WO1992001032A1 - Dispersants sans cendres - Google Patents

Dispersants sans cendres Download PDF

Info

Publication number
WO1992001032A1
WO1992001032A1 PCT/US1991/004621 US9104621W WO9201032A1 WO 1992001032 A1 WO1992001032 A1 WO 1992001032A1 US 9104621 W US9104621 W US 9104621W WO 9201032 A1 WO9201032 A1 WO 9201032A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
dispersant
reaction
reactant
process according
Prior art date
Application number
PCT/US1991/004621
Other languages
English (en)
Inventor
Antonio Gutierrez
Robert Dean Lundberg
Robert Arthur Kleist
Original Assignee
Exxon Chemical Patents Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc. filed Critical Exxon Chemical Patents Inc.
Publication of WO1992001032A1 publication Critical patent/WO1992001032A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/92Carboxylic acids
    • C10M129/93Carboxylic acids having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • C10M149/22Polyamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/068Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings having amino groups bound to polycyclic aromatic ring systems, i.e. systems with three or more condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • This invention relates to improved nitrogen-containing dispersants useful in lubricating oils and fuels.
  • Polyisobutenyl succinimides prepared from the reaction of polyisobutenyl succinic anhydride and ethylene polyamines (e.g., tetraethylene pentamine) are widely used in commercial lubricating oils as dispersants and have also been suggested for use in fuels as dispersants.
  • ethylene polyamines e.g., tetraethylene pentamine
  • improved dispersants comprise adducts of (A) polymer-substituted mono- and dicarboxylic acid or anhydrides and (B) bis (para-amino cyclohexyl) methane oligomers.
  • the preferred dispersants comprise adducts of polyisobutenyl-substituted succinic acid or anhydride and bis (para-amino cyclohexyl) methane oligomers.
  • the dispersants of the present invention exhibit improved dispersing properties compared to conventional polyisobutenyl succinimide dispersants, as illustrated by reduced sludge and/or varnish deposits on engine parts.
  • the dispersants of this invention can also provide enhanced resistance to degradation of fluoroelastomeric engine seals in use of these dispersants in cran case lubricating oils for internal combustion engines (e.g., gasoline engines, diesel engines, methanol-containing fueled engines , etc . ) .
  • the present invention provides improved dispersants which comprise adducts of (A) polymer-substituted mono- and dicarboxylic acid or anhydrides and (B) bis (para-amino cyclohexyl) methane oligomers.
  • the long chain hydrocarbyl polymer-substituted mono- or dicarboxylic acid material i.e., acid, anhydride or acid ester used in this invention, includes the reaction product of a long chain hydrocarbon polymer, generally a polyolefin, with a monounsaturated carboxylic reactant comprising at least one member selected from the group consisting of (i) monounsaturated C 4 to c 10 dicarboxylic acid (preferably wherein (a) the carboxyl groups are vicinyl, (i.e.
  • the monounsaturation of the monounsaturated carboxylic reactant becomes saturated.
  • maleic anhydride becomes a polymer substituted succinic anhydride
  • acrylic acid becomes a polymer substituted propionic acid.
  • the reaction mixture will contain non-acid substituted polymer.
  • the polymer-substituted mono- or dicarboxylic acid material also referred to herein as "functionalized” polymer or polyolefin
  • non-acid substituted polyolefin and any other polymeric by-products, e.g. chlorinated polyolefin, (also referred to herein as "unfunctionalized” polymer) are collectively referred to herein as "product residue" or ••product mixture”.
  • the non-acid substituted polymer is typically not removed from the reaction mixture (because such removal is difficult and would be commercially infeasible) and the product mixture, stripped of any monounsaturated carboxylic reactant is employed for further reaction with the a ine or alcohol as described hereinafter to make the dispersant.
  • Characterization of the average number of moles of monounsaturated carboxylic reactant which have reacted per mole of polymer charged to the reaction (whether it has undergone reaction or not) is defined herein as functionality. Said functionality is based upon (i) determination of the saponification number of the resulting product mixture using potassium hydroxide; and (ii) the number average molecular weight of the polymer charged, using techniques well known in the art. Functionality is defined solely with reference to the resulting product mixture. Although the amount of said reacted polymer contained in the resulting product mixture can be subsequently modified, i.e. increased or decreased by techniques known in the art, such modifications do not alter functionality as defined above.
  • the terms "polymer substituted monocarboxylic acid material” and “polymer substituted dicarboxylic acid material” as used herein are intended to refer to the product mixture whether it has undergone such modification or not.
  • the functionality of the polymer substituted mono- and dicarboxylic acid material will be typically at least about 0.5, preferably at least about 0.8, and most preferably at least about 0.9 and will vary typically from about 0.5 to about 2.8 (e.g., 0.6 to 2), preferably from about 0.8 to about 1.4, and most preferably from about 0.9 to about 1.3.
  • Such monounsaturated carboxylic reactants are fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., C 1 to C 4 alkyl) acid esters of the foregoing, e.g., methyl maleate, ethyl fumarate, methyl fumarate, etc.
  • lower alkyl e.g., C 1 to C 4 alkyl
  • Preferred olefin polymers for reaction with the monounsaturated carboxylic reactants to form reactant A are polymers comprising a major molar amount of C 2 to C 10 , e.g., C 0 to C 5 monoolefin.
  • Such olefins include ethylene, propylene, butylene, isobutylene, pentene, octene-1, styrene, etc.
  • the polymers can be homopolymers such as poly isobutylene, as well as copolymers of two or more of such olefins such as copolymers of: ethylene and propylene; butylene and isobutylene; propylene and isobutylene; etc.
  • Mixtures of polymers prepared by polymerization of mixtures of isobutylene, butene-1 and butene-2, e.g., polyisobutylene wherein up to about 40% of the monomer units are derived from butene-1 and butene-2, is an exemplary, and preferred, olefin polymer.
  • Preferred are polyisobutenes as described in U.S. Patent 4,935,576 (the disclosure of which is hereby incorporated by reference in its entirety) prepared as described therein.
  • copolymers include those in which a minor molar amount of the copolymer monomers, e.g., 1 to 10 mole %, is a C 4 to C 18 non-conjugated diolefin, e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4-hexadiene; etc.
  • a minor molar amount of the copolymer monomers e.g., 1 to 10 mole %
  • a C 4 to C 18 non-conjugated diolefin e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4-hexadiene; etc.
  • the olefin polymer may be com ⁇ pletely saturated, for example an ethylene-propylene copolymer made by a Ziegler-Natta synthesis using hydrogen as a moderator to control molecular weight.
  • ethylene alpha-olefin copolymers having terminal unsaturation as described in U.S. Patent 4,668,834, the disclosure of which is hereby incorporated by reference in its entirety.
  • the olefin polymers used in the formation of reactant A will have number average molecular weights within the range of about 300 to 10,000, generally from about 700 and about 5,000, preferably from about 1000 to 4,000, more preferably from about 1300 and about 3,000.
  • Particularly useful olefin polymers have number average molecular weights within the range of about 1500 and about 3000, preferably with approximately one double bond (most preferably terminal double bond) per polymer chain.
  • An especially useful starting material for highly potent dispersant additives useful in accordance with this invention is poly isobutylene, wherein up to about 40% of the monomer units are derived from butene-1 and/or butene-2. The number average molecular weight for such polymers can be determined by several known techniques.
  • GPC gel permeation chromatography
  • the olefin polymers will generally have a molecular weight distribution (the ratio of the weight average molecular weight to number average molecular weight, i.e. fl w /fl n ) of from about 1.0 to 4.5, and more typically from about 1.5 to 3.0.
  • the polymer can be reacted with the monounsaturated carboxylic reactant by a variety of methods.
  • the polymer can be first halogenated, chlorinated or brominated to about 1 to 8 wt.%, preferably 3 to 7 wt. % chlorine, or bromine, based on the weight of polymer, by passing the chlorine or bromine through the polymer at a temperature of 60 to 250'C, preferably 110 to 160*C, e.g. 120 to 140 * C, for about 0.5 to 10, preferably 1 to 7 hours.
  • the halogenated polymer may then be reacted with sufficient monounsaturated carboxylic reactant at 100 to 250 * C, usually about 180 * to 235*C, for about 0.5 to 10, e.g.
  • the polymer and the monounsaturated carboxylic reactant can be contacted at elevated temperature to cause a thermal "ene” reaction to take place.
  • Thermal "ene” reactions have been heretofore described in U.S. Patents 3,361,673 and 3,401,118, the disclosures of which are hereby incorporated by reference in their entirety.
  • the polymers used in this invention contain less than 5 wt%, more preferably less than 2 wt%, and most preferably less than 1 wt% of a polymer fraction comprising polymer molecules having a molecular weight of less than about 300, as determined by high temperature gel premeation chromatography employing the corresponding polymer calibration curve.
  • Such preferred polymers have been found to permit the preparation of reaction products, particularly when employing maleic anhydride as the unsaturated acid reactant, with decreased sediment.
  • the polymer produced as described above contains greater than about 5 wt% of such a low molecular weight polymer fraction
  • the polymer can be first treated by conventional means to remove the low molecular weight fraction to the desired level prior to initiating the ene reaction, and preferably prior to contacting the polymer with the selected unsaturated carboxylic reactant(s).
  • the polymer can be heated, preferably with inert gas (e.g., nitrogen) stripping, at elevated temperature under a reduced pressure to volatilize the low molecular weight polymer components which can then be removed from the heat treatment vessel.
  • inert gas e.g., nitrogen
  • the precise temperature, pressure and time for such heat treatment can vary widely depending on such factors as as the polymer number average molecular weight, the amount of the low molecular weight fraction to be removed, the particular monomers employed and other factors. Generally, a temperature of from about 60 to 100 * C and a pressure of from about 0. 1 to 0.9 atmospheres and a time of from about 0.5 to 20 hours (e.g. , 2 to 8 hours) will be sufficient.
  • the selected polymer and monounsaturated carboxylic reactant and halogen e.g. , chlorine gas
  • the polymer and monounsaturated carboxylic reactant will be contacted in a unsaturated carboxylic reactant to polymer mole ratio usually from about 0.7 : 1 to 4 : 1, and preferably from about 1: 1 to 2 : 1, at an elevated temperature, generally from about 120 to 260*C, preferably from about 160 to 240 "C.
  • the mole ratio of halogen to monounsaturated carboxylic reactant charged will also vary and will generally range from about 0.5 : 1 to 4 : 1, and more typically from about 0.7 : 1 to 2 : 1 (e.g. , from about 0.9 to 1.4 : 1) .
  • the reaction will be generally carried out, with stirring for a time of from about 1 to 20 hours, preferably from about 2 to 6 hours.
  • halogen about 65 to 95 wt. % of the polyolefin, e.g. , polyisobutylene will normally react with the monounsaturated carboxylic acid reactant .
  • -then usually only about 50 to 75 wt. % of the polyisobutylene will react .
  • Chlorination helps increase the reactivity.
  • the aforesaid functional ity ratios of mono- or dicarboxyl ic acid producing units to polyolefin, e.g. , 1.1 to 1.8 , etc. are based upon the total amount of polyolefin, that is, the total of both the reacted and unreacted polyolefin, used to make the product.
  • the reaction is preferably conducted in the substantial absence of 0 2 and water (to avoid competing side reactions) , and to this end can be conducted in an atmosphere of dry N 2 gas or other gas inert under the reaction conditions.
  • the reactants can be charged separately or together as a mixture to the reaction zone, and the reaction can be carried out continuously, semi-continuously or batchwise.
  • the reaction can be carried out in the presence of a liquid diluent or solvent, e.g., a hydrocarbon diluent such as mineral lubricating oil, toluene, xylene, dichlorobenzene and the like.
  • the polymer substituted mono- or dicarboxylic acid material thus formed can be recovered from the liquid reaction mixture, e.g., after stripping the reaction mixture, if desired, with an inert gas such as N 2 to remove unreacted unsaturated carboxylic reactant.
  • a catalyst or promoter for reaction of the olefin polymer and monounsaturated carboxylic reactant can be employed in the reaction zone.
  • halogen e.g., chlorine
  • Such catalyst of promoters include alkoxides of Ti, Zr, V and Al, and nickel salts (e.g., Ni acetoacetonate and Ni iodide) which catalysts or promoters will be generally employed in an amount of from about 1 to 5,000 ppm by weight, based on the mass of the reaction medium.
  • the PACM oligomer materials employed in this invention comprise bis(p-amino cyclohexyl) methane (PACM) in admixture with isomers thereof and analogues thereof containing, on average, from 2 to 6 or higher (usually 3 to 4) cyclohexyl rings per PACM oligomer molecule.
  • PAM bis(p-amino cyclohexyl) methane
  • the PACM structure can be represented by the formula:
  • x and y are the same or different and are integers of from 0 to 4, and preferably from 0 to 2, and wherein the sum of x + y is from 1 to 4, preferably from 1 to 2.
  • the total nitrogen content of the PACM oligomers will comprise generally from 8 to 16 wt.%, and preferably from 10 to 14 wt.%.
  • the PACM oligomers can be obtained, e.g., by fractionation, or distillation, as a heavies by-product or bottoms from the PACM-containing product produced by high pressure catalytic hydrogenation of methylenedianiline.
  • the hydrogenation of methylene dianiline and the separation of PACM oligomers from the resulting hydrogenation product can be accomplished by known means, including the processes disclosed in U.S. Patents 2,511,028; 2,606,924; 2,606,925; 2,606,928; 3,914,307; 3,959,374; 4,293,687; 4,394,523, 4,448,995 and 4,754,070, the disclosures of which are incorporated herein by reference in their entirety.
  • Bis(p-aminocyclohexyl)methane in admixture with isomers thereof and analogs thereof containing three and four rings with either (1) an aliphatic hydrocarbon-substituted succinic anhydride or (2) an admixture of an aliphatic hydrocarbon-substituted phenol, formaldehyde and a fatty acid, such as oleic acid.
  • This complex bis(primary amine) composition usually contains small amounts of methylene bis-aniline as well. These bis(primary amine) compositions are free from secondary amines and are available in solvent solution as PACM bottoms.
  • compositions typically contain (by weight) about 16-23% bis (p-aminocyclohexyl)methane, and in addition, about 1-5% methylene bis-aniline, about 4-13% of isomers of bis(p-aminocyclohexyl)methane, and about 48-62% of analogs of bis(p-aminocyclohexyl)methane containing three and four rings.
  • These complex compositions are commercially available from Air Products Company as PACM bottoms.
  • the PACM oligomers charged to the reaction zone of this invention are preferably substantially free of polar organic solvents (such as tetrahydrofuran, methanol, ethanol, butanol, ethylene glycol, dioxane, isopropanol, and the like) to avoid competing side reactions with those solvents (e.g., alcohols) which are reactive with the selected reactant (A) and to minimize the costs of, and waste streams generated in, the removal of polar solvents from the dispersant products of this invention.
  • the PACM oligomers charged to the reaction zone for reaction with reactant (A) contains not more than about 1 wt.% of polar organic solvents. If the PACM oligomer contain excess organic polar solvents, the solvents can be removed by distillation (e.g., under reduced pressure), inert gas stripping (e.g., N ) , and the like.
  • PACM oligomers freed of such polar organic solvents can be readily handled by use of elevated temperatures (e.g., from above about 50 * C) or by dilution in non-polar organic solvents, such as mineral oils, and the like.
  • elevated temperatures e.g., from above about 50 * C
  • non-polar organic solvents such as mineral oils, and the like.
  • the selected PACM oligomers are readily reacted with the selected polymer substituted mono- or dicarboxylic acid material, e.g. alkenyl succinic anhydride, by heating an oil solution containing 5 to 95 wt. % of the polymer substituted dicarboxylic acid material to about 100 to 250'C, preferably 125 to 175'C, generally for 1 to 10, e.g., 2 to 6 hours, until the desired amount of water is removed.
  • the heating is preferably carried out to favor formation of imides and/or amides, rather than salts.
  • the polymer substituted mono- or dicarboxylic acid producing material and PACM oligo er will be contacted for a time and under conditions sufficient to form an adduct having within its structure, on average, at least 0.5 (e.g., from 0.5 to 20), and preferably at least 1 (e.g., from 1 to 15) reactive amine group (i.e., primary and/or secondary amino groups) per molecule.
  • the progress of this reaction can be followed by infra-red analysis.
  • the reactants should generally be contacted for reaction in a reaction zone in the substantial absence of a polar solvent (preferably in a reaction zone containing not greater than 1 wt.% polar solvent, based on the amount of reactant (B) charged to the reaction zone.
  • a polar solvent preferably in a reaction zone containing not greater than 1 wt.% polar solvent, based on the amount of reactant (B) charged to the reaction zone.
  • the reaction can be conducted in a batchwise, semicontinuous or continuous manner, in one or more separate reaction vessels, which can comprise any of the conventional vessels employed for dispersant forming processes (e.g., stirred reactors).
  • the reaction will be conducted under N 2 or another inert gas to avoid oxidation of the reactants due to the presence of 0 2 containing gas (e.g., air).
  • Inert gas sparging of the reaction mass can be employed continuously or semi-continuously to remove water of reaction from the product mixture.
  • the dispersant-forming reaction is preferably conducted in a non-polar solvent (e.g., xylene, toluene, benzene and the like) , and is preferably conducted in the presence of a mineral or synthetic lubricating oil.
  • a non-polar solvent e.g., xylene, toluene, benzene and the like
  • the nitrogen-containing dispersant materials of the instant invention as described above are post-treated by contacting said nitrogen-containing dispersant materials with one or more post-treating reagents selected from the group consisting of boron oxide, boron oxide hydrate, boron halides, boron acids, esters of boron acids, carbon disulfide, sulfur, sulfur chlorides, alkenyl cyanides, aldehydes, ketones, urea, thio-urea, guanidine, dicyanodiamide, hydrocarbyl phosphates, hydrocarbyl phosphites, hydrocarbyl thiophosphates, hydrocarbyl thiophosphites , C ⁇ - to C 30 hydrocarbyl substituted succinic acids and anhydrides (e.g., succinic anhydride, dodecyl succinic anhydride and the like) , maleic anhydride (or any of the above discussed monounsaturated carboxylic reactants (A) useful in this invention
  • the nitrogen containing dispersants can be treated with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids and esters of boron acids in an amount to provide from about 0.1 atomic proportion of boron for each mole of said nitrogen composition to about 20 atomic proportions of boron for each atomic proportion of nitrogen of said nitrogen composition.
  • a boron compound selected from the class consisting of boron oxide, boron halides, boron acids and esters of boron acids in an amount to provide from about 0.1 atomic proportion of boron for each mole of said nitrogen composition to about 20 atomic proportions of boron for each atomic proportion of nitrogen of said nitrogen composition.
  • the borated dispersants of the invention contain from about 0.05 to 2.0 wt.%, e.g., 0.05 to 0.7 wt.% boron based on the total weight of said borated nitrogen-containing dispersant compound.
  • the boron which appears to be in the product as dehydrated boric acid polymers (primarily (HB0 2 ) 3 ), is believed to attach to the dispersant as amine salts, e.g., the etaborate salt of said amine dispersants.
  • Treating is readily carried out by adding from about 0.05 to 4, e.g., 1 to 3 wt.% (based on the weight of said nitrogen compound) of said boron compound, preferably boric acid which is most usually added as a slurry to said nitrogen compound and heating with stirring at from about 135'C. to 190, e.g., 140-170'C, for from 1 to 5 hours followed by nitrogen stripping at said temperature ranges.
  • the boron treatment can be carried out by adding boric acid to the hot reaction mixture of the dicarboxylic acid material and amine while removing water.
  • the nitrogen containing dispersant materials of this invention can also be treated with polymerizable lactones (such as epsilon-caprolactone) to form dispersant adducts having the moiety -[C(O) (CH 2 ) 2 0] m H, wherein z is a number of from 4 to 8 (e.g., 5 to 7) and m has an average value of from about 0 to 100 (e.g., 0.2 to 20).
  • polymerizable lactones such as epsilon-caprolactone
  • the dispersants of this invention can be post-treated with a C 5 to C 9 lactone, e.g., epsilon-caprolactone, by heating a mixture of the dispersant material and lactone in a reaction vessel in the absence of a solvent at a temperature of about 50*C to about 200'C, more preferably from about 75*C to about 180*C, and most preferably from about 90*C to about 160'C, for a sufficient period of time to effect reaction.
  • a solvent for the lactone, dispersant material and/or the resulting adduct may be employed to control viscosity and/or the reaction rates.
  • the C 5 to C g lactone e.g., epsilon-caprolactone
  • a dispersant material in a 1:1 mole ratio of lactone to dispersant material.
  • the ration of lactone to dispersant material may vary considerably as a means of controlling the length of the sequence of the lactone units in the adduct.
  • the mole ratio of the lactone to the dispersant material may vary from about 10:1 to about 0.1:1, more preferably from about 5:1 to about 0.2:1, and most preferably from about 2:1 to about 0.4:1.
  • Catalysts useful in the promotion of the lactone-dispersant material reactions are selected from the group consisting of stannous octanoate, stannous hexanoate, tetrabutyl titanate, a variety of organic based acid catalysts and amine catalysts, as described on page 266, and forward, in a book chapter authored by R.D. Lundberg and E. F. Cox, entitled “Kinetics and Mechanisms of Polymerization: Ring Opening Polymerization", edited by Frisch and Reegen, published by Marcel Dekker in 1969, wherein stannous octanoate is an especially preferred catalyst.
  • the catalyst is added to the reaction mixture at a concentration level of about 50 to about 10,000 parts per weight of catalyst per one million parts of the total reaction mixture.
  • adducts formed by reaction of dispersant materials if this invention and epsilon- caprolactone are those adducts illustrated by the following equation:
  • metal complexes of the novel dispersant additives prepared in accordance with this invention may be formed in accordance with known techniques of employing a reactive metal ion species during or after the formation of the present dispersant materials.
  • Complex forming metal reactants include the metal nitrates, thiocyanates, halides, carboxylates, phosphates, thio-phosphates, sulfates, and borates of transition metals such as iron, cobalt, nickel, copper, chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like.
  • transition metals such as iron, cobalt, nickel, copper, chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like.
  • Prior art disclosures of these complexing reactions may be also found in U.S.
  • the dispersants of the present invention can be incorporated into a lubricating oil (or a fuel in any convenient way.
  • these mixtures can be added directly to the lubricating oil (or fuel ) by dispersing or dissolving the same in the lubricating oil (or fuel) at the desired level of concentration of the dispersant.
  • Such blending into the additional lubricating oil (or fuel) can occur at room temperature or elevated temperatures .
  • the dispersants can be blended with a suitable oil-soluble solvent/diluent (such as benzene, xylene , toluene , lubricating base oils and petroleum distillates , including the various normally liquid fuels described in detail below) to form a concentrate, and then blending the concentrate with a lubricating oil (or fuel) to obta in the final formulation .
  • a suitable oil-soluble solvent/diluent such as benzene, xylene , toluene , lubricating base oils and petroleum distillates , including the various normally liquid fuels described in detail below
  • a suitable oil-soluble solvent/diluent such as benzene, xylene , toluene , lubricating base oils and petroleum distillates , including the various normally liquid fuels described in detail below
  • a lubricating oil (or fuel) to obta in the final formulation .
  • Such dispersant concentrates will typically contain ( on an
  • oil-soluble additives of the present invention possess very good dispersant and antioxidant properties as measured herein in a wide variety of environments.
  • non-hydrocarbonaceous materials such as alcohols, ethers, organo-nitro compounds and the like (e.g., methanol, ethanol, diethyl ether, methyl ethyl ether, nitromethane) are also within the scope of the invention.
  • Such materials can be mixed with the hydrocarbon fuel in varying amounts of up to about 10-20% or more.
  • alcohols such as methanol, ethanol, propanol and butanol, and mixtures of such alcohols are included in commercial fuels in amounts of up to about 10%.
  • liquid fuels derived from vegetable or mineral sources such as corn, alfalfa, shale and coal. Normally liquid fuels which are mixtures of one or more hydrocarbonaceous fuels and one or more non-hydrocarbonaceous materials are also contemplated.
  • the fuel compositions of this invention can contain, in addition to the products of this invention, other additives which are well known to those of skill in the art.
  • additives which are well known to those of skill in the art.
  • anti-knock agents such as tetraalkyl lead compounds , lead scavengers such as haloalkanes , deposit preventers or modifiers such as triaryl phosphates, dyes, cetane improvers, antioxidants such as 2 , 6 -ditertsammlungy-butyl-4 -methylphenol , rust inhibitors , bacteriostatic agents, gum inhibitors, metal deactivators, upper cylinder lubricants and the like.
  • anti-knock agents such as tetraalkyl lead compounds
  • lead scavengers such as haloalkanes
  • deposit preventers or modifiers such as triaryl phosphates, dyes, cetane improvers, antioxidants such as 2 , 6 -ditertsammlungy-buty
  • the additives of the present invention find their primary utility in lubricating oil compositions which employ a base oil in which the additives are dissolved or dispersed.
  • base oils may be natural or synthetic.
  • Base oils suitable for use in preparing the lubricating oil compositions of the present invention include those conventionally employed as crankcase lubricating oils for spark- ignited and compression-ignited internal combustion engines, such as automobile and truck engines, marine and railroad diesel engines, and the like .
  • Advantageous results are also achieved by employing the additives of the present invention in base oils conventionally employed in and/or adapted for use as power transmitting fluids , universal tractor fluids and hydraulic fluids, heavy duty hydraulic fluids, power steering fluids and the like.
  • Gear lubricants , industr ia l o i l s , pump oils and other lubricating oil compositions can also benefit from the incorporation therein of the additives of the present invention.
  • lubricating oil formulations conventionally contain several different types of additives that will supply the characteristics that are required in the formulations.
  • additives include scos ity index improvers , antioxidants , corrosion inhibitors , detergents , dispersants (especially ashless dispersants such as polyisobutylene succinimides and borated derivatives thereof) , pour point depressants , antiwear agents, friction modifiers, etc. as described in U. S. Patent 4,797,219, the disclosure of which is hereby incorporated by reference in its entirety.
  • Some of these numerous additives can provide a multiplicity of effects, " e.g., a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.
  • the additives in the form of 10 to 80 wt. %, e.g., 20 to 80 wt. % active ingredient concentrates in hydrocarbon oil, e.g. mineral lubricating oil, or other suitable solvent.
  • hydrocarbon oil e.g. mineral lubricating oil, or other suitable solvent.
  • these concentrates may be diluted with 3 to 100, e.g., 5 to 40 parts by weight of lubricating oil, per part by weight of the additive package, in forming finished lubricants, e.g., crankcase motor oils.
  • the purpose of concentrates is to make the handling of the various materials less difficult and awkward as well as to facilitate solution or dispersion in the final blend.
  • a dispersant would be usually employed in the form of a 40 to 50 wt. % concentrate, for example, in a lubricating oil fraction.
  • the additives of the present invention will be generally used in admixture with a lube oil basestock, comprising an oil of lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof.
  • Natural oils include animal oils and vegetable oils (e.g., castor, lard oil) liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • animal oils and vegetable oils e.g., castor, lard oil
  • mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types.
  • Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc.. constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-poly isopropylene glycol ether having an average molecular weight of 1000, diphenyl ether of poly-ethylene glycol having a molecular weight of 500-1000, diethyl ether of polypropylene glycol having a molecular weight of 1000-1500) ; and mono- and poly- carboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters and C 13 Oxo acid diester of tetraethylene glycol.
  • polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propy
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fu aric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol) .
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fu aric acid, adipic acid,
  • esters include dibutyl adipate, di (2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol .
  • Silicon-based oils such as the 1 polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane oils and silicate oils comprise another useful class of synthetic lubricants; they include tetraethyl silicate, tetraisopropyl silicate, tetra- (2-ethylhexyl) silicate, tetra- (4-methyl-2-ethylhexyl) silicate, tetra- (p-tertbutylphenyl) silicate, hexa-(4-methyl-2-pentoxy)disiloxane, poly (methyl )siloxanes and poly (methylphenyl ) siloxanes .
  • Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
  • Unrefined, refined and rerefined oils can be used in the lubricants of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an ester ificat ion process and used without further treatment would be an unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for removal of spent additives and oil breakdown products. Compositions when containing these conventional additives are typically blended into the base oil in amounts ef fective to provide their normal attendant function . Representative effective amounts of such additives (as the respective active ingredients) in the fully formulated oil are illustrated as follows:
  • additive concentrates comprising concentrated solutions or disper ⁇ sions of the novel dispersants of this invention (in concentrate amounts hereinabove described) , together with one or more of said other additives (said concentrate when constituting an additive mixture being referred to herein as an additive-package) whereby several additives can be added s imul taneous ly to the base oil to form the lubricating oil composition.
  • Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential .
  • the concentrate or additive-package will typically be formulated to contain the additives in proper amounts to provide the desired concentration in the final formulation when the additive-package is combined with a predetermined amount of base lubricant.
  • the dispersants of the present invention can be added to small amounts of base oil or other compatible solvents along with other desirable additives to form additive-packages containing active ingredients in collective amounts of typically from about 2.5 to about 90%, and preferably from about 15 to about 75%, and most preferably from about 25 to about 60% by weight additives in the appropriate proportions with the remainder being base oil.
  • the final formulations may employ typically about 10 wt. % of the additive-package with the remainder being base oil.
  • the PACM oligomer employed below is substantially free of organic solvent (less than about 1 wt.% polar organic solvent).
  • Example 3 The procedure of Example 3 was repeated in separate runs except that the polyisobutenyl succinic anhydride (PIBSA) and PACM oligomer were contacted in a PIBSA:primary amine mole ratio of either 1: 1 (Ex. 4) or 1: 2 (Ex. 5) .
  • PIBSA polyisobutenyl succinic anhydride
  • PACM PACM oligomer
  • lubricating oil compositions were prepared using the dispersants of Examples 1-5, Comparative Examples 6-7, and comparative materials comprising commercial dispersants (A)-(C). The resulting compositions were then tested for sludge inhibition (via the SIB test) and varnish inhibition (via the VIB test) , as described below.
  • the SIB test has been found, after a large number of evaluations, to be an excellent test for assessing the dispersing power of lubricating oil dispersant additives.
  • the medium chosen for the SIB test was a used crankcase mineral lubricating oil composition having an original viscosity of about 325 SUS at 38'C that had been used in a taxicab that is driven generally for short trips only, thereby causing a buildup of a high concentration of sludge precursors.
  • the oil that was used contained only a refined base mineral lubricating oil, a viscosity index improver, a pour point depressant and zinc dialkyl- dithiophosphate anti-wear additive.
  • the oil containing no sludge dispersant was acquired by draining and refilling the taxicab crankcase at 1000-2000 mile intervals.
  • the SIB test was conducted in the following manner: the aforesaid used crankcase oil, which was milky brown in color, was freed of sludge by centrifuging for one hour at about 39,000 gravities (gs.). The resulting clear bright red supernatant oil was then decanted from the insoluble sludjge particles thereby separated out. However, the supernatant oil still contained oil-soluble sludge precursors which on heating under the conditions employed by this test will tend to form additional oil-insoluble deposits of sludge.
  • the sludge inhibiting properties of the additives being tested were determined by adding to' portions of the supernatant used oil, a small amount, such as 0.5, 1 or 2 weight percent, of the particular additive being tested.
  • each test sample consisted of 10 grams of lubricating oil containing a small amount of the additive being tested.
  • the test oil to which the additive was admixed was of the same type as used in the above-described SIB test.
  • Each ten gram sample was heat soaked overnight at about 140*C and thereafter centrifuged to remove the sludge.
  • the supernatant fluid of each sample was subjected to heat cycling from about 150*C to room temperature over a period of 3.5 hours at a frequency of about 2 cycles per minute.
  • gas which was a mixture of about 0.7 volume percent S0 2 , 1.4 volume percent NO and balance air was bubbled through the test samples.
  • olefin polymer substituent is derived from polyolefins having fl n of at least about 1300.
  • a series of lubricating formulations were prepared which contained 6 vol% of the novel dispersants formed in Examples 1-5, respectively.
  • Each lubricating composition also contained mineral lubricating oil, a mixture of overbased Mg sulfonate detergent inhibitor and overbased Ca sulfonate detergent inhibitor, zinc dialkyl dithiophosphate antiwear agent, antioxidant and ethylene propylene viscosity index improver.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)

Abstract

Dispersants améliorés comprenant des produits d'addition de (A) anhydrides ou acide mono- et dicarboxylique à substitution de polymère, et (B) d'oligomères de di(para-amino cyclohexyl) méthane, dans lesquels les réactifs entrent en contact dans une zone de réaction pratiquement en l'absence de solvants organiques polaires.
PCT/US1991/004621 1990-07-03 1991-06-28 Dispersants sans cendres WO1992001032A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54793090A 1990-07-03 1990-07-03
US547,930 1990-07-03

Publications (1)

Publication Number Publication Date
WO1992001032A1 true WO1992001032A1 (fr) 1992-01-23

Family

ID=24186724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/004621 WO1992001032A1 (fr) 1990-07-03 1991-06-28 Dispersants sans cendres

Country Status (2)

Country Link
WO (1) WO1992001032A1 (fr)
ZA (1) ZA914609B (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2520848A1 (de) * 1974-05-30 1975-12-04 Jefferson Chem Co Inc Verfahren zur herstellung gemischtisomerer methylenverbrueckter polycyclohexypolyamine
EP0271937A2 (fr) * 1986-11-28 1988-06-22 Shell Internationale Researchmaatschappij B.V. Composition lubrifiante
US4844827A (en) * 1988-01-25 1989-07-04 Amoco Corporation Lubricating oil additive
EP0335336A2 (fr) * 1988-03-30 1989-10-04 Air Products And Chemicals, Inc. Hydrogénation catalytique de polyphénylamines brutes à ponts méthylène pour produire des polycyclohexylamines
EP0400870A1 (fr) * 1989-05-30 1990-12-05 Exxon Chemical Patents Inc. Agent améliorant l'indice de viscosité à buts multiples dérivé de polyamine contenant un groupe amine primaire et au moins un groupe amine secondaire et présentant des propriétés viscométriques améliorées à basse température

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2520848A1 (de) * 1974-05-30 1975-12-04 Jefferson Chem Co Inc Verfahren zur herstellung gemischtisomerer methylenverbrueckter polycyclohexypolyamine
EP0271937A2 (fr) * 1986-11-28 1988-06-22 Shell Internationale Researchmaatschappij B.V. Composition lubrifiante
US4844827A (en) * 1988-01-25 1989-07-04 Amoco Corporation Lubricating oil additive
EP0335336A2 (fr) * 1988-03-30 1989-10-04 Air Products And Chemicals, Inc. Hydrogénation catalytique de polyphénylamines brutes à ponts méthylène pour produire des polycyclohexylamines
EP0400870A1 (fr) * 1989-05-30 1990-12-05 Exxon Chemical Patents Inc. Agent améliorant l'indice de viscosité à buts multiples dérivé de polyamine contenant un groupe amine primaire et au moins un groupe amine secondaire et présentant des propriétés viscométriques améliorées à basse température

Also Published As

Publication number Publication date
ZA914609B (en) 1992-06-24

Similar Documents

Publication Publication Date Title
EP0441548B1 (fr) Procédé pour la préparation d'additifs dispersants acides mono- et dicarboxyliques substitués par un polymère éthylène-alpha-oléfine
US3390086A (en) Sulfur containing ashless disperant
US4971711A (en) Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
US5266223A (en) Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid dispersant additives
US5328622A (en) Oil soluble dispersant additives modified with monoepoxy monounsaturated compounds
US5385684A (en) Branched amido-amine dispersant additives
JPH029435A (ja) アミド―アミン付加物から誘導される改良された分散剤
US5350532A (en) Borated ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives
JPH0696610B2 (ja) 置換カルボン酸およびその誘導体の製造方法
US4820432A (en) Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions
CA1271592A (fr) Amines polymeriques lactone modifiees utiles comme additifs solubles pour disperses l'huile
EP0263703A2 (fr) Additifs lactones modifiés, estérifiés ou aminés utilisables dans des compositions d'huile
JP2542374B2 (ja) 高分子量含窒素縮合物及びこれを含む燃料及び潤滑油
JP2646248B2 (ja) 内燃エンジン用の改良された潤滑油組成物
US5296560A (en) Ashless dispersants
JPH0832904B2 (ja) 組成物、コンセントレ−ト、潤滑剤組成物、燃料組成物、および内燃機関の燃料消費量を低減する方法
EP0304175A1 (fr) Additifs dispersants de base de mannich modifiés par une lactone, utilisables dans des compositions huileuses
EP0263704B1 (fr) Additifs dispersants lactones modifiés, aminés utilisables dans des compositions d'huile
EP0540534B1 (fr) Dispersant d'amido-amine sans cendres
US5047160A (en) Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5213698A (en) Amido-amine ashless dispersants
WO1992001032A1 (fr) Dispersants sans cendres
US4943382A (en) Lactone modified dispersant additives useful in oleaginous compositions
US5158696A (en) Oil soluble dispersant additives modified with bis-keto/thioketo compounds
US5273668A (en) Oil soluble dispersant additives modified with bis-keto/thioketo compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA