WO1992006379A1 - Method of immunological quantitative analysis - Google Patents

Method of immunological quantitative analysis Download PDF

Info

Publication number
WO1992006379A1
WO1992006379A1 PCT/JP1991/001373 JP9101373W WO9206379A1 WO 1992006379 A1 WO1992006379 A1 WO 1992006379A1 JP 9101373 W JP9101373 W JP 9101373W WO 9206379 A1 WO9206379 A1 WO 9206379A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
antigen
disk
insoluble carrier
concentration
Prior art date
Application number
PCT/JP1991/001373
Other languages
English (en)
French (fr)
Inventor
Susumu Osawa
Kazunori Shibata
Minoru Takase
Takayuki Kohno
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP41699190A external-priority patent/JPH04233462A/ja
Priority claimed from JP19878491A external-priority patent/JPH055741A/ja
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Publication of WO1992006379A1 publication Critical patent/WO1992006379A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing

Definitions

  • the present invention relates to an immunological quantitative analysis method, and in particular, to an immunological quantitative analysis method and an immunological quantitative analysis method capable of expanding a measurement concentration region of an immunological test, increasing sensitivity, increasing speed, and fully automating the immunological test.
  • the present invention relates to an immunological quantitative analysis method capable of expanding the concentration range in which a test can be measured, reducing the number of sample dilution operations, and improving measurement accuracy.
  • trace components in blood have been quantified, but the concentration of bodily fluid contained in blood is very small, on the order of ng (nanogram) Z ml, and these trace components are Quantitative analysis is an important issue in the medical field.
  • RIA radioimmunoassay
  • EIA enzyme immunoassay
  • LIA latex agglutination immunoassay
  • the radioimmunoassay is a method in which an antigen-antibody reaction is performed using an antibody labeled with a radioisotope, and the concentration of the antigen is determined from the radiation dose.
  • the enzyme immunoassay is a method in which an antigen-antibody reaction is performed using an antibody labeled with an enzyme, and the concentration of the antigen is determined based on the degree of color development by the enzyme reaction.
  • Latex agglutination immunoassay is a method developed by Singer and Plotz et al. In 1965. The antigen-antibody reaction is performed using insoluble carrier particles (latex particles) on which antibodies are immobilized. Allow the latex particles to aggregate and determine the antigen concentration from the turbidity --The way.
  • radioimmunoassay has high sensitivity and high accuracy, but it has problems in terms of safety due to the use of radiation, and requires careful attention to maintenance and management. The handling was very troublesome, such as the short life of the product.
  • the enzyme immunoassay method has high sensitivity and high accuracy, but it requires time and labor to prepare reagents because of the use of enzymes, and the enzyme storage and preservation are detailed. Consideration is needed, and the measurement time is long, ranging from 45 minutes to several hours.
  • the latex agglutination immunoassay (LIA method) has a problem that it is semi-quantitative and has insufficient sensitivity and accuracy because turbidity is determined by visual inspection.
  • Japanese Patent Application Laid-Open No. 56-151357 discloses that a test solution is brought into contact with a substrate on which an antibody is immobilized, and then the antibody-immobilized microparticles are reacted.
  • a method characterized by the Have been. Furthermore, it is described that simultaneous multiple-item analysis is possible by immobilizing different types of antibodies on different regions on the substrate.
  • Japanese Patent Application Laid-Open No. 56-151357 merely shows an example using slide glass as an antibody-immobilized substrate, and does not disclose any technology using a disk.
  • slide glass When the slide glass is used, it is difficult to automatically and quickly drop, wash, and measure the test liquid on the slide gas.
  • the test solution since the test solution is only dropped on the slide glass and is not spread in a thin film form, it is difficult to enhance the reaction efficiency.
  • a microscope or the like is used as a means for measuring the antibody-immobilized fine particles, there is a problem that automation and speeding up of the measurement are extremely difficult.
  • JP-A-64-35373 discloses that a fluorescent latex is used as fine particles in the method described in JP-A-56-151357, and a fluorescence microscope, a TV camera, and an image are used as counting means. A technique has been disclosed in which the sensitivity of counting is increased by using a processing device.
  • these counting means have a problem in that it is difficult to automate counting, increase the speed, and increase the sensitivity as compared with the counting method using optical disc technology.
  • a calibration curve is prepared in advance by measuring radioactivity, absorbance, turbidity, etc. using a standard substance with a known concentration. The measured values obtained when measuring the concentration of the sample are applied to the calibration curve, and the concentration of the target substance in the sample is determined accordingly.
  • the present invention has been made in view of the above-mentioned problems, and, as a first invention, an immunological quantitative analysis method capable of achieving high sensitivity, full automation, and high speed of an immunological test.
  • the purpose is to provide.
  • the present invention provides, as a second invention, an immunological quantitative analysis capable of expanding the concentration range in which an immunological test can be measured, reducing the number of sample dilution operations, and improving measurement accuracy.
  • the aim is to provide a method.
  • the antibody (or antigen) is formed on at least a part or the whole of at least one of the plurality of radially formed channels on the rotatable disk.
  • the body fluid is spread on the disc by rotating or dropping the disc, and the antigen (or antibody) to be analyzed in the body fluid is transferred to the antibody (or antigen) immobilized on the disc.
  • the antigen (or antibody) is further acted on by an insoluble carrier particle formed by immobilizing an antibody (or antigen) that specifically reacts with the antigen (line is an antibody).
  • the number of insoluble carrier particles captured by the antigen (or antibody) is counted while rotating the disk using an optical reader that can move in the radial direction of the disk.
  • optical A light source look-up device and a converging les one The primary light source is properly favored by et, 1 Z. 5 to 1 times the size of the light source wavelength using a particle size of the insoluble carrier particles, specifically, insoluble carrier particles The size of the particle is 0.1 to 5 m.
  • the immunological quantitative analysis method of the second invention is characterized in that a fixed region for a plurality of antibodies (or antigens) having different measurable concentration regions is provided on a solid phase, and the antibody (or antigen) is fixed to the antibody (or antigen) fixed region.
  • antigen) reacting with a sample containing an antigen (or antibody) that specifically reacts with the antigen (or antibody), and the antigen (or antibody) is captured by the antigen-antibody reaction.
  • reacting an insoluble carrier particle immobilized with an antibody (or antigen) specifically reacting with the antigen and measuring the number of insoluble carrier particles captured by the antigen (or antibody) or a physical quantity correlated with the number of particles.
  • the antibody (or antigen) is immobilized in each region on the solid phase using a solution of the antibody (or antigen) having a different concentration, and a plurality of antibodies (or antigens) having different measurable concentration regions are used. ) Is formed on the solid phase, and the insoluble carrier particles are latex particles. Further, if necessary, a plate-like substrate or a rotatable disk-like substrate is used as the solid phase.
  • antigen is a general term for substances that induce an immune response (antibody production) or immune tolerance (immunogenicity), or exhibit an activity of binding to an antibody.
  • Antibody is a general term for the actual condition of the antigen-specific resistance possessed by an individual who has acquired immunity to a certain antigen.
  • FIG. 1 is an explanatory view showing the procedure of the immunological quantitative analysis method of the first invention
  • FIG. 2 is a plan view showing a plurality of divided disks for simultaneous analysis of a plurality of samples
  • FIG. 3 is an example of an analyzer.
  • FIG. 4 is a diagram showing a mode of measurement by optical separation means
  • FIG. 5 is a graph showing a method of converting the fluorescence intensity into the number of particles
  • FIG. 6 is an immunological quantitative analysis of the second invention.
  • Explanatory drawing showing the procedure of the method FIG. 7 is a plan view showing an embodiment of the antibody-immobilized region
  • FIG. 8 (a) is a graph showing a calibration curve
  • FIG. 9 is an explanatory view showing an example of obtaining a concentration
  • Fig. 10 is a graph showing the calibration curve in Example 1
  • Fig. 11 is the antigen-antibody reaction site used in Example 3.
  • FIG. 12 is a graph showing a calibration curve in Example 3
  • FIG. 13 is a graph showing a calibration curve created in Example 4.
  • FIG. 1 is an explanatory view showing the procedure of the immunological quantitative analysis method of the first invention.
  • a disc 100 on which antibody 200 is immobilized (hereinafter referred to as an antibody-immobilized disc) is used (FIG. 1 (I)).
  • the size, thickness, shape, and the like of the disc 100 are appropriately selected, and are not particularly limited.
  • the disc 100 may be rotatable so as to be suitable for sample development and analysis using laser light or the like. It is necessary, and from such a viewpoint, it is preferable that the shape is a disk.
  • a reaction section 100 in which a large number of ridges 100 a are formed radially on the disk 100 to fix a large number of sample development surfaces 100 b and antibodies 200. If 0 c is provided, a large number of samples can be analyzed simultaneously.
  • the disc 100 may be formed of a plastic material such as polycarbonate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polyvinyl acetate, polyurethane, epoxy resin, or a transparent material such as glass. Or a metal material having good light reflectivity, and other inorganic materials such as silicon single crystal.
  • plastic discs such as polycarbonate and polymethyl methacrylate are used. - - is there.
  • the antibody 200 immobilized on the disc 100 varies depending on the antigen to be measured.
  • the antibody 200 is produced by administering an antigen to be measured to a certain immunological substance (eg, rabbit, goat, sheep, etc.).
  • a certain immunological substance eg, rabbit, goat, sheep, etc.
  • a 0.05 M solution of antibody in Tris-buffered saline (TBS) pH 8.2, concentration 0.5 to 10 gZml
  • a 0.05 M carbonate / bicarbonate buffer solution PH 9.6 , Concentration 0.5 ⁇ : LO gZm l
  • TBS Tris-buffered saline
  • PH 9.6 Concentration 0.5 ⁇ : LO gZm l
  • the antibody can also be chemically bonded to the disk (P. Tijssen II). , Edited by Eiji Ishikawa, "Biochemical Experimental Methods 11 Enzym No Atsushi", Tokyo Chemistry; Tatsuo Iwasaki, Tamie Ando, "Monoclonal Antibody Hybridoma and ELISA", published by Kodansha).
  • a plurality of antibody-immobilized regions having different measurable concentration regions can be provided on the disc, as will be described later in the second paragraph, thereby enlarging the measurable concentration region and increasing the sample concentration.
  • the number of dilution operations can be reduced and measurement accuracy can be improved.
  • the antigen 300 in the sample is captured by the antigen-antibody reaction on the antibody-fixed disk 100 (FIG. 1 (II)).
  • the sample to be analyzed may be a liquid containing an antigen. It is not particularly limited. Examples include body fluids such as blood, pleural effusion, ascites, heart fluid, joint fluid, urine and the like.
  • the antigen to be analyzed is not particularly limited, and examples thereof include C-reactive protein (CRP), ⁇ -phytoprotein (AFP), and carcinoembryonic antigen (CEA).
  • CRP C-reactive protein
  • AFP ⁇ -phytoprotein
  • CEA carcinoembryonic antigen
  • CR ⁇ is an abbreviation of C-reactive protein, which is one of the blood proteins that increase significantly in inflammatory diseases and conditions that cause necrosis of body tissues. It is a typical component of phase proteins.
  • an appropriate amount (for example, about 501) of a sample containing the antigen 300 to be analyzed is dropped on the antibody-fixed disc, and the disc 1
  • sample 00 By rotating sample 00 on the disk 100 by centrifugal force to spread the sample on the disk 100, the antibody 200 immobilized on the disk 100 and the antigen 300 in the sample sample are rotated.
  • An antigen-antibody reaction can be efficiently performed in between.
  • the time required for the antigen-antibody reaction can be as short as about 1 to 5 minutes.
  • the remaining sample sample other than antigen 300 captured was phosphate-buffered saline (PBS) (pH 7.4) or tris-buffered saline (TBS) (0. 0 5 M, pH 8.2) etc. after dropping an appropriate amount (for example, about 1 ml), rotate disk 100 to wash away a, and then add to disk 100 after the antigen-antibody reaction.
  • PBS phosphate-buffered saline
  • TBS tris-buffered saline
  • the insoluble carrier particles 500 on which the antibody 400 is immobilized are defined as insoluble carrier particles (latex particles) (eg, plastic particles, colloid particles, etc.) and an antibody 400 for the antigen 300, which is the analyte, , which is physically or chemically adsorbed or bonded and fixed.
  • insoluble carrier particles latex particles
  • plastic particles eg, plastic particles, colloid particles, etc.
  • an antibody 400 for the antigen 300 which is the analyte, which is physically or chemically adsorbed or bonded and fixed.
  • the latex particles only need to have the same particle size, Any of fine particles (eg, polystyrene), inorganic fine particles, and fine metal particles may be used.
  • insoluble carrier particles 500 on which the antibody is immobilized specifically, for example, put the antibody in a 1.0% latex aqueous solution in which the pH and the salt concentration have been adjusted using TBS, and then at room temperature. Leave for 2 hours to allow the antibody to physically adsorb to the latex particles. After centrifugation, the supernatant is discarded to remove the non-adsorbed antibody, and phosphate buffered saline (PBS) (pH 7.4) is poured into the sediment and redispersed. (See JP-A-62-267298, Applied and Environmental Microbiology, Oct. 1988, P2345-2348).
  • PBS phosphate buffered saline
  • the insoluble carrier particles 500 may have fluorescent properties or may be colored. In this case, it is possible to perform separation using fluorescence or coloring properties.
  • the insoluble carrier particles 500 themselves are formed of a fluorescent substance
  • the aqueous solution containing the insoluble carrier particles 500 immobilized with the antibody prepared as described above is dropped in an appropriate amount (for example, 501) on the disc 100 after the above-described antigen-antibody reaction. Then, the antigen is developed again by the rotation of the disc 100, and the antigen 300 captured by the antibody 200 fixed on the disc 100 undergoes an antigen-antibody reaction again.
  • the insoluble carrier particles are captured on the disc 100 via the antibody 400 set to 0 (FIG. 1 (111)).
  • the insoluble carrier particles 500 not captured on the disc 100 are washed away in the same manner as in the above-described specimen sample. In this way, a sample disk is manufactured.
  • the number of insoluble carrier particles 500 captured by the antigen on the sample disk or the physical quantity corresponding to the number of particles was measured by measuring means 600.
  • the measuring means 600 for measuring the number of particles and the like an optical measuring means is preferable.
  • the optical measuring means include measuring means such as change in reflectance, absorption of light of a specific wavelength, fluorescence intensity, and rotation of the polarization plane of damaged light.
  • a laser is used as an optical measuring means.
  • a laser source used a commonly used semiconductor laser or the like can be used as it is, and an appropriate laser source is selected according to the size of the insoluble carrier particles.
  • an analyzer provided with an optical measuring means for example, an apparatus as shown in FIG. 3 is used (see Japanese Patent Application No. 1-92367).
  • reference numeral 100 denotes a disk, which is mounted on the turntable 2.
  • a receiving tray 6 for receiving the sample falling from the disc 100 is arranged, and the sample dropped from the disc 100 is collected in a collection tank 7.
  • the motor 8 is for rotating the disk 100
  • the active control circuit 9 is for controlling the] g operation of the motor 8.
  • the nozzle 11 drops the sample sent from the sample feeder 12 onto the disc 100.
  • the optical measuring head 14 reciprocates along a feed screw shaft 15 extending in the disk radial direction.
  • the motor 16 drives the head 14, and the drive control circuit 17 controls the Sg operation of the motor 16.
  • the optical measurement head 14 has a laser light emitting part and a light receiving part.
  • the irradiation light 19 from the light emitting part 19 is a half mirror 22 0
  • the light is passed through the lens 21 as convergent light, is irradiated to the sample on the sample development surface 100b, and the reflected light 22 reflected from the sample is received by the light receiving unit.
  • the projection light 19 may be irradiated from the back side of the disk, and it may be transmitted light instead of reflected light. --Therefore, analysis may be performed.
  • the rotary table 2 is made of a transparent material, or the rotary table 2 is removed.
  • the signal processing device 23 has a function of sending a signal to the head 14 to turn on the light source, and a function of processing the optical signal received by the head 14 and separating the signal.
  • the display device 24 displays the analysis result on the screen, and the recording device 25 prints out the analysis result and outputs the result.
  • the CPU (central processing unit) 27 controls the sample feeder 12, the motion control circuits 9 and 17, the signal processor 23, etc., and operates them according to the program.
  • the CPU 27 has a program operation device 28 and a program storage device 29.
  • a photodetector is used as an optical measuring means.
  • the fluorescence intensity at a specific wavelength for example, 397 nm, 4772 nm, 577 nm, etc.
  • the fluorescence intensity is detected. Convert to the number of particles (Fig. 5 (b)).
  • a fluorescent latex When a fluorescent latex is used, light having a different wavelength from the incident light can be measured, which is advantageous for signal detection, and insoluble carrier particles having a small particle size can be used.
  • the particle size of the insoluble carrier particles is preferably in the range of 0.1 to 5 m.
  • the antigen concentration from the measured number of insoluble carrier particles use the same method as described above except that a sample with a known antigen concentration is used.Then, determine the relationship between the antigen concentration and the number of insoluble carrier particles and perform calibration in advance. A curve may be prepared, and the antigen concentration may be determined from this calibration curve.
  • FIG. 6 is an explanatory view showing the procedure of the immunological quantitative analysis method of the second invention.
  • the type of antibody or antigen, the material for forming the solid phase (substrate), the method of immobilizing the antibody or antigen on the solid phase (substrate), the sample to be analyzed, and the analyte As the insoluble carrier particles to which a certain antigen or antibody is immobilized, the same as those in the first invention are used.
  • a plurality of antibody-immobilized regions having different measurable concentration regions are provided on a solid phase.
  • the solid phase is not particularly limited as long as it can immobilize antibodies, but a substrate is usually used.
  • an antibody 201 is immobilized on a substrate 101 as shown in FIG. 6 (I).
  • the size, thickness, shape, and the like of the substrate 101 are appropriately selected and are not particularly limited, but are preferably a flat plate (plate shape) or a rotatable disk shape (disk shape).
  • the flat substrate is suitable for analysis using an electron microscope or the like. Further, it is preferable that the substrate is formed in a rotatable disk shape, because the development of the sample and the separation by laser light or the like can be easily and automatically performed.
  • an antibody solution having a different concentration is used, and the solution is dropped on the substrate and subjected to physical or chemical adsorption. And fix it.
  • concentration of the dropped antibody solution varies depending on the antigen that specifically reacts with the antibody, but generally, a concentration of the order of 10 2 1 0 -magZml is used.
  • antibodies having different activities may be immobilized by the above-mentioned immobilization method.
  • each antibody-immobilized region A to D can be circular ((b), (d), (e), (f)) or rectangular ((a), --
  • the regions A to D may be arranged continuously (FIGS. (A) and (c)) or may be arranged in S3 rows at intervals (FIG. (1>) and (3)). , (6), (z).
  • the substrate 101 has a large number of ridges 101a formed radially on a disk-shaped disk to provide a large number of sample development surfaces 101b.
  • a large number of ridges 101a formed radially on a disk-shaped disk to provide a large number of sample development surfaces 101b.
  • the number of antibody-immobilized regions is not limited to four as shown in FIG. 7, but may be any number.
  • the substrate on which the plurality of antibody-immobilized regions A to D obtained as described above were formed was coated with a blocking agent 301 to prevent nonspecific adsorption. It is preferable to cover the surface and perform a blocking process.
  • the blocking agent include serum albumin, casein, skim milk and the like.
  • the antigen 51 in the specimen 50 is captured by an antigen-antibody reaction on the antibody-immobilized substrate 401 (FIG. 6 (III)).
  • the antigen 51 to be analyzed is contained in each of the antibody fixing regions A to D on the substrate.
  • An appropriate amount (for example, about 501) of the sample 50 may be dropped.
  • an antigen-antibody reaction can be performed between the antibody 201 in the antibody immobilization regions A to D formed on the substrate 101 and the antigen 51 in the sample 50.
  • an antigen-antibody reaction can be performed on the substrate 101. Is also good.
  • the time required for the antigen-antibody reaction can be as short as about 1 to 5 minutes.
  • the remaining components 52 and 53 other than the captured antigen 51 are phosphate buffered saline (PBS) (pH 7.4) or Tris buffered saline (TBS) (pH 8.2) Drop an appropriate amount (for example, about 1 ml) and so on, or wash it off, or rotate the substrate 101 after washing and wash it off.
  • PBS phosphate buffered saline
  • TBS Tris buffered saline
  • the aqueous solution containing the insoluble carrier particles on which the antibodies are immobilized is dropped (appropriately, for example, 501) onto the substrate 101 (FIG. 6 (III)) after the antigen-antibody reaction described above. Further, it is developed by the rotation of the substrate 101).
  • the antigen 51 captured by the antibody 201 of the substrate 101 and the antibody 54 immobilized on the insoluble carrier particles 55 again undergo an antigen-antibody reaction.
  • the insoluble carrier particles 55 are captured via the antibody 54 (FIG. 6 (IV)).
  • the insoluble carrier particles not captured on the substrate are washed away in the same manner as in the above-described specimen sample.
  • a sample substrate is manufactured.
  • the number of insoluble carrier particles 55 captured by the antigen 51 on the sample substrate or a physical quantity correlated with the number of particles is measured by the measuring means 56 to determine the concentration of the antigen 51 (FIG. 6 (IV )).
  • an optical measuring means is preferable.
  • An example of the optical measuring means is a measuring means for analyzing a surface image obtained by an optical microscope through an image analyzing apparatus to measure the number of particles.
  • optical measurement means include various types of measurement combining light sources such as lasers, LEDs, and halogen lamps, and light receiving systems such as photodetectors and CCDs (including line sensors). Means are exemplified.
  • the number of particles may be directly counted (counted) from the change in reflectance using a laser beam or the like, or the number of particles may be counted, such as absorbance by coloring or fluorescence intensity by a fluorescent substance.
  • the number of correlated physical children may be measured and converted to the number of particles to determine the number of particles (see Japanese Patent Application No. 2-270900).
  • the particle size of the insoluble carrier particles is preferably 0.2 ⁇ m or more. If an electron microscope is used, insoluble carrier particles of 0.2 ⁇ in or less can be used.
  • the particle size of the insoluble carrier particles is preferably in the range of 0.01 to 10 m.
  • a calibration curve is prepared in advance in the same manner as in the first invention, and the antigen concentration may be determined from this calibration curve.
  • a calibration curve is created for each of the antibody-fixed regions A to D (thus, four calibration curves are created). For example, six antigen concentration different from the an antigen known concentration of the sample (1 0- 2 ⁇ 1 0- 7 g Z m 1) were prepared, each antibody fixed area of each of the antigen concentration known six Act on A to D, measure the number of insoluble carrier particles in the same manner as described above, and determine the relationship between the antigen concentration and the number of carrier particles in each of the antibody-immobilized regions A to D. And plot these relationships into one graph --Create calibration curves A, D: '(see Fig. 8 (a)).
  • the antigen concentration be the unknown concentration (Ct)
  • the concentrations Cw and Cb2 can be obtained from the calibration curves C, D in Fig. 8 (a).
  • the average value Cb is taken as the antigen concentration (see Fig. 8 (c)).
  • the antibody-fixed disk was set on a rotating table of the analyzer shown in Fig. 3, and a standard sample (1.0 X 10 — 12 g Zm l, 1.0 X 10-/ m 1, 1.0 X 10 — 9 g Zm l, 1.0 X 10 0 — 7 g Zm l, --
  • a P.BS solution (latex particle diameter 0.2 / im, 1 wt%) 501 of the anti-CRP latex prepared above was dropped on the disk at a point with a disk radius of 4 cm, and rotated.
  • the sample was developed, incubated at 30 for 5 minutes, and then washed three times with TBS (0.05 M, pH 8.2) 2001 to prepare a sample disk for preparing a calibration curve.
  • the blood collected from the subjects was serum-separated by a standard method (difficult to centrifuge), and three samples with unknown CRP concentrations were prepared.
  • the quantification of the CRP concentration in each sample was performed by both the method of the present invention and the conventional method (LIA method, using LPIA100M, an immunological inspection device manufactured by Mitsubishi Kasei Co., Ltd.).
  • the procedure of the method of the present invention is the same as in the case of the above-mentioned preparation of the calibration curve.
  • the test sample is dropped on the antibody-fixed disc attached to the discriminator, and allowed to react.
  • the concentration was determined.
  • the reaction time was 10 minutes, and the latex measurement time was 5 minutes, for a total of 15 minutes. Table 2 shows the results of quantification of CRP concentration by both methods.
  • polystyrene latex containing a fluorescent substance having an excitation wavelength of 560 nm and a fluorescence wavelength of 577 nm was used as the insoluble carrier particles, and a standard with a known CRP concentration prepared in TBS The sample concentration was 1.0 x 10-1 I3 gml, 1.0 x 10—g / ml,
  • Example 2 In the same manner as in Example 1, except that the calibration curve was created by converting the number of latex particles from the fluorescence intensity as shown in Fig. 5, the CRP concentration was unknown.
  • the sample was diluted 100-fold (diluted with TBS).
  • the CRP concentration of the sample was quantified.
  • the reaction time was 10 minutes, and the latency measurement time was 3 minutes, for a total of 13 minutes.
  • Table 3 shows the comparison results of the CRP concentrations. The obtained calibration curve is shown in FIG.
  • the method of the present invention can measure up to the order of 0.01 to 0.1 (ngZml) and has high sensitivity compared to the conventional method (LIA method). Quantification of trace components of ng Zm 1 or less is possible.
  • the time required for the inspection is 1 to 2 hours in the conventional method (EIA method), while the method of the present invention is in the range of 10 to 30 minutes, which realizes an increase in inspection speed.
  • AFP antibody (IgG) obtained by pre-administering human AFP to rabbits can be obtained by the conventional method (Eiji Ishikawa: Enzyme-linked immunosorbent assay, 3rd edition, Medical Shoin; Jiro Koyama, Toshio Osawa : Basics of immunology, Tokyo Chemical Dojinshi, pp. 30-34) digested with pepsin to remove the Fc portion of the constant region of IgG, which is the site of formation of the anti-antibody antibody (Fab '). 2) was obtained (see Fig. 11).
  • TBS solution containing 0.5% of BSA (bovine serum albumin) was dropped into the position where the antibody was immobilized, and allowed to stand at 4 ° C. for 24 hours. Thereafter, the plate was washed three times with 200 ⁇ l of a TBS solution (PH8.2) containing 0.1% of Tween 20 (manufactured by Polyscience) as a surfactant.
  • BSA bovine serum albumin
  • a polystyrene latex of 300 nm (0.3 ⁇ m), which is six times the size of the semiconductor laser (wavelength 780 nm), which is the light source used for reading, is used in (1) above.
  • the obtained antibody was sensitized with the antibody as in Example 1 to prepare a sensitized latex (latex concentration: 0.25 wt% TBS solution).
  • the AFP antibody-sensitized latex 201 prepared in (4) above is dropped on the antigen capturing site, and allowed to stand still at 30 for 5 minutes to allow an antigen-antibody reaction to capture latex particles on the antigen. I let it.
  • the unretained latex was washed three times with 200 ⁇ l of TBS solution containing Tween 20 three times and further with 5001 of distilled water, and removed together with salt to prepare a sample disk.
  • the sample disk was rotated at 800 rpm, and the latex particles captured on the disk were scanned while scanning the optical head 14 shown in Fig. 3 using a semiconductor laser with a wavelength of 780 nm as a light source. Were shaved.
  • Table 4 shows the measurement results, and Fig. 12 shows a calibration curve plotting the relationship between these numbers and the AFP antigen.
  • CRP antibody obtained by immunizing rabbits with CRP antigen was immobilized on a 2 cm long, 7 cm wide plate made of polycarbonate.
  • the fixed antibodies the antibody concentration 1 X 1 0_ 3, 1 0- 4, 1 0 one 5, 1 0- s gZm l of TB S (Application Benefits-Hepes buffer saline) solution 5 0 1, 1 cm diameter
  • the solution was dropped into the regions A to D in the above order so as to have an area of, and allowed to stand at 30 ° C. for 2 hours for physical adsorption.
  • Block Ace Snow Brand
  • TBS-Tween Tris-buffered saline
  • a TBS solution standard solution with a known CRP antigen concentration (for example, 1.0 ⁇ 10 ⁇ 3 g / m 1) 501 was spread so as to cover all the antibody fixing regions A to D on the substrate.
  • the unreacted latex solution was washed with 10 mL of TBS-Tw'ene.
  • the number of latex particles in each area was counted with a Hitachi electron microscope S-800 connected to an image analyzer, and the number of latex particles in each area was determined.
  • the number of latexes relative to the antigens (A to D) (concentration 1.0 ⁇ 10 3 g ml) was used.
  • the number of latexes for each antigen concentration in each of the regions A to D was as shown in Table 5.
  • Figure 13 plots these relationships in a single graph. This was used as a calibration curve for CRP antigen quantification.
  • the blood collected from the subject was serum-digested by a standard method (centrifugation method), and samples 1 and 3 were obtained.
  • a solution 50 / il obtained by diluting the sample 1 five-fold with TBS was spread on the antibody immobilization regions A to D on the substrate in the same manner as in the above-mentioned method for preparing a calibration curve.
  • the CRP antibody-sensitized latex dispersion solution (0.05 wt% ZTBS solution) 501 was spread over regions A to D, and allowed to stand at 30 for 5 minutes to react.
  • the latex solution that was not captured by the antigen-antibody reaction was washed and removed with TBS-Twee ⁇ 10m1.
  • the concentration of sample 1 was determined as 540 (A) ng / m 1, 5 38 ( ⁇ ) ⁇ g / m 1, 5 34 (C) n gZm l.
  • the number of latexes obtained from the D area was out of the measurable area, and this was ignored.
  • the arithmetic mean of these concentrations was taken, and 540 ⁇ gZm1 was taken as the CRP concentration of sample 1.
  • a rotatable disk is used as the antibody-immobilized substrate, and the counting of the antibody-immobilized fine particles is performed by scanning the optical disk while rotating the disk using the optical disk technology.
  • Automatic, high-speed and high-sensitivity counting can be achieved.
  • a series of operations required for analysis such as dropping (dispensing) the test liquid onto the disk, developing and washing the test liquid, etc. are performed on the disk, complete automation and rapid analysis can be achieved. Can be achieved.
  • the immunological quantitative analysis method of the first invention it is possible to expand the measurement concentration region, increase the sensitivity, and increase the speed of the immunological test.
  • the respective calibration curves of the respective regions overlap each other, so that an apparent dynamic range (measurable region) is obtained. It expands (the dynamic range does not increase for each region) and the actual measurable concentration region expands. For this reason, a complicated dilution operation can be omitted or the number of dilutions can be reduced, thereby shortening the inspection time and reducing the cost of the inspection. Also, multiple data (detection concentration) can be obtained by one sample measurement, which improves detection accuracy. Therefore, according to the immunological quantitative analysis method of the second invention, it is possible to expand the concentration range in which the immunological test can be measured, reduce the number of dilution operations, and improve the measurement accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

明 細 書 免疫学的定量分析方法
[技術分野]
本発明は、 免疫学的定量分析方法に関し、 特に免疫学的検査の測 定濃度領域の拡大、 高感度化、 高速度化及び全自動化を図ることの できる免疫学的定量分析方法並びに免疫学的検査の測定可能な濃度 領域の拡大、 検体の稀釈操作回数の低減及び測定精度の向上を図る ことのできる免疫学的定量分析方法に関する。
[背景技術]
近年、 医療分野においては、 病気の早期発見等を目的と して、 体 液中の微量成分の定量分析が頻繁に行なわれている。
例えば、 血液中の微量成分の定量が行なわれているが、 血液中に 含まれる体液戍分はその濃度が n g (ナノ グラム) Z m l オーダ一 と極めて微量なものが多く、 これらの微量成分を定量的に分析する ことは医療分野における重要な課題となっている。
従来、 血液微量成分の測定には、 放射性免疫測定法 (R I A法) 、 酵素免疫測定法 ( E I A法) あるいはラテックス凝集免疫測定法 ( L I A法) などの免疫学的手法が用い られてきた。
ここで、 放射性免疫測定法 (R I A法) は、 放射性同位元素でラ ベルした抗体を用いて抗原一抗体反応を行なわせ、 放射線量よ り抗 原の濃度を求める方法である。
酵素免疫測定法 (E I A法) は、 酵素でラベルした抗体を用いて 抗原一抗体反応を行なわせ、 酵素反応による発色の程度によ り抗原 の濃度を求める方法である。
ラテックス凝集免疫測定法 ( L I A法) は、 1965年に Singerと Plotzらによって開発された方法であ り、 抗体を固定してなる不溶 性担体粒子 (ラテック ス粒子) を用いて抗原—抗体反応を行なわせ、 ラテック ス粒子の凝集を生じさせて、 濁度から抗原の濃度を求める - - 方法である。
しかしながら、 上述した^来の血液微量成分の免疫学的定量分析 法には、 以下に示す問題がある。
すなわち、 放射性免疫測定法 (R I A法) は、 感度がよく精度が 高いものの、 放射線を使用するため安全性の面で問題があり、 また 保守, 管理上細心の注意を払う必要がある上、 試薬の寿命が短いな ど、 取扱いが非常に面倒であった。
酵素免疫測定法 (E I A法) は、 R I A法と同様に、 感度が良く 精度が高いものの、 酵素を用いているため試薬の調製に時間と労力 を要し、 酵素の保管, 保存の面でも細かい配慮を必要とし、 測定時 間も 4 5分〜数時間と長時間を要するという問題がある。
ラテックス凝集免疫測定法 ( L I A法) は、 濁度を目視法によつ て判断するものであるため、 半定量的であり、 感度及び精度が不十 分であるという問題がある。
ここで、 L I A法においては、 濁度を光学的に測定する方法が提 案されている ((l)Croatica Chemica Acto 42(1970) P457-466, (2) European Journal of Biochemistry Vol .20 No.4(1971) P553-560, (3)1画 nochemistry Vol.12 P349- 851(1975)参照) 。 し力 し、 この 方法は、 実験によると精度が悪く、 また感度の面でも E I A法や R I A法に劣るという問題がある。
また、 L I A法において、 ラテッ クス粒子の径を種々変えて測定 する方法 (特開昭 63-65369号) や、 あるいは凝集したラテックス粒 子を順々に管内 流し光学的に測定する方法 (特開眧 60-111963号) が提案されているが、 これらの方法は、 感度の向上を図ろう とする と、 それに伴って全体の作業が煩雑化し、 高速度化が図れないとい う問題がある。
一方、 特開眧 56-151357号には、 抗体を固定化した基板に被検液 を接蝕させ、 次いで抗体を固定した微粒子を反応させた後、 基板上 に捕捉された微粒子の数を計数することを特徴とする方法が開示さ れている。 そ して、 基板上の異なる領域のそれぞれに異なる種類の 抗体を固定することによって、 同時多項目分折が可能である旨が記 载されている。
しかしながら、 特開眧 56 - 151357号には、 抗体固定化基板と して スライ ドガラスを用いた例が示されているにすぎず、 ディスクを用 いる技術に関しては何ら開示されていない。 スライ ドガラスを用い た場合には、 スライ ドガ ス上への被検液の滴下、 洗浄及び計測を 自動的かつ迅速に行なう ことが困難である。 また、 被検液はスライ ドガラス上に滴下されるだけで薄膜状に展蘭されないので、 反応効 率を高めることが困難である。 さ らに、 抗体固定微粒子の計測手段 と して顕微鏡等を用いているため、 計測の自動化及び高速化が著し く困難であるという問題がある。
さ らに、 特開昭 64 - 35373号には、 上記特開眧 56 - 151357号に記載 の方法において微粒子と して蛍光ラテックスを使用し、 計数手段と して蛍光顕微鏡, T Vカメ ラ, 画像処理装置を泪いることにより、 計数の高感度化を図った技術が開示されている。
しかし、 これらの計数手段は、 光ディ スク技術を利用した計数手 段に比べ、 計数の自動化, 高速度化及び高感度化が困難であるとい う問題がある。
また、 上記の各免疫学的測定方法においては、 濃度既知の標準物 質を用いて放射能強度, 吸光度, 濁度等を測定することによ りあ ら かじめ検量線を作成しておき、 未知濃度の検体を測定したときの測 定値を検量線に当てはめ、 それによ り検体中の目的物質濃度を求め ている。
しかし、 上述した従来の免疫学的測定方法においては、 作成され る検量線はその性質上一本だけであ り、 この検量線による測定可能 な濃度範囲は大き くても 2〜 3桁の範囲しかないため、 '臨床検査等 で扱っている種々の濃度の検体をすベてカバ一することはできない。 したがって、 未知濃度の検体の測定を行なう場合、 検体を測定可能 - - な濃度範囲になるまで何回も稀釈する必要があり、 この稀釈操作が 煩雑であ り、 時間面及びコス ト面で不利であるという問題がある。 しかも、 稀釈操作に伴う ピぺッティ ングの際に誤差の発生等が起き 易いという問題がある。
また、 一般に S Z N (信号 zノイ ズ) 比は測定回数の平方根に比 例して向上することが知られているが、 上述した従来の免疫学的測 定法においては検量線が一本であるため、 一回の測定においては単 一のデータ しか得ることができず、 測定精度の向上に限界があると いう問題がある。
本発明は、 上述した問題点にかんがみてなされたもので、 第 1発 明と して、 免疫学的検査の高感度化及び全自動化, 高速度化を図る ことのできる免疫学的定量分析方法を提供することを目的とする。 また、 本発明は、 第 2発明と して、 免疫学的検査の測定可能な濃 度領域の拡大、 検体の稀釈操作回数の低減及び測定精度の向上を図 ることのできる免疫学的定量分析方法を提供することを目的とする。
[発明の開示]
すなわち、 第 1発明の免疫学的定量分析方法は、 回転可能なディ スク上の半径方向に形成した複数の流路のう ち少なく とも 1 つの流 路の一部又は全面に抗体 (又は抗原) を固定し、 ディ スクの回転又 は滴下により体液をディ スク上に展開し、 体液中の分析対象物であ る抗原 (又は抗体) を、 ディスク上に固定された抗体 (又は抗原) に抗原一抗体反応によ り捕捉せしめた後、 さ らに該抗原 (又は抗体) に、 その抗原 (爻は抗体) と特異的に反応する抗体 (又は抗原) を 固定してなる不溶性担体粒子を作用させ、 前記抗原 (又は抗体) に より捕捉された不溶性担体粒子の数を、 ディ スクの半径方向に移動 可能な光学読み取り装置を用いて、 ディ スクを回転させながら計数 するようにしてあ り、 好ま しく は、 光学読み取り装置の光源を収束 レ一ザ一光源とし、 さ らに好ま しく は、 不溶性担体粒子の粒子径を 使用光源波長の 1 Z 5〜 1倍の大きさ、 具体的には不溶性担体粒子 の粒子怪を 0 . 1〜 5 mの大きさと してある。
また、 第 2発明の免疫学的定量分析方法は、 固相上に測定可能な 濃度領域が異なる複数の抗体 (又は抗原) の固定領域を設け、 この 抗体 (又は抗原) 固定領域に該抗体 (又は抗原) と特異的に反応す る抗原 (又は抗体) を含む試料を作用させて抗原 (又は抗体) を抗 原—抗体反応によ り捕捉せしめた後、 さ らに該抗原 (又は抗体) と 特異的に反応する抗体 (又は抗原) を固定してなる不溶性担体粒子 を作用させ、 前記抗原 (又は抗体) によって捕捉された不溶性担体 粒子の数又はこの粒子数と相関する物理量を測定することにより、 抗原 (又は抗体) 濃度を測定するように してある。 また、 好ま し く は、 濃度の異なる抗体 (又は抗原) の溶液を用いて固相上の各領域 に抗体 (又は抗原) を固定せしめて、 測定可能な濃度領域が異なる 複数の抗体 (又は抗原) を固定した領域を固相上に形成するよう に . してあり、 不溶性担体粒子をラテックス粒子としてある。 さ らに、 必要に応じ、 固相として平板状の基板あるいは回転可能な円盤状の 基板を用いた構成としてある。
なお、 抗原とは、 免疫応答 (抗体産生) や免疫寛容を誘導し (免 疫原性) 、 又は抗体と結合する活性を示す物質の総称をいう。
抗体とは、 ある抗原に対して免疫性を獲得した個体が持つ、 抗原 特異的に働く抵抗性の実態の総称をいう。
[図面の簡単な説明]
図 1は第 1発明の免疫学的定量分析方法の手順を示す説明図、 図 2は複数試料の同時分析を行なうための複数に区画されたディスク を示す平面図、 図 3は分析装置の一例を示す構成図、 図 4は光学的 分折手段による測定の態様を示す図、 図 5は蛍光強度を粒子数に換 算する方法を示すグラフ、 図 6は第 2発明の免疫学的定量分析方法 の手順を示す説明図、 図 7は抗体固定領域の態様を示す平面図、 図 8 ( a ) は検量線を示すグラフ、 図 8 ( b ) , ( c ) は未知濃度の 検体試料から抗原濃度を求める例を示した説明図、 図 9は実施例 1 - - における検量線を表わすグラフ、 図 1 0は実施例 1における検量線 を表わすグラフ、 図 1 1 は実施例 3で用いた抗原抗体反応形成部位
(F a b ' ) 2を示す図、 図 1 2は実施例 3における検量線を表わ すグラフ、 図 1 3実施例 4 において作成した検量線を示すグラフで ある。
[発明を実施するための最良の形態]
以下、 本発明を図面を参照しつつ詳細に説明する。 なお、 ここで はディスク Z抗体 Z抗原/抗体 Ζ·不溶性担体粒子の構成をとる場合 について説明する。
まず、 第 1発明について説明する。
第 1発明
図 1は第 1発明の免疫学的定量分析方法の手順を示す説明図であ る。
第 1発明においては、 抗体 2 0 0 を固定したディ スク 1 0 0 (以 下、 抗体固定ディ スク という) を使用する (図 1 (I) ) 。
ここで、 ディ スク 1 0 0の大きさ, 厚さ, 形状等は適宜選択され、 特に制限されないが、 試料の展開及びレーザー光等による分析に適 するよう に、 回転可能なものであることが必要であ り、 このよう な 観点からすると円板状であることが好ま しい。
また、 図 2に示すよう に、 ディスク 1 0 0に多数の突条 1 0 0 a を放射状に形成して多数の試料展開面 1 0 0 b及び抗体 2 0 0を固 定した反応部 1 0 0 c を設けると、 多数の試料の分析を同時に行な える。
ディスク 1 0 0の形成材料と しては、 ポリカーボネー ト, ポリ メ チノレメ タク リ レー ト, ポリ スチレン, ポリ塩化ビニル, ポリ酢酸ビ ニル, ポリウレタン, エポキシ樹脂等のプラスチック材料やガラス 等の透明材料、 あるいは光反射性の良い金属材料、 その他シ リ コ ン 単結晶のよう な無機材料等が挙げられるが、 好ま し く は、 ポリ力一 ボネート, ポリメチルメ タ ク リ レー ト等のプラスチックディ スクで - - ある。 このように基板を光透過性あるいは光反射性の良い材料で形 成すると、 レーザ一光等による光学的分析が可能となる。
ディスク 1 00に固定される抗体 20 0は、 測定しょう とする抗 原によって異なるが、 例えば、 測定しょう とする抗原をある免疫動 物 (例えば、 兎, 山羊, 羊など) に投与して産生させたポリ ク ロナ —ル抗体やモノク ローナル抗体等が挙げられる。
抗体 2 00をディスク 1 00に固定するには、 一般的な抗体固定 方法における条件と同様の条件が採用される (酵素免疫反応法、 石 川栄治著、 医学書院刊 1 9 8 7年参照) 。
例えば、 抗体の 0. 05 Mト リス緩衝食塩水 (T B S) 溶液 ( p H 8. 2 , 濃度 0. 5〜 1 0 gZm l ) あるいは 0. 05 M炭酸 • 重炭酸緩衝溶液 ( P H 9. 6, 濃度 0. 5〜: L O gZm l ) を ディ スク上に滴下し、 4 の温度下で一昼夜 (あるいは 20〜 3 0 で 2時間) 放置して、 抗体 2 0 0をディ スク 1 0 0上に物理的に 吸着させればよい。
この場合、 ディ スク表面にスルホン基, アミ ノ基, カルボキシル 基又はその誘導体等の官能基を有するディ スクを用いることによ り、 抗体をディスク上に化学結合させることもできる (P.Tijssen荖、 石川栄治監訳 "生化学実験法 1 1ェンザィムノアツセィ " 東京化学 同人刊 ; 岩崎辰夫, 安東民衛著 "単ク ローン抗体 ハイブリ ドーマ と E L I S A" 講談社刊参照) 。
なお、 ディ スク上には、 後述する第 2 明のよ うに、 測定可能な 濃度領域が異な^複数の抗体固定領域を設けることができ、 これに よ り測定可能な濃度領域の拡大、 検体の稀釈操作回数の低減及び測 定精度の向上を図ることができる。
第 1発明においては、 まず、 上記抗体固定ディ スク 1 00上で、 試料中の抗原 30 0を抗原一抗体反応によ り捕捉せしめる (図 1 (II)) 。
ここで、 分析対象とされる試料と しては、 抗原を含む液体であれ ば特に制限されない。 例えば、 血液, 胸水, 腹水, 心臓水, 関節水, 尿等の体液を挙げることができる。
分析対象物である抗原は特に制限されないが、 例えば、 C一反応 性蛋白質 (C R P) 、 α—フエ トプロテイ ン (A F P) 、 癌胎児性 抗原 (C EA) 等が挙げられる。 ここで、 C R Ρとは C-reactive proteinの略であって、 炎症性疾患や体内組緣の壊死があるような 病態で著しく増量する血槳蛋白の一つであり、 いわゆる急性相反応 蛋白 acute phase proteins の代表的な成分である。
ディスク 1 00上で抗原一抗体反応を行なわせるには、 例えば、 抗体固定ディ スク上に分折対象物である抗原 300を含んだ検体試 料を適量 (例えば 50 1程度) 滴下し、 ディスク 1 00を回転し て、 遠心力によって検体試料をディ スク 1 0 0上に薄膜状に展開す ることによって、 ディ スク 1 0 0上に固定された抗体 200と検体 試料中の抗原 30 0との間に効率よ く抗原一抗体反応を行なわせる ことができる。 この場合、 抗原一抗体反応に要する時間は 1〜 5分 程度の短い時間で済む。
抗原一抗体反応後、 捕捉された抗原 3 0 0以外の残余の検体試料 は、 リン酸緩衝食塩水 (P B S ) ( p H 7. 4) 、 あるいは ト リス 緩衝食塩水 (TB S ) (0. 0 5 M , p H 8. 2 ) 等を適量 (例え ば、 l m l程度) 滴下した後、 ディ スク 1 0 0を回転して洗い流す a 次いで、 上記抗原—抗体反応後のディ スク 1 0 0に、 抗原 30 0 と特異的に反応する抗体 4 00を固定してなる不溶性担体粒子
50 0を作用さ る (図 1 (111) ) 。
ここで、 抗体 4 00を固定してなる不溶性担体粒子 500とは、 不溶性担体粒子 (ラテックス粒子) (例えば、 プラスチック粒子、 コロイ ド粒子等) に、 分析対象物である抗原 30 0に対する抗体 400を、 物理的あるいは化学的に吸着又は結合させて固定したも のをいう。
この場合、 ラテックス粒子は粒径が揃っていればよく、 プラスチ - - ック微粒子 (例えば、 ポリスチレン等) 、 無機微粒子あるいは金属 微粒子等のいずれであってもよい。
抗体を固定してなる不溶性担体粒子 5 0 0を得るには、 具体的に は、 例えば、 T B Sを用いて p Hや塩濃度を調整した 1 . 0 %ラテ ックス水溶液に抗体を入れ、 室温で 2時間放置して、 ラテッ クス粒 子に抗体を物理吸着させる。 その後、 遠心分離にかけた後上清を捨 て、 吸着されなかった抗体を除去し、 沈殿部にリ ン酸緩衝食塩水 (P B S ) ( p H 7. 4 ) を注ぎ、 再分散させて作製される (特開 昭 62-267298号, Applied and Environmental Microbiology , Oct . 1988, P2345-2348参照) 。
不溶性担体粒子 5 0 0は、 蛍光性を有するもの、 あるいは着色さ れたものであってもよい。 この場合、 蛍光性あるいは着色性を利用 した分折が可能となる。 なお、 不溶性担体粒子 5 0 0 自体が蛍光物 質で形成されている場合の他、 不溶性担体粒子 5 0 0が蛍光材料で コ一ティ ングされている場合や蛍光物質が不溶性担体粒子 5 0 0に 付着している場合も含まれる。 なお、 不溶性担体粒子 5 0 0の粒径 については後述する。—
上記のよう にして調製された抗体を固定してなる不溶性担体粒子 5 0 0を含んだ水溶液は、 上述した抗原一抗体反応後のディ スク 1 0 0に適量 (例えば、 5 0 1 ) 滴下され、 ディスク 1 0 0の回 転によって展開されて、 ディスク 1 0 0上に固定された抗体 2 0 0 に捕捉された抗原 3 0 0と再度抗原一抗体反応を起こ し、 不溶性担 体粒子 5 0 0に @定された抗体 4 0 0を介して、 不溶性担体粒子が ディ スク 1 0 0上に捕捉される (図 1 (111)) 。 ディ スク 1 0 0上 に捕捉されなかった不溶性担体粒子 5 0 0は、 上述した検体試料と 同様の方法で洗い流される。 このよ うに して、 サンプルディ スクが 作製される。
次に、 上記サンプルディ スク上の抗原によって捕捉された不溶性 担体粒子 5 0 0の数又は粒子数に相当する物理量を測定手段 6 0 0 - - で測定して、 抗原 3 0 0の濃度を求める (図 1 ( IV) ) 。
ここで、 粒子数等の測定手段 6 0 0と しては、 光学的測定手段が 好ま しい。 光学的測定手段としては、 反射率の変化, 特定波長の光 に対する吸収、 蛍光強度あるいは傷光した光の偏光面の回転等の測 定手段が例示される。
不溶性担体粒子の数を直接測定する場合には、 光学的測定手段と してレ一ザ一を用いる。 使用される レ一ザ一源と しては、 一般に使 用されている半導体レーザ一等をそのまま利用でき、 不溶性担体粒 子の大きさに応じて適当なレーザ一源が選択される。
光学的測定手段を具備した分析装置と しては、 例えば、 図 3に示 すような装置が使用される (特願平 1-92367号参照) 。
同図において、 1 0 0はディ スクであ り、 回転テーブル 2上に装 着されている。 ディスク 1 0 0の下部外周には、 ディ スク 1 0 0か ら落ちる試料を受けるための受け皿 6が配置され、 ディスク 1 0 0 から落ちた試料が回収タンク 7に回収されるよう になっている。 モ —タ 8はディ スク 1 0 0を回転させるためのものであ り、 能動制御 回路 9はモータ 8の] |g動を制御するものである。 ノズル 1 1 は、 試 料送り装置 1 2から送られる試料をディ スク 1 0 0上に滴下する。 光学式測定へッ ド 1 4 は、 ディ スク半径方向に延びる送りねじ軸 1 5に沿って往復移動する。 モータ 1 6はヘッ ド 1 4 を駆動するた めのものであ り、 駆動制御回路 1 7はモータ一 1 6の Sg動を制御す る。
光学式測定へ ド 1 4'はレ一ザ一光の投光部と受光部を有し、 図 4 ( a ) に示すように、 投光部からの照射光 1 9 はハーフ ミ ラ一 2 0, レンズ 2 1 を経て収束光として試料展開面 1 0 0 b上の試料 に照射され、 試料から反射された反射光 2 2は受光部で受けられる よう になつている。
なお、 図 4 ( b ) に示すよう に、 ディ スクの裏面側から投射光 1 9 を照射するように してもよ く、 また、 反射光でなく、 透過光に - - よって分析を行なうよう に してもよい。 これらの場合には回転テ一 ブル 2を透明材料で形成するか、 あるいは回転テーブル 2を取り払 ラ。
信号処理装置 2 3は、 ヘッ ド 1 4に信号を送り光源を点灯させる 機能と、 ヘッ ド 1 4で受光された光信号を処理し、 分折する機能を 有する。 ディ スプレイ装置 2 4は分析結果を画面表示し、 記録装置 2 5は分析結果をプリ ン トアウ ト して出力する。 C P U (中央処理 装置) 2 7は、 試料送り装置 1 2、 躯動制御回路 9及び 1 7、 信号 処理装置 2 3等の制御を行ない、 これらをプログラム通り作動させ る。 C P U 2 7は、 プログラムの操作装置 2 8と、 プログラムの記 億装置 2 9を有している。
上記構成からなる分析装置によれば、 免疫学的定量分析の全ての 工程をディスク上で行なう ことができ、 また、 分析の全自動化を図 ることができる。
不溶性担体粒子が蛍光を発するものである場合には、 光学的測定 手段としてフォ トディテク タ一を用いる。 この場合、 フィルタ一を 介在させることによって、 特定波長 (例えば、 3 9 7 n m, 4 7 2 n m , 5 7 7 n mなど) の蛍光強度を検出し (図 5 ( a ) ) 、 その 蛍光強度を粒子数に換算する (図 5 ( b ) ) 。
なお、 蛍光ラテック スを用いた場合、 入射光と異なる波長の光を 測定することができるため、 信号検出上有利であ り、 粒径の小さな 不溶性担体粒子を使用できる。
上記の観点及び抗原一抗体の反応性からすると、 不溶性担体粒子 の粒径は 0 . l ~ 5 mの範囲内であることが好ま しい。
計測した不溶性担体粒子の個数から抗原の濃度を求めるには、 抗 原濃度既知の試料を用いること以外は上述の場合と同様にし、 抗原 濃度と不溶性担体粒子の数との関係を求めてあらかじめ検量線を作 成しておき、 この検量線から抗原濃度を求めればよい。
次に、 第 2発明について説明する。 - - 第 2発明
図 6は第 2発明の免疫学的定量分析方法の手順を示す説明図であ る。
なお、 第 2発明において、 抗体や抗原の種類、 固相 (基板) の形 成材料、 固相 (基桉) への抗体, 抗原の固定方法、 分析対象とされ る検体試料、 分析対象物である抗原、 抗体を固定してなる不溶性担 体粒子等については、 第 1発明と同様のものが使用される。
第 2発明の免疫学的定量分析方法においては、 まず、 固相上に測 定可能な濃度領域が異なる複数の抗体固定領域を設ける。
ここで、 固相と しては抗体を固定しう るものであれば特に限定さ れないが、 通常は基板が使用されている。 例えば、 図 6 ( I ) に示 すように基板 1 0 1上に抗体 2 0 1が固定される。
ここで、 基板 1 0 1の大きさ, 厚さ, 形状等は適宜選択され、 特 に制限されないが、 平板状 (プレー ト状) あるいは回転可能な円盤 状 (ディ スク状) とするのが好ましい。 平板状の基板は、 電子顕微 鏡等を用いた分析に適する。 また、 基板を回転可能な円盤状に形成 すると、 試料の展開及びレーザ一光等による分折が容易かつ自動的 に行なえるので好ましい。
上記固相 (基板) 上に測定可能な濃度領域が異なる複数の抗体固 定領域を設けるには、 例えば、 濃度の異なる抗体溶液を用い、 これ を基板上に滴下し、 物理吸着あるいは化学吸着によつて固定する。 滴下する抗体溶液の濃度はその抗体と特異的に反応する抗原によ り 異なるが、 一般的には 1 0 —2 1 0—マ g Z m lオーダ一の濃度のも のが使用される。 また、 測定可能な濃度領域が異なる複数の抗体固 定領域を設ける別の方法と しては、 活性度の異なる抗体を上記固定 法により固定してもよい。
上記複数の抗体固定領域の形状、 配列に関しては種々の態様が可 能である。 例えば図 7に示すように、 各抗体固定領域 A〜Dの形状 は円形 (同図 ( b ) , ( d ) , ( e ) , ( f ) ) や矩形 (同図 ( a ) , - -
( c ) ) とされる。 また各抗体固定領域の §3列と しては、 長方形状 の基板 (プレー ト) 1 0 1 の長手方向に配列する場合 (同図 ( a ) ,
( b ) ) 、 円盤状の基板 (ディ スク) 1 0 1 の半径方向に配列する 場合 (同図 ( c ) , ( d ) ) 、 円盤状のディ スクの円周方向に配列 する場合 (同図 ( e ) ) 等が挙げられる。 この場合、 各領域 A〜D は連続して配列してもよく (同図 ( a ) , ( c ) ) 、 間隔をあけて S3列してもよい (同図 ( 1> ) , ( 3 ) , ( 6 ) , (ぞ) ) 。
また、 基板 1 0 1は図 7 ( f ) に示すよう に、 円盤状のディ スク に多数の突条 1 0 1 a を放射状に形成して多数の試料展開面 1 0 1 bを設け、 これら試料展開面 1 0 1 bのそれぞれに抗体固定領域 A 〜Dを設けることによ り、 多数の検体試料の同時分析を行なえるよ うにしてちょい。
なお、 抗体固定領域の数は図 7に示したように四つの場合に限ら れず、 任意の個数とできる。
図 7において、 各抗体固定領域 A〜Dの濃度は、 領域 A : 1 0 -3 gZm l , 領域 B : 1 0 - 4 g /m l , 領域 C : 1 0 - 5g Zm l , 領 域 D : 1 0— 6g Zm l のよう に図示右方向あるいは下方向に向かつ て濃度が減少するよう に構成してあるが、 その逆の順序になるよう に構成してもよい。
上記のよう に得られた複数の抗体固定領域 A〜Dを形成した基板 は、 図 6 (II) に示すよう に、 非特異性吸着防止のため、 ブロ ッキ ング剤 3 0 1 でその表面を覆い、 ブロ ッキング処理を行なう ことが 好ま しい。 ここで、 ブロッキング剤としては、 ゥシ血清アルブミ ン, カゼイン, スキム ミルク等が挙げられる。
第 2発明においては、 次に、 上記抗体固定基板 4 0 1上で、 検体 試料 5 0中の抗原 5 1 を抗原—抗体反応によ り捕捉せしめる (図 6 (III ) ) 。
基板 1 0 1上で抗原一抗体反応を行なわせるには、 例えば、 基板 上の抗体固定領域 A〜Dの各々に分析対象物である抗原 5 1 を含ん だ検体試料 50を適量 (例えば 50 1 程度) 滴下すればよい。 こ れによって、 基板 1 0 1上に形成された抗体固定領域 A〜D中の抗 体 20 1と検体試料 5 0中の抗原 5 1との間に抗原—抗体反応を行 なわせることができる。 また、 円盤状の基板 1 0 1を回転して、 遠 心力で検体試料を基板 1 0 1上に薄膜状に展開することによって、 基板 1 0 1上で抗原一抗体反応を行なわせるよう にしてもよい。 こ の場合、 抗原一抗体反応に要する時間は 1〜 5分程度の短い時間で 済む。
抗原一抗体反応後、 捕捉された抗原 5 1以外の残余の成分 52, 53は、 リン酸緩衝食塩水 (P B S ) ( p H 7. 4 ) 、 あるいは ト リス緩衝食塩水 (T B S ) ( p H 8. 2 ) 等を適量 (例えば、 l ml程度) 滴下して洗い流すか、 あるいは滴下後さらに基板 1 0 1 を回転して洗い流す。
次いで、 上記抗原一抗体反応後の基板 1 0 1に、 抗原 5 1 と特異 的に反応する抗体 54を固定してなる不溶性担体粒子 55を作用さ せる (図 6 (IV) ) 。
抗体を固定してなる不溶性担体粒子を含んだ水溶液は、 上述した 抗原—抗体反応後の基板 1 0 1 (図 6 (III)) に適量 (例えば 5 0 1 ) 滴下される (あるいは滴下後さ らに基板 1 0 1の回転によつ て展開される) 。 これによ り、 第 1発明と同様に、 基板 1 0 1の抗 体 2 0 1に捕捉された抗原 5 1 と、 不溶性担体粒子 5 5に固定され た抗体 54とが再度抗原一抗体反応を起こし、 抗体 54を介して不 溶性担体粒子 55が捕捉される (図 6 (IV) ) 。 基板上に捕捉され なかった不溶性担体粒子は、 上述した検体試料と同様の方法で洗い 流される。 このようにして、 サンプル基板が作製される。
次に、 上記サンプル基板上の抗原 51によって捕捉された不溶性 担体粒子 55の数又は粒子数と相関する物理量を測定手段 5 6で測 定して、 抗原 5 1の濃度を求める (図 6 (IV) ) 。
ここで、 粒子数等の測定手段 5 6と しては、 光学的測定手段が好 ましい。 光学的測定手段と しては、 光学顕微鏡で得られる面像を画 像解折装置を介して解折し粒子数の測定を行なう測定手段が例示さ れる。
また、 他の光学的測定手段と しては、 レ一ザ一, L E D , ハロゲ ンランプ等の光源と、 フォ トディテク タ一, C C D (ラインセンサ —含む) 等の受光系とを組み合わせた種々の測定手段が例示される。 この場合、 レーザー光等を用い反射率の変化等から直接粒子数を計 数 (カウン ト) するよ うに してもよ く、 あるいは着色による吸光度 や蛍光物質による蛍光強度等のよう に粒子数と相関する物理童を測 定し、 これを粒子数に換算して粒子数を求めてもよい (特願平 2— 2 7 0 9 0 0号参照) 。
なお、 光学的測定手段と不溶性担体粒子の粒径との関係について は、 第 1発明の説明で述べたことの他、 次のことがいえる。
光学顕微鏡と画像解析装置とを組み合わせた測定手段を用いる場 合には、 不溶性担体粒子の粒径は 0 . 2 μ m以上であることが好ま しい。 また、 電子顕微鏡を用いれば 0 . 2 μ in以下の不溶性担体粒 子も利用することができる。
上記の観点及び抗原一抗体の反応性からすると、 不溶性担体粒子 の粒径は 0 . 0 1 〜 1 0 mの範囲内であることが好ましい。
上記で計測した不溶性担体粒子の個数から抗原の濃度を求めるに は、 第 1発明と同様にあ らかじめ検量線を作成しておき、 この検量 線から、 抗原濃度を求めればよい。
この場合、 検羞線は、 抗体固定領域 A〜Dごとに作成される (し たがって検量線は四本作成される) 。 例えば、 抗原濃度既知の試料 であって抗原濃度が異なるものを 6種 ( 1 0— 2〜 1 0— 7 g Z m 1 ) 用意し、 この抗原濃度既知の 6種のそれぞれを各抗体固定領域 A〜 Dに作用させ、 上述したのと同様にして、 不溶性担体粒子の数を測 定して、 各抗体固定領域 A〜Dにおける抗原濃度と担体粒子の数と の関係を求める。 そして、 これらの関係を一つのグラフにプロッ ト - - して検量線 A, 〜: D' を作成する (図 8 ( a ) 参照) 。
次に、 図 8 ( a ) に示す検量線から未知濃度 (Ca) の抗原濃度 を求める方法を具体的に説明する。
例えば、 未知濃度 (Cs) の検体試料を各抗体固定領域 A〜Dに 作用させたとき、 抗体固定領域 A〜 Cにおいてラテックス数 a i, a 2, a sが計測されたとすると (Dでは検量線 D, の範囲外である ので計測されない) 、 図 8 ( a ) の各抗体固定領域についての検量 線 A, 〜C, によ り、 そのラテックス数に対応する濃度 Cal, Ca2, Ca3が求められる。 そして、 それらの平均値 Caが抗原濃度とされ る (図 8 ( b ) 参照) 。
同様に、 抗原濃度を未知濃度 (Ct ) とし、 各濃度領域 A〜Dに おけるラテックス数が b 1 (領域 C) , b 2 (領域 D) (A , B領域 ではラテック ス数が多すぎて有効測定領域外であ り ラテックス数は 得られない) であるとすると、 図 8 ( a ) の検量線 C, , D, よ り 濃度 Cw, Cb2が求められる。 そしてそれらの平均値 Cbが抗原濃 度とされる (図 8 ( c ) 参照) 。
図 8 ( a ) に示されたごと く固定抗体の濃度差によって検量線 A, 〜D, の位置が違うので、 1つの検量線ではカバ一できなかった ダ イナミ ック レンジが見掛け上拡大した形になる。
これにより、 従来行なっていた測定可能範囲になるまでの稀釈の 繰り返し操作が省略又は低減される。
また、 もし抗原濃度が図 8 ( a ) に示す Caの場合には、 A, B, Cエリアで捕捉されたラテックス数より各々濃度が求められる (図 8 ( b ) ) 。 この場合、 その値が予め決定されている測定可能領域 内にある測定値のみを有効測定値と し、 それらを平均することによ り 目的物質濃度が求められる (図 8 ( b ) ) 。 これにより従来の検 童線一つだけによるものよ り測定精度の向上が期待でぎる。 一般に、 S N (信号ノノ イズ) 比は測定回数の平方根に比例することが知 られているからである。 - - なお、 上述した第 1発明及び第 2発明の免疫学的定量分析方法に おいては、 説明の都合上、 ディ スク又は基板ノ抗体 Z抗原 抗体/ 不溶性担体粒子の構成となる場合を示したが、 代わり に、 ディスク 又は基板 抗原ノ抗体/抗原/不溶性担体粒子の構成と し、 抗体濃 度の定量を行なう ものと してもよい。
[実旌例]
以下、 実施例に基づき本発明をさ らに詳細に説明するが、 本発明 は下記実施例に限定されるものではない。
実施例 1
( 1 ) 抗体固定ディスクの作製
C一反応性蛋白質 (C R P) 抗体の ト リス綾衝食塩水 (T B S ) 溶液 (濃度 5. 0 6 X 1 0 -6 g 1 ) 5 l を、 半径 6. 5 c m の回転可能なポリ カーボネ一 トディ スクの半径 4 c mの地点に滴下 し、 ディ スクを回耘させて 3 0 . 0 mm2の薄膜状に均一に展開し た。 温室で 2時間放置した後、 T B S溶液 ( 0. 0 5 M, p H 8. 2) 2 0 0 μ 1 で 3回洗浄して抗体固定ディ スクを作成した。
( 2 ) 抗体固定不溶性担体粒子 (抗 C R Pラテッ ク ス) の作製 粒径 0. 2 μ πιの不溶性担体粒子 (ポリ スチ レンラテッ ク ス) を l w t %含むリン酸緩衝食塩水 (P B S ) ( p H 7. 4 ) 中に、 ヒ ト C R Pを兎に投与して得られた C R P抗体を入れ、 十分攪拌して ポリ スチレンラテック スに C R P抗体を固定 (感作) させた。 これ を遠心分離にかけた後、 上清を除き、 沈殿したラテックス粒子を P B Sに再分散させ、 抗体固定不溶性担体粒子 (抗 CR Pラテックス; を作製した。
(3 ) 検量線の作成
次いで、 検量線作成のため、 上記抗体固定ディ スク を図 3に示す 分析装置の回転テ一ブル上にセ ッ ト し、 T B Sで調製した C R P濃 度既知の標準試料 ( 1 . 0 X 1 0— 12g Zm l, 1 . 0 X 1 0 - /m 1 , 1 . 0 X 1 0— 9g Zm l, 1 . 0 X 1 0— 7g Zm l, - -
1. 0 X 1 0— SgZm l , 1 . 0 X 1 0— 5gZm l ) をこの抗体固 定ディスク上の抗体固定部に Ι Ο μ Ι滴下し、 3 0 で 5分間反応 させ、 抗体固定ディスク上に固定された抗体に抗原を捕捉させた。 その後、 抗体固定ディ スクを T B S (0. 0 5 Μ , ρ Η 8. 2 ) 20 0 A 1で 3回洗浄して残っている試料を除去した。
さ らに、 このディスク上に上記で作製した抗 CRPラテックスの P. B S溶液 (ラテックス粒子径 0. 2 /i m, 1 w t % ) 50 1 を、 ディスク半径 4 c mの地点に滴下し、 回転により展開して、 30 で 5分間インキュベーショ ンし、 その後 T B S (0. 05 M , p H 8. 2 ) 200 1で 3回洗浄して検量線作成のためのサンプルデ イスクを作製した。
その後、 ディスクを 1 8 00 r p m で回転させながら、 デイス ク上に捕捉されたラテックス粒子の個数を光学へッ ド 14 ( 83 0 n mの波長の半導体レ一ザ一を光源とする) で走査しながら計測し た。 この結果を表 1に示す。
また、 この結果をもとに抗原濃度とラテックス粒子の個数の関係 をグラフ化し、 図 9に示すよう な検量線を得た。
(4 ) 未知試料中の C R P濃度の定量
次に、 被検者から採血した血液を常法 (遠心分難) によって血清 分離し、 CR P濃度未知の試料を 3種類用意した。 各試料中の C R P濃度の定量を本発明方法及び従来法 (L I A法、 三菱化成社製免 疫検査装置 LPIA100M使用) の両方法で行なった。
なお、 本発明 法の手順は上述した検量線の作成の場合と同様で あり、 分折装置に装着した抗体固定ディ スク上に被検試料を滴下し て反応させ、 さ らにその上に抗 CR Pラテックスを 5 0 l滴下し て反応させた後、 デイ スク上に捕捉されたラテックス粒子の個数を 計測し、 この計測されたラテックス粒子の個数から、 図 9に示す検 量線にもとづき CRP濃度を求めた。 反応時間は 1 0分、 ラテック スは計測時間 5分、 合計 1 5分間であった。 上記両方法による C R P濃度の定量結果を表 2に示す。
実施例 2
不溶性担体粒子と して励起波長 5 6 0 n m , 蛍光波長 5 7 7 n m を有する蛍光物質を含有した粒径 0. 5 のポリ スチレンラテツ グスを用いたこと、 T B Sで調製した C R P濃度既知の標準試料の 濃度を 1 . 0 X 1 0一 I3 g m l , 1 . 0 X 10— g /m l ,
1 . 0 X 1 0 - 9g /m l , 1 . 0 X 1 0 - 7g Zm l , 1 . 0 X
1 0— 5g Zm l , 1. 0 X 1 0— 3 g Zm 1 と したこと、 及び図 3に 示す分折装置における光学的測定へッ ドを 5 6 0 n m付近の単色光 源及びフオ トディテク タ一とし、 図 5に示したようにして蛍光強度 からラテック ス粒子の個数を換算して検量線を作成したこと以外は, 実旖例 1 と同様に して、 上記 C RP濃度未知の検体の 1 0 0倍稀釈 (T B Sにて稀釈) 試料について C RP濃度の定量を行なった。 反 応時間は 1 0分、 ラテ ッ ク ス計測時間は 3分、 合計 1 3分間であ つた。
C R P濃度の比較結果を表 3 に示す。 また、 得られた検量線を図 1 0に示す。
抗原濃度 ! ラテッ クス数
( g Zm 1 ) : (個ノ 3 6 0 ii m2)
1 X 1 0 1 2 0 0
1 X 1 0 -11 1 4 6 0
1 1 0 -9 2 2 0 0
1 X 1 0 -7 2 8 9 0
1 X 1 0 -6 3 1 5 0
1 X 1 0 -5 3 3 6 0 - - 表 2
C R P濃度 ( n s /m l )
検体番号
本発明法 L I A法
1 3 1 9 3 2 0
2 5 1 54 0
3 2 1 0 2 1 0 表 3
Figure imgf000022_0001
表 2及び表 3から明らかなよう に ·、 本発明方法は従来法 ( L I A 法) に比べ、 0. 0 1 〜 0. 1 ( n gZm l ) のオーダーまで測定 でき、 感度が高く、 したがって 1 n g Zm 1 以下の極微量成分の定 量が可能となる。
また、 検査にかかる所要時間は、 従来法 (E I A法) が 1 〜 2時 間なのに対し、 本発明方法は 1 0分〜 3 0分であ り、 検査の高速度 化を実現しう る。
さ らに、 従来法 (L I A法, E I A法) は出力信号がアナログな のに対し、 本発明方法においては出力信号をデジタル化できるため - -
S N比の向上、 回路の簡便さという利点を有する。
実施例 3 : α —フエ トプロテイ ン (A F P ) の定量
( 1 ) ヒ ト A F Pを予め兎に投与して得られた A F P抗体 ( I g G) を従来法 (石川栄治 : 酵素免疫測定法, 第 3版, 医学書院 ; 小山次 郎, 大沢利眧著: 免疫学の基礎, 東京化学同人刊, P30〜P34参照) によ りペプシンで消化し、 I g Gの不変領域 F c部を除去して、 抗 原抗体反応形成部位である (F a b ' ) 2を得た (図 1 1参照) 。
( 2 ) 上記実施例と同様にチャ ンネルを設けた回転可能なポリカー ボネートディ スク上のチャンネノレ内の半径 3 . 5 c mめ地点、に ( F a b ' ) 2の T B S溶液 (濃度 2. 3 X l O -4g /m l ) 2 0 ^ 1 を滴下し、 3 0 の状態で 2時間静置して、 ディ スク上に抗体を感 作 (物理吸着) させた。 その後、 吸着されなかった抗体を T B S
2 0 O 1 で 3回洗浄し、 除去した。
( 3 ) B S A (牛血清アルブミ ン) 0. 5 %含有 T B S溶液 1 0 μ 1 を該抗体固定位置に滴下し、 4 °Cの状態で 2 4時間静置した。 その後、 界面活性剤である T w e e n 2 0 (ポリサイ エンス社製) を 0 . 1 %含有する T B S溶液 ( P H 8 . 2 ) 2 0 0 μ 1 で 3回洗 浄した。
(4 ) 一方、 読み取り使用光源である半導体レーザ一 (波長 7 8 0 n m ) の 6倍波長の大きさである 3 0 0 n m ( 0 . 3 μ m) のポリスチレンラテック スに上記 ( 1 ) で得た抗体を実施例 1 の如く抗体感作し、 感作ラテ ッ ク スを作製した (ラテッ ク ス濃度 : 0 . 2 5 w t % T B S溶液) 。
( 5 ) 検量線作成のため、 濃度既知の A F P抗原標準溶液 ( 1 . 0 X 1 0- 12g m l , 1 . 0 X 1 0 - 1口 g Zm l , 1 . 0 X 1 0 - 8 g /m 1 , 1 . 0 X 1 0— 6g m l , T B Sにより稀釈) 2 0 1 を デイ スク上の抗体固定部位に滴下し、 3 0 の状態で 5'分間静置し て抗原抗体反応させ、 ディ スク上の固定抗体によ り A F P抗原を捕 捉させた。 その後、 未反応の試料は実施例 1 と同様に T w e e n 2 0含有 T B S溶液 (T w e e n 20濃度 0. 1 %) 2 0 0 1で 3 回洗浄した。
( 6 ) 上記 (4) で調製した A F P抗体感作ラテック ス 20 1 を 該抗原捕捉部位に滴下し、 30での状態で 5分間静置して抗原抗体 反応させ、 該抗原にラテックス粒子を捕捉させた。 捕捉されずに残 つたラテックスは、 T w e e n 20含有 TB S溶液 200 μ 1で 3 回、 さらに蒸留水 50 0 1で洗浄し、 塩と共に除去し、 サンプル ディ スクを作製した。
( 7 ) その後、 サンプルディスクを 1 8 00 r p mで回転させ、 波 長 780 n mの半導体レーザーを光源と した図 3に示した光学へッ ド 14を走査させながらディ スク上に捕捉されたラテックス粒子の 個数を計剃した。 計測結果を表 4に示し、 これらの個数と A F P抗 原との関係をグラフ化した検量線を図 1 2に示す。
(8 ) 被検者から採血した血液を実施例 1同様に従来法で遠心分離 し、 血清を得た。 この血清 20 i を上記 ( 5) と同様に本発明法 によ り反応させ、 ラテックス粒子数を計数し検量線から濃度を検出 したところ、 0 · I n gZm l ( 1 X 1 0— iQgノ m 1 ) の結果を 得た。 従来の R I Aによ り測定したところほぼ同じ結果が得られた。 また、 従来の L I A法の三菱化成 LPIA100Mでは上記の被検試料は測 定出来なかった。
被検試料滴下からラテックス粒子假数計測までに要した時間は
1 5分であった。
表 4
Figure imgf000025_0001
卖施例 4 : CRP (C—反応性蛋白質) の定量
( 1 ) 抗体固定基板の作製
図 7 ( b ) に示すよう に、 縦 2 c m、 横 7 c mのポリ力一ボネ一 ト製プレー ト上に CR P抗原を兎に免疫させて得た C R P抗体を固 定させた。 抗体の固定には、 抗体濃度 1 X 1 0_3, 1 0— 4, 1 0一5, 1 0— sgZm lの TB S ( ト リ ス緩衝食塩水) 溶液 5 0 1 を、 1 c m 径の面積となるよう にそれぞれ上記の順番で領域 A〜Dに滴 下し、 3 0 °Cで 2時間静置して物理吸着させた。
その後、 吸着されなかった抗体を T B S ( p H 8. 2 ) 1 0 m l で洗浄し、 さ らに非特異吸着の防止のため、 ブロ ッキング剤 (ブロ ックエース : 雪印製) を用い 4 でー晚静置してブロ ッキング処理 を行なった。
T w e e n 20を 0. 0 5 w t %加えた ト リ ス緩衝食塩水 (以下 T B S - T w e e nという) 1 0 m l で残ったブロッキング剤を洗 浄し、 抗体固定基板と した。
(2 ) 検量線の作成
C R P抗原濃度既知の T B S溶液標準液 (例えば 1 . 0 X 1 0 - 3 g /m 1 ) 5 0 1 を基板上の抗体固定領域 A〜Dを全て覆うよう に広げた。 - -
3 0 で 5分間静置し、 抗原一抗体反応を行なわせた後、 上記 T B S - T w e e n 1 0 m 1 で未反応の抗原溶液を洗浄した。
予め C R P抗体を物理吸着により感作 (固定) した 0. 1 μ m φ の抗体感作ポリスチレンラテックス粒子を T B Sに分散させた分散 溶液 (ラテツクス濃度 : 0. 0 5 w t %) 5 0 1 を、 上記抗原溶 液と同様にして領域 A〜Dに広げた。
3 0 で 5分間静置し、 抗原—抗体反応により ラテックス粒子を 捕捉させた後、 上記 T B S— T w'e e n 1 0 m l によ り未反応のラ テックス溶液を洗浄した。
各領域 (A〜D) におけるラテックス粒子数を画像解析装置を接 続した日立製電子顕微鏡 S — 8 0 0でカウン トし、 各抗体固定領域.
(A〜D) の抗原 (濃度 1 . 0 X 1 0— 3 g m l ) に対するラテツ クス数と した。
同様に 1 . 0 X 1 0一4, 1. 0 Χ 1 0 _5, 1 . 0 X 1 0一7
1 · 0 X 1 0—9, 1 . 0 X 1 0— 11 g Zm 1 の C R P抗原濃度既知 の T B S標準溶液にて上記のごと く ラテックス粒子数をカウン ト し、 各領域 A〜Dの各抗原濃度に対するラテックス数とした。
上記各領域 A〜Dの各抗原濃度に対するラテツクス数は、 表 5に 示す通り になった。
これらの関係を 1つのグラフにプロ ッ ト したのが図 1 3である。 これを C R P抗原定量における検量線と した。
表 5
各抗体固定領域における杭原濃度とラテツクス粒子数の関係
抗 原 (g/ml) 領 域 杭体濃度
l.OxlQ- 1.0x10-" 1.0X10— 1.0X10" 1.0x10' 1.0X10" (名) (g/ml) ラ テ 、'ノ ク ス 数 (個/ 100μ·πι2 )
A 1.0x10一3 秦 340 420 1100 1870
B 1.0x10-" ■ - 330 780 1420 1780 1970
C 1.0X10一15 ▲― 410 940 1390 1580
D 1.0x10— 6 ♦ - 570 930 1250
- -
(3 ) 未知試料中の C RP濃度の定量
表 6に示したよう に、 被^者から採血した血液を常法 (遠心分雞 法) で血清分難し、 検体 1, , 3と した。
上記検体 1を T B Sによ り 5倍稀釈した溶液 5 0 /i lを、 上記検 量線作成法と同様に、 基板上の抗体固定領域 A〜D上に広げた。
3 OT:で 5分間静置、 反応させた後、 未反応の検体溶液は TB S 1 0 m l によ り洗浄、 除去した。
C R P抗体感作ラテックス分散溶液 ( 0. 05 w t %ZT B S溶 液) 50 1 を領域 A〜Dに広げて、 3 0 で 5分間静置、 反応さ せた。
抗原抗体反応により捕捉されなかったラテックス溶液を、 TB S — T w e e η 1 0 m 1 で洗浄、 除去した。
各エリアにおけるラチックス粒子数を電子顕微鏡観察によ りカウ ン ト し、 各エリアの検量線から検体 1の濃度を 540 (A) n g / m 1 , 5 38 (Β ) η g /m 1 , 5 34 (C) n gZm l と した。 なお、 Dエリアよ り得たラテックス数は測定可能領域外であ り、 こ れを無視した。 次いで、 これらの濃度の算術平均をと り、 540 η gZm l を検体 1の C R P濃度とした。
以下検体 2, 3も同様にして、 それぞれ 24. 8 μ g /m 1 , 3. 5 η g/m 1の C R Ρ濃度を得た。 この結果を表 6に示す。 比較例 1
従来法 (L I A法) で同検体 1〜 3を測定した。 この結果、 検体 1の〇 濃度は 5 3 8 11 gZm l、 検体 2の C RP濃度は 24 gZm l であ り、 検体 3の C R P濃度は測定不能であった。 この結 果を表 6に示す。
未知試 料 中 の C R P 濃度
Figure imgf000029_0001
1 )平 ^直をもって ^J^^CRP^ ^とした。
2 )≡ Mi LPI A- 100を^ fflした。 3) LPI A— 100用キットとして
CRP : 0. 2〜1 lnig/dl ¾ί¾¾Τ能を麵した。 CRP-H: 2〜500 ^gAUS ^能を棚した' 上述した第 2発明の免疫学的定量分析方法によれば、 測定可能な 濃度領域が異なる複数の抗体固定領域を設けているので、 各領域の 各検量線が重なり合って、 見掛け上のダイナミ ック レンジ (測定可 能域) が拡大し (個々の領域については、 ダイナミ ック レンジが拡 大しているわけではない) 、 実際上の測定可能な濃度領域が拡大す る。 したがって、 煩雑な稀釈操作を省略し、 あるいは稀釈回数を減 らすことができ、 これによつて、 検査時間の短縮及び検査のコス ト ダウンが図られる。 また、 一回の検体測定によって、 複数のデータ
(検出濃度) が得られるため、 検出精度が向上する。
[産業上の利用可能性]
第 1発明においては、 抗体固定基板として回転可能なディ スク を 使用するとともに、 抗体固定微粒子の計数を光ディスク技術を利用 して、 ディスクを回転させながら光へッ ドで走査して行なう ことに よって、 計数の自動化, 高速化及び高感度化が図れる。 そして、 デ イスクへの被検液の滴下 (分注) 、 被検液の展開及び洗浄等の分析 に必要な一連の操作をディ スク上で全て行なわせると、 分析の完全 自動化及び迅速化が達成できる。
したがって、 第 1発明の免疫学的定量分析方法によれば、 免疫学 的検査の測定濃度領域の拡大、 高感度化及び高速度化を図ることが できる。
また、 第 2発明においては、 測定可能な濃度領域が異なる複数の 抗体固定領域を設けているので、 各領域の各検量線が重なり合って、 見掛け上のダイ ミ ック レンジ (測定可能域) が拡大し (櫥々の領 域については、 ダイナミ ック レンジが拡大しているわけではない) 、 実際上の測定可能な濃度領域が拡大する。 このため、 煩雑な稀釈操 作を省略し、 あるいは稀釈回数を減らすことができ、 これによつて、 検査時間の短縮及び検査のコス トダウンが図られる。 また、 一回の 検体測定によって、 複数のデータ (検出濃度) が得られるため、 検 出精度が向上する。 - - したがって、 第 2発明の免疫学的定量分析方法によれば、 免疫学 的検査の測定可能な濃度領域の拡大、 稀釈操作回数の低減及び測定 精度の向上を図ることができる。

Claims

請 求 の 範 匪
1 . 回転可能なディスク上の半柽方向に形成した複数の流路のう ち 少なく とも 1つの流路の一部又は全面に抗体を固定し、 前記ディ ス クの回転又は滴下によ り体液をディ スク上に展開し、 体液中の分析 対象物である抗原を、 デイスク上に固定された抗体に抗原一抗体反 応により捕捉せしめた後、 さらに該抗原に、 その抗原と特異的に反 応する抗体を固定してなる不溶性.担体粒子を作用させ、 前記抗原に より捕捉された不溶性担体粒子の数を、 ディ スクの半径方向に移動 可能な光学読み取り装置を用いて、 ディ スクを回転させながら計数 することを特徴と した免疫学的定量分析方法。
2 . 回転可能なディスク上の半径方向に形成した複数の流路の少な く とも 1つの流路の一部に抗原を固定し、 前記ディスクの回転又は 滴下により体液をディスク上に展開し、 体液中の分析対象物である 抗体を、 固定された抗原との抗原一抗体反応によ り捕捉せしめた後, さらに該抗体に、 その抗体と特異的に反応する抗原を固定してなる 不溶性担体粒子を作用させ、 前記抗体により捕捉された不溶性担体 粒子の数を、 ディ スクの半径方向に移動可能な光学読み取り装置を 用いて、 ディ スクを回転させながら計数することを特徴とした免疫 学的定量分析方法。
3 . 光学読み取り装置の光源が収束レ一ザ一光源であることを特徴 とする請求項 1又は 2記載の免疫学的定量分析方法。
4 . 不溶性担体^子の粒子径を、 使用光源波長の 1 Z 5 〜 1倍の 大きさと したことを特徴とする請求頊 1, 2又は 3記載の免疫学的 定量分析方法。
5 . 不溶性担体粒子の粒子径を、 0 . 1〜 5 m の大きさとし たことを特徴とする請求項 1, 2又は 3記載の免疫学 ^定量分析方 法。
6 · ディ スク上に測定可能な濃度領域が異なる複数の抗体又は抗原 の固定領域を設けた請求項 1又は 2記載の免疫学的定量分析方法
7 . 固相 (基板) 上に測定可能な濃度領域が異なる筏数の抗体固定 領域を設け、 この抗体固定領域に該抗体と特異的に反応する抗原を 含む試料を作用させて抗原を抗原一抗体反応によ り捕捉せしめた後. さ らに該抗原と特異的に反応する抗体を固定してなる不溶性担体粒 子を作用させ、 前記抗原によつて捕捉された不溶性担体粒子の数又 は粒子数と相関する物理量を検出することによ り試料中の抗原濃度 を測定することを特徴と した免疫学的定量分析方法。
8 . 固相 (基板) 上に測定可能な濃度領域が異なる複数の抗原の固 定領域を設け、 この抗原の固定領域に該抗原と特異的に反応する抗 体を含む試料を作用させて抗体を抗原一抗体反応によ り捕捉せしめ た後、 さ らに該抗体と特異的に反応する抗原を固定してなる不溶性 担体粒子を作用させ、 前記抗体によって捕捉された不溶性担体粒子 の数又は粒子数と相関する物理量を検出することによ り試料中の抗 体濃度を測定することを特徴と した免疫学的定量分析方法。
9 . 濃度の異なる抗体, 抗原の溶液を用いて固相 (基板) 上の各領 域に抗体, 抗原を固定せしめて、 測定可能な濃度領域が異なる複数 の抗体, 抗原を固定した領域を固相上に形成することを特徴と した 請求項 7又は 8記載の免疫学的定量分析方法。
1 0 . 固相 (基板) が回転可能な円盤状である請求項 7, 8又は 9 記載の免疫学的定量分析方法。 .
1 1 . 不溶性担体粒子がラテッ クス粒子である請求項つ, 8, 9又 は 1 0記載の免疫学的定量分析方法。
PCT/JP1991/001373 1990-10-09 1991-10-09 Method of immunological quantitative analysis WO1992006379A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP27090090 1990-10-09
JP2/270900 1990-10-09
JP41699190A JPH04233462A (ja) 1990-12-28 1990-12-28 免疫学的定量分析方法
JP2/416991 1990-12-28
JP19878491A JPH055741A (ja) 1990-10-09 1991-07-12 免疫学的定量分析方法
JP3/198784 1991-07-12

Publications (1)

Publication Number Publication Date
WO1992006379A1 true WO1992006379A1 (en) 1992-04-16

Family

ID=27327543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001373 WO1992006379A1 (en) 1990-10-09 1991-10-09 Method of immunological quantitative analysis

Country Status (2)

Country Link
EP (1) EP0504432A4 (ja)
WO (1) WO1992006379A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413939A (en) * 1993-06-29 1995-05-09 First Medical, Inc. Solid-phase binding assay system for interferometrically measuring analytes bound to an active receptor
GB2525622A (en) * 2014-04-29 2015-11-04 Imp Innovations Ltd Optical analysis of fluid volumes under centrifugation

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479100B2 (ja) * 1993-06-02 2003-12-15 帝国臓器製薬株式会社 免疫化学的簡易半定量方法および装置
GB9418981D0 (en) 1994-09-21 1994-11-09 Univ Glasgow Apparatus and method for carrying out analysis of samples
US6327031B1 (en) 1998-09-18 2001-12-04 Burstein Technologies, Inc. Apparatus and semi-reflective optical system for carrying out analysis of samples
IL127938A (en) * 1996-07-08 2002-09-12 Burstein Lab Inc A device with a main signal fixed for diagnostic applications and a test method
AU4428497A (en) 1996-09-20 1998-04-14 James P. Demers Spatially addressable combinatorial chemical arrays in cd-rom format
DE19707226A1 (de) * 1997-02-24 1998-08-27 Bodenseewerk Perkin Elmer Co Lichtabtastvorrichtung
GB9708961D0 (en) * 1997-05-02 1997-06-25 Ringel Karl Peter Immunoassay
DE69838090T2 (de) * 1997-06-02 2008-03-20 Aurora Discovery Inc., San Diego Mehrgefässplatten mit kleiner störstrahlung für fluoreszenzmessungen von biologischen und biochemischen proben
EP1032820A4 (en) * 1997-11-12 2006-05-10 David B Goodman AUTONOMOUS DETERMINATION DEVICE AND METHOD
US7014815B1 (en) 1998-10-30 2006-03-21 Burstein Technologies, Inc. Trackable optical discs with concurrently readable nonoperational features
US6503359B2 (en) 1999-03-05 2003-01-07 Burstein Technologies, Inc. Monomolecular adhesion methods for manufacturing microfabricated multilaminate devices
US6888951B1 (en) 1999-08-23 2005-05-03 Nagaoka & Co., Ltd. Methods and apparatus for analyzing operational and analyte data acquired from optical disc
WO2001035098A1 (fr) * 1999-11-05 2001-05-17 Takara Shuzo Co., Ltd Bases sur lesquelles sont immobilises des ligands
EP1410044A2 (en) 2000-11-08 2004-04-21 Burstein Technologies, Inc. Interactive system for analyzing biological samples and processing related information and the use thereof
WO2002042498A2 (en) * 2000-11-27 2002-05-30 Burstein Technologies, Inc. Dual bead assays including optical biodiscs and methods relating thereto
WO2002046761A2 (en) 2000-12-08 2002-06-13 Burstein Technologies, Inc. Methods for detecting analytes using optical discs and optical disc readers
US6760298B2 (en) 2000-12-08 2004-07-06 Nagaoka & Co., Ltd. Multiple data layer optical discs for detecting analytes
US7054258B2 (en) 2000-12-08 2006-05-30 Nagaoka & Co., Ltd. Optical disc assemblies for performing assays
WO2002046721A2 (en) 2000-12-08 2002-06-13 Burstein Technologies, Inc. Optical discs for measuring analytes
US7091034B2 (en) 2000-12-15 2006-08-15 Burstein Technologies, Inc. Detection system for disk-based laboratory and improved optical bio-disc including same
WO2002068697A2 (en) * 2001-02-28 2002-09-06 Burstein Technologies, Inc. Methods for decreasing non-specific binding of beads in dual bead assays including related optical biodiscs and disc drive systems
WO2003087827A2 (en) 2001-04-11 2003-10-23 Burstein Technologies, Inc. Multi-parameter assays including analysis discs and methods relating thereto
US7141416B2 (en) 2001-07-12 2006-11-28 Burstein Technologies, Inc. Multi-purpose optical analysis optical bio-disc for conducting assays and various reporting agents for use therewith
JP2005502872A (ja) * 2001-09-07 2005-01-27 バースタイン テクノロジーズ,インコーポレイティド 光バイオディスクシステムを使用した、核の形態に基づく白血球の型の識別および定量
JP4151483B2 (ja) * 2003-06-10 2008-09-17 ソニー株式会社 バイオアッセイ用基板並びにバイオアッセイ装置及び方法
JP2005257337A (ja) 2004-03-09 2005-09-22 Brother Ind Ltd 検査対象受体、検査装置、及び検査方法
US20090181359A1 (en) * 2007-10-25 2009-07-16 Lou Sheng C Method of performing ultra-sensitive immunoassays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151357A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Immunoassay method
JPS59125063A (ja) * 1983-01-05 1984-07-19 オ−ソ・ダイアグノステイツク・システムズ・インコ−ポレ−テツド 可溶性抗原および細胞表面の抗原の検出するパタ−ンを用いる免疫検定法
JPH02232563A (ja) * 1989-03-07 1990-09-14 Idemitsu Petrochem Co Ltd 液体試料の分析方法およびその装置
JPH02269938A (ja) * 1989-04-11 1990-11-05 Idemitsu Petrochem Co Ltd 分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151357A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Immunoassay method
JPS59125063A (ja) * 1983-01-05 1984-07-19 オ−ソ・ダイアグノステイツク・システムズ・インコ−ポレ−テツド 可溶性抗原および細胞表面の抗原の検出するパタ−ンを用いる免疫検定法
JPH02232563A (ja) * 1989-03-07 1990-09-14 Idemitsu Petrochem Co Ltd 液体試料の分析方法およびその装置
JPH02269938A (ja) * 1989-04-11 1990-11-05 Idemitsu Petrochem Co Ltd 分析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413939A (en) * 1993-06-29 1995-05-09 First Medical, Inc. Solid-phase binding assay system for interferometrically measuring analytes bound to an active receptor
GB2525622A (en) * 2014-04-29 2015-11-04 Imp Innovations Ltd Optical analysis of fluid volumes under centrifugation

Also Published As

Publication number Publication date
EP0504432A4 (en) 1993-05-05
EP0504432A1 (en) 1992-09-23

Similar Documents

Publication Publication Date Title
WO1992006379A1 (en) Method of immunological quantitative analysis
US5132097A (en) Apparatus for analysis of specific binding complexes
EP0411907B1 (en) Total internal reflectance apparatus using scattered light.
US7691648B2 (en) Target substance detecting element, target substance detection apparatus and target substance detection method
AU604830B2 (en) Diffraction immunoassay and reagents
JP2011509404A (ja) 糖化ヘモグロビンの定量的測定のためのシステムおよびこれを用いた糖化ヘモグロビン含有量の測定方法
JPS5855758A (ja) 生物学的成分を測定する方法、手段および装置
JPH01282447A (ja) 散乱された全内部反射による免疫定量系
JPH055741A (ja) 免疫学的定量分析方法
JPH0545361A (ja) 液体試料の分析方法及び該方法に用いる液体試料分析用基板
Severs et al. An immunosensor for syphilis screening based on surface plasmon resonance
US20130302907A1 (en) Method of assaying antigen and reagent therefor
JP2006292410A (ja) 分析装置およびそれに使用する分析デバイス
Tsay et al. Optical biosensor assay (OBA)
US4213764A (en) Method for determining immunochemical substances
JP2572829B2 (ja) 導波管センサー
JP2591750B2 (ja) 免疫分析システム
JP2002131319A (ja) 炎症マーカ用蛋白の測定方法
JP2007017310A (ja) 分析装置
JPH0580052A (ja) 生体内物質の測定装置及び測定方法
JP2000258418A (ja) 免疫クロマトグラフィーを用いた測定方法およびそれに用いる検体分析用具
JPH04233462A (ja) 免疫学的定量分析方法
US6168921B1 (en) Method for the quantitative and/or qualitative determination of atoms or molecules
JPH0552847A (ja) 免疫学的定量分析方法
JPH08500667A (ja) 分光学を用いて同一表面上の多数の免疫複合体を測定する方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991917698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991917698

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991917698

Country of ref document: EP