する穴に通 し て膨潤 した部分を削 り取る方法、 ( 2 ) 光伝送体プ リ フ オ ー ムの外周を刃物によ っ て切削する方法、 ( 3 ) 光伝 送体ブ リ フ ォ ー ムをアルカ リ 溶液な どに浸演し、 外周部 を溶解除去する方法等を挙げる こ とができ る。
( 1 ) の光伝送体ブ リ フ ォ ー ムを溶剤で膨潤させる方 法は、 ブラスチ ッ ク製光伝送体ブ リ フ ォ ームをそのブラ スチ ッ ク を溶解する能力のある溶剤中に浸漬し所定範囲 で膨潤させた後に、 所定の口径の円形の穴の中を通 し、 膨潤 し た部分を削 り 取る方法であ り 、 用 いる溶剤の種 類、 溶剤への浸漬時間、 膨潤温度及び円形の穴の寸法に よ っ て、 削 り 幅な どの調節が可能と なる。
光伝送体ブ リ フ ォ ー ム用ブラスチ ッ ク を溶解する溶剤 と しては、 ク ロ 口 ホルム、 塩化メ チ レ ン、 四塩化炭素、 メ チルェチルケ ト ン、 アセ ト ン、 酢酸ェチル等を挙げる こ と ができ る。
( 2 ) の刃物によ っ て光伝送体ブ リ フ ォ ー ムの外周部 を削 り 取る方法は、 例えば、 図 6の切削器の斜視図に示 す よ う な方法で行う こ とができ る。 同図中、 ( 1 0 ) は 光伝送体ブ リ フ ォ ー ムであ り 、 ( 1 1 ) は本発明の高解 像特性を備えた G I 型光伝送体である。 切削歯 ( 2 2 ) は 1 枚でも よ いが、 複数枚組み合わせて用いるのがよ く 、 複数枚組み合わせた切削歯を回転体 ( 2 1 ) に取 り付 け、 駆動源 ( 2 4 ) で回転させる こ と によ り 回転中心の 穴を通過する光伝送体プリ フ ォ ームに外周を効率よ く 、 かつ、 ブ リ フ ォ ームに不要な傷を発生させる こ と な く 切 削できる。
( 1 2 ) は光伝送体ブ リ フ ォ ーム ( 1 0 ) を切削する 際に発生する熱によるプ リ フ ォ ームの切削不良を防止す るため切削油吹き付け装置である。 ( 3 0 ) は本発明の G I 型光伝送钵を引 き取る ためのニ ヅ ブロ ー ラ ー であ り 、 ブ リ フ ォ ームの切削速度は回転歯 ( 2 2 ) の回転速 度とニ ヅ ブロ ー ラ ー ( 3 0 ) の引き取 り速度を調節する こ と によ って行える。
図面の簡単な説明
図 1 は本発明の光伝送体の屈折率分布を示す図、 図 2 は従来よ り 開発されてきた光伝送体の屈折率分布を示す 図、 図 3 は光伝送体で観察した格子像を示す図であ り 、 その内、 ( a ) は屈折率分布が式 ( 3 ) で規定する二次 曲線に近似する ものである光伝送体を用いて観察した格 子像、 ( b ) 、 ( c ) は各々屈折率分布が理想屈折率分 布よ り 離れた光伝送体を用いて観察した格子像である。
図 4は光伝送体で格子像を観察した際、 C C Dセ ンサ を用いて透過光量の最大値 ( i «·χ ) と最小値 ( i mi n
) を測定する装置を示す図、 図 5は図 4の装置で測定し た最大光量 と最小光量の測定結果を示す図、 図 6 は本発 明の光伝送体を作成するのに用いる光伝送体プ リ フ ォ ー ムの外周切削装置を示す図、 そ して図 7 は本発明の光伝 送体の屈折率分布を示す図である。
発明を実施するための最良の形態 以下、 実施例を用いて本発明を具体的に説明する。 な お、 以下の各実施例において、 使用 した複合紡糸ノ ズル はノ ズルの各層の幅が、 複数種の未硬化液状物質を中心 部から順次硬化物の屈折率が低 く な り 、 各層の硬化後の 屈折率 と層の厚みをス ト ラ ン ド フ ァ イ バに した と きの各 層の中心位置をス ト ラ ン ドフ ァ イ バからの中心軸部から の距離を横軸に、 各層の屈折率を縦軸にプロ ッ ト した と き、 前記式 ( 2 ) で示される二次曲線にのるよ う に設計 された ものを用 いた。
実施例 1
ポ リ メ チルメ タ ク リ レー ト ( [ TJ ] = 0 . 5 6、 メ チ ルェチルケ ト ン ( M E K ) 中 2 5 にて測定) 4 6重量 部、 ベ ン ジルメ タ ク リ レー ト 4 4重量部、 メ チルメ タ ク レ ー ト 1 0重量部、 1 ー ヒ ド ロ キ シシク ロ へキ シルフ ェ 二ルケ ト ン 0 . 2重量部及びハイ ド ロ キノ ン 0 . 1 重量 部を 7 0 eCに加熱混合して第 1 層 (中心部) 形成用未硬 化液状物質 と した。
ポ リ メ チルメ タ ク リ レ ー ト ( [ r? ] = 0 . 4 1 、 M E K中 2 5で にて測定) 5 0重量部、 メ チルメ タ ク リ レ ー ト 5 0重量部、 1 ー ヒ ド ロ キ シシク ロ へキ シルフ ェ ニル ケ ト ン 0 . 2重量部及びハイ ド ロ キノ ン 0 . 1 重量部を 7 0 eCに加熱混合 して第 2層形成用未硬化液状物質と し、 ポ リ メ チルメ タ ク リ レ ー ト ( [ rj ] = 0 . 3 4、 M E K中 2 5 °Cにて測定) 4 5重量部、 2, 2, 3, 3, 4, 4, 5, 5- ォク タ フルォロペンチルメ タ ク リ レー 卜 3 5重童部、 メ チルメ タ ク リ レー ト 2 0重量部、 1 - ヒ ド ロキシシク ロ へキシルフ ェニルケ ト ン 0 . 2重量部及びハイ ド ロキノ ン 0 . 1重量部を 7 0でに加熱混合して第 3層形成用未 硬化液状物質と した。
卜ルー コ ンジユゲー ト型 3層複合紡糸ノ ズルを備えた 成形装置を用い、 上記 3種類の未硬化液状物質を同時に 押し出 してス ト ラ ン ドフ ァ イ バと した。 押し出 し時の粘 度は第 1 層の物質が 4 . 5 1 0 - ボイ ズ、 第 2層が 2 . 0 X 1 0 4 ボイズ、 第 3層が 2 . 2 X 1 0 4 ボイ ズ であ っ た。 ま た、 複合紡糸ノ ズルの温度は 5 5 X; と し た。 次いで、 窒素雰囲気下の筒内を 9 0 c m通過させ て各層間の相互拡散処理を行っ た後、 長さ 1 2 0 c m、 4 0 Wの蛍光灯 1 2本を円状に等間隔に配置してなる照 射部の中心を通る よ う にス ト ラ ン ド フ ァ イ バを走行さ せ、 5 0 c mZ分の速度で半径 ( L。 ) 0. 5 0 m mの 光伝送体ブ リ フ ォ ー ムをニ ヅ プロ ー ラ ーで引 き取っ た。 吐出量比は第 1 層 : 第 2層 : 第 3層 = 1 : 1 : 1 と し た。 屈折率分布は中心部 ( N。 ) が 1 . 5 1 2 で、 周辺 部が 1 . 4 7 0であ り 、 屈折率分布定数 ( g ) は 0 . 5 2 で、 図 1 中の [ Π〕 に示すよ う にその中心から外面に 向かっ て 0 . 2 5 L。 〜 0 . 7 5 L。 の範囲で式 ( 2 ) を満足する二次曲線 [ I ] に近似した屈折率分布曲線を 有 していた。
上記光伝送体ブ リ フ ォ ー ムの両端面を研磨し、 レ ンズ 長 7 . 2 m m と し、 4 ラ イ ンペアノ m mの格子を用いて 測定 し た M T Fは 5 7 %であ り 、 その時の共役長は 1 5 . 4 m mであっ た。 得られた格子の結像は歪みの少ない 鮮明な像であつ たが、 周辺部に歪みが認められた。 こ の 光伝送体ブ リ フ ォ ー ム複数本を図 4の 4 7 に示すよ う な 構造の レ ン ズ長 7 . 1 m mの光伝送体ア レ イ に組み上 げ、 こ の光伝送体ア レイ の 4 ラ イ ンペア Zm mの格子を 用 いて測定した M T Fは 4 9 %で共役長は 1 5 . 4 m m であっ た。
上記光伝送体ブ リ フ ォ ー ムを 1 0 に保温したク ロ 口 ホルムに 4 5秒浸演し、 厚さ 1 m mのシ リ コ ン ゴム製の シー 卜 にあけた微小の穴を通してク ロ 口ホルムで膨潤 し た部分 (図 1 中の Fの部分) を削 り取 り 、 半径 ( r 。 ) が 0 . 4 8 m mの光伝送体を得た。 こ の光伝送体の屈折 率分布は図 1 中 I に示すごと く 中心軸部 ( n。 ) が 1 . 5 1 2 、 周辺部が 1 . 4 7 4 であ り 、 屈折率分布定数 ( ) は 0 . 5 2 で図 1 中 Π に示すごと く 、 その中心部 力 ら外周面に向かって 0 . 2 4 r 。 〜 0 . 8 2 r 。 の範 囲が ( 1 ) 式を満足する二次曲線 I に近似した屈折率分 布を有 していた。
上記光伝送体の両端面を研磨し、 レ ンズ長 7 . 2 m m と し、 4 ライ ンペア / m mの格子を用いて測定 した M T Fは 6 5 %であ り 、 その時の共役長は 1 5 . 4 m mであ つ た。 ま た得られた格子の結像は表面を削 り 取る前の光 伝送体ブ リ フ ォ ー ム と比較して、 周辺部をも含めて非常 に歪みの少ない鲜明な像であった。 .
この光伝送体複数本を図 4中の 4 7 に示すよ う な構造 を も つ レ ンズ長 7 . 2 m mの光伝送体ア レ イ に組み上 げ、 こ の光伝送体ア レイ の 4ラ イ ンペア Zm mの格子を 用 いて測定 し た M T Fは 5 6 %であ り 、 その共役長は 1 5 . 4であっ た。 こ の光伝送体ア レイ に L E Dを光源 と し、 C C Dを受光素子と して結合したイ メ ー ジスキヤ ナーを組み立てた。 このイ メ ー ジスキ ャナ一 は解像度の 高いものであ り 、 鲜明な画像を伝送する こ とができた。 実施例 2
実施例 1 で用いた第 1層用液状物質を第 1層に、 ポ リ メ チルメ タ ク リ レー ト ( [ 77 ] = 0 . 4 0、 M E K中、 2 5でにて測定) 5 0重量部、 メ チルメ タ ク リ レー ト 2 0重量部、 ベンジルメ タク リ レー 卜 3 0重量部、 1 ー ヒ ドロキシシク ロへキ シルフ ェニルケ ト ン 0 . 2重量部及 びハイ ド ロ キノ ン 0 . 1重量部を 6 5でで加熱混練した ものを第 2層形成用液状物質と して用い、 実施例 1 で用 いた第 2層用液状物質を第 3層に用い、 更に、 ポ リ メ チ ルメ タ ク リ レ ー 卜 ( [ 7? ] = 0 . 4 0、 M E K中、 2 5 でにて測定) 5 0重量部、 メ チルメ タ ク リ レー 卜 3 0重 量部、 2, 2, 3, 3 -テ ト ラ フルォロブ口 ビルメ タ ク リ レー 卜 2 0重量部、 1 ー ヒ ド ロ キシシク ロへキシルフ ェニルケ ト ン 0 . 2重量部及びハイ ドロキノ ン 0. 1重量部を 6 5でで加熱混練 し第 4層形成用液状物質と した。
前記の 4種類の液状物質を同心円状 4層複合ノ ズルを 用い実施例 1 と 同様に して同時に押 し出 しス ト ラ ン ド フ ア イ バ と した。 押し出 し時の粘度は第 1 層の液状物が 4 . 5 X 1 0 4 ボイ ズ、 第 2層の液状物が 4 . 0 1 04 ボイ ズ、 第 3層の液状物が 2 . 0 X 1 0 " 、 第 4層の液 状物が 2 . 2 X 1 04 ボイ ズであっ た。 複合ノ ズルの温 度は 6 0 eCであっ た。
次いで実施例 1 と 同様に して硬化し半怪 ( L。 ) が 0 . 4 8 m mの光伝送体ブ リ フ ォ ー ムを得た。 吐出比が ( 第 1 層) : (第 2層) : (第 3層) : (第 4層) - 2:1: 1:1 と して得た光伝送体ブ リ フ ォ ー ムをイ ンタ ー フ ア コ 干渉顕微鏡に よ り測定した屈折率分布は中心軸部 ( N。
) カ3 1 . 5 1 3 、 周辺部が 1 . 4 7 9 であ り 、 屈折率分 布定数 ( g ) は 0. 5 3 で、 図 7中 ΠΙに示すごと く その 中心から外周面に向かって 0 . 2 L。 〜 0. 7 5 L。 の 範囲で ( 2 ) 式で示される二次曲線 IVに近似した屈折率 分布を有 していた。 また、 4 ラ イ ンペア Z m mの格子を 用いて測定した M T Fは レ ンズ長 7. 1 m m、 共役長 1 4 . 9 m mで 5 7 %であっ た。
更に こ の光伝送体プ リ フ ォ ー ムを複数本組み合わせ実 施例 1 と 同様に して光伝送体ア レイ を作成した結果その M T F は 5 3 %であった。
上記光伝送体ブ リ フ ォ ー ムを 1 2 . 5 に保温したク ロ 口 ホルム に 4 5秒浸滇し、 厚さ l m mのシ リ コ ン ゴム製 のシー 卜 にあけた微小の穴を通してク ロ 口 ホルムで膨潤 した部分 (図 7中の Gの部分) を削 り取 り 、 半径 ( r 。
) が 0 . 4 4 5 m mの光伝送体を得た。 こ の光伝送体の 屈折率分布は中心軸部 ( n。 ) が 1 . 5 1 2、 周辺部が 1 . 4 8 1 であ り 、 屈折率分布定数 ( g ) は 0 . 5 3で 、 中心力 ら外周面に向かっ て 0 . 1 9 Γ 。 〜 0 · 8 7 r 。 の範囲が ( 1 ) 式を満足する最適曲線に近似した屈 折率分布を有していた。
上記光伝送体の両端面を研磨し、 レンズ長 7. 1 m m と し、 4ライ ンペア Zm mの格子を用いて測定した M T Fは 7 1 %であ り 、 その時の共役長は 1 4. 9 m mであ つ た。 ま た得られた格子の結像は表面を削 り取る前の光 伝送体ブ リ フ ォ ーム と比較して、 周辺部をも含めて非常 に歪みの少ない鲜明な像であっ た。
この光伝送体複数本を図 4中の 4 7に示すよ う な構造 を も つ レ ンズ長 7 . 1 m mの光伝送体ア レイ に組み上 げ、 この光伝送体ア レイ を 4ライ ンペア Zm mである格 子を用いて測定した M T Fは、 その共役長 1 4. 9で 6 3 %であ っ た。 こ の光伝送体ア レイ に L E D を光源 と し、 C C Dを受光素子と して結合したイ メ ー ジスキ ャナ 一を組み立てた。 このイ メ ー ジスキャナ一 は解像度の高 いものであ り 、 鲜明な画像を伝送する こ とができた。 実施例 3
実施例 2 で用いた第 1層から第 4層までを形成するた めの各々 の液状物質と 、 更に、 第 5層形成溶液状物質と して、 実施例 1 で第 3層形成に用いた ものを用い、 これ らの各層用液状物質を 5層の同心円状複合ノ ズルに供給 して同時に押し出し、 ス ト ラ ン ドフ ァ イ バと し、 硬化さ せて光伝送体プ リ フ ォ ームを得た。 吐出比が (第 1 層) : (第 2層) : (第 3層) : (第 4層) : (第 5層) = 3:1:1:1:2 と して得た光伝送体ブ リ フ ォ ー ム ( L。: 0 . 4 8 m m ) をイ ンタ ー フ ア コ干渉 顕微鏡によ り 測定した屈折率分布は中心軸部 ( N。 ) が 1 . 5 1 4、 周辺部が 1 . 4 6 9であ り 、 屈折率分布定 数 ( g ) は 0 . 5 7で、 中心部から外周面に向かって 0 . 1 5 L。 〜 0 . 7 9 L。 の範囲で ( 2 ) 式で示される 最適曲線に近似した屈折率分布を有していた。 また、 4 ラ イ ンペア Z m mの格子を用いて測定した M T Fは レ ン ズ長 8 . O m m、 共役長 1 5 . 9 m mで 5 9 %であっ た 。 更に、 こ の光伝送体ブ リ フ ォ ー ムを用いて実施例 1 と 同様に して作成 した光伝送体ア レイ の M T Fは 5 7 % ( 4 ラ イ ンペアノ m mの格子で測定) であっ た。
上記光伝送体プ リ フ ォ ー ムを耐水性のサン ドペー パー ( 2 0 0 0番) を用 いて、 外周面か ら 除去 し 、 半径 ( r 。 ) が 0 . 4 4 m mの光伝送体を得た。 こ の光伝送体 の屈折率分布は中心軸部 ( n 。 ) が 1 . 5 1 4、 周辺部 力 s i . 4 7 2 であ り 、 屈折率分布定数 ( g ) は 0 . 5 7 で、 中心から外周面に向かって 0. 1 3 L。 〜 0 . 8 9 L。 の範囲で ( 1 ) 式で示される最適曲線に近似した屈 折率分布を有してお り 、 実施例 1 を同様に測定 した M T Fは レ ンズ長 8 . 0 m m、 共役長 1 5 . 9 m mで 7 5 % であっ た。 更に こ の光伝送体を用いて実施例 1 と 同様に して作成した光伝送体ア レイ の M T Fは 7 1 % ( 4 ラ イ ンペア m mの格子で測定) であ り 、 このア レイ を用い たイ メ ー ジス キ ャ ナは非.常に解像度の高い画像を伝送す る こ とができた。
産業上の利用可能性
本発明の G I 型ブラスチ ッ ク製光伝送体は、 その中心 部から少な く と も 0 . 2 5 Γ 。 〜 0 ' 8 0 Γ 。 の範囲の 屈折率分布が式 ( 1 ) で示される分布曲線に極めて近似 した もの と なっているため、 周辺部の画像ボケがな く 良 質な画像伝送を行う こ とができ、 特に高解像度が要求さ れる複写機、 フ ァ ク シミ リ 、 L E Dプ リ ンタ用の光伝送 体と して極めて有用なものである。

Claims

請 求 の 範 囲
. 半径 。 力 0 . 4 5 ± 0 · 1 m mの範囲内にある円 形断面を有するグレ ー デ ッ ドイ ンデッ クス型ブラスチ ッ ク製光伝送体であ り 、 該光伝送体の中心軸部から外 周面に向かっ て少な く と も 0 . 2 5 r 。 〜 0 . 8 r 0 の範囲の屈折率分布が下記式 ( 1 ) で規定する屈折率 分布曲線に近似の屈折率分布を備えている こ と を特徴 と する グ レ ー デッ ドイ ンデッ クス型プラスチ ッ ク製光 伝送体 ο
n (r) =no {1- (g2/2)r2} ( 1 )
(上記式中、 n 。 は該光伝送体の中心軸部の屈折率で あ り 1 . 5 ± 0 . 1 の範囲内にある任意の値であ り 、 n ( r ) は該光伝送体の中心軸よ り外周方向への距離 r の位置部の屈折率、 g は該光伝送体の屈折率分布定 数を示 し、 0 . 3〜 0 . 7 の値であ り 、 r は該光伝送 体の中心軸部よ り外周方向への距離を示す。 )
. ブラスチ ッ ク製光伝送体の中心軸部から外周面に向 力 >つ て少な く と も 0 . 2 5 r 。 〜 0 . 8 5 r 。 の範囲 の屈折率分布が上記式 ( 1 ) で規定する屈折率分布曲 線に近似の屈折率分布を備えている こ と を特徴と する 請求の範囲第 1 項記載のグレ ーデッ ドイ ンデ ッ クス型 ブラスチ ッ ク製光伝送体。
. 半径 L 。 力 S O . 5 ± 0 . 1 m mの範囲内にある円形 断面を有する グレ ーデッ ドイ ンデ ッ クス型ブラスチ ヅ ク製光伝送体ブ リ フ ォ ー ムであっ て、 該光伝送体プ リ フ ォ ー ム の中心軸部から外周面に向かって少な く と も
0 . 2 5 L。 〜 0. 7 0 L。 の範囲の屈折率分布が下 記式 ( 2 ) で規定する屈率分布曲線に近似の屈折率分 布を備えた光伝送体プ リ ォ ー ムの外周を除去する こ と を特徴と する請求の範囲第項記載のグレーデジ ドイ ン デッ クス型ブラスチ ッ ク製伝送体の製造方法。
n(L)=no {l-(g2/2)L2} ( 2 )
上記式中、 N。 は該光伝送体の中心軸部の屈折率であ り 1 . 5 ± 0 . 1 の範囲内にある任意の値であ り 、 n ( L ) は該光伝送体の中心軸よ り外周方向への距離 L の位置部の屈折率、 gは該光伝送体の屈折率分布定数 を示し、 0 . 3〜 0 . 7の値であ り 、 Lは該光伝送体 の中心軸よ り外周方向への距離を示す。 )
PCT/JP1992/000210 1991-03-01 1992-02-26 Optical transmitter made of graded index type plastic, and method of producing the same WO1992015901A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP50606592A JP3301760B2 (ja) 1991-03-01 1992-02-26 グレーデッドインデックス型プラスチック製光伝送体及びその製法
DE69213866T DE69213866T2 (de) 1991-03-01 1992-02-26 Verfahren zur Herstellung eines optischen Übertragungselements aus Plastik mit abgestiftem Brechungsindex
EP92906216A EP0527239B1 (en) 1991-03-01 1992-02-26 Manufacturing method of a graded index type optical transmission element
KR1019920702704A KR100260568B1 (ko) 1991-03-01 1992-02-26 그레이디드 인덱스형 플라스틱제 광 전송체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/57672 1991-03-01
JP5767291 1991-03-01

Publications (1)

Publication Number Publication Date
WO1992015901A1 true WO1992015901A1 (en) 1992-09-17

Family

ID=13062407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000210 WO1992015901A1 (en) 1991-03-01 1992-02-26 Optical transmitter made of graded index type plastic, and method of producing the same

Country Status (7)

Country Link
US (1) US5287222A (ja)
EP (1) EP0527239B1 (ja)
JP (1) JP3301760B2 (ja)
KR (1) KR100260568B1 (ja)
DE (1) DE69213866T2 (ja)
TW (1) TW255016B (ja)
WO (1) WO1992015901A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106745A (en) * 1995-11-30 2000-08-22 Akzo Nobel Nv Method of making graded index polymeric optical fibers
WO1998011287A1 (en) * 1996-09-13 1998-03-19 Katoot Mohammad W Graded index polymer optical fibers and process for manufacture thereof
US6200503B1 (en) 1996-09-13 2001-03-13 Mohammad W. Katoot Graded index polymer optical fibers and process for manufacture thereof
JP3728032B2 (ja) * 1996-10-31 2005-12-21 三菱レイヨン株式会社 低色収差ロッドレンズアレイ及びそのユニット並びにこれらを用いたイメージスキャナ
WO1999044083A1 (fr) * 1998-02-24 1999-09-02 Mitsubishi Rayon Co., Ltd. Fibre optique plastique, cable optique, cable optique possedant une prise, procede servant a preparer un polymere a base de methylmetacrylate et procede servant a fabriquer une fibre optique plastique
US6088166A (en) * 1998-12-22 2000-07-11 Dicon Fiberoptics, Inc. Miniaturization of gradient index lens used in optical components
US6365072B1 (en) 1999-03-19 2002-04-02 Mk Industries, Inc. Polymer optical fibers and process for manufacturing thereof
DE10214533B4 (de) * 2002-04-02 2004-11-25 Deutsche Telekom Ag Verfahren und Vorrichtung zum Herstellen einer optischen Polymerfaser
DE10226923A1 (de) * 2002-06-17 2003-12-24 Bayer Ag Verfahren zur Enantiomerenanreicherung von cis-8-Benzyl-7,9-dioxo-2,8-diazabicyclo[4.3.0]nonan

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159506A (ja) * 1982-03-18 1983-09-21 Nippon Sheet Glass Co Ltd 合成樹脂光伝送体を製造する方法
JPS6012509A (ja) * 1983-07-02 1985-01-22 Nippon Sheet Glass Co Ltd 合成樹脂光伝送体の製造方法
JPH0264131A (ja) * 1988-08-31 1990-03-05 Mitsubishi Rayon Co Ltd 透明円柱状組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626194A (en) * 1968-08-30 1971-12-07 Nippon Selfoc Co Ltd Photoelectric converter including convergent lens with refractive index distribution
JPS5121594B2 (ja) * 1971-12-25 1976-07-03
DE2756989C2 (de) * 1977-12-21 1983-01-05 Fa. Carl Zeiss, 7920 Heidenheim Optisches System
US4587065A (en) * 1983-07-02 1986-05-06 Nippon Sheet Glass Co., Ltd. Method for producing light transmitting article of synthetic resin
US4799761A (en) * 1986-03-27 1989-01-24 Mitsubishi Rayon Co., Ltd. Plastic optical transmission medium, process for producing the same and array of lenses using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159506A (ja) * 1982-03-18 1983-09-21 Nippon Sheet Glass Co Ltd 合成樹脂光伝送体を製造する方法
JPS6012509A (ja) * 1983-07-02 1985-01-22 Nippon Sheet Glass Co Ltd 合成樹脂光伝送体の製造方法
JPH0264131A (ja) * 1988-08-31 1990-03-05 Mitsubishi Rayon Co Ltd 透明円柱状組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0527239A4 *

Also Published As

Publication number Publication date
JP3301760B2 (ja) 2002-07-15
DE69213866T2 (de) 1997-02-20
EP0527239A1 (en) 1993-02-17
US5287222A (en) 1994-02-15
KR930700857A (ko) 1993-03-16
EP0527239A4 (en) 1993-05-05
DE69213866D1 (de) 1996-10-24
TW255016B (ja) 1995-08-21
EP0527239B1 (en) 1996-09-18
KR100260568B1 (ko) 2000-07-01

Similar Documents

Publication Publication Date Title
WO1991005275A1 (en) Refractive index distribution type plastic optical transfer member and its production method
WO1992015901A1 (en) Optical transmitter made of graded index type plastic, and method of producing the same
WO1991005274A1 (en) Refractive index distribution type plastic optical transfer member and its production method
JP3291583B2 (ja) 屈折率分布型プラスチック光伝送体及び光伝送体アレイ並びにイメージスキャナー
JP3370658B2 (ja) 屈折率分布型プラスチック光伝送体
JP3328615B2 (ja) 屈折率分布型プラスチック光伝送体
JP2893046B2 (ja) 屈折率分布型プラスチック光伝送体の製造方法
JPH063533A (ja) 屈折率分布型プラスチック光伝送体の製法
WO2005103774A1 (ja) グレーデッドインデックス型光伝送体の製造方法
JP2841068B2 (ja) プラスチツク光フアイバの製法
JPH0854521A (ja) プラスチック光ファイバ
JP3850941B2 (ja) 光伝送体アレイ
JP3008361B2 (ja) 屈折率分布型プラスチック光伝送体の製法
JPH06174944A (ja) プラスチックファイバ外周研削方法
JPH03213806A (ja) 屈折率分布型プラスチック光伝送体の製法
JPH11160561A (ja) 光伝送体及びその製造方法
JPH08211242A (ja) 光伝送体及びその製法並びに光伝送体アレイ
JPH063508A (ja) 半球状プラスチック光伝送体およびその製造方法
JPH10282353A (ja) プラスチック−ガラス光ファイバ
JP2010139959A (ja) プラスチック製ロッドレンズ、その製造方法およびプラスチック製ロッドレンズアレイ
JP2004341510A (ja) プラスチックロッドレンズの製造方法及び未硬化粘性材料の供給方法
JPH04251805A (ja) 屈折率分布型プラスチック光伝送体
JPH1152200A (ja) プラスチック光ファイバコード
JP2006154856A (ja) 光伝送体の製造方法
JPH0553017A (ja) ライン状発光体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992906216

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992906216

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992906216

Country of ref document: EP