WO1992008777A1 - Light-duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant and calcium or magnesium ions - Google Patents

Light-duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant and calcium or magnesium ions Download PDF

Info

Publication number
WO1992008777A1
WO1992008777A1 PCT/US1991/008280 US9108280W WO9208777A1 WO 1992008777 A1 WO1992008777 A1 WO 1992008777A1 US 9108280 W US9108280 W US 9108280W WO 9208777 A1 WO9208777 A1 WO 9208777A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
calcium
compositions
composition
composition according
Prior art date
Application number
PCT/US1991/008280
Other languages
English (en)
French (fr)
Inventor
Thomas Anthony Cripe
Kofi Ofosu-Asante
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to CS93873A priority Critical patent/CZ87393A3/cs
Priority to BR919106983A priority patent/BR9106983A/pt
Priority to DE69125022T priority patent/DE69125022T2/de
Priority to JP4502258A priority patent/JP3009464B2/ja
Priority to SK480-93A priority patent/SK48093A3/sk
Priority to EP92900582A priority patent/EP0557426B1/de
Publication of WO1992008777A1 publication Critical patent/WO1992008777A1/en
Priority to NO93931738A priority patent/NO931738L/no
Priority to GR970401152T priority patent/GR3023502T3/el

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • C11D10/042Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap based on anionic surface-active compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/521Carboxylic amides (R1-CO-NR2R3), where R1, R2 and R3 are alkyl or alkenyl groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Definitions

  • the present invention relates to light-duty liquid or gel dishwashing detergent compositions containing alkyl ethoxy carboxylate surfactants (alternatively labeled alkyl polyethoxy carboxy methylates, alkyl polyethoxy acetates, alkyl polyether carboxylates, etc.) of the type disclosed in U.S. Pat. Nos. 2,183,853; 2,653,972; 3,003,954; 3,038,862; 3,741,911; and 3,941,710; British Pat. Nos. 456,517 and 1,169,496; Canadian Pat. No. 912,395; French Pat. Nos. 2,014,084 and 2,042,793; Netherland Patent Application Nos. 7,201,735-Q and 7,406,336; and Japanese Patent Application Nos. 96,579/71 and 99,331/71.
  • alkyl ethoxy carboxylate surfactants alternatively labeled alkyl polyethoxy carboxy methylates, alky
  • detergent compositions containing a particular alkyl ethoxy carboxylate surfactant mixture provide a detergent composition that exhibits good grease removal while manifesting mildness to the skin. This dual benefit is enhanced when the composition has a pH of from about 7 to 11 and contain a small amount of divalent ions, e.g. magnesium or calcium.
  • the present invention relates to a light-duty liquid or gel, preferably liquid, dishwashing detergent composition
  • a light-duty liquid or gel, preferably liquid, dishwashing detergent composition comprising: (a) from about 5% to 70% of a surfactant mixture comprising: (i) from about 80% to 100% of alkyl ethoxy carboxylates of the formula:
  • R is a C 12 to C 16 al kyl group
  • x ranges from 0 to about 10 and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20% and the amount of material where x is greater than 7 is less than about 25%, the average x is from about 2 to 4 when the average R is C 13 or less, and the average x is from about 3 to 6 when the average R is greater than C 13 , and M is a cation; (ii) from 0% to about 10% of alcohol ethoxylates of the formula:
  • R is a C 12 to C 16 alkyl group and x ranges from 0 to about 10 and the average x is less than about 6;
  • R is a C 11 to C 15 alkyl group and M is a cation; and (b) from about 0.1% to 4% calcium or magnesium ions; and (c) a calcium or magnesium chelating agent which forms a soluble calcium or magnesium complex, having a log of formation constant, log K f , between about 0.5 and 5, in an amount sufficient to prevent the formation of calcium carbonate or magnesium hydroxide precipitates in the composition;
  • a 10% by weight aqueous solution of said composition has a pH from about 7 to 11.
  • the light-duty liquid or gel, preferably liquid, dishwashing detergent compositions of the present invention contain a surfactant mixture comprising a major amount of an alkyl ethoxy carboxylate surfactant and little or no alcohol ethoxylate and soap by-product contaminants, and a source of calcium or magnesium ions.
  • a surfactant mixture comprising a major amount of an alkyl ethoxy carboxylate surfactant and little or no alcohol ethoxylate and soap by-product contaminants
  • a source of calcium or magnesium ions In compositions hereof containing magnesium ions, magnesium chelating agent and an alkalinity buffering agent are also required.
  • the compositions hereof containing calcium ions may also require a calcium chelating agent.
  • the liquid compositions of this invention contain from about 5% to 50% by weight, preferably from about 10% to 40%, most preferably from about 12% to 30%, of a surfactant mixture restricted in the levels of contaminants.
  • Gel compositions of this invention contain from about 5% to about 70%, preferably from about 10% to about 45%, most preferably from about 12% to about 35%, of the surfactant mixture.
  • the surfactant mixture contains from about 80% to 100%, preferably from about 85% to 95%, most preferably from about 90% to 95%, of alkyl ethoxy carboxylates of the generic formula RO(CH 2 CH 2 O) x CH 2 COO-M+ wherein R is a C 12 to C 16 alkyl group, x ranges from 0 to about 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20%, preferably less than about 15%, most preferably less than about 10%, and the amount of material where x is greater than 7 is less than about 25%, preferably less than about 15%, most preferably less than about 10%, the average x is from about 2 to 4 when the average R is C 13 or less, and the average x is from about 3 to 6 when the average R is greater than C 13 , and M is a cation, preferably chosen from alkali metal, alkaline earth metal, ammonium, mono-, di-, and tri-ethanol
  • Suitable alcohol precursors of the alkyl ethoxy carboxylates of this invention are primary aliphatic alcohols containing from about 12 to about 16 carbon atoms.
  • Other suitable primary aliphatic alcohols are the linear primary alcohols obtained from the hydrogenation of vegetable or animal fatty acids such as coconut, palm kernel, and tallow fatty acids or by ethylene build up reactions and subsequent hydrolysis as in the Ziegler type processes.
  • Preferred alcohols are n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, and n-hexadecyl.
  • Other suitable alcohol precursors include primary alcohols having a proportion of branching on the beta or 2-carbon atoms wherein the alkyl branch contains from 1 to 4 carbon atoms. In such alcohols at least 30% of the alcohol of each specific chain length is desirably linear and the branching preferably comprises about 50% of methyl groups with smaller amounts of ethyl, propyl and butyl groups.
  • These alcohols are conveniently produced by reaction of linear olefins having from about 11 to 17 carbon atoms with carbon monoxide and hydrogen. Both linear and branched chain alcohols are formed by these processes and the mixtures can either be used as such or can be separated into individual components and then recombined to give the desired blend.
  • the equivalent secondary alcohols can also be used. It will be apparent that by using a single chain length olefin as starting material, a corresponding single chain length alcohol will result, but it is generally more economical to utilize mixtures of olefins having a spread of carbon chain length around the desired mean. This will, of course, provide a mixture of alcohols having the same distribution of chain lengths around the mean.
  • the desired average ethoxy chain length on the alcohol ethoxylate can be obtained by using a catalyzed ethoxylation process, wherein the molar amount of ethylene oxide reacted with each equivalent of fatty alcohol will correspond to the average number of ethoxy groups on the alcohol ethoxylated.
  • the addition of ethylene oxide to alkanols is known to be promoted by a catalyst, most conventionally a catalyst of either strongly acidic or strongly basic character.
  • Suitable basic, catalysts are the basic salts of the alkali metals of Group I of the Periodic Table, e.g., sodium, potassium, rubidium, and cesium, and the basic salts of certain of the alkaline earth metals of Group II of the Periodic Table, e.g., calcium, strontium, barium, and in some cases magnesium.
  • Suitable acidic catalysts include, broadly, the Lewis acid of Friedel-Crafts catalysts. Specific examples of these catalysts are the fluorides, chlorides, and bromides of boron, antimony, tungsten, iron, nickel, zinc, tin, aluminum, titanium, and molybdenum.
  • acidic a.lkoxylation catalysts are sulfuric and phosphoric acids; perchloric acid and the perchlorates of magnesium, calcium, manganese, nickel, and zinc; metals oxalates, sulfates, phosphates, carboxylates, and acetates; alkali metal fluoroborates, zinc titanate; and metal salts of benzene sulfonic acid.
  • the type of catalyst used will determine the distribution of the range of ethoxy groups. Stronger catalysts will result in a very tight or narrow distribution of the ethoxy groups around the mean. Weaker catalysts will result in a wider distribution.
  • the surfactant mixture also contains from 0% to about 10%, preferably less than about 8%, most preferably less than about 5%, of alcohol ethoxylates of the formula RO(CH 2 CH 2 O) x H wherein R i s a C 12 to C 16 alkyl group and x ranges from 0 to about 10 and the average x is less than 6.
  • the surfactant mixture also contains 0% to about 10%, preferably less than about 8%, most preferably less than about 5%, of soaps of the formula RCOO-M + wherein R is a C 11 to C 15 alkyl group and M is a cation as described above.
  • the uncarboxylated alcohol ethoxylates noted above are a detriment to the alkyl ethoxy carboxylate surfactant mixture, especially with respect to the performance benefits provided therefrom. Therefore, it is critical that the alkyl ethoxy carboxyl ate-containing surfactant mixture used in this invention contain less than about 10% by weight of the alcohol ethoxylates they are derived from.
  • commercially available alkyl ethoxy carboxylates contain 10% or more of alcohol ethoxylates, there are known routes to obtain the desired high purity alkyl ethoxy carboxylates. For example, unreacted alcohol ethoxylates can be removed by steam distillation, U.S. Pat. No.
  • a hindered base such as potassium tertbutoxide can replace the sodium hydroxide in the above cited patents, thus yielding high purity alkyl ethoxy carboxylates with less stringent temperature and pressure requirements.
  • a hindered base of the formula RO-M + constituting generally an alkyl group, a reactive oxygen center, and a cation is used.
  • the structure of this hindered base is secondary or tertiary and contains a non-linear alkyl group with at least one site of branching within 3 carbon atoms of the reactive center, the oxygen atom, and an alkali metal or alkaline earth metal cation.
  • the process comprises reacting the alcohol ethoxylates with the hindered base described above and either anhydrous chloroacetic acid, at a molar ratio of the hindered base to the anhydrous chloroacetic acid of 2:1, or an alkali metal salt or alkaline earth metal salt of anhydrous chloroacetic acid, at a molar ratio of the hindered base to the alkali metal salt or alkaline earth metal salt of chloroacetic acid of 1:1, wherein the molar ratio of the ethoxylated fatty alcohol to the anhydrous chloroacetic acid or the alkali metal salt or alkaline earth metal salt thereof is from about 1:0.7 to about 1:1.25, the temperature is from about 20 to 140oC, and the pressure is from about 1 to 760 mm Hg.
  • the cations for the alkyl ethoxy carboxylates herein can be alkali metals, alkaline earth metals, ammonium, and lower alkanol ammonium ions.
  • the source of cations for the alkyl ethoxy carboxylates come from neutralization of the alkyl ethoxy carboxyl ic acid and from additional ingredients, e.g., performance enhancing divalent ion-containing salts.
  • compositions of the invention are ammonium, sodium, and potassium.
  • ammonium is most preferred, but at pH levels above about 8, it is undesirable due to the release of small amounts of ammonia gas resulting from deprotonation of the ammonium ions in the composition.
  • liquid dishwashing compositions have a pH of about 7. It is known for detergent compositions containing the alkyl ethoxy carboxylate surfactant that a more alkaline pH greatly improves the grease cleaning as compared to a neutral pH, particularly in soft water conditions. This cleaning benefit appears to be unique to compositions containing the present alkyl ethoxy carboxylates surfactant. Surprisingly, the compositions of this invention are also more mild to hands at this alkaline pH than at a pH of 7.
  • the compositions of this invention have a pH from about 7 to 11, preferably from 8 to 10, most preferably from 8 to 9.5, determined as the pH of a 10% by weight aqueous solution with a pH meter.
  • a composition with a pH greater than about 7 should contain a buffering agent capable of maintaining the alkaline pH in the composition and in dilute solutions, i.e., about 0.1% to 0.2% by weight aqueous solution, of the composition.
  • a buffering agent havi ng a pKa value about 0.5 to 1.0 pH units below the desired pH value should be present therein. Under these conditions the buffering agent most effectively controls the pH while using the least amount thereof.
  • the buffering agent may be an active detergent in its own right, or it may be a low molecular weight, organic or inorganic material that is used in this composition solely for maintaining an alkaline pH.
  • Suitable buffering agents for compositions of this invention are nitrogen-containing materials. Some examples are glycine or other amino acids or lower alcohol amines like mono-, di-, and tri-ethanolamine.
  • the preferred nitrogen-containing buffering agents are 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methylpropanol, 2-amino-2-methyl-1,3-propanediol, and tris-(methanol) aminomethane, (a.k.a.
  • N-methyldiethanol-amine 1,3-diamino-2-propanol, N,N-tetramethyl -1,3-diamino-2-propanol, bis(2-ethanol)glycine (a.k.a. bicine) imidazole, N-tris-(methanol)methylglycine (a.k.a. tricine) are also preferred.
  • buffering agents are typically present at a level of from about 0.1% to 15% by weight, preferably from about 1% to 10%, most preferably from about 1.5% to 8%.
  • composition containing the present alkyl ethoxy carboxylates that the presence of divalent cations greatly improves the cleaning of greasy soils. This is especially true when the compositions are used in softened water that contains few divalent ions. Dishwashing liquid compositions that contain alkyl ethoxy carboxylates that do not conform to the narrow definition of this invention will be less benefited by the addition of divalent ions and, in many cases, will actually exhibit reduced cleaning performance upon the addition of divalent cations. It is believed that divalent ions increase the packing of the present alkyl ethoxy carboxylates at the oil/water interface, thereby reducing interfacial tension and improving grease cleaning.
  • compositions of the invention hereof containing calcium or magnesium ions exhibit good grease removal, manifest mildness to the skin, and provide good storage stability.
  • Calcium ions are present in the compositions hereof at a level of from about 0.1% to 4% preferably from about 0.5% to 3.5% by weight.
  • the incorporation of a magnesium chelating agent (described below) into the compositions herein prevents the formation of magnesium hydroxide precipitates and makes it possible to incorporate larger doses of magnesium ions, at higher pH levels, required in soft water areas where the divalent ion concentration is low. Therefore, the level of magnesium ions in the composition is from about 0.1% to 3%, preferably from about 0.3% to 2%, most preferably from about 0.5 to 1%, by weight.
  • the calcium or magnesium ions are added as a chloride, acetate, or nitrate salt to compositions containing an alkali metal or ammonium salt of the alkyl ethoxy carboxylate, most preferably the sodium salt, after the composition has been neutralized with a strong base.
  • compositions containing calcium or magnesium ions exhibit superior grease cleaning benefits. Without being held to theory, it is believed that calcium or magnesium binds the alkyl ethoxy carboxylate molecules tighter allowing for tighter packing at the water/oil interface. Lower inter-facial tension (IFT) measurements are exhibited by composition containing calcium ions as compared to compositions containing other divalent ions. Furthermore, at these pH levels, compositions of the invention hereof provide better storage stability over other compositions as described above.
  • IFT inter-facial tension
  • compositions containing calcium ions is easier than that for compositions containing magnesium ions since the pH level of such compositions can be readily adjusted without inducing precipitate formation, whereas in formulating the magnesium compositions once hydroxide precipitates are formed they cannot be readily dissolved.
  • Alkaline compositions hereof can tolerate a higher level of calcium ions at higher pH levels without forming undesirable precipitates, provided some amount of a chelating agent is used.
  • the amount of calcium or magnesium ions present in compositions of the invention will be dependent upon the amount of total anionic surfactant present therein, including the amount of alkyl ethoxy carboxylates.
  • the molar ratio of divalent ions to total anionic surfactant is from about 0.25:1 to about 2:1 for compositions of. the invention containing calcium and from about 0.25:1 to about 1:1 for compositions of the invention containing magnesium.
  • the composition of the invention hereof may contain a calcium or magnesium chelating agent to sequester calcium or magnesium ions present in the liquid phase of the composition thereby inhibiting the interaction between the calcium or magnesium ions and hydroxide ions which would result in the formation of CaCO 3 or Mg(OH) 2 precipitates, particularly at pH levels between about 9 and 11.
  • the calcium or magnesium chelating complex agent forms must be soluble. If an insoluble calcium or magnesium-chelant complex is formed, it will cause unsightly product turbidity, and if the complex settles to the bottom of the product there may be insufficient levels of calcium or magnesium ion delivered to the wash solution upon normal dispensing of the product.
  • the chelating agent must associate with the calcium or magnesium ions only moderately, i.e. only strong enough to prevent interaction between the calcium and carbonate ions or magnesium and hydroxide ions, but not too much so as to significantly reduce the amount of calcium or magnesium ions available in dilute solution. Therefore, the log of formation constant, log Kf, for the chelating agent is between about 0.5 and 5.
  • the amount of chelating agent present in the composition of the invention hereof is that amount sufficient to prevent the formation of CaCO 3 or Mg(OH) 2 precipitates in the composition. This amount is dependent upon three factors: the desired pH of the composition, the level of calcium or magnesium ions in the composition and the strength of the chelating agent, i.e. its log K f .
  • compositions containing magnesium ions As for compositions containing magnesium ions, higher desired pH levels of a composition in dilute solution results in higher concentrations of hydroxide ions in the composition. This in turn results in more hydroxide ions in the composition available to interact with magnesium ions in the composition and a higher tendency to form Mg(OH) 2 precipitates therein. This requires a higher level of chelating agent incorporated into the composition provided the same chelating agent is used. The use of a stronger chelating, i.e. higher log K f could replace the use of more of a weaker chelating agent.
  • the log of formation constant, log K f must be considered in determining the amount of chelating agent to use in a composition.
  • the log Kf of the chelating agent is between about 0.5 and 5, preferably between 1 and 3.5. The higher the log K f , the tighter the hold on calcium ions, and the less required for the prevention of CaCO 3 precipitate formation in the composition.
  • the amount of chelating agent in the compositions hereof is set forth in Table I, below.
  • the formulator must determine the log Kf of the chelating agent. A method for determining the formation constants of these chelating agents is described in Determination and Use of Stability Constants; A.E.
  • Suitable chelating agents bicine (bis(2-ethanol) glycine), N-(2-hydroxyethyl)iminodiacetic acid (HIDA), N-(2,3- dihydroxypropyl)iminodiacetic acid (GIDA), and their alkali metal salts. Mixtures of the above are acceptable.
  • the preferred chelating agent is bicine.
  • Primary amines e.g. glycine are not preferred as chelating agents of compositions of the invention hereof containing magnesium because they tend to cause discoloration of the composition upon storage. Therefore, preferred compositions of the invention hereof are substantially free of chelating agents that are primary amines.
  • compositions of the invention hereof containing magnesium work well together in compositions of the invention hereof containing magnesium.
  • alkanol amines including 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methyl-1,3 propanedial, and 2-amino-2-methylpropanol
  • bicine with tris bicine with N-methyldiethanolamine
  • bicine with diethanolamine bicine with 1,3-diamino-2-propanol
  • bicine with triethanolamine bicine with triethanolamine.
  • compositions of this invention preferably contain certain co-surfactants to aid in the foaming, detergency, and/or mildness.
  • anionic surfactants commonly used in liquid or gel dishwashing detergents.
  • the cations associated with these anionic surfactants can be the same as the cations described previously for the alkyl ethoxy carboxylates.
  • anionic co-surfactants that are useful in the present invention are the following classes:
  • Alkyl benzene sulfonates in which the alkyl group contains from 9 to 15 carbon atoms, preferably 11 to 14 carbon atoms in straight chain or branched chain configuration.
  • An especially preferred linear alkyl benzene sulfonate contains about 12 carbon atoms.
  • Alkyl sulfates obtained by sulfating an alcohol having 8 to 22 carbon atoms, preferably 12 to 16 carbon atoms.
  • the alkyl sulfates have the formula ROSO 3 -M + where R is the C 8-22 alkyl group and M is a mono- and/or dival ant cation.
  • Paraffin sulfonates having 8 to 22 carbon atoms, preferably 12 to 16 carbon atoms, in the alkyl moiety. These surfactants are commercially available as Hostapur SAS from Hoechst Celanese.
  • Olefin sulfonates having 8 to 22 carbon atoms, preferably 12 to 16 carbon atoms.
  • U.S. Pat. No. 3,332,880 contains a description of suitable olefin sulfonates.
  • Alkyl ether sulfates derived from ethoxylating an alcohol having 8 to 22 carbon atoms, preferably 12 to 16 carbon atoms, less than 30, preferably less than 12, moles of ethylene oxide.
  • the alkyl ether sulfates having the formula:
  • R is the C 8 -22 alkyl group
  • x is 1-30
  • M is a mono- or divalent cation
  • Alkyl glyceryl ether sulfonates having 8 to 22 carbon atoms, preferably 12 to 16 carbon atoms, in the alkyl moiety.
  • R 1 is straight or branched alkyl from about C 8 to C 18. preferably C 12 to C 16
  • R 2 is straight or branched alkyl from about C 1 to C 6 , preferably primarily C 1
  • M+ represents a mono-or divalent cation.
  • nonionic fatty alkylpolyglucosides are the nonionic fatty alkylpolyglucosides. These surfactants contain straight chain or branched chain C 8 to C 15 , preferably from about C 12 to C 14 , alkyl groups and have an average of from about 1 to 5 glucose units, with an average of 1 to 2 glucose units being most preferred.
  • compositions hereof may also contain a polyhydroxy fatty acid amide surfactant of the structural formula: wherein: R 1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C 1 -C 4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R 2 is a C 5 -C 31 hydrocarbyl, preferably straight chain C 7 -C 19 alkyl or alkenyl, more preferably straight chain C 9 -C 17 alkyl or alkenyl, most preferably straight chain C 11 -C 17 alkyl or alkenyl, or mixtures thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • R 1 is H, C 1
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH 2 OH)-(CHOH) n-1 -CH 2 OH,
  • n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof.
  • R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof.
  • Most preferred are glycityls wherein n is 4, particularly -CH 2 -(CHOH) 4 -CH 2 OH.
  • R 1 can be, for example, N-methyl , N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R 2 -CO-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl, etc.
  • polyhydroxy fatty acid amides are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • Processes for making compositions containing polyhydroxy fatty acid amides are disclosed, for example, in G.B. Patent Specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., U.S.
  • the product is made by reacting N-alkyl- or N-hydroxyalkyl-glucamine with a fatty ester selected from fatty methyl esters, fatty ethyl esters, and fatty triglycerides in the presence of a catalyst selected from the group consisting of trilithium phosphate, trisodium phosphate, tripotassium phosphate, tetrasodium pyrophosphate, pentapotassium tripolyphosphate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium
  • the amount of catalyst is preferably from about 0.5 mole % to about 50 mole %, more preferably from about 2.0 mole % to about 10 mole %, on an N-alkyl or N-hydroxyalkyl-glucamine molar basis.
  • the reaction is preferably carried out at from about 138oC to about 170oC for typically from about 20 to about 90 minutes.
  • the reaction is also preferably carried out using from about 1 to about 10 weight % of a phase transfer agent, calculated on a weight percent basis of total reaction mixture, selected from saturated fatty alcohol polyethoxylates, alkylpolyglycosides, linear glycamide surfactant, and mixtures thereof.
  • this process is carried out as follows:
  • N-linear glucosyl fatty acid amide product is added to the reaction mixture, by weight of the reactants, as the phase transfer agent if the fatty ester is a triglyceride. This seeds the reaction, thereby increasing reaction rate.
  • polyhydroxy "fatty acid” amide materials also offer the advantages to the detergent formulator that they can be prepared wholly or primarily from natural, renewable, non-petrochemical feedstocks and are degradable. They also exhibit low toxicity to aquatic life.
  • the processes used to produce them will also typically produce quantities of nonvolatile by-product such as esteramides and cyclic polyhydroxy fatty acid amide.
  • the level of these by-products will vary depending upon the particular reactants and process conditions.
  • the polyhydroxy fatty acid amide incorporated into the detergent compositions hereof will be provided in a form such that the polyhydroxy fatty acid amide-containing composition added to the detergent contains less than about 10%, preferably less than about 4%, of cyclic polyhydroxy fatty acid amide.
  • the preferred processes described above are advantageous in that they can yield rather low levels of by-products, including such cyclic amide by-product.
  • the co-surfactants for the compositions of this invention can also contain mixtures of anionic surfactants with alkyl polyglucosides or polyhdroxy fatty acid amides.
  • the co-surfactants are present in the composition at a level of from 0% to about 35% by weight, preferably from about 5% to 25%, and most preferably from about 7% to 20%.
  • suds stabilizing surfactant is a level of less than about 15%, preferably from about 0.5% to 12%, more preferably from about 1% to 10%.
  • Optional suds stabilizing surfactants operable in the instant composition are of five basic types -- betaines, ethylene oxide condensates, fatty acid amides, amine oxide semi-polar nonionics, and cationic surfactants.
  • composition of this invention can contain betaine detergent surfactants having the general formula:
  • R is a hydrophobic group selected from the group consisting of alkyl groups containing from about 10 to about 22 carbon atoms, preferably from about 12 to about 18 carbon atoms, alkyl aryl and aryl alkyl groups containing a similar number of carbon atoms with a benzene ring being treated as equivalent to about 2 carbon atoms, and similar structures interrupted by amido or ether linkages; each R 1 is an alkyl group containing from 1 to about 3 carbon atoms; and R 2 is an alkylene group containing from 1 to about 6 carbon atoms.
  • betaines dodecyl dimethyl betaine, cetyl dimethyl betaine, dodecyl amidopropyldimethyl betaine, tetradecyldimethyl betaine, tetradecylamidopropyldimethyl betaine, and dodecyldimethyl ammonium hexanoate.
  • amidoalkylbetaines are disclosed in U.S. Pat. Nos. 3,950,417; 4,137,191; and 4,375,421; and British Patent GB No. 2,103,236, all of which are incorporated herein by reference.
  • alkyl (and acyl) groups for the above betaine surfactants can be derived from either natural or synthetic sources, e.g., they can be derived from naturally occurring fatty acids; olefins such as those prepared by Ziegler, or Oxo processes; or from olefins separated from petroleum either with or without "cracking".
  • the ethylene oxide condensates are broadly defined as compounds produced by the condensation of ethylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which can be aliphatic or alkyl aromatic in nature.
  • the length of the hydrophilic or polyoxyalkylene radical which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired balance between hydrophilic and hydrophobic elements.
  • ethylene oxide condensates suitable as suds stabilizers are the condensation products of aliphatic alcohols with ethylene oxide.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched and generally contains from about 8 to about 18, preferably from about 8 to about 14, carbon atoms for best performance as suds stabilizers, the ethylene oxide being present in amounts of from about 8 moles to about 30, preferably from about 8 to about 14 moles of ethylene oxide per mole of alcohol.
  • amide surfactants useful herein include the ammonia, monoethanol, and diethanol amides of fatty acids having an acyl moiety containing from about 8 to about 18 carbon atoms and represented by the general formula:
  • R is a saturated or unsaturated, aliphatic hydrocarbon radical having from about 7 to 21, preferably from about 11 to 17 carbon atoms;
  • R 2 represents a methylene or ethylene group; and
  • m is 1, 2, or 3, preferably 1.
  • Specific examples of said amides are mono-ethanol amine coconut fatty acid amide and diethanol amine dodecyl fatty acid amide. These acyl moieties may be derived from naturally occurring glycerides, e.g., coconut oil, palm oil, soybean oil, and tallow, but can be derived synthetically, e.g., by the oxidation of petroleum or by hydrogenation of carbon monoxide by the Fischer-Tropsch process. The monoethanol amides and diethanolamides of C 12-14 fatty acids are preferred.
  • Amine oxide semi -polar nonionic surfactants comprise compounds and mixtures of compounds having the formula
  • R 1 is an alkyl, 2-hydroxyalkyl, 3-hydroxyalkyl, or 3-alkoxy-2-hydroxypropyl radical in which the alkyl and alkoxy, respectively, contain from about 8 to about 18 carbon atoms
  • R 2 and R 3 are each methyl, ethyl, propyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, or 3-hydroxypropyl
  • n is from 0 to about 10.
  • Particularly preferred are amine oxides of the formula:
  • R 1 is a C 12-16 alkyl and R 2 and R 3 are methyl or ethyl.
  • the above ethylene oxide condensates, amides, and amine oxides are more fully described in U.S. Pat. No. 4,316,824 (Pancheri), incorporated herein by reference.
  • composition of this invention can also contain certain cationic quarternary ammonium surfactants of the formula:
  • R 1 is an alkyl or alkyl benzyl group having from about 6 to about 16 carbon atoms in the alkyl chain
  • each R 2 is selected from the group consisting of -CH 2 CH 2 -, -CH 2 CH(CH 3 )-, -CH 2 CH(CH 2 OH)-, -CH 2 CH 2 CH 2 -, and mixtures thereof
  • each R 3 is selected from the group consisting of C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, benzyl, and hydrogen when y is not 0
  • R 4 is the same as R 3 or is an alkyl chain wherein the total number of carbon atoms of R 1 plus R 4 is from about 8 to about 16
  • each y is from 0 to about 10, and the sum of the y values is from 0 to about 15
  • X is any compatible anion.
  • alkyl quaternary ammonium surfactants especially the mono-long chain alkyl surfactants described in the above formula when R 4 is selected from the same groups as R 3 .
  • the most preferred quaternary ammonium surfactants are the chloride, bromide, and methyl sul fate C 8-16 alkyl trimethyl ammonium salts, C 8-16 alkyl di(hydroxyethyl)methylammonium salts, the C 8-16 alkyl hydroxyethyldimethyl ammonium salts, C 8-16 alkyloxypropyl trimethyl ammonium salts, and the C 8-16 alkyloxypropyl dihydroxyethylmethylammonium salts.
  • the C 10-14 alkyl trimethyl ammonium salts are preferred, e.g., decyl trimethyl ammonium methyl sulfate, lauryl trimethyl ammonium chloride, myristyl trimethyl ammonium bromide and coconut trimethyl ammonium chloride, and methyl sulfate.
  • the suds boosters used in the compositions of this invention can contain any one or mixture of the suds boosters listed above.
  • compositions can contain other conventional ingredients suitable for use in liquid or gel dishwashing compositions.
  • Optional ingredients include drainage promoting ethoxylated nonionic surfactants of the type disclosed in U.S. Pat. No.
  • Alcohols such as ethyl alcohol and propylene glycol, can be utilized in the interests of achieving a desired product phase stability and viscosity. Alcohols such as ethyl alcohol and propylene glycol at a level of from 0% to about 15%, are particularly useful in the liquid compositions of the invention.
  • Gel compositions of the invention normally would not contain alcohols. These gel compositions may contain higher levels of potassium or sodium toluene, xylene, or cumene sulfonate, and urea at higher levels, i.e., from about 10% to about 30%, as gelling agents (see U.S. Patent No. 4,615,819 and GB 2,179,054A).
  • compositions herein will typically contain up to about 80%, preferably from about 30% to about 70%, most preferably from about 40% to about 65%, of water.
  • Example I The following liquid composition of the present invention is prepared according to the descriptions set forth below.
  • the alkyl ethoxy carboxylate and the appropriate co-surfactant the booster, ethanol, sodium chloride, and the buffer are blended.
  • the pH of the mixture is adjusted with ammonium hydorixed to about 8.
  • the calcium ions (added as calcium chloride dihydrate) are added and the final pH adjusted, if necessary, to about 7.2.
  • Final viscosity and minor pH adjustments can be made at this time, followed by the addition of perfume and dye.
  • the balance is water.
  • the surfactant mixture contains about 94.2% alkyl ethoxy carboxylates of the formula RO(CH 2 CH 2 O) x CH 2 COO-Na + where R is a C 12-13 alkyl averaging 12.5; x ranges from 0 to about 10, and the ethoxylate distribution is such that the amount of material where x is 0 is about 1.0 and the amount of material where x is greater than 7 is less than about 2% by weight of the alkyl ethoxy carboxylates.
  • the average x in the distribution is 3.5.
  • the surfactant mixture contains 0% soap materials.
  • liquid composition is prepared according to the method set forth in Example I, except sodium hydroxide is used to adjust the pH of the compositions to about 8.5
  • This formulation of the present invention provides both good dilute solution grease cleaning and formulation storage stability at elevated temperatures of 120oF.
  • Example III
  • liquid composition is prepared according to the method set forth in Example I, except sodium hydroxide is used to adjust the pH of the compositions to about 9.5
  • This formulation of the present invention provides both good dilute solution grease cleaning and formulation storage stability at elevated temperatures of 120oF especially, when compared to equivalent magnesium ion-containing compositions.
  • liquid composition having a relatively low surfactant level and high calcium ion level is prepared according to the method set forth in Example I.
  • the above formulation of the present invention provides both good dilute solution grease cleaning and formulation storage stability at elevated temperatures of 120oF especially, when compared to equivalent magnesium ion-containing compositions. This formulation is particularly useful for dishwashing habits where high product concentration in solution is used. Exampl e V
  • the formulations are made by adding ethanol to the alkyl ethoxy carboxyl ate-containing surfactant mixture. The remaining surfactants are then added and mixed in. The buffering and chelating agents are then added and the pH is adjusted to about 0.5 pH units above the target for the formula with sodium hydroxide. Finally, the magnesium chloride is added, which reduces the pH to the target. Final viscosity and minor pH adjustments can be made at this time, followed by the addition of perfume and dye. The balance is water.
  • the surfactant mixture contains about 94.2% alkyl ethoxy carboxylates of the formula RO(CH 2 CH 2 O) x CH 2 COO-Na + where R is a C 12-13 alkyl averaging 12.5; x ranges from 0 to about 10, and the ethoxylate distribution is such that the amount of material where x is 0 is about 1.0 and the amount of material where x is greater than 7 is less than about 2% by weight of the alkyl ethoxy carboxylates.
  • the average x in the distribution is 3.5.
  • the surfactant mixture contains 0% soap materials.
  • the above formulations give excellent combinations of grease cleaning and mildness and do not exhibit precipitation when stored at elevated temperatures (up to 120oF).
  • the grease cleaning ability of these products is directly related to their ability to maintain dilute solution alkaline wash pH.
  • the rank order of these products in terms of their ability to maintain a high wash pH is A>B>C>D.
  • the hand mildness of these products are directly related to their levels of alkyl ethoxy carboxyl ate-containing surfactant mixture and inversely related to their levels of alkyl sulfate and alkyl ethoxy sulfate surfactants. For these reasons the rank order of hand mildness of these products is C>A,B>D.
  • These formulations also provide superior stability during storage especially when compared to similar compositions without a buffering and/or chelating agent.
  • Formulation D contains glycine and does exhibit discoloration of the composition upon storage.
  • Example 1 The following four liquid compositions are prepared according to the method set forth in Example 1. They use the same alkyl ethoxy carboxylate surfactant mixture set forth in Example I.
  • Citric acid (exists as a - 2.0 6.0 - citrate salt in the product)
  • Formulation B of the present invention provides both good dilute solution grease cleaning and formulation storage stability at elevated temperatures of 120°F. This is in contrast to Formulations A, C and D which are not within the scope of the present invention.
  • Formulation A provides good dilute solution grease cleaning, even in soft water, because of its combination of alkylethoxy carboxylate containing surfactant mixture, magnesium ions and its alkaline pH in a dishwashing solution due to 2-Amino-2-ethyl-1,3-propanediol.
  • Formulation A is not stable to storage and precipitates of Mg(OH) 2 are formed.
  • Formulation C provides good product storage stability by virtue of the citrates ability to prevent Mg(OH) 2 precipitation but does not provide sufficient grease cleaning ability in dilute solution. This is because the level of citrate is too high and reduces the available Mg ++ in dilute solution needed for good cleaning.
  • Formulation D provides good storage stability but poorer grease cleaning than Formulations A and B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
PCT/US1991/008280 1990-11-16 1991-11-08 Light-duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant and calcium or magnesium ions WO1992008777A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CS93873A CZ87393A3 (en) 1990-11-16 1991-11-08 Light-type agents for dish washing, which contain alkyl-ethoxy-carboxylate surface-active agent and calcium or magnesium ions
BR919106983A BR9106983A (pt) 1990-11-16 1991-11-08 Composicao detergente de limpeza leve para lavagem de louca contendo um tensoativo de alquil etoxi carboxiato e ions de calcio ou magnesio
DE69125022T DE69125022T2 (de) 1990-11-16 1991-11-08 Alkylethoxycarboxylattensid und calcium- oder magnesiumionen enthaltende milde geschirrspülwaschmittelzusammensetzung
JP4502258A JP3009464B2 (ja) 1990-11-16 1991-11-08 アルキルエトキシカルボキシレート界面活性剤およびカルシウムもしくはマグネシウムイオンを含有する軽質食器洗い用洗剤組成物
SK480-93A SK48093A3 (en) 1990-11-16 1991-11-08 Light-duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactants and calcium or magnesium ions
EP92900582A EP0557426B1 (de) 1990-11-16 1991-11-08 Alkylethoxycarboxylattensid und calcium- oder magnesiumionen enthaltende milde geschirrspülwaschmittelzusammensetzung
NO93931738A NO931738L (no) 1990-11-16 1993-05-13 Mild detergentblanding for oppvask
GR970401152T GR3023502T3 (en) 1990-11-16 1997-05-20 Light-duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant and calcium or magnesium ions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US61453190A 1990-11-16 1990-11-16
US61453290A 1990-11-16 1990-11-16
US614,532 1990-11-16
US614,531 1990-11-16

Publications (1)

Publication Number Publication Date
WO1992008777A1 true WO1992008777A1 (en) 1992-05-29

Family

ID=27087270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/008280 WO1992008777A1 (en) 1990-11-16 1991-11-08 Light-duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant and calcium or magnesium ions

Country Status (22)

Country Link
EP (1) EP0557426B1 (de)
JP (1) JP3009464B2 (de)
CN (1) CN1062371A (de)
AR (1) AR244795A1 (de)
AT (1) ATE149561T1 (de)
AU (1) AU9063991A (de)
BR (1) BR9106983A (de)
CZ (1) CZ87393A3 (de)
DE (1) DE69125022T2 (de)
DK (1) DK0557426T3 (de)
ES (1) ES2101078T3 (de)
FI (1) FI932199A0 (de)
GR (1) GR3023502T3 (de)
HU (1) HUT64782A (de)
MA (1) MA22342A1 (de)
MX (1) MX9102078A (de)
MY (1) MY131210A (de)
NO (1) NO931738L (de)
PT (2) PT99527A (de)
SK (1) SK48093A3 (de)
TR (1) TR26532A (de)
WO (1) WO1992008777A1 (de)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993005132A1 (en) * 1991-09-06 1993-03-18 The Procter & Gamble Company Detergent compositions containing calcium and polyhydroxy fatty acid amide
EP0560570A2 (de) * 1992-03-09 1993-09-15 Amway Corporation Flüssiges Geschirreinigungsmittel
EP0580263A1 (de) * 1992-07-24 1994-01-26 KAO CHEMICALS GmbH Flüssige, konzentrierte, wässrige Lösungen von Alkylethercarbonsäuresalzen und Verfahren zu ihrer Herstellung
WO1994005752A2 (en) * 1992-09-01 1994-03-17 The Procter & Gamble Company Liquid or gel dishwashing detergent composition containing alkyl amphocarboxylic acid and magnesium or calcium ions
WO1994005769A1 (en) * 1992-09-01 1994-03-17 The Procter & Gamble Company Liquid or gel dishwashing detergent containing alkyl ethoxy carboxylate, divalent ions and alkylpolyethoxypolycarboxylate
WO1994012609A1 (en) * 1992-11-30 1994-06-09 The Procter & Gamble Company Detergent compositions with calcium ions and polyhydroxy fatty acid amide nonionic/selected anionic/soap surfactant mixture
WO1995006108A1 (en) * 1993-08-27 1995-03-02 The Procter & Gamble Company Concentrated liquid or gel dishwashing detergent composition containing calcium xylene sulfonate
WO1995006106A1 (en) * 1993-08-27 1995-03-02 The Procter & Gamble Company Concentrated liquid or gel dishwashing detergent compositions containing calcium ions and disulfonate surfactants
WO1995006107A1 (en) * 1993-08-27 1995-03-02 The Procter & Gamble Company Concentrated light duty liquid or gel dishwashing detergent compositions containing sugar
WO1995006103A1 (en) * 1993-08-27 1995-03-02 The Procter & Gamble Company Process for preparing concentrated surfactant mixtures containing magnesium
WO1995007971A1 (en) * 1993-09-14 1995-03-23 The Procter & Gamble Company Light duty liquid or gel dishwashing detergent compositions containing protease
EP0658188A1 (de) * 1992-09-01 1995-06-21 The Procter & Gamble Company Flüssige oder gelförmige waschmittelzusammensetzungen enthaltend calcium und einen stabilisator
WO1996000316A1 (en) * 1994-06-27 1996-01-04 Unilever N.V. Non-silicated soft metal safe product
US5545354A (en) * 1992-09-01 1996-08-13 The Procter & Gamble Company Liquid or gel dishwashing detergent containing a polyhydroxy fatty acid amide, calcium ions and an alkylpolyethoxypolycarboxylate
WO1998028392A1 (en) * 1996-12-20 1998-07-02 The Procter & Gamble Company Dishwashing detergent compositions containing alkanolamine
US5958436A (en) * 1995-12-21 1999-09-28 Cosmederm Technologies Formulations and methods for reducing skin irritation
US6083893A (en) * 1994-05-16 2000-07-04 The Proctor And Gamble Co. Shaped semi-solid or solid dishwashing detergent
WO2000046330A1 (en) * 1999-02-08 2000-08-10 The Procter & Gamble Company Hand washing detergent compositions
US6274541B1 (en) 1994-02-23 2001-08-14 Ecolab Inc. Alkaline cleaners based on alcohol ethoxy carboxylates
EP2199386A1 (de) 1993-10-08 2010-06-23 Novozymes A/S Amylasevarianten
EP2264138A1 (de) * 2009-06-19 2010-12-22 The Procter & Gamble Company Flüssige Handspülmittelzusammensetzung
WO2011049945A2 (en) 2009-10-23 2011-04-28 Danisco Us Inc. Methods for reducing blue saccharide
EP2428572A2 (de) 2007-03-09 2012-03-14 Danisco US, Inc., Genencor Division Alpha-Amylase Varianten der Gattung Bacillus alcalophilus, Zusammensetzungen mit Alpha-Amylase Varianten und Anwendungsverfahren
US8147855B2 (en) 1994-12-21 2012-04-03 Cosmederm Bioscience, Inc. Methods for inhibiting sensory responses in the skin such as pain and itch using topical product formulations containing strontium
US8323945B2 (en) 2008-06-06 2012-12-04 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof
WO2014088589A1 (en) * 2012-12-07 2014-06-12 Colgate-Palmolive Company Cleaning composition
US8901059B2 (en) 2009-06-19 2014-12-02 The Procter & Gamble Company Liquid hand dishwashing detergent composition
US9040278B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Production of glucose from starch using alpha-amylases from Bacillus subtilis
US9040279B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Saccharification enzyme composition and method of saccharification thereof
US10550355B2 (en) 2015-01-15 2020-02-04 Ecolab Usa Inc. Long lasting cleaning foam

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509292B2 (ja) * 2000-04-04 2010-07-21 ライオン株式会社 界面活性剤組成物
SE1250261A1 (sv) * 2011-10-31 2013-05-01 Billerudkorsnaes Gaevle Froevi Ab Bestrykningskomposition, ett förfarande för bestrykning av ett substrat, ettbestruket substrat, ett förpackningsmaterial och vätskeförpackning
BR112014013868A2 (pt) * 2011-12-09 2017-06-13 Clariant Finance Bvi Ltd composições detergentes para a lavagem de pratos automática compreendendo ácidos etercarboxílicos ou seus sais e tensoativos não iônicos com um alto ponto de turvação
AU2015348408B2 (en) * 2014-11-18 2019-08-15 Basf Se Method of mineral oil production
CN109126622A (zh) * 2017-06-27 2019-01-04 华南师范大学 一种阴离子表面活性剂、洗涤剂和洗涤剂组合物
JP2020090606A (ja) * 2018-12-05 2020-06-11 株式会社コープクリーン 洗浄剤組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2014084A1 (de) * 1968-07-31 1970-04-10 Hoechst Ag
US4098818A (en) * 1976-12-10 1978-07-04 The Procter & Gamble Company Process for making carboxyalkylated alkyl polyether surfactants with narrow polyethoxy chain distribution
FR2373508A1 (fr) * 1976-12-10 1978-07-07 Procter & Gamble Alkyl-polyethers carboxyalkyles a titre d'agents tensio-actifs ameliores
EP0107946A1 (de) * 1982-10-28 1984-05-09 THE PROCTER & GAMBLE COMPANY Flüssige Detergenszusammensetzungen
EP0384982A2 (de) * 1989-02-25 1990-09-05 Hüls Aktiengesellschaft Detergentienzusammensetzungen mit erhöhter Viskosität
EP0399752A2 (de) * 1989-05-22 1990-11-28 The Procter & Gamble Company Mildes, flüssiges oder gelförmiges Spülwaschmittel, enthaltend ein Alkyl-ethoxy-carboxylat als oberflächenaktiven Stoff

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2014084A1 (de) * 1968-07-31 1970-04-10 Hoechst Ag
US4098818A (en) * 1976-12-10 1978-07-04 The Procter & Gamble Company Process for making carboxyalkylated alkyl polyether surfactants with narrow polyethoxy chain distribution
FR2373508A1 (fr) * 1976-12-10 1978-07-07 Procter & Gamble Alkyl-polyethers carboxyalkyles a titre d'agents tensio-actifs ameliores
EP0107946A1 (de) * 1982-10-28 1984-05-09 THE PROCTER & GAMBLE COMPANY Flüssige Detergenszusammensetzungen
EP0384982A2 (de) * 1989-02-25 1990-09-05 Hüls Aktiengesellschaft Detergentienzusammensetzungen mit erhöhter Viskosität
EP0399752A2 (de) * 1989-05-22 1990-11-28 The Procter & Gamble Company Mildes, flüssiges oder gelförmiges Spülwaschmittel, enthaltend ein Alkyl-ethoxy-carboxylat als oberflächenaktiven Stoff

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993005132A1 (en) * 1991-09-06 1993-03-18 The Procter & Gamble Company Detergent compositions containing calcium and polyhydroxy fatty acid amide
TR26664A (tr) * 1991-09-06 1995-03-15 Procter & Gamble Kalsiyum ve polihidroksi yagli asit amidi ihtiva eden deterjan bilesimleri
EP0560570A2 (de) * 1992-03-09 1993-09-15 Amway Corporation Flüssiges Geschirreinigungsmittel
EP0560570A3 (de) * 1992-03-09 1995-05-10 Amway Corp
EP0580263A1 (de) * 1992-07-24 1994-01-26 KAO CHEMICALS GmbH Flüssige, konzentrierte, wässrige Lösungen von Alkylethercarbonsäuresalzen und Verfahren zu ihrer Herstellung
US5490950A (en) * 1992-07-24 1996-02-13 Chem- Y Gmbh Liquid concentrated aqueous solutions of salts of alkyl ether carboxylic acid, and a process for preparing such solutions
WO1994005752A2 (en) * 1992-09-01 1994-03-17 The Procter & Gamble Company Liquid or gel dishwashing detergent composition containing alkyl amphocarboxylic acid and magnesium or calcium ions
US5545354A (en) * 1992-09-01 1996-08-13 The Procter & Gamble Company Liquid or gel dishwashing detergent containing a polyhydroxy fatty acid amide, calcium ions and an alkylpolyethoxypolycarboxylate
WO1994005752A3 (en) * 1992-09-01 1994-04-14 Procter & Gamble Liquid or gel dishwashing detergent composition containing alkyl amphocarboxylic acid and magnesium or calcium ions
EP0658188A4 (de) * 1992-09-01 1995-08-09 Procter & Gamble Flüssige oder gelförmige waschmittelzusammensetzungen enthaltend calcium und einen stabilisator.
WO1994005769A1 (en) * 1992-09-01 1994-03-17 The Procter & Gamble Company Liquid or gel dishwashing detergent containing alkyl ethoxy carboxylate, divalent ions and alkylpolyethoxypolycarboxylate
TR27708A (tr) * 1992-09-01 1995-06-22 Procter & Gamble Kalsiyum ve buna ait stabilize edici madde ihtiva eden sivi veya jel deterjan terkipleri.
EP0658188A1 (de) * 1992-09-01 1995-06-21 The Procter & Gamble Company Flüssige oder gelförmige waschmittelzusammensetzungen enthaltend calcium und einen stabilisator
WO1994012609A1 (en) * 1992-11-30 1994-06-09 The Procter & Gamble Company Detergent compositions with calcium ions and polyhydroxy fatty acid amide nonionic/selected anionic/soap surfactant mixture
WO1995006108A1 (en) * 1993-08-27 1995-03-02 The Procter & Gamble Company Concentrated liquid or gel dishwashing detergent composition containing calcium xylene sulfonate
WO1995006107A1 (en) * 1993-08-27 1995-03-02 The Procter & Gamble Company Concentrated light duty liquid or gel dishwashing detergent compositions containing sugar
US5415814A (en) * 1993-08-27 1995-05-16 The Procter & Gamble Company Concentrated liquid or gel light duty dishwashing detergent composition containing calcium xylene sulfonate
WO1995006106A1 (en) * 1993-08-27 1995-03-02 The Procter & Gamble Company Concentrated liquid or gel dishwashing detergent compositions containing calcium ions and disulfonate surfactants
WO1995006103A1 (en) * 1993-08-27 1995-03-02 The Procter & Gamble Company Process for preparing concentrated surfactant mixtures containing magnesium
US5474710A (en) * 1993-08-27 1995-12-12 Ofosu-Asanta; Kofi Process for preparing concentrated surfactant mixtures containing magnesium
US5417893A (en) * 1993-08-27 1995-05-23 The Procter & Gamble Company Concentrated liquid or gel light duty dishwashing detergent compositions containing calcium ions and disulfonate surfactants
WO1995007971A1 (en) * 1993-09-14 1995-03-23 The Procter & Gamble Company Light duty liquid or gel dishwashing detergent compositions containing protease
EP2199386A1 (de) 1993-10-08 2010-06-23 Novozymes A/S Amylasevarianten
US6274541B1 (en) 1994-02-23 2001-08-14 Ecolab Inc. Alkaline cleaners based on alcohol ethoxy carboxylates
US6083893A (en) * 1994-05-16 2000-07-04 The Proctor And Gamble Co. Shaped semi-solid or solid dishwashing detergent
WO1996000316A1 (en) * 1994-06-27 1996-01-04 Unilever N.V. Non-silicated soft metal safe product
US5710120A (en) * 1994-06-27 1998-01-20 Diversey Lever, Inc. Nonsilicated soft metal safe product
US8449923B2 (en) 1994-12-21 2013-05-28 Cosmederm Bioscience, Inc. Methods for inhibiting sensory nerves by topically administering strontium-containing compositions to keratinized skin
US8147855B2 (en) 1994-12-21 2012-04-03 Cosmederm Bioscience, Inc. Methods for inhibiting sensory responses in the skin such as pain and itch using topical product formulations containing strontium
US5958436A (en) * 1995-12-21 1999-09-28 Cosmederm Technologies Formulations and methods for reducing skin irritation
US6172021B1 (en) 1996-12-20 2001-01-09 The Procter & Gamble Company Dishwashing detergent compositions containing alkanolamine
WO1998028392A1 (en) * 1996-12-20 1998-07-02 The Procter & Gamble Company Dishwashing detergent compositions containing alkanolamine
US6521577B1 (en) 1999-02-08 2003-02-18 The Procter & Gamble Company Hand washing detergent compositions
WO2000046330A1 (en) * 1999-02-08 2000-08-10 The Procter & Gamble Company Hand washing detergent compositions
EP2428572A2 (de) 2007-03-09 2012-03-14 Danisco US, Inc., Genencor Division Alpha-Amylase Varianten der Gattung Bacillus alcalophilus, Zusammensetzungen mit Alpha-Amylase Varianten und Anwendungsverfahren
US9090887B2 (en) 2008-06-06 2015-07-28 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of use, thereof
US8975056B2 (en) 2008-06-06 2015-03-10 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof
US8323945B2 (en) 2008-06-06 2012-12-04 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof
US9040279B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Saccharification enzyme composition and method of saccharification thereof
US9040278B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Production of glucose from starch using alpha-amylases from Bacillus subtilis
EP2264138A1 (de) * 2009-06-19 2010-12-22 The Procter & Gamble Company Flüssige Handspülmittelzusammensetzung
US8901059B2 (en) 2009-06-19 2014-12-02 The Procter & Gamble Company Liquid hand dishwashing detergent composition
US8901058B2 (en) 2009-06-19 2014-12-02 The Procter & Gamble Company Liquid hand dishwashing detergent composition
WO2010147933A1 (en) * 2009-06-19 2010-12-23 The Procter & Gamble Company Liquid hand dishwashing detergent composition
EP2264138B2 (de) 2009-06-19 2023-03-08 The Procter & Gamble Company Flüssige Handspülmittelzusammensetzung
WO2011049945A2 (en) 2009-10-23 2011-04-28 Danisco Us Inc. Methods for reducing blue saccharide
WO2014088589A1 (en) * 2012-12-07 2014-06-12 Colgate-Palmolive Company Cleaning composition
US10227550B2 (en) 2012-12-07 2019-03-12 Colgate-Palmolive Company Cleaning composition
US10550355B2 (en) 2015-01-15 2020-02-04 Ecolab Usa Inc. Long lasting cleaning foam
US11208613B2 (en) 2015-01-15 2021-12-28 Ecolab Usa Inc. Long lasting cleaning foam

Also Published As

Publication number Publication date
DE69125022D1 (de) 1997-04-10
HUT64782A (en) 1994-02-28
ATE149561T1 (de) 1997-03-15
DE69125022T2 (de) 1997-09-25
FI932199A (fi) 1993-05-14
CZ87393A3 (en) 1994-07-13
JPH06502884A (ja) 1994-03-31
TR26532A (tr) 1995-03-15
AR244795A1 (es) 1993-11-30
JP3009464B2 (ja) 2000-02-14
CN1062371A (zh) 1992-07-01
MX9102078A (es) 1992-06-01
HU9301418D0 (en) 1993-09-28
ES2101078T3 (es) 1997-07-01
MY131210A (en) 2007-07-31
SK48093A3 (en) 1994-01-12
AU9063991A (en) 1992-06-11
GR3023502T3 (en) 1997-08-29
BR9106983A (pt) 1993-08-24
DK0557426T3 (da) 1997-09-01
MA22342A1 (fr) 1992-07-01
EP0557426B1 (de) 1997-03-05
NO931738D0 (no) 1993-05-13
PT99527A (pt) 1992-09-30
PT99530A (pt) 1992-09-30
NO931738L (no) 1993-07-15
EP0557426A1 (de) 1993-09-01
FI932199A0 (fi) 1993-05-14

Similar Documents

Publication Publication Date Title
US5376310A (en) Alkaline light duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant, magnesium ions, chelator and buffer
EP0557426B1 (de) Alkylethoxycarboxylattensid und calcium- oder magnesiumionen enthaltende milde geschirrspülwaschmittelzusammensetzung
US5378409A (en) Light duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant and ions
US5269974A (en) Liquid or gel dishwashing detergent composition containing alkyl amphocarboxylic acid and magnesium or calcium ions
EP0715651B1 (de) Kalzium xylolsulfonat enthaltende, konzentrierte flüssige oder gelförmige geschirrspülmittelzusammensetzungen
US5417893A (en) Concentrated liquid or gel light duty dishwashing detergent compositions containing calcium ions and disulfonate surfactants
US5739092A (en) Liquid or gel dishwashing detergent containing alkyl ethoxy carboxylate divalent ok ions and alkylpolyethoxypolycarboxylate
US5415801A (en) Concentrated light duty liquid or gel dishwashing detergent compositions containing sugar
EP0399752B1 (de) Mildes, flüssiges oder gelförmiges Spülwaschmittel, enthaltend ein Alkyl-ethoxy-carboxylat als oberflächenaktiven Stoff
US5230823A (en) Light-duty liquid or gel dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant
EP0658186B1 (de) Flüssiges oder gelförmiges geschirrspülmittel, enthaltend polyhydoxyfettsäureamid, kalziumionen und alkylpolyethoxypolycarboxylat
EP0518925A4 (en) Light-duty liquid dishwashing detergent compositions
US5474710A (en) Process for preparing concentrated surfactant mixtures containing magnesium
CA2055045C (en) Light-duty dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant and calcium ions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MC MG MN MW NL NO PL RO SD SE SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: PV1993-873

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 48093

Country of ref document: SK

Ref document number: 1992900582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 932199

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1992900582

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV1993-873

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: CA

WWR Wipo information: refused in national office

Ref document number: PV1993-873

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1992900582

Country of ref document: EP