WO1992009634A1 - Non-a non-b hepatitis virus antigen protein - Google Patents

Non-a non-b hepatitis virus antigen protein Download PDF

Info

Publication number
WO1992009634A1
WO1992009634A1 PCT/JP1991/001662 JP9101662W WO9209634A1 WO 1992009634 A1 WO1992009634 A1 WO 1992009634A1 JP 9101662 W JP9101662 W JP 9101662W WO 9209634 A1 WO9209634 A1 WO 9209634A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen protein
hepatitis
seq
pro
ser
Prior art date
Application number
PCT/JP1991/001662
Other languages
English (en)
French (fr)
Inventor
Terukatsu Arima
Atsushi Sato
Nobuo Ida
Jun Kazami
Original Assignee
Toray Industries, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Incorporated filed Critical Toray Industries, Incorporated
Priority to KR1019920701818A priority Critical patent/KR920703640A/ko
Publication of WO1992009634A1 publication Critical patent/WO1992009634A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a non- ⁇ non- ⁇ hepatitis virus-related antigen, a method for producing the same, and a test agent using a non-A non-B hepatitis virus-related antigen or an equivalent thereof.
  • the invention also relates to the non-A non-B hepatitis virus genome RNA and its cDNA.
  • hepatitis A which is an epidemic hepatitis that is transmitted orally
  • hepatitis B virus which is transmitted via blood
  • non-A and non-B hepatitis which is neither type A nor type B, is said to account for about 90% of post-transfusion hepatitis in Japan (Japanese clinical study, vol. 35, p. 274, page 24). (1977); Journal of Biological Medicine, Vol. 49, pp. 243 (1977)), estimated by the Ministry of Health and Welfare accounts for nearly 40% of deaths from liver disease
  • the majority of non-A, non-B hepatitis is thought to be due to hepatitis C.
  • the main routes of transmission are blood transfusions and blood products, which can be prevented if appropriate testing methods are in place. Expectations for the development of diagnostics are high.
  • the present inventors attempted to clone cDNA based on RNA isolated from sera from multiple non-A non-B chronic hepatitis patients. Cloning was performed and multiple types of antigens were found. These antigenicities are different from each other, and in the future, highly sensitive antibody test agents can be designed by using a plurality of different antigens. In addition, a large amount of antigen can be prepared by genetic engineering techniques. Disclosure of the invention
  • the present invention relates to an antigen that specifically reacts with the serum of a non-A non-B hepatitis patient, a method for producing the same, and an antibody diagnostic agent combining the specific antigen protein.
  • the present invention also relates to cDNAs encoding antigens that specifically react with the serum of non-A non-B hepatitis patients and the isolated native RNA genomic sequences.
  • FIG. 1 shows the relationship between the amino acid sequence of S29 and the design of the synthetic peptide.
  • G G 1 y R: A r g
  • FIG. 2 shows the results of ELISA using T06A as an antigen.
  • the numbers on the horizontal axis are 1 to 21 for hepatitis C samples, 22 for primary biliary cirrhosis samples, and 23 ⁇ 26 are hepatitis B samples, 27 ⁇ 30 are samples of healthy subjects,
  • Fig. 3 shows the results of ELISA using T064 as an antigen, and the numbers on the horizontal axis in the table are 1-21 Up to the hepatitis C sample, 22 the primary biliary cirrhosis sample, 23 to 26 the hepatitis B sample, and 27 to 30 the healthy sample.
  • Figure 4 shows the results of ELIS using ⁇ 069 as an antigen.
  • the numbers on the horizontal axis are 1 to 21 for hepatitis C samples, 22 for primary biliary cirrhosis samples, 2 for 3 to 26 are hepatitis B samples, and 27 to 30 are healthy sample
  • Figure 5 shows the construction process of PUEXS 4.
  • FIG. 6 shows the results of microplate ELISA using T064 and S4 as antigens.
  • Hepatitis C serum samples from 1 to 21; 22 primary biliary cirrhosis samples; 23 to 26 hepatitis B serum samples; 27 to 30 healthy samples; 31 to
  • hepatitis C samples Up to 52 are hepatitis C samples, 31 and 32 are hepatitis C pooled sera, 33 to 37 are hepatitis C samples, N14 antibody (ten), C100-3 antibody (10), PCR (+) sample, 38 to 42, N14 antibody (10), C100-3 antibody (1), PCR (+) sample, 43 to 47 Is the N14 antibody (1), C100-3 antibody (ten), PCR (+) sample, up to 48-52 N14 antibody (1), C100-3 antibody ( 1) Sample of PCR (+)
  • FIG. 7 shows the results of microplate ELISA using T064 and S4 as antigens.
  • the numbers 1 to 30 on the horizontal axis represent hepatitis C samples 31 to 37 represent samples from healthy individuals.
  • FIG. 8 shows the results of microbial ELISA using T064 and S4 as antigens separately.
  • sequence of cDNA encoding the antigen of the present invention was obtained as follows.
  • phage particles are recovered by the polyethylene glycol precipitation method, and RNA is prepared by phenol extraction and isopropanol precipitation method.
  • Synthesis of cDNA from the prepared RNA was performed according to the method of Y. Epina et al., Cell, Vol. 40, pp. 747 (1980), using a commercially available cDNA synthesis kit (eg, BRL). This can be done using a random primer (Takara Shuzo).
  • the synthesized cDNA was introduced into the EcoRl site of the Agt11 phage 'vector using a commercially available ⁇ gt11 cloning * kit (BRL).
  • BBL ⁇ gt11 cloning * kit
  • cDNA libraries can be prepared by in vitro packaging.
  • the cDNA integrated into the ⁇ gt11 phage is integrated into the yS-gal gene on the I gtll phage, so that after infection of the phage into E. coli, IPTG (isobropil-S-D-galacto) Induction of lactose operon on the phage by an inducer such as toviranoside) and fusion with / S-galactosidase Expression is easily confirmed as a protein.
  • a cDNA library that encodes an antigen that specifically reacts with the serum of a patient with non-A, non-B chronic hepatitis from a ⁇ gt11 phage c. Screening can be performed according to the method described in (RA Young et al., Proceedings National Academy of Sciences USA, Vol. 80, pp. 119, 1983). In other words, E. coli is infected with the ⁇ gt11 phage and cultured in a medium containing IPTG. The formed plaques were transferred to the nitrocellular liposome together with the expressed ⁇ -galactosidase fusion protein and reacted with antibodies contained in serum from non-A non-B chronic hepatitis patients.
  • the plaques thus selected react in a similar manner with antibodies contained in serum from patients with non-A, non-B chronic hepatitis, but from patients with hepatitis B. Select a black that does not react with normal serum or normal serum.
  • the base sequence of the cDNA of the Igt11 recombinant phage was determined.
  • the method was as follows. First, T., A small amount of phage DNA was prepared according to the method described by Aniates et al., Molecular Cloning, Cold Spring Harbor Lab. (1992), and this phage DNA was completely or partially digested with the restriction enzyme EcoR1. The cDNA obtained by the digestion is subcloned into a plasmid of the pUC strain. Then, the plasmid DNA is prepared, and the nucleotide sequence can be determined using, for example, a DNA sequencer manufactured by DuPont.
  • the nucleotide sequence of cDNA determined by SEQ ID NO: 1 and the amino acid sequence encoded by them are shown in SEQ ID NO: 1 ⁇ Also determined by SEQ ID NO: 13—24 in SEQ ID NO: 13
  • the sequence of the viral genome RNA deduced from the DNA is shown.
  • a modified cDNA that is, one having a base sequence substituted, deleted, or inserted
  • the amino acid sequence may be modified to a different extent (in addition, the complementary sequence (antisense RNA) of the viral genomic RNA sequence may be used as the functional sequence).
  • the antigen encoded in cDNA or a part thereof can be prepared by synthesizing it with a synthetic peptide machine or expressing it by genetic recombination and applied to serodiagnosis. hand This is a method of measuring an antibody in the serum against this antigen or preparing an antibody against the antigen in advance and measuring the antigen in the serum against this antibody to diagnose infection.
  • a monoclonal antibody may be included in the antibodies prepared in advance.
  • the sensitivity and specificity of the antigen of the present invention and a known antigen were compared for specimens derived from a plurality of patients.
  • a synthetic peptide was designed based on hydrophilicity and hydrophobicity, and three types of ELISA were prepared. One of them was used as an antigen.
  • a method for preparing the antigen of the present invention or a part thereof a method of expressing the same in Escherichia coli, yeast, insect cells, animal cells, and the like by using gene recombination technology can be mentioned.
  • a cDNA encoding the present antigen or a part thereof is added with a protein synthesis start signal and a termination signal as necessary, and then ligated to various known expression vectors.
  • a sequence encoding a cDNA encoding a non-A non-B specific antigen is known as a promoter, for example, a tritophan synthase operon (Trp), a lactose operon (1ac), a lambda phage promoter. - (P i, P R, etc.), chemically synthesized tac promoter (derived from trp and 1 ac), trc promoter (derived from trp and 1 ac), and in addition, a ribosome binding sequence such as a Shine-Dalgarno sequence (SD sequence) or a transcription termination factor can be added.
  • a sequence of Escherichia coli or the like can be used, but a consensus sequence created by chemical synthesis or the like may be used.
  • a transcription termination factor is not always required for expression, but it is desirable to add a transcription termination factor to stably maintain the plasmid itself when the target protein is highly expressed.
  • a transcription termination factor may be mentioned the evening motif of the ribosomal RNA gene and the trp operon terminator.
  • Examples of the expression method include a method of expressing the protein in a microorganism or insect cells as a fusion protein with another peptide (for example, mouse interferon ⁇ lipocortin, interleukin 2 or 5 galactosidase ⁇ baculovirus polyhedrin).
  • another peptide for example, mouse interferon ⁇ lipocortin, interleukin 2 or 5 galactosidase ⁇ baculovirus polyhedrin.
  • a protease for example, lysine protease or Fact0rXa which is a blood coagulation factor
  • Methods for transforming the constructed expression vector by introducing it into a host include various known methods, such as those described in T. Mania Teis et al., Molecular Cloning, Cold Spring Harbor Lab (1989), etc. The following method can be used. In the case of E. coli, for example, // You can use the method described in Molecular Cloning (1989).
  • the cultivation temperature is usually 25 to 42, but for the promoter that causes expression by heat shock shown in Example 8, the expression should be performed at 42 ° C after about 30 precultures. Is desirable.
  • Known methods are used for purification of the expressed antigen or a part thereof and preparation of the antigen portion after digestion of the fusion protein with a protease, including, for example, salt fractionation, ion exchange chromatography, affinity chromatography and the like. Examples include chromatography and centrifugation. For example, the method described in Method Enzymology (Academic Press, Inc., 198) can be applied. An example of production and purification of the antigen protein of the present invention is shown in Example 8.
  • the epitope portion of the antigen of the present invention is revealed, it is also possible to artificially synthesize a polypeptide containing the epitope portion and use it as it is or by binding it to another protein as an antigen. is there.
  • Many methods are known for obtaining such bonds, including those utilizing disulfide bonds (if the peptide lacks a sulfhydryl group, this can be accomplished by adding a cysteine residue).
  • a method using a disulfide amide bond is known. For details, for example. Please refer to IZ Biochemical Experimental Method 11, 11, Enzymimnoassy (Tokyo Kagaku Dojin, 1989).
  • diagnostic agents for serodiagnosis containing the antigen of the present invention or a part thereof as a main component and it is possible to design various diagnostic agents according to the immunological detection method to be employed. It can.
  • detection methods include the octaloni method (MO), immunoelectrophoresis (IES, IEP), capture binding reaction (CF), immunoadhesion hemagglutination (IAHA), and one-way plate immunodiffusion (SRID).
  • MO octaloni method
  • IES, IEP immunoelectrophoresis
  • CF capture binding reaction
  • IAHA immunoadhesion hemagglutination
  • SRID one-way plate immunodiffusion
  • the antigen of the present invention or a part thereof, or a substance containing an artificially synthesized epitope moiety may be used as it is to prepare an appropriate form.
  • an appropriate support may be selected from agar, agarose, starch, polyacrylamide, etc., and dissolved in a buffer solution.
  • the substance of the present invention is added and mixed, and the obtained solution is allowed to flow on a glass plate or a plastic container to be solidified, and a solid gel plate may be provided with a hole for injecting a test serum. Diagnosis is possible by injecting test serum into this hole and observing the reaction between the diffused antibody and antigen.
  • the hemagglutination method PHA
  • the fine particles blood cells of mammals and birds are usually used, but in addition, polystyrene latex, polyester latex, vinyl chloride, vent Approximately 110 mm particles such as nights and glass beads can also be used.
  • glutaraldehyde, formaldehyde, tannic acid, bisdiado soybenzidine, chromium chloride, carbodiimide, etc. may be used, and the antigen of the present invention is bound. After mixing the microparticles with the test serum, a diagnosis can be made based on whether or not an agglutination reaction occurs.
  • the antigen of the present invention When the antigen of the present invention is used in a radioimmunoassay (RIA) or an enzyme-linked immunosorbent assay (ELISA), the antigen of the present invention or a part thereof, a substance containing an artificially synthesized epitope portion is used.
  • a substance containing an artificially synthesized epitope portion must be bound to an appropriate solid phase, and a secondary antibody (anti-human antibody) that binds to a human antibody in serum must be labeled with radioactivity or enzyme.
  • Microplates, tubes, beads, magnetic beads, etc. can be used as the solid phase.
  • the antigen bound to the solid phase is reacted with test serum to perform BZF separation, and the antibody bound to the antigen is converted to an anti-human antibody ( The secondary antibody) can be used to detect the amount of antibody in the serum.
  • Iodine 125 and iodine 131 can be used as a radioactive label for the secondary antibody, and can be bound by the chloramine T method or the like.
  • a labeling enzyme for the secondary antibody for example, glucose oxidase, alkaline phosphatase, peroxidase, beta-galactosidase, etc. can be used.
  • the method for binding the enzyme to the antibody is an organic chemical method, immunology.
  • the labeling method, the method via avidin / pyotin reaction, and the combination crosslinking method are known. For details, see, for example, Please refer to Enzymimnoassy (Tokyo Kagaku Doujin, 1989).
  • Example 9 of an enzyme-linked immunosorbent assay (ELISA) using the microplate of the present invention is shown in Example 9.
  • the antigen used may be a combination of the antigen protein of SEQ ID NOS: 1 to 12 of the present invention or the epitope region thereof, or the sensitivity may be preferable in some cases. is there.
  • techniques known as competition and sandwich methods can be applied, and fluorescent labels
  • test agent of the present invention can be used as a DNA probe in addition to the above-mentioned use as an immunological test agent.
  • Example 1 Example 1
  • RNA was quantified by.
  • RNA was synthesized using a cDNA synthesis system and cDNA cloning system (BRL), and cloned into ⁇ gt11. Since it was not clear that the viral RNA had a poly A chain when synthesizing cDNA in this case, a random primer (Takara Shuzo) was used instead of Oligo dT primer.
  • the recombinant ⁇ gt11 is then packaged using the ⁇ DNA Packaging Kit (Amersham). Plaques were formed on the indicator strain Y109.
  • the medium for plaque formation was 1.5% agar L medium (1% bacto-tryptone, 0.5% yeast extract, 1% sodium chloride) in the lower layer, and 0.7% agarose L medium in the upper layer.
  • the prepared cDNA library is sowed so that about 1.0 X 10 'pfu plaque appears on a plate with a diameter of 150 mm (Becton Ditchonson), and cultured at 43 for 3-4 hours. To form plaques. Then, dilute in 1 O mM 1 PTG (isopropyl 1 ⁇ -D-thiogalactobyranoside) and air-dry a 2-trocellulose filter (Hybond C Extra Amersham) onto the plate. The cells were cultured at 37 for 3 hours. As a result, the amino acid sequence encoded by the cloned cDNA is expressed on the filter.
  • Peroxidase-labeled antigen obtained by diluting approximately 25-fold pooled sera of several non-A, non-B hepatitis patients absorbed by Escherichia coli against the antigen blotted on this filter was used as the primary antibody.
  • Anti-human 1 gG (Kappel) was reacted as a secondary antibody, and the product that developed color was defined as a positive clone. A total of 56 positive clones were obtained. After that, align the filter with the plate, scrape the agar in the place where the positive clone is considered with a sterile toothpick, and add 1 ml SM buffer (5.8 ml).
  • the phage solution obtained from the positive clone was appropriately diluted with S-buffer, and the phage solution was spread so that about 300 plaques appeared per plate.
  • the positive clone was isolated in the same manner as in Example 3. Color was developed. Positive clones were scraped with a sterile toothpick and suspended in 0.5 ml of S S buffer. To this solution was added 10 / Z1 black-mouthed form, which was stored in 4 as a single plaque phage solution.
  • the clones that were positive in the secondary screening were tested for reactivity with two samples of healthy human serum (negative for C100-3 of Chiron) and one sample of serum from hepatitis B patients.
  • the positive clone and ⁇ gt11 (a vector having no cDNA sequence) were mixed so that the plaque number ratio was 1: 5, and plaque was formed on the indicator Y1090. Thereafter, the same procedure as in Example 3 was carried out to determine whether the cell was negative or positive.
  • Phage DNA was extracted by the following method. Mix each phage solution with 0.5 ml of Y109 culture medium, incubate at room temperature for 15 minutes to infect phage, A 5 ml 1 L medium containing calcium and 50 / zg / ml ampicillin was added, and cultured at 43 for 4 hours. Centrifuge the culture and add an equal volume of solution to the supernatant (20% polyethylene glycol 600, 5 OmM tris-hydrochloric acid (pH 7.5), 2 M sodium chloride, 4 mM magnesium sulfate, 2% Gelatin) was added and left on ice for 1 hour, followed by centrifugation to precipitate phage. The precipitate was suspended in 0.75 ml of the L medium, and an equal amount of DE52 suspended in the L medium was added. After centrifugation, add 17.5 1 of 0.1 mg / m 1 protease K and 42.5 ⁇ 1
  • the phage DNA was collected by precipitation with isopropanol and dissolved in 401 TE buffer.
  • clone S29 has a nucleotide sequence corresponding to the antigen corresponding to SEQ ID NO: 1
  • clone S4 has a nucleotide sequence corresponding to the antigen corresponding to SEQ ID NO: 2.
  • clone S12 has SEQ ID No. 4
  • S41 has SEQ ID No. 9
  • S34 has SEQ ID No. 7
  • S13 has SEQ ID No. 5
  • S31 has SEQ ID No. 6
  • S39 has SEQ ID No. 8.
  • S 1 is SEQ ID NO: 3.
  • CH Chronic hepatitis HBsAg: HBs antigen
  • a synthetic peptide was designed based on hydrophilicity, and an ELISA system was prepared.
  • a peptide of about 30 mer was synthesized for a highly hydrophilic region of the amino acid sequence deduced from the nucleotide sequence of S29 (FIG. 1).
  • the synthesized peptide was immobilized on a 96-well microplate, and the buffer was added at 100/1 and the sample serum at 10/1, and reacted at 37 C for 60 minutes ( after washing the plate).
  • phage lambda cl 857 which has a PR promoter, and is a plasmid that encodes galactosidase p UEX 1/5 (Amersham) / 5—a blood coagulation factor Fa on the C-terminal side of galactosidase
  • the S4 gene was inserted to include a sequence encoding ctor Xa. (Fig. 5) Since Factor Xa site exists between ⁇ -galactosidase and S4, S4 protein without protective protein can be obtained by digestion with Factor Xa after expressing the protein. Can be.
  • a plasmid was prepared by connecting K pnl linker (5 — GG GT ACCC-3, manufactured by Takara Shuzo) to the Small site existing at the C-terminal side of ⁇ -galactosidase (EXK of pU). — 1)
  • a DNA fragment was prepared in advance by incorporating the C0-8 fragment of S4 into the £ c0 RI site, and the KpnI and BamHI sites were used. And linked to the Kp nl, BamHI site of PU EXK-1. (P UE X S 4)
  • the obtained strain was transformed into a 5 ml LB medium (trypton 1, 0.5% yeast extract, 0.5% NaC10.5). % Ampicillin 100 ⁇ g / m 1)
  • the cells were pre-cultured with the inoculated 30. After overnight cultivation, the cultured cells were inoculated in a 100 ml LB medium containing ampicillin at a concentration of 200 to 1 and then cultured. The mixture was shaken at C for 2 hours. Thereafter, the culture temperature was increased to 42 and the cells were cultured with shaking for 2 hours.
  • Protein expression was confirmed by centrifuging 1 ml of the culture solution, collecting the cells, adding 1% SDS and 2-mercaptoethanol, lysing the cells, and confirming their expression with SDS-PAGE.
  • the fusion protein of S4 and / 8-galactosidase was observed specially when cultured at 42 ° C, and its protein amount was 15 to 20% of the total protein. I do. Since the obtained fusion protein formed insoluble granules, it was washed with guanidine solution or 4 M urea to remove the soluble protein. Then, after solubilizing with 8 M urea, Factor Xa buffer (20 mM Tris-HCl PH8, 100 mM NaCl,
  • the protein was transferred to a nitrocellulose filter after electrophoresis, and the reactivity with the serum of a hepatitis C patient was examined. It does not react with serum but only reacts specifically with hepatitis C serum.
  • Example 8 The recombinant antigen S4 described in Example 8 was further purified to prepare a microplate EIA using the synthetic peptides T064 and S4 described in Example 7 as antigens. After immobilizing the synthesized peptide T064 and purified recombinant antigen S4 on a 96-well microplate, buffer 1001 and sample
  • 70 out of 7 hepatitis C serum samples could be determined to be positive, and did not react with 4 cases of hepatitis B, 11 cases of healthy subjects, and 1 case of primary biliary cirrhosis. Furthermore, 30 out of the 7 hepatitis C serum samples were examined for their reactivity to the antigens of S4 and S29. As a result, 22 samples were positive for both S4 and S29, 3 samples were positive for only S4, and 4 samples were positive for only S29. Only one sample was used, and the difference in the reactivity of the serum sample to the S29 and S4 antigens became clear, confirming the usefulness of combining the two antigens. Industrial applicability
  • a cDNA sequence encoding a novel antigen reactive with serum from a non-A non-B chronic hepatitis patient can be obtained, and this antigen can be applied to the development of immunological test drugs. It has been shown.
  • the newly obtained ELISA using S29 derived synthetic peptide FT064 and recombinant antigen can detect serum from patients with non-A, non-B hepatitis with high sensitivity, such as blood screening. It was shown to be useful for twenty three-
  • Sequence type nucleic acid
  • Type of row E cDNA to genomic SNA
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • GGC AAT GAG GGC TTG GGG TGG GCA GGA TGG CTC CTG TCA CCC CGC GGC 288 Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • GAAUUCCAUU ACCUACCGCC UACb'GUUGCA GGCUGUGCUC UCCCCCCC CkAGk ⁇ GACC 60 CCGACGCCCC CCCCGAGGAG GCGCCGGACA GL'GGCCUUGG ACGGGAGCAC CAUUGGAGAC 120 il CCUCCA C AGUUGGCCGU CAAGACCUUC GGCCAGCCCC CCCCGAGCGG CGACUCGGGC 180 CCCUCCACGG GGGCGGACGU CGUCGGCUCU GGUGGUCGGA CGCCCCCUGA UGAAUUGGCU 240 CUCUCGGAGA CAGGUUCUGU CUCUUCCAUG CCCCZCCUCG AGGGGGAGCC UGGGGAUCCG 300 GACCUAGAGC CUGAGCGGGU AGAGCUUCAG CCCCCCCC AGGGGGGGGA GGAAGCUCCC 360 GGCUCGGACU CGGGGUCCUG GUCUACUUGC UCCGAGG.AGA GL! GACliCC
  • GAAUUCCUCG UCACUAGUAC CUGGGUGCb'A Gl'AGGCGGAG UCCUUGCAGC UUUGGCCGCG 60 UAUUGCCUAA CAACAGGCAG CGUGGUCAUU GUAGGUAGGA UCAUCUUGUC CGGGAGGCCG 120 GCUGUCAUUC CCGAUAGGGA GGUUCUCUAC CGAGAGUL'CG AUGAAAUGGA AGAGUGCGCC 180 UCACACCUCC CUUACAUCGA ACAAGGGAUG CAGCUCGCCG AGCAAUUCAA ACAGAAGGCG 240 CUCGGGUUGC UGCAAACAGC CGCCAAGCAA GCGGAGGUUG CUGCUCCCGU GGUGGAAUCC 300 AAGUGGCGAG CCCUCGAAGC CUUCUGGGCG AAGCACAUGU GGAAUUUCAU CAGCGGGAL'A 36 0 CAGUACUUAG CAGGCUUGUC CACUCUGCCU GGAAACGGAA UUC 4 03
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • GCCGCCCACA GGACGUCAAG UUCCCGGGCG GUGGUCAGAU CGUUGGUGGA GUUUACCUGU 60 UGCCGC 66
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Virology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 ά細πι
非 Α非 Β型肝炎ウィルス抗原蛋白質 技術分野
本発明は、 非 Α非 Β型肝炎ウィルス関連抗原及びその 製造方法並びに非 A非 B型肝ウィルス関連抗原あるいは その同効物を利用した検査薬に関する。
本発明はまた非 A非 B型肝炎ウィルスゲノム R N A並 びにその c D N Aにも関する。 背景技術
ウィルス肝炎のうち、 経口感染する流行性肝炎である A型肝炎、 および、 血液を介して感染する B型肝炎ウイ ルスに関しては、 原因ウィルスが分離され、 その性質も 明らかにされた。 その結果、 現在では両者とも診断法が 確立され、 感染の予防法が立てられている。
しかしながら、 A型でも B型でもない非 A非 B型とい われる肝炎は、 わが国の輸血後肝炎の約 9 0 %を占めて いるとされており (日本臨床、 3 5巻、 2 7 2 4頁 ( 1 9 7 7 ) ; ジャーナル ォブ バイオロジカル メ ディ ソン、 4 9卷、 2 4 3頁 ( 1 9 7 6 ) ) 、 厚生省が まとめた推計でも肝疾患の死亡者の 4 0 %近くを占める 非 A非 B型肝炎の大多数は C型肝炎が原因と見られてい る。 主要な感染ルー トは輸血と血液製剤であり、 これら は適切な検査方法が確立できれば感染を防止できるもの であり、 それだけに検査薬の開発への期待は大きい。 最近、 米国のカイロン社は非 A非 B型肝炎患者の血清 をチンパンジーに注射して、 非 A非 B型肝炎を起したチ ンパンジーの血清に由来する RN Aを出発材料として、 HC V (C型肝炎ウィルス) の c DNAをクローニング した (Q. L. クーら、 サイエンス、 2 4 4巻、 3 5 9 頁 ( 1 9 8 9 ) : European Petent Application
#88310922.5)。 この配列を基にして種々の抗原が検討さ れているが、 現在までのところ HCV感染予防に有効と はいい難い。
しかしながら、 1 9 9 0年の日本肝臓学会総会のシン ポジゥム 「非 A非 B型肝炎研究の進歩一基礎と臨床 J に おいて発表されたレ トスロぺクティブ · スタディでは、 現在使用されている検査薬が 8年前に開発されていても 1 4人中 1 0人の感染は防ぎ切れないとするものであり、 感染性のウィルスが血液中にいるにもかかわらず検査結 果に反映されないことを示していた。 この原因としては この検査薬に使用されている抗原がウィルス粒子の核内 蛋白に栢当すると見られる部分を遺伝子光学的な手段で 生産して使用していることが考えられ、 HCV検査を確 実に行うにはさらに複数種の抗原を開発する必要がある 曰 ·ο> Ο
また、 この目的のために多くの研究者が HCVゲノム のクローニングを試みているが、 いずれもカイロン社の 発表した HCVの塩基配列を基にした P CR法を採用し ており (Υ. クボら、 ヌクレイック ァシッズ リサ一 チ、 1 7卷、 1 0 3 6 7頁 ( 1 9 8 9 ) ; H. オカモ ト ら、 ジヤ ノ、。ン ジャーナル ォブ エキスペリ メ ンタル メディ スン、 6 0巻、 1 6 7頁 ( 1 9 9 0 ) など) 、 P C R法ではカイロン社の H C Vと共通性の高い H C V配 列しかクローニング出来ないために、 塩基配列の変化が 生じやすい HCVゲノムのクローニングとしては問題が ある。 また塩基配列の変化にともなってその配列がコ一 ドするアミ ノ酸配列も変化するためウィルスの抗原性も 変化しやすく単独の抗原を用いた抗体診断薬では問題が 生じる。
そこで本発明者らは、 より抗原性の高い蛋白をコー ド した c DN Aをクローニングすべく、 複数の非 A非 B型 慢性肝炎患者由来の血清から分離した RN Aを基にして c DNAのクローニングを行い、 複数種の抗原を見出し た。 これらの抗原性はそれぞれ異なっており将来的には 異なった複数の抗原を使用することで高感度な抗体検査 薬を設計することができる。 また遺伝子工学的手法によ り大量の抗原を調製することが可能となる。 発明の開示
すなわち本発明は、 非 A非 B型肝炎患者の血清と特異 的に反応する抗原並びにその製造方法および特異抗原蛋 白質を組み合わせた抗体診断薬に関するものである。 ま た、 本発明は、 非 A非 B型肝炎患者の血清と特異的に反 応する抗原をコー ドする c DN Aおよび単離された本来 の RN Aゲノム配列にも関する。 図面の簡単な説明
第 1図は、 S 2 9のアミ ノ酸配列と合成ペプチドの設 計との関係を示す。
A : A 1 a N: M e t W : T r p
D : A s p N : A s n Y : T y r
E : G 1 u P : P r o
F : P h e Q : G 1 n
G : G 1 y R : A r g
I : I 1 e S : S e r
K : L y s T : T h r
L : L e u V : V a 1
図 2は T 0 6 Aを抗原とする E L I S Aの結果を示す, なお、 表中横軸の番号は 1〜2 1 までが C型肝炎サン プル、 2 2が原発性胆汁性肝硬変サンプル、 2 3〜2 6 が B型肝炎サンプル、 2 7〜 3 0は健常者サンプルであ 図 3は T 0 6 4を抗原とする E L I S Aの結果を示す, なお、 表中横軸の番号は 1〜2 1 までが C型肝炎サン プル、 2 2が原発性胆汁性肝硬変サンプル、 2 3〜2 6 が B型肝炎サンプル、 2 7〜3 0は健常者サンプルであ る σ
図 4は Τ 0 6 9を抗原とする E L I S Αの結果を示す < なお、 表中横軸の番号は 1〜 2 1 までが C型肝炎サン プル、 2 2が原発性胆汁性肝硬変サンプル、 2 3〜2 6 が B型肝炎サンプル、 · 2 7〜 3 0は健常者サンプルであ る Ο 図 5は P U E X S 4の構築過程を示す。
図 6 は T 0 6 4 と S 4を抗原とするマイクロプレー ト E L I S Aの結果を示す。
1 〜 2 1 までは C型肝炎血清サンプル、 2 2は原発性 胆汁性肝硬変サンプル、 2 3〜 2 6 までは B型肝炎血清 サンプル、 2 7〜 3 0 までは健常者サンプル、 3 1 〜
5 2 までは C型肝炎サンプルで、 3 1 , 3 2は C型肝炎 プール血清、 3 3〜 3 7までは C型肝炎サンプルで、 N 1 4抗体 (十) 、 C 1 0 0 — 3抗体 (十) 、 P C R ( + ) のサンプル、 3 8〜 4 2までは N 1 4抗体 (十) 、 C 1 0 0 — 3抗体 (一) 、 P C R ( + ) のサンプル、 4 3〜 4 7 までは N 1 4抗体 (一) 、 C 1 0 0 — 3抗体 (十) 、 P C R ( + ) のサンプル、 4 8 — 5 2 までは N 1 4抗体 (一) 、 C 1 0 0 - 3抗体 (一) 、 P C R ( + ) のサン プル
図 7は T 0 6 4 と S 4を抗原とするマイクロプレー ト E L I S Aの結果を示す。
なお、 横軸の番号 1 〜 3 0 までは C型肝炎サンプル 3 1〜 3 7は健常人サンプル。
図 8は T 0 6 4 と S 4を別々に使用した抗原とするマ イクロブレー ト E L I S Aの結果を示す。
図 7で示した 1〜 3 0 までの C型肝炎サンプルについ て T O 6 4 , S 4に分けて反応性を調べた結果。 発明を実施するための最良の形態
本発明の抗原をコー ドする c DN Aの配列は以下のよ うにして入手した。
まず、 複数の非 A非 B型慢性肝炎患者由来の血清から. 例えば、 P. コ ミ クェンツキ一ら、 アナリティカル ィォケミストリー、 1 6 2巻、 1 5 6頁 ( 1 9 8 7 ) に 示されるポリエチレングリ コール沈殿法によってファー ジ粒子を回収し、 フエノール抽出、 イソプロパノール沈 殿法で RNAを調製する。
調製した RNAから c DNAの合成は、 Y. ェピナら- セル、 4 0巻、 7 4 7頁 ( 1 9 8 0 ) の方法に従って、 市販品の c DNA合成キッ ド (例えば、 B R L社) とラ ンダム . プライマー (宝酒造社) を用いて行う ことがで さる。
次に、 合成した c DNAを市販品の λ g t 1 1 クロ一 ニング * キッ ト (B R L社) を用いて、 A g t 1 1 ファ 一ジ ' ベクターの E c o R l部位に導入後、 市販品のパ ッケージング ' キッ ト (アマシャム社) を用いて、 i n v i t r oパッケージングを行って c DNAライブラ リ 一を調製することが可能である。
かかる λ g t 1 1 ファージ内に組み込まれた c DNA は; I g t l l ファージ上の yS— g a l遺伝子の中に組込 まれるので、 ファージの大腸菌への感染後、 I P T G (ィソブロピル一 S— D—ガラク トビラノ シド) などの 誘導物質による該ファージ上のラク トースォペロンのプ 口モーターの誘導により /S—ガラク トシダーゼとの融合 蛋白質として容易に発現が確認される。
この様にして、 c DNAを組込んだ λ g t 1 1 ファー ジ c.DNAライブラ リ一から目的とする非 A非 B型慢性 肝炎患者の血清特異的に反応する抗原をコー ドする c D N Aをスク リーニングするには、 (R. A. ヤングら、 プロシーデイ ング ナショナル アカデミー ォブ サ ィエンス U. S. A. 、 8 0卷、 1 1 9 4頁(1983)) に示された方法に従って行うことができる。 つまり、 λ g t 1 1 ファージを大腸菌に感染させ、 I P T Gを含む 培地で培養する。 形成されたプラークを発現された ^一 ガラク トシダーゼとの融合蛋白質と共にニトロセル口一 スメ ンプレンに写しとり、 非 A非 B型慢性肝炎患者由来 の血清に含まれる抗体と反応させ、 さらに HR P (西洋 ヮサビバーオキシダーゼ) で標識した抗ヒ ト 1 g G抗体 と反応させた後に発色させることによって、 非 A非 B型 慢性肝炎患者由来の血清に含まれる抗体と反応性のある 融合蛋白質を発現しているプラークを選択することがで さる。
次に 2次スク リーニングとして、 こう して選択された プラークの中から同様な方法で、 非 A非 B型慢性肝炎患 者由来の血清に含まれる抗体とは反応するが、 B型肝炎 患者由来の血清および正常人の血清とは反応しないブラ ークを選択する。
さらに、 2次スク リーニングにパスした; I g t 1 1組 換えファージの持つ c D N Aの塩基配列を決定すること になるが、 その方法は以下のようにする。 まず、 T. 、 ァニァテスら、 モルキュラー クローニング、 コールド スプリ ング ハーバー ラボ. ( 1 9 8 2 ) に示された 方法に従って、 少量のファージ DNAを調製し、 このフ ァージ DNAを制限酵素 E c o R 1で完全にあるいは部 分分解して得られる c DNAを p UC系統のプラスミ ド ' ベクターへサブクローニングする。 そしてこのプラス ミ ド DNAを調製して、 例えば、 デュポン社製の DNA シークェンサ一を用いて塩基配列を決定することができ る。 配列表の配列番号 1力、ら 1 2に決定された c DN A の塩基配列とそれらがコー ドするアミ ノ酸配列を示した < また配列表の配列番号 1 3— 24に決定された c DNA から推定されるウィルスゲノム RN Aの配列を示した。 本発明において、 配列表に示した c DNAと実質的に同 一機能を有する範囲において、 修飾された c DNA (即 ち、 塩基配列が置換、 欠失、 挿入したもの) であっても よい。 もちろん、 実質的に同一機能を有する限り、 アミ ノ酸配列が異なる程度に修飾されたものであってもよい ( また、 ウィルスゲノム RNA配列の相補配列 (アンチセ ンス RNA) を機能配列として用いることも可能である < 以上のベた方法によって非 A非 B型慢性肝炎患者由来 の血清に由来するゥィルスの c DN A配列が明らかにな つたことによって、 得られた c DNA配列から推定され るアミノ酸配列を合成ペプチド機で合成したり、 遺伝子 組換えによって発現させることにより c DNAにコー ド されている抗原あるいはその一部を調製し血清診断法に 応用することができる。 すなわち得られた抗原を用いて この抗原に対する血清中の抗体を測定したり、 あるいは、 抗原に対する抗体を予め調製し、 この抗体に対する血清 中の抗原を測定し、 感染を診断する方法である。 なお、 予め調製される抗体のうちにはモノ クロ一ナル抗体が含 まれていてよい。 前者の方法についてその成績を確認す るために複数の患者由来の検体について、 本発明の抗原 と既知の抗原との感度と特異性を比較した。 また配列表 1 に示した S 2 9に関しては親水性、 疏水性を目安に合 成べプチ ドを設計し 3種類の E L I S Aを作製してその うちの 1種類を抗原として用いた。
以下に本発明の抗原を用いた血清診断薬について説明す な
まず本発明の抗原あるいはその一部の調製方法として は、 遺伝子組み換え技術を利用して大腸菌、 酵母、 昆虫 細胞や動物細胞などで発現させる方法があげられる。 発 現方法としては本抗原をコー ドする c D N Aあるいはそ の一部に必要に応じ蛋白合成の開始信号と終結信号を付 加した後、 公知の各種発現ベクターに結合させ、 直接本 発明の抗原あるいはその一部を発現させる方法があげら れる。
例えば、 大腸菌などでは、 非 A非 B型特異抗原をコー ドする c D N Aをプロモーターとして知られた配列、 例 えばト リブトファ ン合成酵素オペロン (T r p ) 、 ラク トースォペロン ( 1 a c ) 、 ラムダファージプロモータ - ( P i , P R など) 、 化学合成された t a cプロモー ター ( t r p と 1 a cから誘導) 、 t r cプロモーター ( t r p と 1 a cから誘導) などに連結したり、 その他 にリボゾーム結合配列、 例えばシャインーダルガルノ配 列 (S D配列) 、 転写終結因子などを付加することがで きる。 このリボゾーム結合配列としては、 大腸菌などの 配列を使用することも可能であるが、 化学合成などによ り作成されたコンセンサス配列を用いてもよい。
転写終結因子は発現の為には、 必ずしも必要とされな いが、 目的とする蛋白が高発現している場合にはプラス ミ ド自身を安定に保持させる為に付加することが望まし い。 例えばリボゾーム R N A遺伝子の夕一ミ ネ一ター、 t r pオペロンターミネータ一などがあげられる。
また、 発現方法としては他のペプチド (例えばマウス インターフェロン ゃリポコルチン、 インターロイキン 2あるいは ;5ガラク トシダーゼゃバキュロウィルスのボ リヘドリ ンなど) との融合蛋白として微生物や昆虫細胞 などで発現させる方法も挙げられる。 もちろんペプチ ド の抗原性が保たれるなら、 この発現生成物のうちの融合 蛋白との間をプロテアーゼ (例えばリ ジンプロテアーゼ や血液凝固因子である F a c t 0 r X a ) などで消化後、 本発明の抗原部分のみを調製して使用することも可能で ある。
作製した発現ベクターを宿主へ導入して形質転換する 方法としては、 各種の知られた方法、 例えば T . マニア テイスら、 モルキュラークローニング、 コールド スプ リ ング ハーバー ラボ ( 1 9 8 9 ) などに記載の方法 を用いることができる。 また、 大腸菌の場合、 例えば、 // モルキュラークローニング ( 1 9 8 9 ) に記載の方法を 用いることができる。
形質転換体を培養する方法としては、 例えばモルキュ ラークローニング ( 1 9 8 9 ) 記載の方法を用いること ができる。
培養温度は通常 2 5〜 4 2てで行われるが、 実施例 8 に示した熱ショ ックにより発現の起こるプロモーターで は前培養に約 3 0て、 発現誘導を 4 2 °Cで行うのが望ま しい。
発現した抗原あるいはその一部の精製や融合蛋白をプ 口テアーゼ消化後の抗原部分の調製には公知の手法が用 いられ、 それには例えば、 塩分画、 イオン交換クロマ ト グラフィー、 ァフィ二ティーク口マ トグラフィー、 遠心 分離などがある。 例えば、 メ ソッ ド イ ン ェンザィモ ロジー (ァカデミ ッ クプレス社 1 9 8 0 ) の記載の方法 が適用できる。 本発明の抗原蛋白質の産生および精製の 例を実施例 8に示した。
さらに、 本発明の抗原のェピトープ部分が明らかにさ れるならば、 そのェピトープ部分を含むボリペプチ ドを 人工的に合成して、 そのままあるいは他の蛋白と結合さ せて抗原として使用することも可能である。 このような 結合を得るためには多くの方法が公知であり、 ジスルフ ィ ド結合を利用する方法 (もしこのペプチ ドがスルフ ヒ ドリル基を欠いていればシスティン残基を付加すること によってこの方法を適用できる) 、 ジスルフィ ド アミ ド結合を利用する方法が知られている。 詳細は、 例えば. IZ 生化学実験法 1 1、 ェンザィムィムノアッセィ (東京化 学同人 1 9 8 9 ) を参照されたい。
次に、 本発明の抗原あるいはその一部を主要な構成成 分として含有する血清診断法の診断薬について述るが、 採用する免疫学的検出方法に応じて種々の診断薬を設計 することができる。 例えば、 検出方法としてォクタロニ 一法 (M O ) 、 免疫電気泳動法 ( I E S、 I E P ) 、 捕 体結合反応法 (C F ) 、 免疫粘着血球凝集反応法 ( I A H A ) 、 一元平板免疫拡散法 (S R I D ) を利用する場 合には、 本発明の抗原あるいはその一部、 人工的の合成 したェピトープ部分を含む物質をそのまま使用して適当 な形態に調製すればよい。 一例として一元平板免疫拡散 法を利用する場合を示せば、 支持体として寒天、 ァガロ ース、 デンプン、 ポリアク リルアミ ドなどの中から適当 なものを選び、 これを緩衝液に溶解し、 次に本発明の物 質を添加混合し、 得られる溶液をガラス板上あるいはプ ラスチック容器内に流して固化し、 固化ゲル平板に被検 血清注入用の孔を開ければよい。 この孔に披検血清を注 入して拡散する抗体と抗原の反応を観察することよって 診断が可能である。
しかるに、 検出方法として血球凝集反応法 (P H A ) を利用する場合には本発明の抗原あるいはその一部、 人 ェ的の合成したェピトープ部分を含む物質を微粒子に結 合させる必要がある。 微粒子としては哺乳類および鳥類 の血球が通常用いられるが、 その他、 ポリスチレンラテ ックス、 ボリエステルラテッ クス、 塩化ビニル、 ベン ト ナイ ト、 ガラスビーズなどの約 1 一 1 0 〃の粒子も使用 することができる。 本発明抗原と微粒子を結合させるに は、 例えば、 グルタールアルデヒ ド、 ホルムアルデヒ ド、 タンニン酸、 ビスジア ドダイズベンチジン、 塩化クロム、 カルボジィ ミ ドなどを使用すればよく、 本発明の抗原が 結合した微粒子と披検血清を混ぜた後、 凝集反応を起こ すか否かで診断を行う ことができる。
また、 本発明の抗原を放射性免疫測定法 (R I A ) や 酵素抗体法 (E L I S A ) などに利用する場合には、 本 発明の抗原あるいはその一部、 人工的に合成したェピト ープ部分を含む物質を適当な固相に結合させ、 さらに血 清中のヒ ト抗体と結合する 2次抗体 (抗ヒ ト抗体) を放 射能標識または酵素標識する必要がある。 固相としては マイクロプレー ト、 チューブ、 ビーズ、 磁性ビーズなど が使用でき、 固相に結合した抗原と披検血清を反応させ B Z F分離を行なった後、 抗原と結合した抗体を抗ヒ ト 抗体 ( 2次抗体) で検出することによって血清中の抗体 量を検出することができる。 2次抗体の放射能標識とし てはヨウ素 1 2 5やヨウ素 1 3 1が利用でき、 クロラ ミ ン T法などで結合させることができる。 また、 2次抗体 の標識酵素としては、 例えば、 グルコースォキシダーゼ、 アルカ リホスファターゼ、 ペルォキシダーゼ、 ベータガ ラク トシダーゼなどを使用することができ、 酵素と抗体 との結合法としては有機化学的方法、 免疫学的標識法、 アビジン/ピオチン反応を介する方法、 組合わせ架橋法 などが知られている。 詳細は、 例えば、 生化学実験法 11、 ェンザィムィムノアッセィ (東京化学同人 1 9 8 9 ) を参照されたい。 さらに、 特殊な酵素抗体法 (E L I S A) として、 本発明の抗原を結合させた固相に披検血清 中の抗体を捕捉し、 さらに抗体と酸素標識した抗原を反 5 応させることによって抗体を検出することも可能である < 本発明のマイクロプレートを用いた酵素抗体法 (E L I S A) の例を実施例 9に示した。
本発明では、 配列表 1〜 1 2の抗原蛋白質の一部も同 効物として使用できる。
10 以上血清診断法についてのベたが、 用いる抗原は、 本 発明の配列表 1〜 1 2の抗原蛋白質あるいはそのェピト ープ領域を組み合わせて使用することも、 感度の面で好 ましい場合がある。 さらに、 競合法やサン ドイッチ法と して知られた手法も適用することができるし、 蛍光標識
15 などの種々の標識も使用できる。 また本発明の検査薬は 上記の免疫学的検査薬としての使用の他に、 DNAプロ —ブとしても使用可能である。
以下実施例を挙げて本発明をさらに詳細に説明する。 実施例 1.
20 ウイル RN Aの調製
カイロン社の C 1 0 0— 3抗体陽性の非 A非 B型慢性 肝炎患者の血清 1.8 Lにポリエチレングリ コール 4000 (ナカライ化学社) を 72 g加え氷中に 1時間放置して ウィルスを沈殿させた。 4°C、 5 K r pm、 2 0分間の
25 遠心でウィルス分画を遠沈後、 変性溶液 (6Mグァニジ ンチオシァネー ト、 37.5 mMクェン酸ナト リウム p H 7.0、 0.7 5 %ザルコシル、 1.0 5 m 1 2—メルカブト エタノール) 1 0 0 m 1を加えてすばやく振とう した。 その後 1 5 m 1の 2 M酢酸テ ト リ ウム ( p H 4.0 ) 、 1 5 0 m 1のフヱノール (蒸留水で飽和) 、 3 0 m lの クロ口ホルム Zイ ソア ミ ルアルコール ( 4 9 : 1 ) の順 に加えて混和した。 遠心後、 水層を別の容器に移して等 量のイソプロピルアルコールを加えて一 2 0。Cで 2、 3 日放置し、 RN Aを沈殿させた。 再度、 1 5 K r pmで 2 0分間室温で遠沈後、 沈殿を 1 m 1の変性溶液に溶か し、 1 m 1のイソプロバノールを加え一 7 0 °Cに保存し た。 約 1 0 ;/ gの RNAが調製できた。
実施例 2.
c DNAライブラ リ一の作製
RN A保存液を遠沈後、 沈澱を 7 0 %エタノールで洗 浄して、 ジェチルピロカーボネー ト (DE P C) 処理し た滅菌水 2 0 1に溶かし、 DNA D I P ST I C K (イ ンビトロジヱン社) で RNAを定量した。
約 0.5 gの RNAを出発材料として、 c DNA合成 システムおよび c DNAクローニングシステム (BRL 社) を用いて d DNAを合成し、 λ g t 1 1にクローン 化した。 今回 c DN Aを合成する際に、 ウィルス RNA がポリ A鎖を持つことが明らかでなかったので、 ォリゴ d Tブライマーの変りにランダムプライマー (宝酒造) を使用した。
その後、 λ D N Aパッケージング · キッ ト (アマシャ ム社) を用いて、 組換え λ g t 1 1をパッケージングし 指示菌である Y 1 0 9 0上にプラークを形成させた。 な おプラーク形成用の培地は、 下層が 1.5 %ァガー L培地 ( 1 %バク ト トリプトン、 0.5 %イース トエキス トラク ト、 1 %塩化ナト リウム) 上層が 0.7 %ァガロース L培 地を用いた。 約 5 x i O e p f uの c DNAライブラ リ 一が作製できた。
実施例 3.
1次スク_リ一二ング
作製した c DNAライブラ リ一は直径 1 5 0mmのプ レート (べク トン デッキンソン社) 上に約 1. 0 X 1 0 ' p f uプラークが出現するようにまき、 4 3でで 3— 4 時間培養してプラークを形成させた。 その後、 あらかじ め 1 O mMの 1 PTG (イソプロピル一 ^一 D—チォガ ラク トビラノシド) に浸してから風乾してある二トロセ ルロースフィルター (ハイボン ド Cエキス トラ アマシ ャム社) をプレー ト上にのせ 3 7でで 3時間培養した。 これによりクローン化された c DN Aがコー ドしている ァミノ酸配列がフィルター上に発現される。 このフィル ター上にブロッ トされた抗原に対して、 大腸菌で吸収し た数人分の非 A非 B型肝炎患者のプール血清を約 2 5倍 に希釈したものを 1次抗体とし、 ペルォキシダーゼ標識 抗ヒ ト 1 gG (カッペル社) を 2次抗体として反応させ、 発色した物を陽性クローンとした。 合計 5 6個の陽性ク ローンが得られた。 その後フィルターとプレー トの位置 を合わせ、 陽性クローンと思われる場所の寒天を滅菌し たつまよう じでかきとり、 1 m 1の S Mバッファー(5.8 /7 g N a C 2 g Mg S 04 - 7 H2 0, 6. 0 5 g ト リス塩基、 5 m l 2 %ゼラチン ZL H2 0) に懸 濁した。 この液に 1 0 1のクロ口ホルムを加えファー ジ液として 4でに保存した。
実施例 4.
2次スク リ一二ングおよび特異性試験
陽性クローンから得られたファージ液を適当に S Μバ ッファ一希釈し、 プレー トあたり約 3 0 0個のプラーク が出現するようにファージ液をまき、 実施例 3 と同様の 方法で陽性クローンを発色させた。 陽性クローンを滅菌 したつまよう じでかきとり、 0.5 m 1 の S Μバッファー に懸濁した。 この液に 1 0 /Z 1のクロ口ホルムを加えシ ングルプラークのファージ液として 4でに保存した。
2次スク リーニングで陽性を示したクローンについて、 健常人の血清 2検体 (カイロン社の C 1 0 0— 3に対し て陰性) 、 B型肝炎患者血清 1検体との反応性について 調べた。 陽性クローンと λ g t 1 1 ( c DNA配列を持 たないベクター) をプラーク数比が 1 : 5になるように 混合して、 指示菌である Y 1 0 9 0上にプラークを形成 させた。 その後、 実施例 3と同様の方法でィムノブラー クアツセィを行って、 陰性、 陽性を判定した。
実施例 5.
c DN Aの塩基配列の決定
ファージ DNAは以下の方法で抽出した。 各ファージ液 の を Y 1 0 9 0の培養液 0· 5 m 1 と混ぜ、 室温 で 1 5分間静置してファージの感染を行い、 5 mM塩化 カルシウムと 5 0 /z g/m 1アンピシリ ンを含む 5 m 1 L培地を加えて 4 3でで 4時間培養した。 培養液を遠心 し、 上清に等量の溶液 ( 2 0 %ボリエチレングリ コール 6 0 0 0、 5 OmMト リス塩酸 (p H7.5 ) 、 2 M塩化 ナト リウム、 4mM硫酸マグネシウム、 2 %ゼラチン) を加えて氷中で 1時間放置した後、 遠心してファージを 沈殿させた。 沈殿を 0.7 5m lの L培地に懸濁し、 L培 地に懸濁した D E 5 2を等量加えた。 遠心後、 上清に 1 7.5 1の 0. 1 m g/m 1プロテアーゼ Kと 42.5〃 1
10 の 1 0 SD S溶液を加え、 ファージ粒子を破壊した。
ファージ DNAは、 イソプロパノールで沈殿回収後、 4 0 1の TEバッファ一に溶解した。
以下に示す i g t 1 1の E c o R l部位を含む 3 ひ塩 基を DNA合成機 (アプライ ドバイオシステム社) で合
15 成して、 この合成 DNAをプライマーとした P CR反応 を得られた DNAに対して行い、 増幅した DNA産物を ァガロースゲル電気泳動法 (4 %NUC L EVE GT Gァガロース、 宝酒造) で確認した。 同時に得られた D N Aを制限酵素 E c 0 R 1で切断して c DNA部分をp
20 UC 1 8の E c oR l部位にクローニングした。
c DNA配列を持つ p UC 1 8 DNAをアルカ リ SD S法 (T. マニアテイスら、 乇ルキユラ一 クローニン グ、 コールド スプリ ング ハーバー ラボ. (1989)な ど) で少量調製後、 DNAシークェンサ一 (デュポン社)
25 を用いて塩基配列の決定を行った。
実施例 6 得られた抗原の評価
塩基配列を決定した 3 0 クローンのうち 9 クローンに ついては、 実施例 3に示した方法で非 A非 B型慢性肝炎 患者、 B型肝炎患者、 原発生胆汁性肝硬変、 健常者の血 清と反応させその成鑌を従来法と比較した。 その成績を 表 1 に示す。 従来法及び既知のクローンとしてォーソ H C V A b E L I S Aテス ト (ォーソ ダイァグノスチ イ ツ クシステムズ社) と有馬 N 1 4 クローン (メ ピオ 1 9 9 0 Vol.7 No.1 P 2 0—メジ力ルビユ一社) を 使用した。
また表 1 中、 クローン S 2 9は、 配列番号 1 に相当す る抗原、 クローン S 4は、 配列番号 2に相当する抗原に 対応する塩基配列を有している。 さらにクローン S 1 2 は、 配列番号 4、 S 4 1 は配列番号 9、 S 3 4は配列番 号 7、 S 1 3は配列番号 5、 S 3 1 は配列番号 6、 S 39 は配列番号 8そして S 1 は配列番号 3である。
C H : 慢性肝炎者 H B s A g : H B s抗原
L C : 肝硬変者 十 : 陽性
AH : 急性肝炎者 一 : 陰性
P B C : 原発性胆汁性肝硬変者
NO RMA L : 健常者
Να 2 3 - 2 6 までは Β型肝炎者 (表 1 )パネル血清による H C Vクローンの評価 断 输 JfiL HBsAg ARIMA CHIRON TORAY CLONE
Nl4 clOO-3 S29 S4 S12 S41 S3* S13 S31 A39 Si
CH t t 十 十 十 t + r τ
CH + 十 T 十 t 十 十 +
CH τ + 十 十 十 t t 十 十 t
CH + t t 十
CH + + + + + t + † + +
CH + + + 一
CH + - + + + + - - + + -
CH + + + + + + +
LC + + + + + + + 二
CH - - + + + + +
CH + + + + + + + + +
CH - - + + + + + + + + +
CH + + +
LC + + + + + + + + + +
CH + +
LC - - + + + + + + +
LC + + + + + + +
LC + + + + +
LC + + +
AH
AH + + + + +
PBC +
CH +
CH +
CH
CH + NORMAL NORMAL NORMAL NORMAL 実施例 7
S 2 9のェピトープ領域の検討
実施例 6で成鑌の良かったクローン S 2 9 に関しては 親水性を目安に合成ペプチドを設計し、 E L I S A系を 作製した。 まず S 2 9の塩基配列より推定されるァミ ノ 酸配列の親水性の高い領域について 3 0 m e r前後のぺ プチ ドを合成した (図 1 ) 。 合成したペプチ ドを 9 6穴 のマイクロプレー トに固相化後、 緩衝液 1 0 0 / 1 およ びサンプル血清 1 0 / 1 加え 3 7 Cで 6 0分反応させた ( ブレー ト洗浄後 T 0 6 9および T O 6 Aの系ではペルォ キシダーゼ標識ャギ抗ヒ ト 1 g Gボリ クローナル抗体
(ザィメ ッ ト社製) 、 T O 6 4の系ではペルォキシダー ゼ標識マウス抗ヒ ト 1 g Gモノ クローナル抗体 (ザィメ ッ ト社製) と 3 7でで 1 5分反応させた。 さらにプレー トを洗浄後、 基質液を加え 3 7でで 1 5分反応させ 1 N 硫酸を加えて反応を停止した後 4 5 0 nmの吸光度を測 定した。 その結果を図 2、 図 3、 図 4に示す。 3ぺプチ ドとも C型肝炎血清と特異的に反応したが、 中でも T O
6 4の反応性が良かった。
実施例 8
S 4抗原の大腸菌内での発現
実施例 6で成績のよかったクローン S 4に関しては、 遺伝子組換え法により抗原を調製した。 λファージ c l 8 5 7、 P Rプロモーターを有し、 —ガラク トシダー ゼをコーダするプラスミ ド p U E X 1 (アマシャム社) の /5—ガラク トシダーゼの C末端側に血液凝固因子 F a c t o r X aをコー ドする配列を含むように S 4遺伝子 を挿入した。 (図 5 ) ^—ガラク トシダーゼと S 4の間 に F a c t o r X aサイ トが存在しているので蛋白発現 後 F a c t o r X aで消化することにより保護蛋白を含 まない S 4蛋白を得る事ができる。
まずはじめに ^一ガラク トシダーゼの C末端側に存在 する Sm a lサイ トに K p n l リ ンカ一 ( 5 — G G GT A C C C - 3 宝酒造社製) を連結したプラスミ ドを作 製した (p Uの E XK— 1 ) 。
F a c t o r X a認識サイ トを含む S 4断片は S 4の c 0 八断片を£ c 0 R Iサイ トに組み込んだ DN A断 片をあらかじめ調製し K p n I , B a mH Iサイ トを利 用して P U EXK— 1 の Kp n l , B a mH Iサイ トに 連結した。 (P UE X S 4 )
この作製した p UE X S 4を大腸菌 H B 1 0 1 に形質 転換後、 得られた株を 5 m 1 の L B培地 (ト リプトン 1 、 ィース トエキス トラク ト 0. 5 %、 N a C 1 0. 5 % アンピシリ ン 1 0 0 〃 g/m 1 ) 植菌した 3 0ででー晚 前培養した。 一晩培養後この培養した菌をアンピシリ ン を含む 1 0 m 1 の L B培地に 2 0 0 〃 1植え、 3 0。Cで 2時間振盪塔養した。 その後培養温度を 4 2でに上げ 2 時間振盪培養した。 蛋白の発現は 1 m l の培養液を遠心 し集菌後 1 % S D Sと 2—メルカプトエタノールを加え 溶菌させ S D S— P AG Eで確認した。 S 4 と /8—ガラ ク トシダーゼとの融合蛋白は 4 2 °Cで培養したときに特 異的に観察されその蛋白量は全蛋白の 1 5〜 2 0 %に及 んだ。 得られた融合蛋白は不溶性顆粒体を形成していた ので、 グァニジン溶液や 4 M尿素で洗浄し、 可溶性蛋白 を取り除いた。 その後 8 M尿素で可溶化後 F a c t o r X aバッファー (20mMTris-HCl PH8, lOOmMNaCl,
2mMCaCl2) に透析した。 また S 4 と /5—ガラク トシダ一 ゼとの融合蛋白の抗原性については電気泳動後、 蛋白質 をニトロセルロースフィルターに転写し、 C型肝炎患者 血清との反応性をしらべ、 発現蛋白が健常人血清とは反 応ぜず C型肝炎患者血清とのみ特異的に反応することを
10 確認した。 さらに F a c t o r X aで消化後、 得られた
S 4蛋白 ( 2 3 K d) についても同様に C型肝炎患者 血清との反応性をしらべ、 発現蛋白が健常人血清とは反 応ぜず C型肝炎患者血清とのみ特異的に反応することを 確認した。 また精製したペプチ ドについては N末端のァ
15 ミ ノ酸配列を調べ、 遺伝子配列から推定される配列と一 致することを確認した。
実施例 9
S 2 9および S 4抗原を組み合わせたマイクロプレー ト E I Aの作製
20 実施例 8記載の組換え型抗原 S 4をさらに精製し、 実 施例 7記載の合成べプチド T 0 6 4 と S 4を抗原とする マイクロプレー ト E I Aを作製した。 合成したペプチ ド T 0 6 4および精製組換え抗原 S 4を 9 6穴のマイ クロ ブレー トに固相化後、 緩衝液 1 0 0 1 およびサンプル
25 血清 1 0 〃 1加え 3 7でで 6 0分反応させた。 プレー ト 洗浄後、 ペルォキシダーゼ標識マウス抗ヒ ト 1 g Gモノ クロ ーナル抗体 (ザィメ ッ ト社製) と 3 7てで 1 5分反 応させた。 さらにプレー トを洗浄後、 基質液を加え 3 7 てで 1 5分反応させ 1 Ν硫酸を加えて反応を停止した後 4 5 0 n mの吸光度を測定した。 その結果を図 6 , 7 , および 8に示す。 C型肝炎血清サンプル 7 1例中 7 0例 を陽性と判定でき、 B型肝炎 4例、 健常人 1 1例、 原発 性胆汁性肝硬変 1例とは反応しなかった。 さらにこの C 型肝炎血清サンプル 7 1例中 3 0例については S 4.、 S 2 9それぞれの抗原に対する反応性を調べた。 その結果 S 4 、 S 2 9 ともに陽性を示したサンプルは 2 2例、 S 4のみ陽性を示したサンプルは 3例、 S 2 9のみに陽性 を示したサンプルは 4例、 両者に反応しなかったサンプ ルは 1例のみであり、 S 2 9 と S 4抗原に対する血清サ ンプルの反応性の違いが明確となり、 2抗原を組み合わ せる有用性が確認された。 産業上の利用可能性
本発明によって、 非 A非 B型慢性肝炎患者由来の血清 と反応性のある新規な抗原をコー ドする c D N A配列を 入手することができ、 本抗原は免疫学的検査薬の開発に 適用できることが示された。 また今回得られた S 2 9由 来の合成べプチ F T 0 6 4および組換え型抗原を使用し た E L I S Aは非 A非 B型肝炎患者由来の血清を高感度 で判定でき、 血液スク リーニングなどに有用することが 示された。 23-
E列番号: 1
配列の長さ : 263
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類: cDNA to genomic RNA
起源:非 A 非 B 型肝炎ウィルス
配列
CTCGTAGACCGTGCATC 17
ATG AGC ACA AAT CCT AAA CCT CAA AGA AAA ACC AAA AGA AAC ACA AGC 65 Met Ser Thr Asn Pro Lys Pro Gin Arg Lys Thr Lys Arg Asn Thr Ser
1 5 10 15
CGC CGC CCA CAG GAC GTC AAG TTC CCG GGT GGC GGT CAG ATC GTT GGC 113 Ang Arg Pro Gin Asp Val Lys Phe Pro Gly Gly Gly Gin lie Val Gly
20 25 30
GGA GTT TAC TTG CTG CCG CGC AGG GGC CCC AGG TTG GGT GT6 CGC GCG 161 Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala
35 40 45
ACA AGG AAG ACT TCC GAG C6A TCC CAG CCG CGT GGG AGA CGC CAG CCC 209 Thr Arg Lys Thr Ser Glu Arg Ser Gin Pro Arg Gly Arg Arg Gin Pro
50 55 60 ATC CCT AAA GAT CGG CGC TCC ACC GGC AAG TCC TGG GGA AAG CCA GGA 257 lie Pro Lys Asp Arg Arg Ser Thr Gly Lys Ser Trp Gly Lys Pro Gly 65 70 75 80
TAT CCT 263 Tyr Pro
E列番号 : 1
配列の長さ : 651
E列の型 : 核酸
鎖の数 : 二本鎖
トポロジー : 直鑌状
E列の種類 : cDNA to genomic SNA
起源 : 非 A 非 B 型肝炎ウィルス
CT
ACG GGC GCC CCC ATT ACG TAC TCC ACC TAT GGT AAG TTC CTT GCC GAC 50 Thr Gly Ala Pro lie Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp
1 5 10 15
GGT GGT TGC TCT GGG GGC GCC TAT GAC ATC ATA ATG TGC GAT GAG TGC 98 Gly Gly Cys Ser Gly Gly Ala Tyr Asp lie lie Met Cys Asp Glu Cys
20 25 30
CAC TCA ACT GAC TCG ACC TCC ATC TTG GGC ATT GGC ACG GTC CTG GAC 146 His Ser Thr Asp Ser Thr Ser lie Leu Gly lie Gly Thr Val Leu Asp
35 40 45 Z8
CAA GCG GAG ACG GCT GGA GCG CGA CTT GTC GTG CTC GCC ACC GCT ACC 19
Gin Ala Glu Thr Ala Gly Ala Arg Leu Yal Val Leu Ala Thr Ala Thr
50 55 60
CCT CCG GGA TCG GTC ACT GTA CCA CAT CCC AAT ATC GAG GAG GTG GCC 242
Pro Pro Gly Ser Yal Thr Yal Pro His Pro Asn lie Glu Glu Val Ala
65 70 75 80
CTG TCC AAC ACT GGA GAG ATT CCC TTC TAT GGC AAA GCC ATC CCT ATC 290
Leu Ser Asn Thr Gly Glu lie Pro Phe Tyr Gly Lys Ala lie Pro lie
85 90 95
GAG ACC ATC AAG GGG GGG AGG CAT CTC ATT TTT TGC CAC TCT AAG AAG 338
Glu Thr lie Lys Gly Gly Arg His Leu lie Phe Cys His Ser Lys Lys
100 105 110
AAG TGT GAT GAG CTC GCC ACA AAG CTG TCG GCC CTC GGA CTC AAT GCT 386
Lys Cys Asp Glu Leu Ala Thr Lys Leu Ser Ala Leu Gly Leu Asn Ala
115 120 125
CTA CCC TAC TAC CGG GGC CTT GAT GTG TCC GTT ATA CCA ACA AGC GGA 434
Yal Ala Tyr Tyr Arg Gly Leu Asp Yal Ser Yal He Pro Thr Ser G ly
130 135 140
GAC CTC GTT GTC GTG GCA ACA GAC GCT CTA ATG ACG GGC TAC ACC GCT 482
Asp Ya l Yal Yal Yal Ala Thr Asp Ala Leu Met Thr Gl y Tyr Thr Gl y
145 150 155 160 GAC TTT GAC TCA GTG ATC GAC TGT AAT ACA TGC GTC ACC CAG ACA GTC 530 Asp Phe Asp Ser Val lie Asp Cys Asn Thr Cys Val Thr Gin Thr Val
165 170 175
GAT TTC AGC TTG GAC CCT ACC TTC ACC ATT GAG ACG ACA ACC GTG CCT 578 Asp Phe Ser Leu Asp Pro Thr Phe Thr lie Glu Thr Thr Thr Yal Pro
180 185 190
CAA GAC GCG GTG TCA CGC TCG CAG CGG CGA GGT AGG ACT GGT AGG GGC 626 Gin Asp Ala Val Ser Arg Ser Gin Arg Arg Gly Arg Thr Gly Arg Gly
195 200 205 '-
AGG GGG GGC ATA TAC AGG TTT GTA G 651 Arg Gly Gly lie Tyr Arg Phe Yal
210 215
配列番号: ;3
配列の長さ: 5 6 1
配列の型: 核酸
鎖の数: ニ本鏆
トポロジー: 直鎖状
配列の種類: cDNA to genomic RNA
起源: 非 A非 B型肝炎ウィルス
配列
GAA TTC CAT TAC CTA CCG CCT ACT GTT GCA GGC TGT GCT CTC CCC CCC 48
Glu Phe His Tyr Leu Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro
1 5 10 15
CCC AAG AAG ACC CCG ACG CCC CCC CCG AGG AGG CGC CGG ACA GTG GCC 96
Pro Lys Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Ala
20 25 30
TTG GAC GGG AGC ACC ATT GGA GAC GTC CTC CAG CAG TTG GCC GTC AAG 144
Leu Asp Gly Ser Thr lie Gly Asp Val Leu Gin Gin Leu Ala Val Lys
35 40 45
ACC TTC GGC CAG CCC CCC CCG AGC GGC GAC TCG GGC CCC TCC ACG GGG 192 Thr Phe Gly Gin Pro Pro Pro Ser Gly Asp Ser Gly Pro Ser Thr Gly
50 55 60
GCG GAG GTC GTC GGC TCT GGT GGT CGG ACG CCC CCT GAT GAA TTG GCT 240 Ala Asp Val Val Gly Ser Gly Gly Arg Thr Pro Pro Asp Glu Leu Ala 85 70 75 80 3 /
CTC TCG GAG ACA GGT TCT GTC TCT TCC ATG CCC CCC CTC GAG GGG GAG 288 Leu Ser Glu Thr Gly Ser Val Ser Ser Met Pro Pro Leu Glu Gly G lu
85 90 95
CCT GGG GAT CCG GAC CTA GAG CCT GAG CGG GTA GAG CTT CAG CCC CCC 336 Pro Gly Asp Pro Asp Leu Glu Pro Glu Arg Val Glu Leu Gin Pro Pro
100 105 110
CCC CAG GGG GGG GAG GAA GCT CCC GGC TCG GAC TCG GGG TCC TGG TCT 384 Pro G in G ly Gly Glu Glu Ala Pro G ly Ser Asp Ser Gly Ser Trp Ser
115 120 125
ACT TGC TCC GAG GAG AGT GAC TCC GTC GTG TGC TGC TCC ATG TCT TAC 432 Thr Cys Ser Glu Glu Ser Asp Ser Val Val Cys Cys Ser Met Ser Tyr
130 135 140
TCC TGG ACC GGG GCT CTA ATA ACT CCT TGT AGC CCT GAG GAG GAG AAG 480 Ser Trp Thr Gly Ala Leu l ie Thr Pro Cys Ser Pro Glu Glu G lu Lys 145 150 155 160
TTG CCA ATT AAC CCC TTG AGT AAC TCG CTG TTG CGA TAC CAC AAC AAG 528 Leu Pro l ie Asn Pro Leu Ser Asn Ser Leu Leu Arg Tyr His Asn Lys
165 170 175
GTG TAT TGC ACT ACA ACA AGA AGC GCG GAA TTC 561 Val Tyr Cys Thr Thr Thr Arg Ser Ala Glu Phe
180 185 3Z
S列番号: 4
配列の長さ: 4 0 3
配列の型: 核酸
鎖の数: 二本鎖
トポロジー: 直鎖状
配列の種類: cDNA to genonic &NA
起源: 非 A非 B型肝炎ウィルス
配列
GAA TTC CTC GTC ACT AGT ACC TGG GTG CTA GTA GGC GGA GTC CTT GCA 48 Glu Phe Leu Val Thr Ser Thr Trp Val Leu Val Gly Gly Val Leu Ala
1 5 10
GCT TTG GCC GCG TAT TGC CTA ACA ACA GGC AGC GTG GTC ATT GTA GGT 96 Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val lie Val Gly
20 25 30
AGG ATC ATC TTG TCC GGG AGG CCG GCT GTC ATT CCC GAT AGG GAG GTT 144 Arg lie lie Leu Ser Gly Arg Pro Ala Val lie Pro Asp Arg Glu Val
35 40 45
CTC TAC CGA GAG TTC GAT GAA ATG GAA GAG TGC GCC TCA CAC CTC CCT 192 Leu Tyr Arg Glu Phe Asp Glu Met Glu Glu Cys Ala Ser His Leu Pro
50 55 60
TAC ATC GAA CAA GGG ATG CAG CTC GCC GAG CAA TTC AAA CAG AAG GCG 240 Tyr l ie Glu Gin Gly Met Gin Leu Ala Glu Gin Phe Lys Gin Lys Ala 65 70 75 80 CTG GGG TTG CTG CAA ACA GCC GCC AAG CAA GCG GAG GTT GCT GCT CCC 288
Leu Gly Leu Leu Gin Thr Ala Ala Lys Gin Ala Glu Val Ala Ala Pro
85 90 95
GTG GTG GAA TCC AAG TGG CGA GCC CTC GAA GCC TTC TGG GCG AAG CAC 336 Val Val Glu Ser Lys Trp Arg Ala Leu Glu Ala Phe Trp Ala Lys His
100 105 110
ATG TGG AAT TTC ATC AGC GGG ATA CAG TAC TTA GCA GGC TTG TCC ACT 384
Met Trp Asn Phe l ie Ser Gly l ie Gin Tyr Leu Ala Gly Leu Ser Thr
115 120 125
CTG CCT GGA AAC GGA ATT C 403 Leu Pro Gly Asn Gly lie
130
配列番号: 5
配列の長さ: 1 3 2
配列の型: 核酸
鎖の数: ニ本鎮
トポロジー: 直鎖状
配列の種類: cDNA to genomic RNA
起源: 非 A非 B肝炎ウィルス
配列
GAA TTC CGT GGG CCC GAG GAG GAG AAG TTG CCG ATC AAC GCT CTG AGT 48 Glu Phe Arg Gly Pro Glu Glu Glu Lys Leu Pro lie Asn Pro Leu Ser
1 5 10 15
AAC TCG CTC ATG CGG TTT CAT AAC AAG GTG TAC TCC ACA ACT TCG AGG 96 Asn Ser Leu Met Arg Phe His Asn Lys Val Tyr Ser Thr Thr Ser Arg
20 25 30
AGT GCC ACT CTG AGG GCA AAG AAG GTG ACG GAA TTC 132 Ser Ala Thr Leu Arg Ala Lys Lys Val Thr Glu Phe
3S- 配列番号: s
配列の長さ: 9 6 4
配列の型: 核酸
鎖の数: 二本鎖
トポロジー: 直鎖状
配列の種類: cDNA to genomic RNA
起源: 非 A非 B肝炎ウィルス
配列
GAA TTC CGA AAA ACC AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC 48
Glu Phe Arg Lys Thr Lys Arg Asn Thr Asn Arg Arg Pro Gin Asp Val
1 5 10 15
AAG TTC CCG GGC GGT GGT CAG ATC GTT GGT GGA GTT TAC CTG TTG CCG 96
Lys Phe Pro Gly Gly Gly Gin l ie Val Gly Gly Val Tyr Leu Leu Pro
20 25 30
CGC AGG GGC CCC AGG TTG GGT GTG CGC GCG ACT AGG AAG ACT TCC GAG 144
Arg Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Lys Thr Ser G lu
35 40 45
CGG TCG CAA CCT CGT GGA AGG CGA CAA CAT ATC CCC AAG GCT CGC CGG 192 Arg Ser G in Pro Arg Gly Arg Arg G in H is l ie Pro Lys Ala Arg Arg
50 55 60
CCC GAG GGC AGG GCC' TGG GCT CAG CCC GGG TAC CCT TGG CCC CTC TAT 240 Pro Glu G ly Arg Ala Trp Ala G in Pro G ly Tyr Pro Trp Pro Leu Tyr 65 70 75 80 2/09634
36
GGC AAT GAG GGC TTG GGG TGG GCA GGA TGG CTC CTG TCA CCC CGC GGC 288 Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly
85 90 95
TCC CGG CCT AGT TG& GGC CCT ACA GAC CCC CGG CGT AGG TCG CGT AAT 336 Ser Arg Pro Ser Trp Gly Pro Thr Asp Prひ Arg Arg Arg Ser Arg Asn
100 105 110
TTG GGT AAG GTC ATC GAC ACC CTC ACA TGC GGC TTC GCC GAC CTC ATG 384 Leu Gly Lys Val He Asp Thr Leu Thr Cys Gly Phe Ala As Leu Met
115 120 125
GGG TAC ATC CCG CTC GTC GGC GCC CCC CTG GGG GGC GCT GCC AGG GCC 432 Gly Tyr He Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Arg Ala
130 135 140
CTG GCA CAT GGT GTC CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA ACA 480 Leu Ala His Gly Val Arg Val Leu G lu Asp Gly Val Asn Tyr Ala Thr 145 150 155 160
GGG AAT CTG CCC GGT TGC TCT TTC TCT ATC TTC CTC CTG GCT CTG CTG 528 G ly Asn Leu Pro Gly Cys Ser Phe Ser He Phe Leu Leu Ala Leu Leu
165 170 175
TCC TGT TTG ACC ATC CCA GCT TCC GCT TAT GAA GTG CGC AAC GTG TCC 576 Ser Cys Leu Thr l ie Pro Ala Ser A la Tyr Glu Val Arg Asn Val Ser
180 185 ISO GGG GCG TAC CAC GTC ACG AAC GAC TGC TCC AAC TCA AGC ATT GTG TAT 624
Gly Ala Tyr His Val Thr Asn Asp Cys Ser Asn Ser Ser lie Val Tyr
195 200 205
GAG GCA GCG GAC GTG ATC ATG CAC ACC CCC GGG TGC GTG CCC TGC GTT 672
Glu Ala Ala Asp Val l ie Met His Thr Pro Gly Cys Val Pro Cys Val
210 215 220
CGG GAG AGC AAC TCC TCC CGT TGC TGG GTA GCG CTC ACC CCC ACG CTC 720
Arg Glu Ser Asn Ser Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu 225 230 235 240
GCG GCT AGA AAT ACC AGC ATC CCC ACT ACG ACA ATA CGA CGC CAT GTC 768
Ala Ala Arg Asn Thr Ser lie Pro Thr Thr Thr lie Arg Arg His Val
245 250 255
GAC TTG CTC GTT GGG GCG GCT GCT TTC TGC TCC GCT ATG TAT GTA GGG 816
Asp Leu Leu Val Gly Ala Ala Ala Phe Cys Ser Ala Met Tyr Val Gly
260 265 270
GAT CTC TGC GGA TCT GTT TTC CTT GTC TCT CAG CTG TTC ACC TTC TCG 864 Asp Leu Cys Gly Ser Val Phe Leu Val Ser Gin Leu Phe Thr Phe Ser
275 280 285
CCT CGC CGG TAC CAG ACA GTA CAG GAC TGC AAT TGT TCA ATC TAT CCC 912 Pro Arg Arg Tyr Gin Thr Val Gin Asp Cys Asn Cys Ser l ie Tyr Pro
290 295 300 QG CAC CTA TCA GGT CAC CGC ATG GCT TGG GAT ATG ATG ATG AAC GGA 960 Gly His Leu Ser Gly His Arg Met Ala Trp Asp Met Met Met Asn Gly 305 310 315 320
ATT C 964 lie
31
配列番号: 7
配列の長さ: 1 0 0 9
配列の型: 核酸
鎖の数: ニ本鎮
トポロジー: 直鎖状
配列の種類: cDNA to genomic RNA
起源: 非 A非 B肝炎ウィルス
配列
GAA TTC TTC TCT TGG GTG GAC GGG GTG CAA ATA CAC CGA TTC GTC CCC 48 Glu Phe Phe Ser Trp Val Asp Gly Val Gin l ie His Arg Phe Val Pro
1 5 10 15
ACT CCG GGC CCC TTC TTT CGG GAT GAG GTA ACG TTC ACC GTA GGC CTC 96 Thr Pro G ly Pro Phe Phe Arg Asp Glu Val Thr Phe Thr Val G ly Leu
20 25 30
AAT TTC TTT GTG GTC GGC TCC CAG CTC CCT TGT GAC CCT GAG CCG GAC 144 Asn Phe Phe Val Val Gly Ser Gin Leu Pro Cys Asp Pro Glu Pro Asp
35 40 45
ACC GAG GCG CTA GCC TCC ATG CTG ACA GAC CCG TCC CAC ATT ACT GCG 192 Thr Glu Ala Leu Ala Ser Met Leu Thr Asp Pro Ser His l ie Thr Ala
50 55 60
GAG ACG GCA GCC AGA CGA TTG GCC AGG GGA TCT CCC CCT TCA CAG GCC 240 Glu Thr Ala Ala Arg Arg Leu Ala Arg G ly Ser Pro Pro Ser Gin Ala 65 70 75 80 AGC TCT TCA GCG AGC CAG CTC TCC GCC CCG TCC TTG AAG GCT ACC TGC 288 Ser Ser Ser Ala Ser Gin Leu Ser Ala Pro Ser Leu Lys Ala Thr Cys
85 90 95
ACC ACC CAT AAG ATG GCA TAT GAC TGT GAC ATG GTG GAT GCT AAC CTT 336 Thr Thr His Lys Met Ala Tyr Asp Cys Asp Met Val Asp Ala Asn Leu
100 105 110 -
TTC ATG GGA GGT GAT GTG ACC CGG ATT GAG TCC GAC TCC AAG GTA ATC 384 Phe Met G ly Gly Asp Val Thr Arg l ie G lu Ser Asp Ser Lys Val l ie
115 120 125
GTT CTC GAC TCC CTC GAC TCC ATG ACT GAG GTA GAG GAT GAA CGT GAG 432 Val Leu Asp Ser Leu Asp Ser Met Thr G lu Val Gin Asp Glu Arg Glu
130 135 140
CCT TCT GTA CCA TCA GAG TAC TTG ATC AGG AGG AGG AAG TTC CCA CCG 480 Pro Ser Val Pro Ser Glu Tyr Leu l ie Arg Arg Arg Lys Phe Pro Pro 145 150 155 160
GCA CTA CCT CCC TGG GCC CGT CCG GAC TAT AAC CCT CCT ACG ATC GAG 528 Ala Leu Pro Pro Trp Ala Arg Pro Asp Tyr Asn Pro Pro Thr l ie G lu
165 170 175
ATA TGG AAG AGG CCG GGC ΤΛΤ GAA CCA CCT ACT GTC CTA GGC TGT GCC 576 l ie Trp Lys Arg Pro Gly Tyr Glu Pro Pro Thr Val Leu Gly Cys Ala
180 185 190 CTC CCC CCC ACG CCT CAA GCG CCA GTG CCC CCA CCC AGG AAG CGC CGC 624
Leu Pro Pro Thr Pro Gin Ala Pro Val Pro Pro Pro Arg Lys Arg Arg
200 205 210
GCC AAA GTC CTG ACT CAG GAC AAC GTG GAG GGG GTC CTT AGG GAG ATG 672
Ala Lys Val Leu Thr Gin Asp Asn Val Glu Gly Val Leu Arg G lu Met
215 220 225
GCG GAC AAG GTG CTC AGT CCT TCC CAA GAC CAC AAT GAC TCC GGT CAC 720
Ala Asp Lys Val Leu Ser Pro Ser Gin Asp His Asn Asp Ser G ly His
230 235 240 245
TCC ACC GGA GCG GAC ACC GGA GGA GAC AGC TTC CAG CAG CTC TTC GAC 768
Ser Thr Gly Ala Asp Thr Gly G ly Asp Ser Phe Gin Gin Leu Phe Asp
250 255 260
GAG ACT GCC GCT TCA GAA GCG GGA TCA CTG TCC TCC ATG CCT CCC CTT 816
Glu Thr Ala Ala Ser Glu Ala Gly Ser Leu Ser Ser Met Pro Pro Leu
265 270 275
GAG GGG GAG CCG GGG GAC CCT GAC CTG GAG TTT GAA CCA GCG GGA TCC 864 Glu G ly Glu Pro Gly Asp Pro Asp Leu Glu Phe Glu Pro Ala Gly Ser
280 285 290
GGT CCC CCT TCT GAG GGG GAG TGC GAG GTC OTT GAT TCG GAC TCT AAG 912 Gly Pro Pro Ser Glu* Gly Glu Cys Glu Val Val Asp Ser Asp Ser Lys
295 300 305 T.CG TGG TCC ACA GTC TCG GAT CAG GAG GAT TCT GTT ATC TGC TGC TCC 960
Ser Trp Ser Thr Val Ser Asp Gin Glu Asp Ser Val lie Cys Cys Ser
310 315 320 325
ATG TCA TAC TCC TGG ACA GGG GCC CTC ATA ACA CCA TGT GGG GGA ATT 1008
Met Ser Tyr Ser Trp Thr Gly Ala Leu lie Thr Pro Cys Gly Gly l ie
330 335 340
1009
配列番号: 8
配列の長さ: 6 0 8
配列の型: 核酸
鎖の数: 二本鎖
トポロジー: 直鎖状
配列の種類: cDNA to genomic RNA
起源: 非 A非 B肝炎ウィルス
配列
GAA TTC CCG CGG GGG TCA CCC CCG TCT GAG GCA AGT TCC TCA GCG AGC 48 G lu Phe Pro Arg Gly Ser Pro Pro Ser Glu Ala Ser Ser Ser Ala Ser
1 5 10 15
CAA CTA TCG GCA CCA TCG CTG CGA GCC ACC TGT ACC ACC CAC GGC AAG 96 Gin Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His G ly Lys
20 25 30
ACC TAC GAT GTG GAC ATG GTG GAT GCT AAC CTG TTT ATG GGA GGC GAT 144 Thr Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly G ly Asp
35 40 45
GTG ACT CGG ATA GAA TCT GAA TCC AAA GTG GTC GTT CTG GAC TCC CTC 192 Val Thr Arg l ie Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu
50 55 60
GAC CCA ATG GCC GAA GAA ATG AGC GAC CTC GAG CCT TCT ATA CCA TCG 240 Asp Pro Met Ala Glu Glu Met Ser Asp Leu Glu Pro Ser l ie Pro Ser 65 70 75 80 GAG TAT ATG CTC CCC AAA ACC A6G TTC CCA CCA GCC TTA CCG GCC TGG 288 Glu Tyr Met Leu Pro Lys Thr Arg Phe Pro Pro Ala Leu Pro Ala Trp
85 90 95
GCA CGG CCT GAC TAC AAC CCA CCG TTT GTG GAA CCA TGG AGG AGA CCA 336 Ala Arg Pro Asp Tyr Asn Pro Pro Phe Val Glu Pro Trp Arg Arg Pro
100 105 110
GAC TAC CAA CCG CCC ACT GTT GCG GGC TGT GCT CTC CCC CCC CCC AAG 384 Asp Tyr Gin Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys
115 120 125
AAG ACC CCG ACG CCC CCC CCA AGG AGA CGC CGG ACA GTG GGT CTG AGT 432 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser
130 135 140
GAG AGC ACC ATA GGA GAT GTC CTG CAA CAG ATG GCC ATT AAG ACC TTT 480 Glu Ser Thr lie Gly Asp Val Leu Gin Gin Met Ala lie Lys Thr Phe 145 150 155 160
GGC CAG CCC CCC CCA AGC GGA GAT TCA GGC CTC TCT ACG GGG GCG GAC 528 Gly Gin Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp
165 170 175
GCC GCC GAC TCT GGT AGT CGG ACG CCC CCC GAG GAG TTA GCT CTC TCG 576 Ala Ala Asp Ser Gly Ser Arg Thr Pro Pro Glu Glu Leu Ala Leu Ser
180 185 190 4Γ
GAG ACA GGT TCT ACC TCC TCC ATG CGG AAT TC 608 Glu Thr Gly Ser Thr Ser Ser Met Arg Asn
195 200
έ 配列番号: 7 S
配列の長さ: 8 9 7
配列の型: 核酸
鎖の数: 二本鎖
トポロジー: 直鎖状
配列の種類: cDNA to genomic RNA
起源: 非 A非 B肝炎ウィルス
配列
GAA TTC CGG CGG GGG GAC GGC ATC ATG CAA ACC ACC TGC CCA TGT GGA 48 Glu Phe Arg Arg Gly Asp Gly lie Met Gin Thr Thr Cys Pro Cys Gly
1 5 10 15
GCA GAG ATC ACC GGA CAT GTC AAA AAC GGT TCC ATG AGG ATT GTT GGG 96 Ala Gin l ie Thr Gly His Val Lys Asn Gly Ser Met Arg lie Val Gly
20 25 30
CCT AAA ACC TGT AGC AAC ACG TGG CAT GGA ACA TTC CCC ATC AAT GCA 144 Pro Lys Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro lie Asn Ala
35 40 45
TAC ACC ACG GGC CCC TGC ACA CCC TCC CCA GCA CCA AAC TAT TCT AGG 192 Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg
50 55 60
GCG CTG TGG CGG GTG GCT GCT GAG GAG TAC GTG GAG GTT ACG CGG GTG 240 Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val 65 70 75 80 4T
GGG GAC TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC ATA AAG TGC 288
Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn H e Lys Cys
85 90 95
CCA TGC CAG GTT CCG GCC CCC GAG TTC TTC ACG GAG GTG GAT GGA GTG 336
Pro Cys G in Val Pro Ala Pro Glu Phe Phe Thr Glu Val Asp G ly Val
100 105 110
AGG TTG CAC AGG TAC GCT CCG GCA TGC AAA CCT CTC CTA CGG GAT GAG 384
Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp Glu
115 120 125
GTC ACA TTC CAG GTC GGG CTC AAC CAG TAC CTG GTA GGG TCA CAG CTC 432
Val Thr Phe Gin Val Gly Leu Asn Gin Tyr Leu Val Gly Ser G in Leu
130 135 140
CCA TGT GAG CCC GAA CCG GAC GTA GCT GTG CTT ACT TCC ATG CTC ACC 480
Pro Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr
145 150 155 160
GAT CCC TCC CAC ATT ACA GCA GAG ACG GCC AAG CGT AGG CTG GCC AGG 528 Asp Pro Ser H is l ie Thr Ala G lu Thr Ala Lys Arg Arg Leu Ala Arg
165 170 175
GGG TCT CCC CCC TCC TTG GCC AGC TCT TCA CCT AGC CAG TTG TCT GCC 576 Gly Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ser Gin Leu Ser A la
180 185 190 4^
OCT TCC TTG AAG GCG ACA TGT ACT ACC CAT CAT GAC TCC CCG GAA GCT 624
Pro Ser Leu Lys Ala Thr Cys Thr Thr His His Asp Ser Pro Glu Ala
195 200 205
GAC CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC GGG AAC 672 Asp Leu l ie Glu Ala Asn Leu Leu Trp Arg Gin Glu Met Gly G ly Asn
210 215 220
ATC ACC CGC GTG GAG TCA GAA AAT AAG GTA GTA ATT CTG GAC TCT TTC 720 He Thr Arg Val Glu Ser Glu Asn Lys Val Val l ie Leu Asp Ser Phe 225 230 235 240
GAT CCG CTC CGG GCG GAG GAG GAT GAG AGG GAA ATG TCC ATT CCG GCG 768 Asp Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Met Ser lie Pro A la
245 250 255
GAG ATC CTG CGG AAA CCC AGG AGG TTC CCC CCA GCA TTG CCC ATA TGG 816 G lu l ie Leu Arg Lys Pro Arg Arg Phe Pro Pro Ala Leu Pro He Trp
260 265 270
GCA CGT GCG GAT TAC AAC CCT CCA CTG ATA GAA CCC TGG AAG GAC CCG 864 Ala Arg Ala Asp Tyr Asn Pro Pro Leu l ie Glu Pro Trp Lys Asp Pro
275 280 285
GAC TAC GTC CCT CCG GTG GTG CAC GGG GAA TTC 897 Asp Tyr Val Pro Pro Va l Val H is G ly G lu Phe
290 295 配列番号: 10
配列の長さ : 218
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖伏
配列の種類: cDNA to genomic RNA
起源:非 λ 非 Β 型肝炎ウィルス
配列
GAA TTC TTC TCT TGG GTG GAC GGG GTG CAA ATA CAC CGA TTC GCC CCC 48 Glu Phe Phe Ser Trp Yal Asp Gly Yal Gin He His Arg Phe Ala Pro
1 5 10 15
ACT CCA GGT CCC TTC TTT CGG GAT GAG GTA ACG TTC ACC GTG GGC CTC 96 Thr Pro Gly Pro Phe Phe Arg Asp Gin Yal Thr Phe Thr Val Gly Leu
20 25 30
AAT TCC TTT GTG GTC GGC TCT CAG CTC CCC TGC GAC CCT GAG CCG GAC 144 Asn Ser Phe Yal Yal Gl j Ser Gin Len Pro Cjs Asp Pro Glu Pro Asp
35 40 45
ACC GAG GTA TTA GCC TCC ATG TTG ACA GAC CCG TCC CAC ATC ACC GCG 192 Thr Glo Yal Leu Ala Ser Utt Leu Thr Asp Pro Ser His He Thr Ala
50 55 60
GAG GCG GCA GCC AGG CGG TTG GCC AG 218 Glu Ala Ala Ala Arg Arg Leo Ala
65 70 O
E列番号: 1 ί
配列の長さ: 66
Ε列の型:核酸
鎖の数:ニ本鎮
トポロジー:直鎮伏
配列の種類: cDNA to senomic RHA
起源:非 A非 B 型肝炎ウィルス
配列
GC
CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG ATC GTT GGT GGA 50 Arg Pro Gin Asp Yal Ln Phe Pro Gly Glj G Gin lie Yal Gly G
1 5 10 15
GTT TAC CTG TTG CCG C 66
Figure imgf000052_0001
20
-J 配列番号: /2
配列の長さ : 181
配列の型:核酸
鎖の数:ニ本鏆
トポロジー :直鎖伏
配列の種類: cDNA to genomic RNA
起源:非 A 非 B 型肝炎ウィルス
配列
CGTGCACC
ATG AGC ACA AAT CCT AAA CCT CAA AGA AAA ACC AAA AGA AAT ACT AAC 56
Met Ser Thr Asn Pro LT Pro Gin Arg Ljs Thr Ljs Arg Asn Thr Asn
i 5 10 15
CGT CGC CCA CAA GAC GTC AAG TTT CCG GGC GGC 6CC CAG ATC GTT GGC 104
Arg Arg Pro Gin Asp Yal Ljs Phe Pro Gli Glr Gly Gin He Yal Glj
20 25 30
GGA GTA TAC TTG TTG CCG CGC AGG GGC CCT AGG TTG GGT GTG CGC ACG 152
G Val Trr Leu Leu Pro Arg Ar; Glr Pro Arg Lea Glj Val Arg Thr
35 40 45
ACA AGG AAG ACT TCG GAG CGA TCC CAG CC 181
Thr Arg Lys Thr Ser Gh Arg Ser Gin
50 55 配列番号: 13
配列の長さ : 5 6 1
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鏆状
配列の種 : Genomic RN.A
起源:非 A非 B肝炎ウィルス
配列
GAAUUCCAUU ACCUACCGCC UACb'GUUGCA GGCUGUGCUC UCCCCCCCCC CkAGk^GACC 60 CCGACGCCCC CCCCGAGGAG GCGCCGGACA GL'GGCCUUGG ACGGGAGCAC CAUUGGAGAC 120 il CCUCCA C AGUUGGCCGU CAAGACCUUC GGCCAGCCCC CCCCGAGCGG CGACUCGGGC 180 CCCUCCACGG GGGCGGACGU CGUCGGCUCU GGUGGUCGGA CGCCCCCUGA UGAAUUGGCU 240 CUCUCGGAGA CAGGUUCUGU CUCUUCCAUG CCCCZCCUCG AGGGGGAGCC UGGGGAUCCG 300 GACCUAGAGC CUGAGCGGGU AGAGCUUCAG CCCCCCCCCC AGGGGGGGGA GGAAGCUCCC 360 GGCUCGGACU CGGGGUCCUG GUCUACUUGC UCCGAGG.AGA GL!GACliCCGU CGUGUGCUGC 420
ACUCCUGGAC CGGGGCUCUA AUAACUCCUU GUAGCCCUGA GGAGGAGAAG 480
UUGCCAAUUA ACCCCUUGAG UAACUCGCUG UUGCGAUACC ACAACAAGGU GUAUUGCACU 540 ACAACAAGAA GCGCGGAAUU C 561
配列番号: J十
配列の長さ : 403
配列の型 :核 ¾
鎖の数: —本鎮
トポロジー :直鎖状
配列の種類: Genomic RNA
起源:非 A非 B肝炎ウィルス
配列
GAAUUCCUCG UCACUAGUAC CUGGGUGCb'A Gl'AGGCGGAG UCCUUGCAGC UUUGGCCGCG 60 UAUUGCCUAA CAACAGGCAG CGUGGUCAUU GUAGGUAGGA UCAUCUUGUC CGGGAGGCCG 120 GCUGUCAUUC CCGAUAGGGA GGUUCUCUAC CGAGAGUL'CG AUGAAAUGGA AGAGUGCGCC 180 UCACACCUCC CUUACAUCGA ACAAGGGAUG CAGCUCGCCG AGCAAUUCAA ACAGAAGGCG 240 CUCGGGUUGC UGCAAACAGC CGCCAAGCAA GCGGAGGUUG CUGCUCCCGU GGUGGAAUCC 300 AAGUGGCGAG CCCUCGAAGC CUUCUGGGCG AAGCACAUGU GGAAUUUCAU CAGCGGGAL'A 36 0 CAGUACUUAG CAGGCUUGUC CACUCUGCCU GGAAACGGAA UUC 4 03
s牛 配列番号: Γ
配列の長さ : 1 3 2
配列の型:核酸
鎮の数:—本鎖
トポロジー:直鎖状
配列の種類: Genomic RNA
起源:非 A非 B肝炎ウィルス
配列
GAAUUCCGUG GGCCCGAGGA GGAGAAGUUG CCGAUCAACC Cb'CUGAGUAA CUCGCUCAUG 60 CGGUUUCAUA ACAAGGUGb'A CUCCACAACU UCGAGGAGUG CCACL'CUGAG GGCAAAGAAG 120 GUGACGGAAU UC 132
配列番号: is
配列の長さ: 9 6 4
配列の型 :核酸
鎖の数: 一本鎖
トポロジー :直鎖状
配列の種類: Genomic RNA
起源:非 A非 B肝炎ウィルス
配列
GAAUUCCGAA AAACCAAACG UAACACCAAC CGCCGCCCAC AGGACGUCAA GUUCCCGGGC 60 GGUGGUCAGA UCGUUGGL'GG AGUUUACCUG UUGCCGCGCA GGGGCCCCAG GUUGGGUGL'G 120 CGCGCGACUA GGAAGACUUC CGAGCGGUCG CAACCUCGUG GAAGGCGACA ACAUAUCCCC 130 AAGGCUCGCC GGCCCGAGGG CAGGGCCUGG GCUCAGCCCG GGCACCCUUG GCCCCUCUAU 240 GGCAAUGAGG GCUUGGGGUG GGCAGGAL'GG CUCCUGUCAC CCCGCGGCUC CCGGCCUAGU 300 UGGGGCCCUA CAGACCCCCG GCGUAGGUCG CGUAAUUUGG GUAAGGUCAL' CGACACCCUC 360 ACAUGCGGCU UCGCCGACCU CAUGGGGUAC AUCCCGCUCG UCGGCGCCCC CCUGGGGGGC 420 GCUGCCAGGG CCCUGGCACA UGGUGUCCGG GUUCUGGAGG ACGGCGUGAA CUAL'GCAACA 480 GGGAAUCUGC CCGGUUGCUC UUUCUCUAUC UUCCIJCCUGG CUCUGCUGUC CUGUUUGACC 540 AUCCCAGCUU CCGCUUAUGA AGUGCGCAAC GUGUCCGGGG CGUACCACGU CACG.AACGAC 600 UGCUCCAACU CAAGCAUUGU GUAUGAGGCA GCGGACGUGA UCAUGCACAC CCCCGGGUGC 660 GUGCCCUGCG UUCGGGAGAG CAACUCCUCC CGUUGCUGGG UAGCGCUCAC CCCCACGCUC 720 GCGGCUAGAA AUACCAGCAU CCCCACUACG ACAAUACGAC GCCAUGUCGA CUUGCUCGUU 780 GGGGCGGCUG CUUUCUGCUC CGCUAUGUAU GUAGGGGAUC UCUGCGGAUC UGUUUUCCUU 840 GUCL'CUCAGC UGUUCACCUU CUCGCCUCGC CGGUACCAGA CAGUACAGGA CUGCAAL'UGU 800 UCAAUCUAUC CCGGCCACCU AUCAGGUCAC CGCAUGGCUU GGGAUAUGAU GAUGAACGGA 960 AUUC 964 配列番号: ίΊ
配列の長さ: 1 0 0 9
配列の型:核酸
鏆の数:—本鎮
トポロジー:直鎖状
配列の種類: Genomic RNA
起源:非 A非 B肝炎ウィルス
配列
GAALTOUCU CUUGGGUGGA CGGGGUGCAA AUACACCGAU UCGUCCCCAC UCCGGGCCCC 60 UUCUUUCGGG AUGAGGUAAC GUUCAGCGUA GGCCUCAAUU UCL-UUGUGGU CGGCUCCCAG 120 CUCCCUUGUG ACCCUGAGCC GGACACCGAG GCGCUAGCCU CCAL'GCUGAC AGACCCGUCC 180 CACAUUACUG CGGAGACGGC AGCCAGACGA UUGGCCAGGG GAL'Cじ CCCCC UUCACAGGCC 240 AGCUCUUCAG CGAGCCAGCU CUCCGCCCCG UCCUUGAAGG CUACCUGCAC CACCCAUAAG 300 AUGGCAUAUG ACUGUGACAU GGUGGAUGCU AACCUUUUCA UGGGAGGUGA UGUGACCCGG 360 AL'UGAGUCCG ACUCCAAGGU AAUCGUUCUC GACUCCCUCG ACUCCAUGAC L'GAGGUAG.AG 420 GAL'GAACGUG AGCCUUCUGU ACCAUCAGAG UACUUGAUCA GGAGGAGGAA GUUCCCACCG 480 GCACUACCUC CCUGGGCCCG UCCGGACUAU AACCCUCCUA CGAUCGAGAU AUGGAAGAGG 540 CCGGGCUAUG AACCACCUAC UGUCCUAGGC UGUGCCCUCC CCCCCACGCC UCAAGCGCCA 600 GUGCCCCCAC CCAGGAAGCG CCGCGCCAAA GUCCUGACUC AGGACAACGU GGAGGGGGUC 660 CUUAGGGAGA UGGCGGACAA GGUGCUCAGU CCUUCCCAAG ACCACAAUGA CUCCGGUCAC 720 UCCACCGGAG CGGACACCGG AGGAGACAGC UUCCAGCAGC UCUUCGACGA GACUGCCGCU 780 UCAGAAGCGG GAUCACUGUC CUCCAUGCCU CCCCUUGAGG GGGAGCCGGG GGACCCUGAC 840 CUGGAGUUUG AACCAGCGGG AUCCGGUCCC CCUUCUGAGG GGGAGUGCGA GGL'CGUUGAL' 900 UCGGAC^CUA AGUCGUGGLT CACAGUCUCG GAUCAGGAGG AUUCUGUUAU CUGCUGCL'CC 960 AUGUCAUACU CCUGGACAGG GGCCCUCAUA ACACCAUGUG GGGGAAL'UC 1003 配列番号:
配列の長さ: ら 02
配列の型 :核酸
鎖の数: —本鎖
トポロジー :直鎖状
配列の種類: Genomic RNA
起源:非 A非 B肝炎ウィルス
配列
GAAUUCCCGC GGGGGUCACC CCCGUCUGAG GCAAGUUCCU CAGCGAGCCA ACUAUCGGCA 60 CCAUCGCUGC GAGCCACCUG UACCACCCAC GGCAAGACCU ACGAUGUGGA CAUGGUGGA'J 120 GCUAACCUGU UUAUGGGAGG CGAL'GUGACU CGGAUAGAAU CUGAAUCCAA AGUGGUCGUU 180 CUGGACUCCC UCGACCCAAU GGCCGAAGAA AUGAGCGACC UCGAGCCUUC UAUACCAUCG 240 GAGUAUAUGC UCCCCAAAAC CAGGUUCCCA CCAGCCUL'AC CGGCCUGGGC ACGGCCUGAC 300 UACAACCCAC CGUUUGUGGA ACCAUGGAGG AGACCAGACU ACCAACCGCC CACUGUUGCG 360 GGCUGUGCUC UCCCCCCCCC CAAGAAGACC CCGACGCCCC CCCCAAGGAG ACGCCGGACA 420 GUGGGUCUGA GUGAGAGCAC CAUAGGAGAU GUCCUCCAAC AGAUGGCCAU UAAGACCUL'U 480 GGCCAGCCCC CCCCAAGCGG AGAUUCAGGC CUCUCUACGG GGGCGGACGC CGCCGACUCU 540 GGUAGUCGGA CGCCCCCCGA GGAGUUAGCli CLCUCGGAGA CAGGUUCUAC CL'CCUCCAUG 600 CGGAAUUC bo
配列番号: 13
配列の長さ:8 9 7
配列の型: 核酸
鎖の数:—本鎖
トポロジー:直鎮状
配列の種類: Genomic RNA
起源:非 A非 B肝炎ウィルス
配列
GAAUUCCGGC GGGGGGACGG CAUCAUGCAA ACCACCUGCC CAUGUGGAGC ACAGAUCACC 60 GGACAUGUCA AAAACGGUUC CAUGAGGAUU GUUGGGCCUA AAACCUGUAG CAACACGUGG 120 CAUGGAACAU UCCCCAUCAA UGCAUACACC ACGGGCCCCU GCACACCCUC CCCAGCACCA 180 AACUAUllCUA GGGCGCUGU& GCGGGUGGCU GCUGAGGAGU ACGUGGAGGU UACGCGGGUG 240 GGGGACUUCC ACUACGUGAC GGGCAUGACC ACL'GACAACA UAAAGUGCCC AUGCCAGGUU 300 CCGGCCCCGG AGUUCUUCAC GGAG6UGGAU GGAGUGAGGU UGCACAGGUA CGCUCCGGCA 360 UGCAAACCUC UCCUACGGGA UGAGGL'CACA UUCCAGGUCG GGCUCAACCA GUACCUGGUA 420 GGGUCACAGC UCCCAUGUGA GCCCGAACCG GACGUAGCUG UGCUUACUUC CAL'GCUCACC 430 GAUCCCUCCC ACAUUACAGC AG.AGACGGCC AAGCGUAGGC UGGCCAGGGG GUCUCCCCCC 540 UCCUUGGCCA GCUCUUCAGC UAGCCAGUUG UCUGCGCCUU CCUUGAAGGC GACAUGUACU 600 ACCCAUCAUG ACUCCCCGGA AGCUGACCUC AUCGAGGCCA ACCUCCUGUG GCGGCAGGAG 660 AUGGGCGGGA ACAUCACCCG CGUGGAGUCA GAAAAUAAGG UAGUAAUUCU GGACUCUUUC 720 GAUCCGCUCC GGGCGGAGGA GGAUGAGAGG GAAAし' GUCCA UUCCGGCGGA GAUCCUGCGG 780 AAACCCAGGA GGUUCCCCCC AGCAUUGCGC AUAUGGGCAC GUGCGGAUUA CAACCCUCCA 840 CUGAUAGAAC CCUGGAAGGA CCCGGACUAC GUCCCUCCGG UGGUGCACGG GGAA C 897 E列番号: 20
配列の長さ : 218
配列の型:核酸
鎮の数:ニ本鑌
トポロジー:直鎖状
配列の種類: G e nom i c RNA
起源:非 A 非 B 型肝炎ウィルス
配列
GAAUUCUUCD CUUGGGUGGA CGGGGUGCAA AUACACCGAU UCGCCCCCAC UCCAGGUCCC 60 UUCUUUCGGG AUGAGGUAAC GUUCACCGUG GGCCUCAAUU CCUUUGUGGU CGGCUCUCAG 120 CUCCCCUGCG ACCCUGAGCC GGACACCGAG GHAUUAGCCU CCAUGUUGAC AGACCCGUCC 180 CACAUCACCG CGGAGGCGGC AGCCAGGCGG UUGGCCAG 218
S列番号: ·2ί
配列の長さ : 66
記列の型:核酸
鎖の数:一本齄
トポロジー:直鎖状
配列の種類: Genomic RNA
起源:非 A 非 B 型肝炎ウィルス
配列
GCCGCCCACA GGACGUCAAG UUCCCGGGCG GUGGUCAGAU CGUUGGUGGA GUUUACCUGU 60 UGCCGC 66
配列番号: 11
配列の長さ : 181
配列の型:核酸
饋の数:一本鎖
トポロジー :直鎖伏
配列の種類: Genomic RNA
起源:非 A 非 B 型肝炎ウィルス
配列
CGUGCACCAU GAGCACAAAU CCUAAACCUC AAAGAAAAAC CAAAAGAAAU ACUAACCGUC 60 GCCCACAAGA CGUCAAGUUU CCGGGCGGCG GCCAGAUCGO UGGCGGAGUA UACUUGUUGC 120 CGCGCAGGGG CCCUAGGUUG GGUGUGCGCA CGACAAGGAA GACUUCGGAG CGAUCCCAGC 180 C 181
配列番号: 23
配列の長さ : 263
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎮状
配列の種頹: Ge nom i c RHA
起源:非 A 非 B 型肝炎ウィルス
配列
CUCGUAGACC GUGCAUCAUG AGCACAAAUC CUAAACCUCA AAGAAAAACC AAAAGAAACA 60 CAAGCCGCCG CCCACAGGAC GUCAAGUUCC CGGGUGGCGG UCAGAUCGUU GGCGGAGUliU 120 ACUUGCUGCC GCGCA6GGGC CCCAGGUUGG GHGUGCGCGC GACAAGGAAG ACUUCCGAGC 180 GAUCCCAGCC GCGUGGGAGA CGCCAGCCCA UCCCUAAAGA UCGGCGCUCC ACCGGCAAGU 240 CCUGGGGAAA GCCAGGAUAU CCU 263
E列番号: 24
E列の長さ : 651
配列の型:核酸
鎮の数:一本鎖
トポロジー :直鎖伏
配列の種類: G e n omi c RNA
起源:非 A 非 B 型肝炎ウィルス
E列
CUACGGGCGC CCCCAUUACG UACUCCACCU AUGGUAAGUU CCUUGCCGAC GGUGGUUGCU 60 CUGGGGGCGC CUAUGACAUC AUAAUGUGCG AUGAGUGCCA CHCAACUGAC UCGACCUCCA 120 UCUUGGGCAU UGGCACGGUC CUGGACCAAG CGGAGACGGC UGGAGCGCGA CUUGUCGUGC 180 UCGCCACCGC UACCCCUCCG GGAUCGGUCA CUGUACCACA UCCCAAUAUC GAGGAGGUGG 240 CCCUGUCCAA CACUGGAGAG AUUCCCUUCU AUGGCAAAGC CAUCCCUAUC GAGACCAUCA 300 AGGGGGGGAG GCAUCUCAUU UUUUGCCACU CUAAGAAGAA GUGUGAUGAG CUCGCCACAA 360 AGCUGUCGGC CCUCGGACUC AAUGCUGUAG CGUACUACCG GGGCCUUGAU GUGUCCGUUA 420 UACCAACAAG C6GAGACGUC GUU6UCGUGG CAACAGACGC UCUAAUGACG GGCUACACCG 480 GUGACUUUGA CUCAGUGAUC GACUGUAAUA CAUGCGUCAC CCAGACAGUC GAUUUCAGCU 540 DGGACCCUAC CUUCACCAHU GAGACGACAA CCGUGCCUCA AGACGCGGUG UCACGCUCGC 600 AGCGGCGAGG UAGGACUGGU AGGGGCAGGG GGGGCAUAUA CAGGUUUGUA G 651

Claims

6 - 請 求 の 範 囲
(1 ) 配列表の配列番号 1から 1 2に示したァミ ノ酸配列 のいずれかからなる非 A非 B型肝炎ウィルス抗原蛋白質 またはその同効抗原蛋白質。
(2) 配列表の配列番号 1 に示したァミ ノ酸配列からなる 非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1)記載 の抗原蛋白質。
(3) 配列表の配列番号 2に示したァミ ノ酸配列からなる 非 A非 B型肝炎ウイルス抗原蛋白質である請求項 (1)記載 の抗原蛋白質。
(4) 配列表の配列番号 3に示したァミ ノ酸配列からなる 非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1)記載 の坑軍蛋白質。
(5) 配列表の配列番号 4に示したァミ ノ酸配列からなる 非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1)記載 の抗原蛋白質。
(6) 配列表の配列番号 5に示したアミ ノ酸配列からなる 非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1)記載 の抗原蛋白質。
(7) 配列表の配列番号 6に示したァミ ノ酸配列からなる 非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1)記載 の抗原蛋白質。
(8) 配列表の配列番号 7に示した了ミ ノ酸配列からなる 非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1)記載 の抗原蛋白質。
(9) 配列表の配列番号 8に示したァミ ノ酸配列からなる 非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1)記載 の抗原蛋白質。
(10) 配列表の配列番号 9に示したァ ミ ノ酸配列からな る非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1)記 載の抗原蛋白質。
(11) 配列表の配列番号 1 0に示したァミ ノ酸配列から なる非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1) 記載の抗原蛋白質。
(12) 配列表の配列番号 1 1 に示したア ミ ノ酸配列から なる非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1) 記載の抗原蛋白質。
(13) 配列表の配列番号 1 2に示したァ ミ ノ酸配列から なる非 A非 B型肝炎ウィルス抗原蛋白質である請求項 (1) 記載の抗原蛋白質。
(14) 非 A非 B型肝炎ウィルス抗原蛋白質の同効抗原蛋 白質が T O 6 4、 T O 6 9および T O 6 Aから選ばれた ものである請求項 (1)記載の抗原蛋白質。
(15) 請求項 (1)記載の抗原蛋白質またはその同効抗原蛋 白質をコー ドする DNA。
(16) 請求項 (2)記載の抗原蛋白質をコー ドする DNA。
(17) 請求項 (3)記載の抗原蛋白質をコー ドする DNA。
(18) 請求項 (7)記載の抗原蛋白質をコー ドする DNA。
(19) 配列表の配列番号 1 3から 2 4 に示した塩基配列 またはそれから誘導された塩基配列のいずれかを有する 非 A非 B型肝炎ウィルスゲノム RNA。
(20) 配列表の配列番号 1から 1 2までに示したァミ ノ 酸配列のいずれかからなる非 A非 B型肝炎ウィルス抗原 蛋白質あるいはその同効物を主成分とする非 A非 B型肝 炎用検査薬。
(21) 配列表の配列番号 1 に示したアミ ノ酸配列からな る非 A非 B型肝炎ウィルス抗原蛋白質あるいはその同効 物を主成分とする請求項 記载の非 A非 B型肝炎用検査
(22) 配列表の配列番号 2に示したァミ ノ酸配列からな る非 A非 B型肝炎ウィルス抗原蛋白質あるいはその同効 物を主成分とする請求項 (20記載の非 A非 B型肝炎用検査
(23) 配列表の配列番号 6に示したァミ ノ酸配列からな る非 A非 B型肝炎ウィルス抗原蛋白質あるいはその同効 物を主成分とする請求項如記載の非 A非 B型肝炎用検査
(24) 非 A非 B型肝炎ウィルス抗原蛋白質の同効抗原蛋 白質が T 0 6 4、 T 0 6 9および T 0 6 Aから選ばれた ものである請求項 記載の非 A非 B型肝炎用検査薬。
(25) 請求項 (1)記載の抗原蛋白質あるいはその同効物の うち少なく とも 2種の抗原蛋白質あるいはその同効物を 組み合わせてなる非 A非 B型肝炎用検査薬。
(26) 請求項 (2)記載の抗原蛋白質あるいはその同効物お よび請求項 (3)記載の抗原蛋白質あるいはその同効物を組 み合わせてなる請求項(25)記載の非 A非 B型肝炎用検査
(27) 非 A非 B型肝炎ウィルス抗原蛋白質をコー ドする c D N Aを宿主細胞中で発現可能なプロモーターの下流 に連結されており、 宿主細胞中で発現させることの出来 る発現べクター。
(28) 該 c D N Aが配列表の配列番号 1 から 1 2に示し たァミ ノ酸配列のいずれかからなる非 A非 B型肝炎ウイ ルス抗原蛋白質またはその同効抗原蛋白質をコー ドする c D N Aである請求項(25)記載の発現べクター。
(29) 請求項(27)記載の発現ベクターを保有する形質転 換体。
(30) 請求項(28)記載の発現ベクターを保有する形質転 換体。
(31 ) 宿主として大腸菌を用いて得られたものである請 求項(27)記載の形質転換体。
(32) 請求項(29)記載の形質転換体を培養することを特 徴とする非 A非 B型肝炎ウィルス抗原蛋白質の製造法。
(33) 融合蛋白質として得られるものである請求項(32) 記載の抗原蛋白質の製造法。
PCT/JP1991/001662 1990-11-29 1991-11-29 Non-a non-b hepatitis virus antigen protein WO1992009634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920701818A KR920703640A (ko) 1990-11-29 1991-11-29 비a비b형 간염 바이러스 항원 단백질

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2/325435 1990-11-29
JP32543590 1990-11-29
JP2/325434 1990-11-29
JP32543490 1990-11-29
JP3/70231 1991-01-16
JP7023191 1991-01-16
JP17907491 1991-04-19
JP3/179074 1991-04-19
JP23259091 1991-06-07
JP3/232590 1991-06-07

Publications (1)

Publication Number Publication Date
WO1992009634A1 true WO1992009634A1 (en) 1992-06-11

Family

ID=27524245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001662 WO1992009634A1 (en) 1990-11-29 1991-11-29 Non-a non-b hepatitis virus antigen protein

Country Status (3)

Country Link
EP (1) EP0516859A1 (ja)
KR (1) KR920703640A (ja)
WO (1) WO1992009634A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001990A (en) * 1994-05-10 1999-12-14 The General Hospital Corporation Antisense inhibition of hepatitis C virus
US6150087A (en) * 1991-06-24 2000-11-21 Chiron Corporation NANBV diagnostics and vaccines

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0754704T3 (da) * 1990-12-14 2000-04-03 Innogenetics Nv Syntetiske antigener til påvisning af antistoffer mod hepatitis c-virus
EP0532167A3 (en) * 1991-08-09 1993-03-31 Immuno Japan Inc. Non-a, non-b hepatitis virus genome, polynucleotides, polypeptides, antigen, antibody and detection systems
US5428145A (en) * 1991-08-09 1995-06-27 Immuno Japan, Inc. Non-A, non-B, hepatitis virus genome, polynucleotides, polypeptides, antigen, antibody and detection systems
US6709828B1 (en) 1992-03-06 2004-03-23 N.V. Innogenetics S.A. Process for the determination of peptides corresponding to immunologically important epitopes and their use in a process for determination of antibodies or biotinylated peptides corresponding to immunologically important epitopes, a process for preparing them and compositions containing them
US6667387B1 (en) 1996-09-30 2003-12-23 N.V. Innogenetics S.A. HCV core peptides
WO1996034013A1 (fr) * 1995-04-28 1996-10-31 Srl, Inc. Compose peptidique antigenique et methode de dosage immunologique
JP2002125688A (ja) * 2000-10-30 2002-05-08 Tosoh Corp C型肝炎ウイルスの高感度検出のためのオリゴヌクレオチドおよび検出法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500880A (ja) * 1987-11-18 1990-03-29 カイロン コーポレイション Nanbvの診断用薬およびワクチン
EP0388232A1 (en) * 1989-03-17 1990-09-19 Chiron Corporation NANBV diagnostics and vaccines
WO1990014436A1 (en) * 1989-05-18 1990-11-29 Chiron Corporation Nanbv diagnostics: polynucleotides useful for screening for hepatitis c virus
WO1991004262A1 (en) * 1989-09-15 1991-04-04 National Institute Of Health Of Japan New hcv isolates
GB2239245A (en) * 1989-12-18 1991-06-26 Wellcome Found Post-transfusional non-A non-B hepatitis viral polypeptides
EP0442394A2 (en) * 1990-02-16 1991-08-21 United Biomedical, Inc. Synthetic peptides specific for the detection of antibodies to HCV, diagnosis of HCV infection and prevention thereof as vaccines
EP0445423A2 (en) * 1989-12-22 1991-09-11 Abbott Laboratories Hepatitis C assay

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416725A3 (en) * 1989-07-14 1991-03-20 Chugai Seiyaku Kabushiki Kaisha Blood-borne non-a, non-b hepatitis specific protein, dna encoding it, and process for its production
DK0527815T3 (da) * 1990-04-06 2000-11-06 Genelabs Tech Inc Hepatitis C-virus-epitop
CA2047792C (en) * 1990-07-26 2002-07-02 Chang Y. Wang Synthetic peptides specific for the detection of antibodies to hcv, diagnosis of hcv infection and prevention thereof as vaccines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500880A (ja) * 1987-11-18 1990-03-29 カイロン コーポレイション Nanbvの診断用薬およびワクチン
EP0388232A1 (en) * 1989-03-17 1990-09-19 Chiron Corporation NANBV diagnostics and vaccines
WO1990014436A1 (en) * 1989-05-18 1990-11-29 Chiron Corporation Nanbv diagnostics: polynucleotides useful for screening for hepatitis c virus
WO1991004262A1 (en) * 1989-09-15 1991-04-04 National Institute Of Health Of Japan New hcv isolates
GB2239245A (en) * 1989-12-18 1991-06-26 Wellcome Found Post-transfusional non-A non-B hepatitis viral polypeptides
EP0445423A2 (en) * 1989-12-22 1991-09-11 Abbott Laboratories Hepatitis C assay
EP0442394A2 (en) * 1990-02-16 1991-08-21 United Biomedical, Inc. Synthetic peptides specific for the detection of antibodies to HCV, diagnosis of HCV infection and prevention thereof as vaccines

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Journal of Virology, Vol. 65, No. 3, (1991), A. TAKAMIZAWA et al. "Structure and organization of the hepatitis C virus genome isolated from human carriers" p. 1105-1113. *
Proceedings of the National Academy of Sciences, U.S.A. Vol. 87, No. 24, (1990), N. KATO et al. "Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis" p. 9524-9528. *
Proceedings of the National Academy of Sciences, U.S.A., Vol. 88, No. 6, (1991), Q.-L. CHOO et al. "Genetic organization and diversity of the hepatitis C virus" p. 2451-2455. *
See also references of EP0516859A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150087A (en) * 1991-06-24 2000-11-21 Chiron Corporation NANBV diagnostics and vaccines
US6346375B1 (en) 1991-06-24 2002-02-12 Chiron Corporation NANBV diagnostics and vaccines
US6001990A (en) * 1994-05-10 1999-12-14 The General Hospital Corporation Antisense inhibition of hepatitis C virus

Also Published As

Publication number Publication date
EP0516859A1 (en) 1992-12-09
KR920703640A (ko) 1992-12-18
EP0516859A4 (ja) 1995-03-15

Similar Documents

Publication Publication Date Title
RU2130969C1 (ru) Композиция для диагностики гепатита c человека (варианты), способ и набор для обнаружения антител к вирусу гепатита c человека
FI105652B (fi) NANBV-polypeptidejä, immunologisia määritysmenetelmiä ja välineitä
AU642942B2 (en) Viral agent
CA2005950C (en) Non-a, non-b hepatitis virus genome rna, cdna and virus antigen protein
JPH04504715A (ja) Nanbvの診断用薬
JP2002528140A (ja) ヒトpan−hcvヒトモノクローナル抗体
KR950012971B1 (ko) 비-A, 비-B 간염 비루스 게놈 cDNA 및 항원 폴리펩티드
JP2778886B2 (ja) C型肝炎ウィルスのコア抗原タンパク質及びそれを用いての診断方法及びキット
JP3217600B2 (ja) 非a非b型肝炎ウイルス関連抗原のイムノアッセイ、それに使用するモノクローナル抗体、およびこの抗体を産生するハイブリドーマ
WO1992009634A1 (en) Non-a non-b hepatitis virus antigen protein
US20020090607A1 (en) Antigenic epitopes and mosaic polypeptides of hepatitis C virus proteins
JP4641695B2 (ja) 新規なhev抗原性ペプチド及び方法
EP0551275B1 (en) Non-a non-b sequences
WO2006113522A2 (en) Methods of detecting hepatitis c virus
JPH06510191A (ja) Ns1に対する組換え抗原を利用したc型肝炎アッセイ
AU774887B2 (en) Antigenic epitopes and mosaic polypeptides of hepatitis C virus proteins
JP3148994B2 (ja) 非a非b型肝炎関連核酸、抗原、抗体およびこれらの検出方法
JPH11124398A (ja) C型肝炎ウイルス由来の抗原ペプチドとそれを用いる抗体検査薬
JPH0797398A (ja) C型肝炎用検査薬およびc型肝炎ウイルス抗原ペプチド
AU5809694A (en) Peptides from the c33 region of hcv, antibodies thereto and methods for the detection of hcv
JPH06510190A (ja) C100領域に対する組換え抗原を利用したc型肝炎アッセイ
JPH04305156A (ja) C型肝炎ウイルス関連抗体および抗原の測定法
JPH06239894A (ja) 新規な非a非b型肝炎ウイルス抗原ポリペプチド及び診断方法
PL168925B1 (pl) Sposób wykrywania antygenu wirusowego PT-NANBH i przeciwciała przeciwko antygenowi wirusowemu PT-NANBH
JPH0568563A (ja) C型肝炎ウイルス遺伝子およびその利用方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991920779

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991920779

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991920779

Country of ref document: EP