WO1991016745A1 - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
WO1991016745A1
WO1991016745A1 PCT/JP1991/000495 JP9100495W WO9116745A1 WO 1991016745 A1 WO1991016745 A1 WO 1991016745A1 JP 9100495 W JP9100495 W JP 9100495W WO 9116745 A1 WO9116745 A1 WO 9116745A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
control
wavelength
output
gas
Prior art date
Application number
PCT/JP1991/000495
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Shibata
Ken Ohmata
Mitchito Uehara
Mitsugu Terada
Yasuo Oeda
Yuichiro Terashi
Original Assignee
Mitsui Petrochemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP14344690A external-priority patent/JPH0437178A/en
Priority claimed from JP14601390A external-priority patent/JPH0438887A/en
Priority claimed from JP14601190A external-priority patent/JPH0438884A/en
Priority claimed from JP14601290A external-priority patent/JPH0438886A/en
Priority claimed from JP19215790A external-priority patent/JPH0477631A/en
Application filed by Mitsui Petrochemical Industries, Ltd. filed Critical Mitsui Petrochemical Industries, Ltd.
Publication of WO1991016745A1 publication Critical patent/WO1991016745A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Definitions

  • the present invention relates to a method of controlling an oscillation wavelength and an oscillation output in a laser device. Background technology
  • Laser light itself has high wavelength purity, high output, etc., which are coherent, and is regarded as a promising light source capable of intense light. Under these circumstances, a narrow band excimer laser is being considered for use as a light source in the lithographic process in semiconductor manufacturing.
  • a laser resonator is composed of a wavelength selecting element such as a grating, a prism, a birefringent filter, and an aperture. Furthermore, in Roar one laser medium by having a laser gain a wide band as an excimer laser or a dye laser, one or a plurality of etalons known force s' to be inserted into the laser ⁇ in the converter to the narrowing I have.
  • the etalon applies the multi-S dimension of light generated between two highly-flat H-layers, which are plated at a predetermined interval, and the phenomenon of interference. This is a wavelength selection element.
  • FIG. 6 shows a laser device using such an etalon.
  • a first and a second pair of etalons 25a and 25b are used to achieve a multi-region. That is, the first etalon 25a functions as a coarse adjustment for narrowing the band, and the second etalon 25b functions as a fine adjustment. That is, the laser light emitted from the laser medium 26 is irradiated by the rear illuminator 27, and then the first etalon 25a coarsens the original laser oscillation wavelength range. This is further narrowed down to the desired bandwidth by 5b and the output is output ft, and is illuminated from the laser unit 29 via the front mirror 28.
  • the following method was used.
  • the laser beam emitted from the laser device 29 is split by the beam splitter 30, and the split laser beam enters the wavelength measuring unit 33 via the optical fiber cable 32.
  • the wavelength measuring section 33 measures the center wavelength, and outputs the insulted measurement signal to the main control section 34.
  • the main control unit 34 executes a predetermined calculation process based on the measurement signal, and the pneumatic or hydraulic actuators 36 a and 36 b for changing the pneumatic or hydraulic pressure through the J interface 35.
  • the etalons 25a and 25b were adjusted to optimal positions by drawing only 4 points.
  • the actuators 36a, 36b due to the pneumatic, hydraulic, or spring pressure changes have a minimum zenji position, that is, it is difficult to finely adjust the tilt angle of the etalons 25a, 25b. 7 o to obtain a high level of laser wavelength
  • the present invention has been made in view of the above point, and an object of the present invention is to adjust a tilt angle of a wavelength selection element such as an etalon with high accuracy and always stabilize a laser output wavelength from a laser device.
  • laser output power is high, but as a premise of feedback control to stabilize laser output, laser output must be measured reliably. .
  • An object of the present invention is to provide a laser device that can meet a demand such as mi.
  • the present invention (the first invention) has at least a first arrangement in which laser light from a laser medium is localized by adjusting at least one of the tilt angles arranged in series in a row.
  • the laser device having the first and second wavelength selection elements, the laser device is provided with an automatic micrometer head for finely adjusting the tilt angle.
  • the automatic micrometer head is, for example, an actuator that has a structure in which an iil: flow motor, a pulse motor, or the like is used, and the rotation of such a motor is converted into movement in a window direction to move the head. It is.
  • an etalon's general diffraction ⁇ ", ⁇ -fold filter or the like can be used as the wavelength selection element to be shelf in the present invention.
  • a combination with etalon may be used.
  • Examples of lasers suitable for controlling the laser oscillation output and wavelength according to the present invention include excimer lasers such as KrF and ArF, such as carbon dioxide gas laser, copper vapor laser, alexandrite laser, and Ti —Sapphire lasers, dye lasers, etc.
  • excimer lasers such as KrF and ArF
  • carbon dioxide gas laser such as carbon dioxide gas laser
  • copper vapor laser such as copper vapor laser
  • alexandrite laser such as Ti —Sapphire lasers, dye lasers, etc.
  • a second invention for improving the measurement reliability of laser oscillation output detection An object of the present invention is to realize a laser device capable of accurately measuring a laser oscillation output without being influenced by electromagnetic noise from a laser medium or the like, and capable of performing a stable laser oscillation at a high level. is there.
  • the second light source includes a light receiving unit disposed in the vicinity of the laser medium, an optical fiber having one end connected to the light receiving unit for transmitting detection light from the laser medium, and a light emitting unit connected to the other end of the optical fiber.
  • the gist of the present invention is a laser oscillation output detection device including a main control unit that calculates an oscillation output of the laser light based on a detection signal from a switching element and generates a control signal to the laser medium.
  • lasers include excimer lasers such as KrF and ArF, carbon dioxide lasers, copper vapor lasers, dye lasers, YAG lasers, and alexandrite lasers.
  • a laser that oscillates such as a helium-neon laser or an argon laser, may be used as well as a laser device that oscillates.
  • the receiving and emitting lights connected to the ⁇ end of the optical fiber may be provided with a bright lens to increase the light input efficiency or the light output efficiency.
  • the photoelectric conversion element is, for example, an element such as a photodiode, and may be any element having a photoelectric effect of generating an electric signal corresponding to reception.
  • the detection light received by the receiver disposed near the laser medium is guided by the optical fiber in an optical state. Then, the light is emitted from a light emitting unit provided at a ray position which is not affected by the electromagnetic noise of the laser medium, and this light is received by a photoelectric conversion element.
  • the distance between the laser medium and the photoelectric conversion element is increased, and the photodiode is arranged in close proximity to the detecting unit, thereby making it possible to obtain the electromagnetic wave from the laser medium.
  • the effect of dynamic noise can be suppressed.
  • the time from the photoelectric conversion element to the drive / detection unit can be significantly reduced.
  • the third invention aims to measure the laser emission 5 ⁇ with high reliability, and converts a detection signal, which is received by the laser beam receiving element and a photodetector, into a digital signal. It employs an A / D conversion unit and arithmetic means for analyzing a signal from the A / D conversion unit to calculate a laser oscillation output, and at least between the receiver and the A / D conversion unit. That an integration circuit with multi-stage integrators is interposed
  • the gist of the present invention is a laser oscillation output detection device which is defined as-.
  • the laser is a pulsed laser such as an excimer laser, a carbon dioxide laser, a copper vapor laser, a color laser, a YAGG laser, an alexandrite laser, a helium-neon laser, an argon ion laser, or the like.
  • the vibration laser may be used.
  • the light receiving element may be a photoelectric element such as a photodiode, for example, as long as it generates an electric signal corresponding to the light receiving fi.
  • the preceding circuit can be realized by a circuit configuration in which, for example, integrators are connected in multiple stages as an integrator. Power that can be extended to ⁇ $ favorable o
  • the light intensity as a light amount is detected by integrating this value with respect to time by focusing on the fact that the output of the light receiving element represents the time distribution of the light intensity, so that more accurate Light can be detected.
  • the fourth invention is a laser that does not diffuse noise to the outside of the housing or to the power supply side, and in particular, greatly improves isolation between a computer and a high-voltage system, thereby preventing abnormal operation of the computer. The purpose is to make the equipment Hi.
  • a fourth invention has the following configuration in a laser device having a high-voltage generation device for supplying a high voltage to a discharge electrode in a gas laser chamber, and a computer for controlling the high-generation device.
  • a first shield is provided on a first power supply line connecting the high voltage generator and a power supply.
  • a third shield is provided on the high voltage cord between the high voltage generator and the discharge electrode. Further, a laser device was used as a control cable connecting the high-power generation device and a computer as an optical cable.
  • the noise filter may be an absolute transformer or a single pass filter. Furthermore, it is better to apply shielding / filtering to parts where noise is likely to leak.
  • the fifth invention aims to realize a highly reliable gas supply control by preventing the operation of laser gas supply control in the system.
  • the fifth invention is a laser gas supply device for supplying and exhausting a laser gas into a laser chamber, wherein the laser gas of the gas source connected between a gas source and a laser chamber is introduced into the chamber.
  • the main piping for controlling the opening and closing of the main piping, which is provided on the piping by the fluid pressure from the t ⁇ separated position through the control piping, and controls the opening and closing of the main piping.
  • a pressure detector connected to the end of the branch pipe from the main pipe, and a control connected to the solenoid valve device and the pressure detector by m ⁇ se ⁇ .
  • a laser that has a sufficient distance between the control pipe and the fl3 ⁇ 4ss pipe so that the ⁇ ⁇ wiring is not affected by electromagnetic noise generated in the laser chamber.
  • a valve for controlling the opening and closing of the main pipe is a fluid pressure drive valve, a control pipe for supplying and controlling the driving fluid pressure and an electromagnetic valve device are provided, and a pressure detector is connected to a branch pipe from the main pipe. It has a body especially at the point.
  • the valve for controlling the opening and closing of the main pipe is set to j »: ⁇ :, which is not affected by electromagnetic noise, by a fluid pressure such as ⁇ :, and the pressure detector is also divided into n «.
  • Tube bow I By turning it away from the laser chamber. --Therefore, it is very important to keep all the electric springs in the control system away from the laser chamber.
  • the accuracy of the value detected by the pressure detector is ensured without being affected by the electromagnetic noise generated in the laser chamber. Similarly, malfunction of the valve that opens and closes the main piping is also prevented.
  • a sixth object of the present invention is to provide a gas laser control device having a plurality of control items having different processes, in which a single control device can execute a plurality of control items in parallel. is there.
  • a high-speed timer counter that performs at least a high-level request and a high-level ⁇ -clock, and a high-speed timer counter that performs the high-speed ⁇ clock.
  • the gist of the present invention is a gas laser control device whose processing timing is determined by a low-speed timer counter that generates a clock for use.
  • a control device is constructed based on a dedicated microprocessor (CPU), and an arbitrary frequency is synthesized from a clock signal.
  • CPU central processing unit
  • 2 By making full use of a JLh timer counter, high-speed arithmetic processing can be performed. It also supports low-speed arithmetic processing. For example, parallel I / O, digital-to-analog conversion, analog-to-digital conversion I / O, and optical input / output ports are added to this system. In addition, time-sharing is implemented on the software. Incorporating the processing of the marrow control during the processing of the high-speed control enables the parallel processing of multiple control items. As a result, for example, Takashi Osamu can execute another control of the gas or the like without stopping the laser keying.
  • control items at the high level are at least output of a discharge start signal, detection of a laser output and output of a stabilization control signal thereof, detection of a laser wavelength and output of a stabilization control signal thereof,
  • the control item in the above g3 ⁇ 4kS3 ⁇ 4 shall be at least the output of the gas valve opening / closing control signal in gas exchange. --Power is good.
  • the first to sixth inventions can be incorporated in a laser device by selecting and combining 2 J ⁇ ⁇ each. Brief description of drawings
  • FIGS. 1 to 5 show difficult examples of the present invention (first invention).
  • FIG. 1 is a block diagram showing the complete arrangement of a laser device
  • FIG. Fig. 2 (b) shows the etalon holder for explaining the step of adjusting the brightness
  • Fig. 2 (b) shows the etalon holder
  • Fig. 2 (b) shows its side view
  • Fig. 3 shows the control for stabilizing the center wavelength.
  • FIG. FIG. 4 is a diagram showing the structure of the automatic micrometer head.
  • FIG. 5 is a block diagram of the main control unit.
  • FIG. 6 is a block diagram showing the entire configuration of the laser device in the ⁇ technology.
  • FIG. 7 is an example of the second invention, and is a block diagram showing a configuration of a laser oscillation output detection device.
  • FIG. 8 to 10 show an example of the third invention.
  • FIG. 8 is a block diagram showing a configuration of a laser oscillation output detecting device
  • FIG. 10 is an explanatory diagram showing outputs and waveforms of the dividing circuit.
  • FIG. 10 is a circuit diagram showing a specific configuration of the integrating circuit.
  • FIG. 11 and 12 show ⁇ in the fourth invention
  • FIG. 11 is an overall block diagram
  • FIG. 12 is a block diagram of a computer part.
  • FIG. 13 is a block diagram showing an embodiment of the fifth invention, showing a laser gas supply unit.
  • FIG. 14 shows an embodiment of the sixth invention, and is a block diagram showing a configuration of a gas laser control device.
  • an etalon 3 for fine tuning and an etalon 4 for fine tuning are arranged as wavelength selecting elements.
  • a rear mirror 15 is disposed at the outermost position. After the laser beam generated by the laser medium 2 is K-sized by the rear mirror 5, it is narrowed to a wavelength band of about 1/10 by the coarse adjustment etalon 3. Bandwidth is finely adjusted by the etalon 4 for fine adjustment to about 1/10 of it.
  • the laser beam sized in this way is branched by the beam splitter 6 disposed on;) ⁇ , and enters the wavelength measuring unit 8 from the optical fiber cable 7 to detect its oscillation wavelength. Is done. Then, the main control unit 10 receiving the detection signal performs a predetermined arithmetic process, and outputs a control signal to the DC motor driver 11. The DC motor drino 11 finely adjusts the coarse adjustment etalon 3 and the fine adjustment etalon 4 based on this control signal. Such fine adjustment is performed by performing IHSJ on the automatic micrometer heads 14a to 14d.
  • a pair of the automatic micrometer heads 14a to 14d are arranged on one diagonal line on the plane of the rectangular etalon holders 15 and 16 holding the etalons 3 and 4, respectively.
  • Each of the automatic micrometer heads 14a to 14d is controlled by a DC motor driver 11 in response to a control signal from the main control unit 10.
  • the automatic micrometer heads 14a to 14d will be briefly described.
  • a micro DC motor as a direct means inside
  • a high-performance gear head inside.
  • the gearhead has a structure in which the lead screw is rotated by a motor, and the rotation of the motor is converted into a moving amount of the lead screw in a linear direction.
  • the automatic micrometer head includes a linear slide head 20b, a lead screw 20c, a Takatoh Noh gear head 20d, and a The miniature DC motor 20 e is provided with a small DC motor 20 e.
  • the main control unit 10 controls e.
  • the linear slide head 20 b has a single rod-like portion 20 f, and has a protruding rail til «force s cylindrical portion 20 g from the case 20 a.
  • Female screw 20 h is cut.
  • the lead screw 20c is rod-shaped and inserted into the cylindrical portion 20g of the linear slide head 20b.
  • the lead screw 20c is inserted into the female screw 20h on the inner surface of the cylindrical portion 20g.
  • a matching male screw 20 i is cut around.
  • the high-defect gear head 20d converts the torque of the DC motor 20e using a combination of gears (not shown).
  • the control unit 10 controls the rotation amount and rotation of the DC motor 20e. More specifically, as shown in FIG. 5, the main control section 10 includes a target ifiia means 21 for setting a target yarn length of a target spectral domain, and a target value setting means 21. »Difference detecting means 22 for detecting the deviation of the measurement center wavelength detected by the wavelength measuring section 8 from the center wavelength, and the automatic micrometer head in a direction for canceling the detection detected by the deviation detecting means 22. And a control means 23 for sending a signal for controlling the rotation amount and the rotation of the DC motor to the motor.
  • the automatic micrometer heads 14a, 14d for fine adjustment of the lateral deviation, and the automatic micrometer heads 14b, 14d for fine adjustment of the tilt angle are an important factor for the wavelength stabilization control.By using the automatic micrometer head of the above configuration, the tilt angle adjustment is 0.04 mrad. High-precision fine adjustment of / sec / degree is possible. Next, specific wavelength stabilization control using the present apparatus will be described.
  • the target value setting means 21 determines the target of the broadened spectrum. Then, at the age at which the measured center wavelength detected by the wavelength measuring unit 8 deviates from the above-mentioned fiSi center wavelength, the deviation is detected by the deviation detecting means 22, and the deviation is detected by the control means 23 of the main control unit 10. Control is performed by a control signal (feedback signal) to eliminate the deviation.
  • the desired center wavelength ⁇ 0 of the laser beam is determined while monitoring the wavelength measuring unit 8, and in this state, the DC motor drinometer 1 is locked and the etalons 3 and 4 are locked. Temporarily fix the position of.
  • the laser beam radiated from the laser unit 9 is applied to the wavelength measuring unit 8 over time.
  • the main control unit 10 finely adjusts the position of the etalons 3 and 4 on the optical path with respect to the etalons 3 and 4. Is output to the DC motor driver 11.
  • ⁇ fine adjustment of the tilt angle mainly for the automatic micrometer head 14d that controls the tilt angle of the etalon 4 Will be.
  • the DC motor in the automatic micrometer head 14d is rotated clockwise or counterclockwise depending on whether the muss. Rotate a predetermined amount clockwise.
  • the control parameters in the main control unit 10 such as the rotation direction of the DC motor, the »m Jigfil time, etc., are previously set to a predetermined address in the Iff page area having the main control unit 10 power s .
  • the center wavelength stabilization ⁇ by the above device configuration was operated at 80 Hz for 1 hour to measure the fluctuation state of the measured center wavelength. As a result, a high wavelength was obtained with a center wavelength width of 0.57 pm.
  • an automatic micrometer head having an encoder for detecting the motor rotation fi may be used.> With this encoder, an encoder is provided between the spindle and the gear head. The lost motion (unnecessary movement) and backlash (reverse rotation) of the spindle are not counted.
  • a laser beam 103 emitted from an emission port 102 of a laser device 101 having a laser medium is split by a beam splitter 104 into a light beam.
  • Light is incident on 105.
  • the laser beam 103 is guided to a light emitting unit 107 located at a position 1 through an optical fiber 106 connected to a light receiving unit 105.
  • the first distance 1 be determined according to an output standard or the like for the laser medium 2 itself.
  • a photodiode as a photoelectric conversion element 110 is placed at a position facing the light emitting unit 107 via an ND filter 108.
  • Light-emitting section
  • the output 3 ⁇ 4E changes depending on the light of 107 colors.
  • the detection unit 111 performs signal processing such as A / D conversion on the input signal from the photodiode and outputs the processed signal to the control unit 112.
  • the control unit 112 includes a microprocessor, a memory, and the like, performs a predetermined arithmetic process based on the measurement signal from the detection unit 111, and generates a control signal for the laser resonator 101: I do.
  • This control signal is transmitted to the laser device 101 or a laser control mechanism (not shown) through the control line 113 to control the laser beam emitted from the laser device 101.
  • control signal ⁇ is to store in the memory the ideal control parameters that are paired with the light daughter obtained by sampling in advance, and the drive signal from the detection unit 111 There is a method of sequentially changing these control parameters in response to the above.
  • the photoelectric conversion element 110 is set to ⁇ ⁇ ⁇ It can be arranged close to the detection unit 111. For this reason, the influence of the electromagnetic noise generated in the laser difficulty device 101 can be minimized. Moreover, the electricity 114 from the photoelectric conversion element 110 to the detection unit 111 can be greatly reduced.
  • the level of the noise signal which is the output signal of the photoelectric conversion element 110, is reduced, and the signal can be detected without being disturbed by the noise. be able to.
  • a stable laser output can be obtained by reliable control of the laser device as a result of signal detection not hindered by noise.
  • the laser beam 203 emitted from the emission port 202 of the laser 201 having a laser medium is separated into "" ⁇ This split light enters the element 205.
  • the pulse detection signal which was photo-electrically damaged by the light-receiving element 205, is subjected to wavelength adjustment by the integration circuit 206, and then to the A / D converter 7 Is converted into a digital signal and input to the control unit 208.
  • the control unit 208 is configured by, for example, a CPU that includes arithmetic means and registers, and an external storage device such as a memory. After performing predetermined arithmetic processing based on the pulse detection signal, the control unit 208 transmits a control signal to the laser unit 201. Generate This control signal is output to the laser resonator 201 or a laser control mechanism (not shown) through the control line 210 to control the intensity s of the laser light emitted from the laser 201.
  • the integrator circuit 206 is composed mainly of four-stage OP amplifiers 211a, 211b, 211c, and 211d.
  • the ⁇ P amplifier 211a functions as an amplification stage, and its gain is made variable by selecting the resistance between the (-) input and ground.
  • each capacitor of 150 PF is charged to ⁇ 3 ⁇ 4 voltage and each integration The calculation is performed by giving the initial value to the container.
  • an amplifier having a hoof width of 8.0 MHz and a slew rate of about 25 V / s can be used.
  • the integrating circuit 206 is configured by using four stages of the OP amplifiers, the characteristic of the integrating circuit 206 is not deteriorated even during long-term use, and the pulse detection signal is not deteriorated. Integration becomes possible.
  • the point at which the output waveform of the light receiving element represents the time distribution of light intensity is obtained.
  • the light intensity is detected by integrating this value with respect to time, more accurate light detection becomes possible.
  • a discharge 11 is provided in the gas laser chamber 310.
  • Gas control device 3 2 1 connected to gas laser chamber 3 10 via pipe 3 20: ⁇ Gas control device 3 2 3 connected to gas control device 3 2 1 via pipe 3 2 2 ing.
  • the gas laser champer 310 is filled with the mixed gas composed of the above-described components.
  • a high E generator 301 is connected to m 311 via a high voltage cord 3 12, and a third shield 3 13 is provided around the high voltage cord 3 12.
  • the height of the high-pressure generator 301 is controlled by a computer 302.
  • the high SEE research device 301 is connected to a power source 303 via a first M304, and the first shield 304 is connected to the first power4. In the middle of the first power supply 304, an insulation transformer as a noise filter 303 is inserted.
  • the second power supply 7 for connecting the power supply 3 and the computer 302 is provided with a second shield 308.
  • the control line between the height generator 301 and the computer 302 is an optical cable 9.
  • the interface between the optical cable 309 and the computer 302 is as shown in Fig. 2, and the optical cable 309 is first input to the optical modem 302a and the input / output circuit 302b is connected to it.
  • valve factory in the gas control device 321 is also controlled by a computer 302, and the control line 324 is also an optical cable.
  • a shield 326 is also provided on a power supply line 325 connecting the gas control device 321 and the power supply 303.
  • the gas laser chamber 310, the high-pressure generator 310, the computer 302, the noise filter 303, and the gas control device 321 are housed inside a housing (K).
  • the housing (K) and each shield are grounded GND.
  • a power supply line serving as a noise source is shielded and a noise filter is inserted into the high power supply line, noise leaking to the outside of the housing or to the power supply side can be significantly suppressed.
  • FIG. 13 is a configuration diagram of a laser gas supply and apparatus according to an embodiment of the present invention.
  • a device relating to an excimer laser will be described as an example.
  • a laser chamber 401 is connected to a gas source 402 by a main pipe 403, and a buffer gas, a rare gas, a nitrogen gas and the like are supplied into the laser chamber 401. It is possible. Fluid pressure J
  • the fluid pressure J3 ⁇ 4 valves 404 a to 404 d are valves that are opened and closed by the pressure of a fluid such as ⁇ to control the opening and closing of the main piping 403 and ⁇ : piping 406. , For example, in actuator, etc .: by increasing or decreasing pressure!
  • the structure is such that the movement is converted into the rotation movement of the valve.
  • g3 ⁇ 4 valve 4 0 4 a to 4 0 4d is connected to a control pipe 4 07 a to 4 0 7 d for supplying ⁇ E, and these control pipes 4 0 7 a ⁇ Four 0 7 d is connected to a solenoid valve unit 8 that controls the supply of ⁇ by drawing the distance L.
  • a branch pipe 410 is provided in the middle of the main pipe 403 extending from the fluid pressure
  • the branch pipe 4110 is connected to the pressure detector 411 by being routed at a distance of 3 ⁇ 4gg.
  • the pressure detector 411 can detect the state of the pressure in the main pipe 403, that is, in the laser chamber 401.
  • the empty pump 405, the solenoid valve unit 408, and the pressure detector 411 are connected to the control unit 412 to control their drooping.
  • the control unit 412 is constituted by, for example, a microprocessor having a memory or the like, and controls the solenoid valve unit 408 based on the detection value of the pressure detector 411 to control the fluid pressure leakage valve.
  • the pressure inside the laser chamber 401 is controlled by adjusting the opening / closing degree of the 404 a to 404 d.
  • the valve mechanism for controlling the opening and closing of the main pipe 403 is driven by fluid pressure, and the pressure detector 411 is branched from the main pipe 403 to a branch pipe 411 which is routed.
  • the control system such as the vacuum pump 405, the solenoid valve unit 408, and the pressure detector 411 can be separated from the laser chamber 401, and all the electric wiring can be separated. 0 Can be performed at a position away from 1. Therefore, the gas supply is controlled without being affected by the electromagnetic noise generated in the laser chamber 401! It works.
  • the length L of the main pipe 406, the control pipe 407a to 407d, and the branch pipe 410 is determined by the vacuum pump 405, the electric unit 408, and the pressure. It is recommended that the detector 411 be set to the minimum distance of the fiber that does not receive the electromagnetic noise of the laser chamber 401. That is, if the RJ distance is too large, the detection accuracy is reduced, and the drive response is reduced.
  • the invention of the sixth invention »! 1 is a block diagram showing the configuration of the gas laser control device shown in FIG. Description will be made with reference to the drawings.
  • reference numeral 501 denotes a 16-bit or 32-bit system CPU, and according to an instruction from the CPU 501, the height of the output wavelength monitor 509 and the height of the laser 3 ⁇ 41 £ power supply 510, etc., and the gas processing 511, etc. It is configured to be controlled by the force lj.
  • the output signal from the CPU 501 is output to a high-speed timer counter 502 and a low-speed timer counter 503. These timer counters 502 and 503 each independently count the clock signal CL from the CPU 501 and generate a predetermined high-speed clock signal and low-speed clock signal.
  • the wavelength monitor control signal and the setting control signal of the output of the high-speed timer counter 502 are converted into digital optical signals via D / A simulators 504 and 505 and photoelectric simulators 507a and 507b, respectively. After being converted into a digital electric signal again through 508a'508b and photoelectric conversion 507a and 507b, the output wavelength monitor device 509 and the high voltage power supply 510 for laser output are controlled.
  • the timing trigger signal control timing which has passed through the high-speed based on a clock signal generator of photoelectric conversion in a parallel TTL output device 506 a 507 c ⁇ optical fiber cable 5 08 c- photoelectric converter 507 c from the high-speed timer counter 502 at this time Given by
  • the output from the timer counter 503 is converted to a digital optical signal via the parallel TTL output device 506b and the photoelectric converter 507d.
  • the digital signal is again transmitted via the optical fiber cable 508d and the photoelectric converter 507d. It is converted into an electric signal and sent to the gas processing unit 511 including the laser chamber.
  • a gas exchange operation or the like is executed as a gas valve opening / closing signal or a vacuum pump ON / OFF signal.
  • the high-L glue timer counter 502 generates a time reference for output wavelength monitor control and laser output control for high-speed arithmetic processing, while the low-glue timer counter 503 generates a low-speed glue timer.
  • the time reference for gas exchange control using smoke as arithmetic processing is set to ⁇ ; By dividing the time S with a large difference such as JiU by each timer counter and counting to, Without having to stop the control of the other.
  • the control signal through the optical fiber cables 508a to 508d, the effect of electromagnetic noise generated from the laser chamber or other drive system can be reduced, but the control system ⁇ There is also an effect that can prevent the operation.
  • control based on a plurality of times can be performed by a single control device. Availability of ⁇ ⁇
  • fine adjustment can be force s' performs high-precision result of the wavelength selection element, Le - The ⁇ ⁇ can be extremely stable output wavelength in the vessel.

Abstract

This invention relates to a technique being effective in applying it to the control of the oscillation wavelength and output of a laser device. The object thereof is that the inclination of a wavelength selecting element such as an etalon is adjusted with high accuracy and the wavelength of the laser output of a laser resonator is made always stable. A laser device having at least first and second wavelength selecting elements which are aligned on an optical path and make the bandwidth of the laser beam narrow by adjusting the inclination of at least one of the elements, is provided with an automatic micrometer head for the fine adjustment of the inclination. By using the automatic micrometer capable of controlling finely the quantity of movment, the inclination to the optical path of the wavelength selecting elements can be adjusted finely. Thereby, the wave length of the laser beam can be always stabilized. Therefore, the laser device can be utilized effectively, for example, for the light source of the lithography process of semiconductor manufacturing.

Description

- - 明 細 書 レーザ装置 技 術 分 野  ---Specifi cations Laser equipment technology
本発明は、 レーザ装置における発振波長および発振出力の制御に適用して な に関する。 背 景 技 術  The present invention relates to a method of controlling an oscillation wavelength and an oscillation output in a laser device. Background technology
レーザ光は、 それ自体でコヒ一レントな高い波長純度、 高出力等の«を有し、 強い が可能な光源として有望視されている。 このような状況で、 半導体製 造におけるリソグラフイエ程での光源として利用を検討されているものに狭帯域 化エキシマレ一ザがある。  Laser light itself has high wavelength purity, high output, etc., which are coherent, and is regarded as a promising light source capable of intense light. Under these circumstances, a narrow band excimer laser is being considered for use as a light source in the lithographic process in semiconductor manufacturing.
^^域化レーザ光を得るためには、 レーザ共振器をグレーティング、 プリズム、 複屈折フィルタ、 エタ口ン等の波長選択素子で構成したものが知られている。 さらに、 エキシマレーザや色素レーザのように広い帯域にレーザ利得を持つよ うなレ一ザ媒質では、 狭帯域化に 1枚または複数枚のエタロンをレーザ^器内 に挿入する 力 s '知られている。 In order to obtain ^^-band laser light, it is known that a laser resonator is composed of a wavelength selecting element such as a grating, a prism, a birefringent filter, and an aperture. Furthermore, in Roar one laser medium by having a laser gain a wide band as an excimer laser or a dye laser, one or a plurality of etalons known force s' to be inserted into the laser ^ in the converter to the narrowing I have.
ここで、 エタロンについて簡単に説明すると、 エタロンは、 所定の間隔を隔て て ¥ίϊに皿された平面度の高い 2枚の H寸膜間に生じる光の多 S 寸と干渉現 象とを応用した波長選択素子である。  Here, the etalon will be described briefly. The etalon applies the multi-S dimension of light generated between two highly-flat H-layers, which are plated at a predetermined interval, and the phenomenon of interference. This is a wavelength selection element.
このようなエタロンを用いたレーザ装置としては、 第 6図に示すものがあり、 ここでは第 1および第 2の一対のエタロン 2 5 a, 2 5 bにより多重 ^^域化を 図っている。 すなわち、 第 1のエタロン 2 5 aは、 狭帯域化の粗調用として機能 し、 第 2のエタロン 2 5 bは微調用として機能している。 すなわち、 レーザ媒質 2 6から照射されたレーザ光は、 リアミラ一 2 7によって すされた後、 第 1の エタロン 2 5 aによって、 本来のレーザ発振波長域を粗く 域化さ 続く第 2のエタロン 2 5 bによってこれを所望の帯域幅までさらに狭帯域化して出力さ ft, フロントミラー 2 8を経てレ一ザ^ ¾器 2 9から照寸される。 ここで、 レーザ 器 2 9から照射されたレーザ光の波長を安定させるために、 下記のような方法をとつていた。 FIG. 6 shows a laser device using such an etalon. Here, a first and a second pair of etalons 25a and 25b are used to achieve a multi-region. That is, the first etalon 25a functions as a coarse adjustment for narrowing the band, and the second etalon 25b functions as a fine adjustment. That is, the laser light emitted from the laser medium 26 is irradiated by the rear illuminator 27, and then the first etalon 25a coarsens the original laser oscillation wavelength range. This is further narrowed down to the desired bandwidth by 5b and the output is output ft, and is illuminated from the laser unit 29 via the front mirror 28. Here, in order to stabilize the wavelength of the laser light emitted from the laser device 29, the following method was used.
すなわち、 レーザ 器 2 9より照射されたレーザ光の を、 ビ一ムスプリ ッタ 3 0によって分岐し、 分岐したレーザ光を光ファイバケーブル 3 2を経て波 長測定部 3 3に入光させる。 この波長測定部 3 3で中心波長の測定を行い、 この 結 辱られた測定信号を主制御部 3 4に出力する。 主制御部 3 4では、 前記測定 信号に基づいて所定の演算処理を実行して J»用ィンターフェース 3 5を通じて 空圧 油圧式あるいはスプリング圧力を変化させるァクチユエ一タ 3 6 a , 3 6 bを所 ¾4だけ画させて、 各エタロン 2 5 a, 2 5 bを最適な位置に補整し ていた。  That is, the laser beam emitted from the laser device 29 is split by the beam splitter 30, and the split laser beam enters the wavelength measuring unit 33 via the optical fiber cable 32. The wavelength measuring section 33 measures the center wavelength, and outputs the insulted measurement signal to the main control section 34. The main control unit 34 executes a predetermined calculation process based on the measurement signal, and the pneumatic or hydraulic actuators 36 a and 36 b for changing the pneumatic or hydraulic pressure through the J interface 35. The etalons 25a and 25b were adjusted to optimal positions by drawing only 4 points.
したがって、 レーザ 9から照 J寸されるレーザ光の中, [:被長を安定化さ せるためには、 前記两エタ口ン 2 5 a, 2 5 bの微調整を確実に行う があつ た。  Therefore, among the laser beams illuminated by the laser 9, [: In order to stabilize the length, there is a method for surely performing fine adjustment of the above-mentioned ETA ports 25 a and 25 b. .
ところで、 半導体製造の如き超翻な処理を とする では、 長時間にわ たる纖的照射において高度の波長安定性力 ¾求さ^ 難域で光の中 長の 変動を出来る限り小さな範囲内に抑えなければならないとされている。  By the way, in the case of transversal processing such as semiconductor manufacturing, it is necessary to obtain a high degree of wavelength stability in long fiber-like irradiation. It has to be suppressed.
しかし、 前記の空圧 油圧式あるいはスプリング圧力変化によるァクチユエ —タ 3 6 a, 3 6 bでは、 最小謝禅位カ く、 すなわちエタロン 2 5 a , 2 5 bの傾角の微調整力困難となり、 レーザ波長の高度な安 を得ること力 し力 つ 7 o  However, the actuators 36a, 36b due to the pneumatic, hydraulic, or spring pressure changes have a minimum zenji position, that is, it is difficult to finely adjust the tilt angle of the etalons 25a, 25b. 7 o to obtain a high level of laser wavelength
本発明は、 前記の点に鑑みてなされたもので、 その目的は、 エタロン等の波長 選択素子の傾角調整を高精度で行い、 レーザ^器からのレーザ出力波長を常に 安定させることにある。  The present invention has been made in view of the above point, and an object of the present invention is to adjust a tilt angle of a wavelength selection element such as an etalon with high accuracy and always stabilize a laser output wavelength from a laser device.
また、 レーザ装置にあっては、 レーザ出力安趙の高いこと力 ¾まれるが、 レ —ザ出力安定化のためのフィ一ドバック制御の前提として、 レーザ出力の確実な 測定をする必 がある。  In laser equipment, laser output power is high, but as a premise of feedback control to stabilize laser output, laser output must be measured reliably. .
さらに、 レーザ出力安定のため、 電源部からのノィズを遮断する必要があり、 さらには、 装置全体を適切に制御できるようにすることが である。 発 明 の 開 示 In addition, it is necessary to cut off noise from the power supply unit in order to stabilize the laser output, and it is also necessary to be able to appropriately control the entire device. Disclosure of the invention
本発明は、 miのような要望に応えることのできるレーザ装置を提供すること を目的とする。 本発明 (第 1の発明) は、 前記目的を M;するため、 «·±·に直 列に配置さ^ 少なくとも一方の傾角を調整することでレーザ媒質からのレーザ 光を 域化する少なくとも第 1および第 2の波長選択素子を有するレーザ装置 において、 前記傾角を微調整するために自動マイクロメータへッドを備えてレ一 ザ装置とした。  An object of the present invention is to provide a laser device that can meet a demand such as mi. In order to achieve the above object, the present invention (the first invention) has at least a first arrangement in which laser light from a laser medium is localized by adjusting at least one of the tilt angles arranged in series in a row. In the laser device having the first and second wavelength selection elements, the laser device is provided with an automatic micrometer head for finely adjusting the tilt angle.
前記した手段によれば、 移動量の微小な制御カ呵能な自動マイクロメ一タへッ ドを用いることで、 波長選択素子の «に対する傾角の微調整か^!能となる。 こ のため、 レーザ共振器から出力されるレーザ光の波長を常に安定させることがで <too  According to the above-mentioned means, by using an automatic micrometer head capable of controlling the movement amount very finely, it becomes possible to finely adjust the inclination angle of the wavelength selection element with respect to the angle. As a result, the wavelength of the laser light output from the laser resonator can always be stabilized, and
前記自動マイクロメータヘッ ドとは、 たとえ i il:流モータ、 パルスモータ等を 用い、 このようなモータの回転を窗¾方向の移動に変換してへッドを移動する構 造のァクチユエ一タである。  The automatic micrometer head is, for example, an actuator that has a structure in which an iil: flow motor, a pulse motor, or the like is used, and the rotation of such a motor is converted into movement in a window direction to move the head. It is.
本発明で棚する波長選択素子としては、 エタロンの慨 回析^"、 麵折フ ィルタ等を用いることができ、 さらに前記回析軒とエタロンとの,袓合せ、 ある いは観折フィルタとエタロンとの組合せを用いてもよい。  As the wavelength selection element to be shelf in the present invention, an etalon's general diffraction ^ ", 麵 -fold filter or the like can be used. A combination with etalon may be used.
なお、 本発明によりレーザ発振出力ならびに波長の制御を行うのに適したレー ザの としては、 K r F, A r F等のエキシマレ一ザの慨 炭酸ガスレーザ、 銅蒸気レーザ、 アレキサンドライトレーザ、 T i—サファイアレーザ、 色素レー ザ等がある。 次に、 レーザ発振出力検出の測定信頼性向上を図った第 2の発明につき説明す る。 本発明の目的は、 レーザ媒質等からの電磁的な雑音に左右されることなく、 レーザ発振出力の正確な測定を可能にし、 強いては安定的なレーザ発振が可能な レーザ装置を実現することにある。  Examples of lasers suitable for controlling the laser oscillation output and wavelength according to the present invention include excimer lasers such as KrF and ArF, such as carbon dioxide gas laser, copper vapor laser, alexandrite laser, and Ti —Sapphire lasers, dye lasers, etc. Next, a description will be given of a second invention for improving the measurement reliability of laser oscillation output detection. An object of the present invention is to realize a laser device capable of accurately measuring a laser oscillation output without being influenced by electromagnetic noise from a laser medium or the like, and capable of performing a stable laser oscillation at a high level. is there.
第 2の癸明は、 レーザ媒質の近傍に配置された受光部と、 この受光部に一端が 接続されてレーザ媒質からの検出光を伝える光ファイバと、 光ファイバの他端に 接続された放光部と、 この放光部に対向して配置された光電変換素子と、 光電変 - - 換素子からの検出信号に基づいて前記レーザ光の発振出力を算出し前記レ一ザ媒 質への制御信号を発生する主制御部とで構成したレーザ発振出力検出装置を要旨 とする。 The second light source includes a light receiving unit disposed in the vicinity of the laser medium, an optical fiber having one end connected to the light receiving unit for transmitting detection light from the laser medium, and a light emitting unit connected to the other end of the optical fiber. A light section, a photoelectric conversion element disposed opposite to the light emitting section, and a photoelectric conversion element. The gist of the present invention is a laser oscillation output detection device including a main control unit that calculates an oscillation output of the laser light based on a detection signal from a switching element and generates a control signal to the laser medium.
ここで、 レーザとしては、 K r F、 A r F等のエキシマレーザ、 炭酸ガスレー ザ、 銅蒸気レ一ザ、 色素レーザ、 YA Gレーザ、 アレキサンドライトレーザ等の ノヽ。ルス発振するレーザ装置のみならずへリウムーネオンレーザ、 アルゴンィォン レ一サ '等の連^!振するレーザでもよい。  Here, lasers include excimer lasers such as KrF and ArF, carbon dioxide lasers, copper vapor lasers, dye lasers, YAG lasers, and alexandrite lasers. A laser that oscillates, such as a helium-neon laser or an argon laser, may be used as well as a laser device that oscillates.
また、 光フアイパの两端に接続される受 および放 ¾ ^には鮮レンズを装 着して入光効率または出光効率を高めたものでもよい。  Also, the receiving and emitting lights connected to the 两 end of the optical fiber may be provided with a bright lens to increase the light input efficiency or the light output efficiency.
光電変換素子とは、 たとえばフォトダイオード等の素子であり、 受 に対 応した電気信号を発生する光電効果を有する素子であればよい。  The photoelectric conversion element is, for example, an element such as a photodiode, and may be any element having a photoelectric effect of generating an electric signal corresponding to reception.
前記した手段によれば、 レーザ媒質近傍に配置された受^^で受けた検出光を 光 態のまま光ファイバによって導く。 そして、 前記レーザ媒質の電磁的雑音の 影響を受けなレゝ位置に設けられた放光部から出光させて、 この光を光電変換素子 で受ける。  According to the above-described means, the detection light received by the receiver disposed near the laser medium is guided by the optical fiber in an optical state. Then, the light is emitted from a light emitting unit provided at a ray position which is not affected by the electromagnetic noise of the laser medium, and this light is received by a photoelectric conversion element.
このように、 本発明では光ファイバを用いることにより、 レーザ媒質と光電変 換素子との間の距離をとり、 フォトダイオードを ΙΕ¾ ·検出部に近接して配置す ることによりレーザ媒質からの電磁的雑音の影響を抑止することができる。 しか も、 光電変換素子から駆動 ·検出部までの駭酉 ¾tも大幅に短縮することができ る。  As described above, in the present invention, by using the optical fiber, the distance between the laser medium and the photoelectric conversion element is increased, and the photodiode is arranged in close proximity to the detecting unit, thereby making it possible to obtain the electromagnetic wave from the laser medium. The effect of dynamic noise can be suppressed. In addition, the time from the photoelectric conversion element to the drive / detection unit can be significantly reduced.
この結果、 光電変換素子の出力信号に する雑音信号のレベルを低下させ、 雑音に阻害されない信号検出が可能となり、 このような検出結果に基づいた確実 なレーザ装置の制御か^ r能となる。 第 3の発明は、 信頼性の高いレーザ発光 5^の測定することを目的とするもの で、 レーザ光を受光する¾¾素子と、 受髓子で光電麵された検出 信号を デジタル信号に変換する A/ D変換部と、 A/ D変換部からの信号を分析してレ —ザ発振出力を算出する演算手段とを傭えており、 前記受髓子と A/D変換部 との間に少なくとも多段の積分器を傭えた積分回路が介装されていることを ~ - とするレーザ発振出力検出装置を要旨とする。 As a result, the level of the noise signal as the output signal of the photoelectric conversion element is reduced, and signal detection that is not hindered by noise becomes possible. Thus, the laser device can be reliably controlled based on such a detection result. The third invention aims to measure the laser emission 5 ^ with high reliability, and converts a detection signal, which is received by the laser beam receiving element and a photodetector, into a digital signal. It employs an A / D conversion unit and arithmetic means for analyzing a signal from the A / D conversion unit to calculate a laser oscillation output, and at least between the receiver and the A / D conversion unit. That an integration circuit with multi-stage integrators is interposed The gist of the present invention is a laser oscillation output detection device which is defined as-.
ここで、 レーザとしてはエキシマレ一ザ、 炭酸ガスレーザ、 銅蒸気レーザ、 色 素レ一ザ、 YA Gレ一ザ、 アレキサンドライトレーザ等のパルス発振レーザはも とより、 ヘリウム一ネオンレーザ、 アルゴンイオンレーザ等の連 ίί ^振レーザで あってもよい。  Here, the laser is a pulsed laser such as an excimer laser, a carbon dioxide laser, a copper vapor laser, a color laser, a YAGG laser, an alexandrite laser, a helium-neon laser, an argon ion laser, or the like. The vibration laser may be used.
また、 受光素子としては、 たとえばフォトダイオード等の光電素子であり、 受 光 ¾fiに対応した電気信号を発生するものであればよい。  Further, the light receiving element may be a photoelectric element such as a photodiode, for example, as long as it generates an electric signal corresponding to the light receiving fi.
前言 分回路としては、 積分器としてたとえば O Pアンプを多段に接続した回 路構成で実現でき、 少なくとも数十 n sの発振波長を数十〃 s禾!^にまで延長で きること力 $好ましい o  The preceding circuit can be realized by a circuit configuration in which, for example, integrators are connected in multiple stages as an integrator. Power that can be extended to ^ $ favorable o
前記した手段によれば、 受光素子の出力 が光強度の時間分布を表している 点に着目して、 この値を時間について積分することによって光量としての光強度 を検出しているため、 より正確な光 の検出が可能となる。 第 4の発明は、 筐体外部や電源側にノイズを拡散せず、 特にコンピュータと高 電圧系とのアイソレーションを大幅に改善してコンピュータの異常 作を防止す ることができるようにしたレーザ装置を Hi共することを目的とする。  According to the above-described means, the light intensity as a light amount is detected by integrating this value with respect to time by focusing on the fact that the output of the light receiving element represents the time distribution of the light intensity, so that more accurate Light can be detected. The fourth invention is a laser that does not diffuse noise to the outside of the housing or to the power supply side, and in particular, greatly improves isolation between a computer and a high-voltage system, thereby preventing abnormal operation of the computer. The purpose is to make the equipment Hi.
第 4の発明は、 ガスレーザチャンバ内の放電電極に高 ¾ίを供給する高電圧発 生装置と、 この高 発生装置を制御するコンピュータとを有するレーザ装置に おいて以下のような構成とした。  A fourth invention has the following configuration in a laser device having a high-voltage generation device for supplying a high voltage to a discharge electrode in a gas laser chamber, and a computer for controlling the high-generation device.
即ち、 前記高電圧発生装置と電源とを接続する第 1電源線に第 1シールドを設 ける。  That is, a first shield is provided on a first power supply line connecting the high voltage generator and a power supply.
第 1電源泉の中途にノィズフィルタを介挿する。  Insert a noise filter in the middle of the first power source.
そして、 電源 3とコンピュータとを接続する第 2電源線に第 2シールドを設け る o  Then, provide a second shield on the second power line connecting the power supply 3 and the computer.o
前記高 m£E発生装置と放電電極との間の高圧コ一ドに第 3シールドを設ける。 さらに、 前記高 発生装置とコンピュータとを接続する制御線を光ケ一ブル としてレーザ装置とした。  A third shield is provided on the high voltage cord between the high voltage generator and the discharge electrode. Further, a laser device was used as a control cable connecting the high-power generation device and a computer as an optical cable.
前記各シールドとしては 網や、 シ一ルド性の高いフレキシブルコンべック - - ス管が適し、 これらを接地するのが望ましい。 Nets and flexible shields with high shielding properties --Pipes are suitable, and it is desirable to ground them.
また、 前記ノイズフィルタとしては絶緣トランスや口一パスフィルタ力 する。 さらに、 ノィズが漏浅しやすい部位にはシ一ルディングゃフィルタリングを施す のが ましい。  Further, the noise filter may be an absolute transformer or a single pass filter. Furthermore, it is better to apply shielding / filtering to parts where noise is likely to leak.
高 SE発生装置からの^!中波はノィズフィルタに力ットされ電源に侵入するこ とはない。 したがって、 コンピュータその他の回路に電源を介してスプリアスや パルス性ノィズが侵入することはない。 さらに前記各シールドは電磁誘導による ノィズが電源線に されることを防止する。  Medium waves from the high SE generator are forced by the noise filter and do not enter the power supply. Therefore, spurious and pulsating noises do not enter the computer or other circuits via the power supply. Further, the shields prevent noise caused by electromagnetic induction from being applied to the power supply line.
また、 コンピュータはデータの入出力を光ケーブルで行っているため、 ノイズ からのアイソレーションは^:であり、 乍する虞れはない。 第 5の発明は、 レーザガス供給 ·お^:系の制御に際して^)作を防止して信頼 性の高いガス供給 ·お^:制御を実現することを目的とする。  Also, since the computer inputs and outputs data via optical cables, the isolation from noise is ^: and there is no danger. The fifth invention aims to realize a highly reliable gas supply control by preventing the operation of laser gas supply control in the system.
この第 5の発明はレーザチヤンバ内にレーザガスを供給 ·排気するレーザ用ガ ス供給'お^置であって、 ガス源とレーザチャンバとの間に接続さ 前記ガ ス源のレーザガスをチヤンバ内に導入するための主配管と、 前言£±配管上に設け ら t ^ 離隔位置から制御配管を通じて流体圧によつて |g¾され主配管を開閉制御 する流体圧 J»バルブと、 前記制御配管の に接続された電磁^^置と、 前記 主配管からの分岐配管の端部に接続された圧力検出器と、 前記電磁弁装置および 圧力検出器と m^se^により接続さ これらを 的に制御する制御部とを有 しており、 前記制御配管および分 fl¾ss管の配管距離を十分な長さとすることによ つて、 前記 ¾ ^配線がレーザチャンバで発生する電磁ノィズの影響を受けないよ うにしたレーザ用ガス供給 ·ぉ 置である。  The fifth invention is a laser gas supply device for supplying and exhausting a laser gas into a laser chamber, wherein the laser gas of the gas source connected between a gas source and a laser chamber is introduced into the chamber. To the main piping for controlling the opening and closing of the main piping, which is provided on the piping by the fluid pressure from the t ^ separated position through the control piping, and controls the opening and closing of the main piping. And a pressure detector connected to the end of the branch pipe from the main pipe, and a control connected to the solenoid valve device and the pressure detector by m ^ se ^. A laser that has a sufficient distance between the control pipe and the fl¾ss pipe so that the 配線 ^ wiring is not affected by electromagnetic noise generated in the laser chamber. Gas supply
すなわち、 主配管を開閉制御するバルブを流体圧駆動バルブとし、 この駆動流 体圧を供給 ·ぉ する制御配管と電磁弁装置とを設け、 圧力検出器を主配管から の分岐配管の に接続した点に特に體を有する。  That is, a valve for controlling the opening and closing of the main pipe is a fluid pressure drive valve, a control pipe for supplying and controlling the driving fluid pressure and an electromagnetic valve device are provided, and a pressure detector is connected to a branch pipe from the main pipe. It has a body especially at the point.
前記した手段によれば、 主配管上の開閉制御を行うバルブを、 電磁ノイズの影 響を受けない^:等の流体圧で j»する:^:とし、 さらに圧力検出器についても 分 n«管の弓 Iき回しによってレーザチヤンパから離れた位置に配置することによ - - つて、 制御系の全ての電気酉 泉をレーザチャンバから離すことカ呵能となってい 。 According to the above-mentioned means, the valve for controlling the opening and closing of the main pipe is set to j »: ^ :, which is not affected by electromagnetic noise, by a fluid pressure such as ^ :, and the pressure detector is also divided into n«. Tube bow I. By turning it away from the laser chamber. --Therefore, it is very important to keep all the electric springs in the control system away from the laser chamber.
このため、 レーザチャンバで発生する電磁ノイズにより影響されることなく、 圧力検出器による検出値の精度が担保される。 同様に、 主配管を開閉するバルブ の誤動作も防止される。  Therefore, the accuracy of the value detected by the pressure detector is ensured without being affected by the electromagnetic noise generated in the laser chamber. Similarly, malfunction of the valve that opens and closes the main piping is also prevented.
なお、 このような を有するガス供給 ·排^置は封じ切り型でないガスレ —ザ装置^^について使用可能である。 第 6の発明の目的は処¾¾ ^に差異のある複数の制御項目を有するガスレーザ 用制御装置において、 単一の制御装置において複数の制御項目を並行して実行可 能な«を 共することにある。  It should be noted that the gas supply / discharge having the above can be used for a gas laser device which is not a sealed type. A sixth object of the present invention is to provide a gas laser control device having a plurality of control items having different processes, in which a single control device can execute a plurality of control items in parallel. is there.
第 6の発明は、 少なくとも高 理を要求される高 とィ g ^処理を要求 される β»¾¾とを備えており、 前記高 画の βクロックを する高 速タイマカウンタと、 iffii^k理用の »クロックを生成する低速タイマカウンタ とによつて各々の処理タィミングカ :して決定されることを■とするガスレ —ザ用制御装置を要旨としている。  According to a sixth aspect of the present invention, there is provided a high-speed timer counter that performs at least a high-level request and a high-level β-clock, and a high-speed timer counter that performs the high-speed β clock. The gist of the present invention is a gas laser control device whose processing timing is determined by a low-speed timer counter that generates a clock for use.
前記した手段によれば、 専用のマイクロプロセッサ (C P U) をもとに制御装 置を構築し、 クロック信号から任意の周波数を合成する 2 : JLhのタイマカウンタ を駆使することにより、 高速の演算処理にも低速の演算処理にも対応する事を実 現している。 これに例えば、 パラレル入出力、 デジタル一アナログ変 アナ口 グ一デジタル変換の I /O、 光入出力ポートを加えてシステムとしている。 また ソフトウェア上では時分割 を取入^ 高速制御の処理中に髓制御の処理を 組み込むことにより複数の制御項目の並行処理カ呵能となる。 この結果、 例えば 高藤理が なレーザ発鍵を停止させることなくガス 等の他の髓制御 を実行させることが可能となる。  According to the above-mentioned means, a control device is constructed based on a dedicated microprocessor (CPU), and an arbitrary frequency is synthesized from a clock signal. 2: By making full use of a JLh timer counter, high-speed arithmetic processing can be performed. It also supports low-speed arithmetic processing. For example, parallel I / O, digital-to-analog conversion, analog-to-digital conversion I / O, and optical input / output ports are added to this system. In addition, time-sharing is implemented on the software. Incorporating the processing of the marrow control during the processing of the high-speed control enables the parallel processing of multiple control items. As a result, for example, Takashi Osamu can execute another control of the gas or the like without stopping the laser keying.
この第 6の発明において、 前記高^ における制御項目は少なくとも放電 開始信号の出力、 レーザ出力の検出およびその安定化制御信号の出力、 レーザ波 長の検出およびその安定化制御信号の出力であり、 前記ィ g¾kS¾における制御 項目は少なくともガス交換におけるガスバルブの開閉制御信号の出力であること - - 力 ましい。 ii , 第 1〜第 6までの発明は、 それぞれ 2 J^±選択して組み合わせて、 レ一 ザ装置に組み入れることが可能である。 図面の簡凰な説明 In the sixth aspect, the control items at the high level are at least output of a discharge start signal, detection of a laser output and output of a stabilization control signal thereof, detection of a laser wavelength and output of a stabilization control signal thereof, The control item in the above g¾kS¾ shall be at least the output of the gas valve opening / closing control signal in gas exchange. --Power is good. ii, the first to sixth inventions can be incorporated in a laser device by selecting and combining 2 J ^ ± each. Brief description of drawings
第 1図〜第 5図は本発明 (第 1の発明) の一難例を示しており、 第 1図はレ 一ザ装置の全備成を示すブロック図、 第 2図 (a) は波 択素子の調鮮段を 説明するためのエタロンホルダを第 2図 (b) の A方向から見た図、 第 2図 (b) は その側面図、 第 3図は中心波長の安定化制御を示す説明図である。 第 4図は自動 マイクロメータへッドの を示した図である。 第 5図は主制御部のブロック図 である。 第 6図は ^技術におけるレーザ装置の全 成を示すプロック図であ る。  FIGS. 1 to 5 show difficult examples of the present invention (first invention). FIG. 1 is a block diagram showing the complete arrangement of a laser device, and FIG. Fig. 2 (b) shows the etalon holder for explaining the step of adjusting the brightness, Fig. 2 (b) shows the etalon holder, Fig. 2 (b) shows its side view, and Fig. 3 shows the control for stabilizing the center wavelength. FIG. FIG. 4 is a diagram showing the structure of the automatic micrometer head. FIG. 5 is a block diagram of the main control unit. FIG. 6 is a block diagram showing the entire configuration of the laser device in the ^ technology.
第 7図は第 2の発明の一 例であり、 レーザ発振出力検出装置の構成を示す ブロック図である。  FIG. 7 is an example of the second invention, and is a block diagram showing a configuration of a laser oscillation output detection device.
第 8図〜第 1 0図は第 3の発明の一 例であり、 第 8図はレーザ発振出力検 出装置の構成を示すプロック図、 第 9図 (a)および (b)は受髓子および 分回路 での出力、波形を示す説明図、 第 1 0図は積分回路の具体 成を示す回路図であ 。  8 to 10 show an example of the third invention. FIG. 8 is a block diagram showing a configuration of a laser oscillation output detecting device, and FIGS. And FIG. 10 is an explanatory diagram showing outputs and waveforms of the dividing circuit. FIG. 10 is a circuit diagram showing a specific configuration of the integrating circuit.
第 1 1図及び第 1 2図は第 4の発明の ^を示し、 第 1 1図は全体のブロッ ク図、 第 1 2図はコンピュータ部分のブロック図である。  11 and 12 show ^ in the fourth invention, FIG. 11 is an overall block diagram, and FIG. 12 is a block diagram of a computer part.
第 1 3図は第 5の発明のー実删であり、 レーザ用ガス供給' ^^置を示す ブロック図である。  FIG. 13 is a block diagram showing an embodiment of the fifth invention, showing a laser gas supply unit.
第 1 4図は第 6の発明の一実施例を示しており、 ガスレーザ用制御装置の構成 を示すブロック図である。  FIG. 14 shows an embodiment of the sixth invention, and is a block diagram showing a configuration of a gas laser control device.
発明を実施するための最良の形: II BEST MODE FOR CARRYING OUT THE INVENTION: II
以下、 図面を用いて本発明の を説明する。  Hereinafter, the present invention will be described with reference to the drawings.
本発明 (第 1の発明) においては第 1図に示すように、 レーザ媒質 2の一端外 W 1 ~ ~ 方には波長選択素子としてネ且調用エタロン 3および微調用エタロン 4がそれぞれ 配置されている。 そしてこの最外方にはリアミラ一 5が配置さ レーザ媒質 2 により生成されたレーザ光はこのリアミラ一 5により K寸された後、 粗調用エタ ロン 3により約 1 / 1 0の波長帯域に狭帯域化さ 微調用エタロン 4によって さらにその約 1 / 1 0に^ =域化さ^ フロントミラ一 1を経て外部に抛寸され る。 In the present invention (the first invention), as shown in FIG. On the sides W 1 to W 1, an etalon 3 for fine tuning and an etalon 4 for fine tuning are arranged as wavelength selecting elements. A rear mirror 15 is disposed at the outermost position. After the laser beam generated by the laser medium 2 is K-sized by the rear mirror 5, it is narrowed to a wavelength band of about 1/10 by the coarse adjustment etalon 3. Bandwidth is finely adjusted by the etalon 4 for fine adjustment to about 1/10 of it.
このようにして ¾寸されたレーザ光は、 ;)^上に配置されたビ一ムスプリッタ 6により を分岐されて光ファィバケ一ブル 7から波長測定部 8に入光されて その発振波長が検出される。 そしてこの検出信号を受け取る主制御部 1 0は、 所 定の演算処理を行い、 制御信号を直流モータドライバ 1 1に出力する。 直流モ一 タドライノ 1 1は、 この制御信号に基づいて粗調用エタロン 3と微調用エタロン 4とを微調整する。 そしてこのような微調整は、 自動マイクロメータヘッド 1 4 a〜 1 4 dを IHSJすることによつて行われる。  The laser beam sized in this way is branched by the beam splitter 6 disposed on;) ^, and enters the wavelength measuring unit 8 from the optical fiber cable 7 to detect its oscillation wavelength. Is done. Then, the main control unit 10 receiving the detection signal performs a predetermined arithmetic process, and outputs a control signal to the DC motor driver 11. The DC motor drino 11 finely adjusts the coarse adjustment etalon 3 and the fine adjustment etalon 4 based on this control signal. Such fine adjustment is performed by performing IHSJ on the automatic micrometer heads 14a to 14d.
ここで、 前記微調整技術について第 2図を用いて説明する。  Here, the fine adjustment technique will be described with reference to FIG.
すなわち、 自動マイクロメータヘッド 1 4 a〜l 4 dは、 エタロン 3 , 4を保 持する矩^エタロンホルダ 1 5, 1 6に対してその平面上の一方の対角線上に 一対ずつ配置されており、 エタロン 3 , 4の左右のずれを微調整する自動マイク ロメ一タヘッド 1 4 a , 1 4 dと、 エタロンの^ B&に対する傾角を微調整する自 動マイクロメータへッド 1 4 b , 1 4 cとからなる。 各自動マイクロメータへッ ド 1 4 a〜 1 4 dは、 主制御部 1 0カゝらの制御信号によって、 それぞ ¾に直 流モータドライバ 1 1によって Ι3ίιされる。  That is, a pair of the automatic micrometer heads 14a to 14d are arranged on one diagonal line on the plane of the rectangular etalon holders 15 and 16 holding the etalons 3 and 4, respectively. An automatic micrometer head 14a, 14d for fine adjustment of the left and right displacement of the etalons 3 and 4, and an automatic micrometer head 14b, 14 for fine adjustment of the tilt angle of the etalon with respect to ^ B & c. Each of the automatic micrometer heads 14a to 14d is controlled by a DC motor driver 11 in response to a control signal from the main control unit 10.
ここで、 自動マイクロメータへッド 1 4 a〜 1 4 dについて簡単に説明すると、 内部に直 ¾?ΕΙΙΗ¾手段としての超小型の直流モ一タと、 高 能のギアへッドとを 有し、 このギアへッドをモータで回転されるリードスクリユーに した構造を 有しており、 モータの回 をリードスクリユーの直線方向への移動量に変換す る構造となっている。  Here, the automatic micrometer heads 14a to 14d will be briefly described. There are a micro DC motor as a direct means inside and a high-performance gear head inside. In addition, the gearhead has a structure in which the lead screw is rotated by a motor, and the rotation of the motor is converted into a moving amount of the lead screw in a linear direction.
例えば、 第 4図に示したように、 自動マイクロメータヘッドは、 ケース 2 0 a 内に、 リニアスライドヘッド 2 0 bと、 リ一ドスクリュ 2 0 cと、 高藤能ギヤ ヘッド 2 0 dと、 超小型直流モ一タ 2 0 eとを備え、 前言 小型直流モ一タ 2 0 - - eを主制御部 1 0で制御する構成となっている。 For example, as shown in FIG. 4, the automatic micrometer head includes a linear slide head 20b, a lead screw 20c, a Takatoh Noh gear head 20d, and a The miniature DC motor 20 e is provided with a small DC motor 20 e. --The main control unit 10 controls e.
前記リニアスライドへッド 2 0 bは一 カ棒状部 2 0 f となっていて前記ケ —ス 2 0 aから突出レ ィ til«力 s筒状部 2 0 gとなっていて、 その内面に雌螺子 2 0 hが切ってある。 また、 前記リ一ドスクリュ 2 0 cは棒状で、 前記リニアス ライドへッド 2 0 bの筒状部 2 0 g内に挿入さ† 筒状部 2 0 g内面の雌螺子 2 0 hに嚙み合う雄螺子 2 0 iが周囲に切ってある。 The linear slide head 20 b has a single rod-like portion 20 f, and has a protruding rail til «force s cylindrical portion 20 g from the case 20 a. Female screw 20 h is cut. The lead screw 20c is rod-shaped and inserted into the cylindrical portion 20g of the linear slide head 20b. The lead screw 20c is inserted into the female screw 20h on the inner surface of the cylindrical portion 20g. A matching male screw 20 i is cut around.
前記高傷能ギヤへッド 2 0 dは、 図示しない歯車の組み合わせで前記直流モ —タ 2 0 eのトルク変換を行う。 前言 制御部 1 0は前記直流モータ 2 0 eの回 転量、 回 を制御する。 具体的には、 この主制御部 1 0は、 第 5図のように、 目的とする ^域化スぺクトルの絲中 ¾長を設定する目標 ifiia手段 2 1と、 目標値設定手段 2 1で設定した »中心波長に対する前記波長測定部 8で検出し た測定中心波長の偏差を検出する偏差検出手段 2 2と、 この偏差検出手段 2 2で 検出した を打ち消す方向に前記自動マイクロメータへッドに直流モータの回 転量、 回 ¾ ^の制御のための信号を送出する制御手段 2 3とを有する。  The high-defect gear head 20d converts the torque of the DC motor 20e using a combination of gears (not shown). Foreword The control unit 10 controls the rotation amount and rotation of the DC motor 20e. More specifically, as shown in FIG. 5, the main control section 10 includes a target ifiia means 21 for setting a target yarn length of a target spectral domain, and a target value setting means 21. »Difference detecting means 22 for detecting the deviation of the measurement center wavelength detected by the wavelength measuring section 8 from the center wavelength, and the automatic micrometer head in a direction for canceling the detection detected by the deviation detecting means 22. And a control means 23 for sending a signal for controlling the rotation amount and the rotation of the DC motor to the motor.
前述のように、 自動マイクロメータへッドは左右方向のずれを微調整する自動 マイクロメータへッド 1 4 a, 1 4 dと、 傾角を微調整する自動マイクロメータ ヘッド 1 4 b, 1 4 cとで構成されているが、 波長安定化制御のためには傾角の 微調整が重要な要素となり、 前記構成の自動マイクロメータへッドを用いること により、 傾角の角度調節が 0. 0 4mrad/sec¾度の高精度な微調整が可能となる。 次に、 本装置を用いた具体的な波長安定化制御について説明する。  As described above, the automatic micrometer heads 14a, 14d for fine adjustment of the lateral deviation, and the automatic micrometer heads 14b, 14d for fine adjustment of the tilt angle. The fine adjustment of the tilt angle is an important factor for the wavelength stabilization control.By using the automatic micrometer head of the above configuration, the tilt angle adjustment is 0.04 mrad. High-precision fine adjustment of / sec / degree is possible. Next, specific wavelength stabilization control using the present apparatus will be described.
本難例の波長安定化制御では、 まず目標値設定手段 2 1で目標とする、 贿 域化スペクトルの鮮中 概を決定する。 そして、 波長測定部 8で検出された 測定中心波長が前言 fiSi 中心波長とずれを生じた齢には、 偏差検出手段 2 2で 偏差を検出し、 主制御部 1 0の制御手段 2 3からの制御信号 (フィードバック信 号) により、 その偏差を解消するように制御する。  In the wavelength stabilization control of this difficult example, first, the target value setting means 21 determines the target of the broadened spectrum. Then, at the age at which the measured center wavelength detected by the wavelength measuring unit 8 deviates from the above-mentioned fiSi center wavelength, the deviation is detected by the deviation detecting means 22, and the deviation is detected by the control means 23 of the main control unit 10. Control is performed by a control signal (feedback signal) to eliminate the deviation.
すなわち、 第 3図に示すように、 波長測定部 8をモニタしながらレーザ光の所 望の裤中心波長 λ 0 を決定し、 この状態で直流モ一タドライノ 1をロックし て两エタロン 3, 4の位置を仮固定する。 That is, as shown in FIG. 3, the desired center wavelength λ 0 of the laser beam is determined while monitoring the wavelength measuring unit 8, and in this state, the DC motor drinometer 1 is locked and the etalons 3 and 4 are locked. Temporarily fix the position of.
次に、 レ一ザ^器 9から照射されるレーザ光を波長測定部 8において経時的 - - に測定して、 測定中心波長が前言 ^中心波長よりも Δスだけずれを生じた場合 に、 主制御部 1 0よりエタロン 3, 4に対してその光路上における位置を微調整 するための制御信号を直流モータドライバ 1 1に対して出力する。 すなわちここ では、 4つの自動マイクロメータヘッド 1 4 a〜l 4 dのうち、 ί翻用エタロン 4の傾角制御を行う自動マイクロメータへッド 1 4 dを主として焉隨して傾角を 微調整することになる。 Next, the laser beam radiated from the laser unit 9 is applied to the wavelength measuring unit 8 over time. When the measured center wavelength is shifted by Δs from the center wavelength, the main control unit 10 finely adjusts the position of the etalons 3 and 4 on the optical path with respect to the etalons 3 and 4. Is output to the DC motor driver 11. In other words, here, of the four automatic micrometer heads 14a to l4d, 傾 fine adjustment of the tilt angle mainly for the automatic micrometer head 14d that controls the tilt angle of the etalon 4 Will be.
このとき、 前記厶ス.のずれカ短波織 IJ (一方向) か、 あるいは長波翻 (+方 向) かによつて、 自動マイクロメータヘッド 1 4 d内の直流モータを時計方向あ るいは反時計方向に所定量回転させる。 ここで、 主制御部 1 0における制御パラ メータ、 たとえば直流モータの回転方向、 »m Jigfil時間等は主制御部 1 0 力 s有する記' Iff頁域の所定ァドレスにあらかじめ^ iされているものとする。 At this time, the DC motor in the automatic micrometer head 14d is rotated clockwise or counterclockwise depending on whether the muss. Rotate a predetermined amount clockwise. Here, the control parameters in the main control unit 10, such as the rotation direction of the DC motor, the »m Jigfil time, etc., are previously set to a predetermined address in the Iff page area having the main control unit 10 power s . And
そして、 前記装置構成による中心波長安定化^^を、 一次元フォトダイオード アレイを用いて、 8 0 H zで 1時間運転して測定中心波長の変動状況を測定した。 この結果、 中心波長麵幅が土 0. 5 7 p mという高い波長安 が得られた。 なお、 自動マイクロメータヘッドとしては、 モータの回 ¾fiを検出するェンコ ーダを有するものをィ¾^してもょレ \> このエンコーダ付のものはスピンドルとギ ャヘッドとの間にエンコーダがあり、 スピンドルのロストモーション (不用な動 き) やバックラッシュ (逆回転) はカウントしないようになっている。 次に、 レーザ究振出力検出の測定信頼性向上を図った第 2の発明の例につき説 明する。  Using the one-dimensional photodiode array, the center wavelength stabilization ^^ by the above device configuration was operated at 80 Hz for 1 hour to measure the fluctuation state of the measured center wavelength. As a result, a high wavelength was obtained with a center wavelength width of 0.57 pm. It should be noted that an automatic micrometer head having an encoder for detecting the motor rotation fi may be used.> With this encoder, an encoder is provided between the spindle and the gear head. The lost motion (unnecessary movement) and backlash (reverse rotation) of the spindle are not counted. Next, a description will be given of an example of the second invention in which the measurement reliability of the laser vibration output detection is improved.
第 7図において、 レーザ媒質を有するレーザ «器 1 0 1の射出口 1 0 2より 射出されたレーザ光 1 0 3は、 ビ一ムスプリッタ 1 0 4でその が分岐さ† 分岐光は受光部 1 0 5に入光される。 前記レーザ光 1 0 3は、 受光部 1 0 5に接 続された光ファイバ 1 0 6を通じて所^離 1の位置にある放光部 1 0 7まで導 かれる。 ここで所 ¾1¾離 1は、 前記レーザ媒質 2そのもの力 ¾ する出力規格等に よって決定することか ましい。  In FIG. 7, a laser beam 103 emitted from an emission port 102 of a laser device 101 having a laser medium is split by a beam splitter 104 into a light beam. Light is incident on 105. The laser beam 103 is guided to a light emitting unit 107 located at a position 1 through an optical fiber 106 connected to a light receiving unit 105. Here, it is preferable that the first distance 1 be determined according to an output standard or the like for the laser medium 2 itself.
前記放光部 1 0 7の対向位置には、 NDフィルタ 1 0 8を介して光電変換素子 1 1 0としてのフォトダイオード力 置されている。 フォトダイオードでは、 前 — — 記放光部 1 0 7カゝらの光 によつて出力 ¾Eが変化する。 A photodiode as a photoelectric conversion element 110 is placed at a position facing the light emitting unit 107 via an ND filter 108. In the photodiode, — — Light-emitting section The output ¾E changes depending on the light of 107 colors.
検出部 1 1 1では、 前記フォトダイオードからの «Ε信号に対して A/ D変換等の信号処理を施して制御部 1 1 2に出力する。  The detection unit 111 performs signal processing such as A / D conversion on the input signal from the photodiode and outputs the processed signal to the control unit 112.
制御部 1 1 2は、 マイクロプロセッサおよびメモリ等で構成されており、 '検出部 1 1 1からの測定信号に基づいて所定の演算処理を行い、 レーザ共振器 1 0 1に対する制御信号を^:する。 この制御信号は制御線 1 1 3を通じてレ一 ザ錄器 1 0 1あるいは図示しないレーザ制御機構に送出さ レーザ細器 1 0 1から射出されるレーザ光の を制御する。  The control unit 112 includes a microprocessor, a memory, and the like, performs a predetermined arithmetic process based on the measurement signal from the detection unit 111, and generates a control signal for the laser resonator 101: I do. This control signal is transmitted to the laser device 101 or a laser control mechanism (not shown) through the control line 113 to control the laser beam emitted from the laser device 101.
このときの制御信号の^;方法としては、 あらかじめサンプリングによって得 られた、 光娘と対になる ¾想的な制御パラメータをメモリに欄しておき、 駆 動 '検出部 1 1 1からの信号に対応してこれらの制御パラメ一タを順次変更して いく方法が挙げられる。  At this time, the control signal ^; method is to store in the memory the ideal control parameters that are paired with the light daughter obtained by sampling in advance, and the drive signal from the detection unit 111 There is a method of sequentially changing these control parameters in response to the above.
このとき ^ί¾例では、 光ファイバ 1 0 6により、 レーザ共振器 1 0 1と光電 変換素子 1 0との間の距離を十分にとることができるため、 光電変換素子 1 1 0 を «¾ ·検出部 1 1 1に近接して配置することができる。 このため、 レーザ難 器 1 0 1で発生する電磁的雑音の影響を最小限に抑止することができる。 しかも、 光電'変換素子 1 1 0から « ·検出部 1 1 1までの電気 1 1 4も大幅に β することができる。  At this time, in the example of 距離, since the distance between the laser resonator 101 and the photoelectric conversion element 10 can be sufficiently secured by the optical fiber 106, the photoelectric conversion element 110 is set to レ ー ザIt can be arranged close to the detection unit 111. For this reason, the influence of the electromagnetic noise generated in the laser difficulty device 101 can be minimized. Moreover, the electricity 114 from the photoelectric conversion element 110 to the detection unit 111 can be greatly reduced.
この結果、 光電変換素子 1 1 0の出力信号に する雑音信号のレベルを低下 させ、 雑音に阻害されない信号検出か 能となっており、 制御部 1 1 2において 的確な制御信号を;^;することができる。  As a result, the level of the noise signal, which is the output signal of the photoelectric conversion element 110, is reduced, and the signal can be detected without being disturbed by the noise. be able to.
本発明によれば、 雑音に阻害されない信号検出か^ Γ能となる結果、 確実なレ一 ザ装置の制御により安定したレーザ出力を得ることができる。 第 3の発明の実施例を説明する。  According to the present invention, a stable laser output can be obtained by reliable control of the laser device as a result of signal detection not hindered by noise. An embodiment of the third invention will be described.
第 8図に示すように、 レーザ媒質を有するレ一ザ ¾¾2 0 1の射出口 2 0 2 より射出されたレーザ光 2 0 3は、 ビームスプリッタ 2 0 4でその""^が分光さ i, この分岐光は 子 2 0 5に入光される。 受光素子 2 0 5で光電難され たパルス検離号は、 積分回路 2 0 6で波長調整が行われた後、 A/D変換部 7 でデジタル信号に変換されて制御部 208に入力される。 制御部 208は、 たと えば演算手段, レジスタ等を傭えた CPUと、 メモリ等の外部記憶装置等で構成 さ パルス検出信号に基づいて所定の演算処理を行った後、 レーザ 器 20 1に対する制御信号を生成する。 この制御信号は制御線 2 10を通じてレーザ共 振器 201あるいは図示しないレーザ制御機構に出力されてレ一ザ^器 201 から射出されるレーザ光の強度力 s制御される。 As shown in FIG. 8, the laser beam 203 emitted from the emission port 202 of the laser 201 having a laser medium is separated into "" ^ This split light enters the element 205. The pulse detection signal, which was photo-electrically damaged by the light-receiving element 205, is subjected to wavelength adjustment by the integration circuit 206, and then to the A / D converter 7 Is converted into a digital signal and input to the control unit 208. The control unit 208 is configured by, for example, a CPU that includes arithmetic means and registers, and an external storage device such as a memory. After performing predetermined arithmetic processing based on the pulse detection signal, the control unit 208 transmits a control signal to the laser unit 201. Generate This control signal is output to the laser resonator 201 or a laser control mechanism (not shown) through the control line 210 to control the intensity s of the laser light emitted from the laser 201.
次に、 ^Sfe例の鐘的な点である、 積分回路 206の具体的な構成について 説明する。  Next, a specific configuration of the integration circuit 206, which is a bell-shaped point of the ^ Sfe example, will be described.
積分回路 206は、 第 10図に示すように 4段の OPアンプ 21 1 a, 2 1 1 b, 2 1 1 c, 2 1 1 dを中心に構成されており、 このうちの第 1段の〇Pアン プ 2 1 1 aは増幅段として機能しており、 (-) 入力とアース間との抵抗値を選 択することにより増 を可変としている。  As shown in FIG. 10, the integrator circuit 206 is composed mainly of four-stage OP amplifiers 211a, 211b, 211c, and 211d. The 〇P amplifier 211a functions as an amplification stage, and its gain is made variable by selecting the resistance between the (-) input and ground.
そして、 第 2段〜第 4段の OPアンプ 2 l i b, 2 1 1 c, 2 1 1 dによって パルス検出信号の積分が行われる。  Then, integration of the pulse detection signal is performed by the second to fourth stage OP amplifiers 2 lib, 211 c, and 211 d.
ここで、 なお、 同図では第 2段および第 3段の OPアンプ 2 l i b, 2 1 1 c では、 入力端子がイマジナルショートの状態で 1 50 P Fの各コンデンサは λ¾ 電圧に充電されて各積分器に初期値が与えられて演算が行われるようになってい 。  Here, in the same figure, in the 2nd and 3rd stage OP amplifiers 2 lib and 211c, each capacitor of 150 PF is charged to λ¾ voltage and each integration The calculation is performed by giving the initial value to the container.
前記に説明した ΟΡアンプとしては、 たとえ {蹄域幅が 8. 0MHzで、 その スルーレ一トが 25 V/ s程度の応^:性を有するものをィ することができる。 このように、 多段の積分器を用いて積分回路 206を構成することによって、 受光素子 205からの第 9図 (a) に示すような数十 n s程度の検出パルス信号の 立ち上がり一減衰時間を数十〃 s禾 にまで延長した第 9図 (b) に示す信号とす ることができる。 したがって、 A/D変換部 7の応 避に対応したパルス検出 信号を得ることができ、 光強度の正確な検出が可能となる。  As the amplifier described above, for example, an amplifier having a hoof width of 8.0 MHz and a slew rate of about 25 V / s can be used. In this way, by configuring the integration circuit 206 using the multi-stage integrator, the rise-decay time of the detection pulse signal of about several tens ns from the light receiving element 205 as shown in FIG. It can be the signal shown in Fig. 9 (b), which extends to 10s. Therefore, a pulse detection signal corresponding to the avoidance of the A / D converter 7 can be obtained, and accurate detection of the light intensity can be performed.
また、 本難例によれば、 OPアンプを 4段用いて積分回路 206を構成して いるために、 長期間の使用に際しても積分回路 206の 特性を劣化させるさ せることなく、 パルス検出信号の積分が可能となる。  Further, according to this difficult example, since the integrating circuit 206 is configured by using four stages of the OP amplifiers, the characteristic of the integrating circuit 206 is not deteriorated even during long-term use, and the pulse detection signal is not deteriorated. Integration becomes possible.
本発明によれば、 受光素子の出力波形が光強度の時間分布を表している点に着 目して、 この値を時間について積分することによって としての光強度を検出 するため、 より正確な光 の検出が可能となる。 第 4の癸明の実施例を第 1 1図及び第 1 2図に基づいて説明する。 According to the present invention, the point at which the output waveform of the light receiving element represents the time distribution of light intensity is obtained. In particular, since the light intensity is detected by integrating this value with respect to time, more accurate light detection becomes possible. A fourth embodiment of the invention will be described with reference to FIGS. 11 and 12. FIG.
ガスレーザチャンバ 3 1 0内には放電 1 1が設けられている。 ガスレ一 ザチャンバ 3 1 0にはパイプ 3 2 0を介してガス制御装置 3 2 1カ 続さ:^ こ のガス制御装置 3 2 1にはパイプ 3 2 2を介してガスボンベ 3 2 3力 続されて いる。 これにより前述の成分からなる混合ガスがガスレーザチャンパ 3 1 0内に 充填されている。 m 3 1 1には高圧コード 3 1 2を介して高 ¾E発生 装置 3 0 1力 続されており、 この高圧コード 3 1 2の周囲には第 3シールド 3 1 3カ徵けられている。 高 «]£発生装置 3 0 1の ¾ΕΕはコンピュータ 3 0 2によ つて制御されるようになっている。 この高 SEE究生装置 3 0 1は第 1 M 3 0 4を介して電源 3 0 3に接続されており、 この第 1電 «4に第 1シールド 3 0 5カ^:けられている。 この第 1電源 3 0 4の中途にはノイズフィルタ 3 0 6と しての絶緣トランスが'介挿されている。  A discharge 11 is provided in the gas laser chamber 310. Gas control device 3 2 1 connected to gas laser chamber 3 10 via pipe 3 20: ^ Gas control device 3 2 3 connected to gas control device 3 2 1 via pipe 3 2 2 ing. Thus, the gas laser champer 310 is filled with the mixed gas composed of the above-described components. A high E generator 301 is connected to m 311 via a high voltage cord 3 12, and a third shield 3 13 is provided around the high voltage cord 3 12. The height of the high-pressure generator 301 is controlled by a computer 302. The high SEE research device 301 is connected to a power source 303 via a first M304, and the first shield 304 is connected to the first power4. In the middle of the first power supply 304, an insulation transformer as a noise filter 303 is inserted.
さらに、 前記電源 3とコンピュータ 3 0 2とを接続する第 2電 7には第 2 シールド 3 0 8が設けられている。  Further, the second power supply 7 for connecting the power supply 3 and the computer 302 is provided with a second shield 308.
前記高 «Ε発生装置 3 0 1とコンピュータ 3 0 2の間の制御線は光ケーブル 9 となっている。 光ケーブル 3 0 9とコンピュータ 3 0 2とのィンタ一フェイスは 第 2図に示すようになつており、 光ケーブル 3 0 9はまず光モデム 3 0 2 aに入 力さ 入出力回路 3 0 2 bを介して MP U 3 0 2 cに接続される。 MP U 3 0 2 ^:^±RAM 3 0 2 d、 R OM 3 0 2 eカ 続されている。 この MP U 3 0 2 cは単体でシールドされている。  The control line between the height generator 301 and the computer 302 is an optical cable 9. The interface between the optical cable 309 and the computer 302 is as shown in Fig. 2, and the optical cable 309 is first input to the optical modem 302a and the input / output circuit 302b is connected to it. Connected to the MPU302c via MPU302 ^: ^ ± RAM302d, ROM302e connected. This MPU302c is shielded by itself.
なお、 前記ガス制御装置 3 2 1内のバルブァクチユエ一夕 (図示せず) もコン ピュータ 3 0 2により制御されており、 この制御線 3 2 4も光ケーブルとなって いる。 またガス制御装置 3 2 1と電源 3 0 3とを接続する電源線 3 2 5にもシー ルド 3 2 6力 されている。  Note that a valve factory (not shown) in the gas control device 321 is also controlled by a computer 302, and the control line 324 is also an optical cable. A shield 326 is also provided on a power supply line 325 connecting the gas control device 321 and the power supply 303.
前記ガスレーザチャンバ 3 1 0、 高 S£発生装置 3 0 1、 コンピュータ 3 0 2、 ノイズフィルタ 3 0 6、 及びガス制御装置 3 2 1は筐体 (K) 内に内装さ こ の筐体 (K) と前記各シ一ルドは接地 G NDされている。The gas laser chamber 310, the high-pressure generator 310, the computer 302, the noise filter 303, and the gas control device 321 are housed inside a housing (K). The housing (K) and each shield are grounded GND.
: Lhのように構成することにより、 電源ラィン系ノィズと¾寸系ノィズの抑圧 及び防止力,られる。 即ち、 電源ライン系ノイズは放電 ¾ 3 1 1で発生した反 射 SE波が賓 SE発生装置 3 0 1を通つて電源 3 0 3に侵入し、 ここから各部へ と漏 '浅するが、 ノイズフィルタ 3 0 6により反射成分は吸収され電源 3には到達 しなレ、。 また、 ¾!寸系ノイズは各シ一ルドによって電源 までは到達しない。 : By configuring as Lh, it is possible to suppress and prevent power line noise and ¾ dimensional noise. That is, the power line noise is discharged. The reflected SE wave generated by the discharge ¾ 3 1 1 enters the power supply 3 0 3 through the guest SE generator 3 0 1, and leaks to each part from here. The reflected component is absorbed by the filter 306 and does not reach the power supply 3. Also ¾! Dimensional noise does not reach the power supply due to each shield.
hiEベたように IM乍の安定性と確実性を確保することができる。  As with hiE, the stability and certainty of IM can be ensured.
本発明によれば、 ノィズ源となる電源線にシールドを施すとともに高 電源 線にノィズフィルタを介挿したので筐体外部や電源側に漏洩するノィズを大幅に 抑圧することができる。  According to the present invention, since a power supply line serving as a noise source is shielded and a noise filter is inserted into the high power supply line, noise leaking to the outside of the housing or to the power supply side can be significantly suppressed.
さらに、 高 ¾Ε発生装置と、 これを制御するコンピュータとの間を光ケーブル で接続したので、 两者のアイソレーションが良好となり、 コンピュータの異常 作を防止することができる。 第 5の発明の実施例を説明する。  Furthermore, since the high-frequency generator and the computer that controls the high-frequency generator are connected by an optical cable, the isolation of the user is improved and abnormal operation of the computer can be prevented. An embodiment of the fifth invention will be described.
第 1 3図は本発明の実施例に係るレーザ用ガス供給 ·お 装置の構成図である。 図では、 エキシマレ一ザに関する装置を例にとって説明する。  FIG. 13 is a configuration diagram of a laser gas supply and apparatus according to an embodiment of the present invention. In the figure, a device relating to an excimer laser will be described as an example.
同図において、 レーザチャンバ 4 0 1は、 ガス源 4 0 2と主配管 4 0 3によつ て接続されており、 バッファガス、 希ガスおよびノヽロゲンガス等が前記レーザチ ャンバ 4 0 1内に供給可能となっている。 そして各ガスを供給する主配管 4 0 3 の途中には流体圧 J|g¾バルブ 4 0 4 a〜4 0 4 cカ けられており、 各ガスの混 合比を調整可能となっている。 また、 主配管 4 0 3からは真空ポンプ 4 0 5に接 続されるお^;管 4 0 6が分岐されており、 このお^;管 4 0 6の途中には流体圧駆 動バルブ 4 0 4 dヵ徵けられている。 前記流体圧 J¾バルブ 4 0 4 a〜4 0 4 d は、 ^等の流体の圧力によつて 1¾¾されて主配管 4 0 3およびお^:管 4 0 6を 開閉制御する形式のバルブであり、 たとえばァクチユエ一タ等で^:圧の増減に よる!^運動をバルブの回動運動に変換する構造となつている。  In the figure, a laser chamber 401 is connected to a gas source 402 by a main pipe 403, and a buffer gas, a rare gas, a nitrogen gas and the like are supplied into the laser chamber 401. It is possible. Fluid pressure J | g¾ valves 404 a to 404 c are provided in the middle of the main pipe 403 supplying each gas, so that the mixing ratio of each gas can be adjusted. From the main pipe 403, a pipe 406 connected to a vacuum pump 405 is branched, and in the middle of the pipe 406, a fluid pressure driven valve 4 is provided. 0 4 d The fluid pressure J¾ valves 404 a to 404 d are valves that are opened and closed by the pressure of a fluid such as ^ to control the opening and closing of the main piping 403 and ^: piping 406. , For example, in actuator, etc .: by increasing or decreasing pressure! The structure is such that the movement is converted into the rotation movement of the valve.
各流体圧 |g¾バルブ 4 0 4 a〜4 0 4 dには^ Eを供給するための制御配管 4 0 7 a〜4 0 7 dがそれぞれ接続されており、 これらの制御配管 4 0 7 a〜4 0 7 dは、 所 離 Lを引き回されて^^の供給を制御する電磁弁ュニット 8と 接続されている。 Each fluid pressure | g¾ valve 4 0 4 a to 4 0 4d is connected to a control pipe 4 07 a to 4 0 7 d for supplying ^ E, and these control pipes 4 0 7 a ~Four 0 7 d is connected to a solenoid valve unit 8 that controls the supply of ^^ by drawing the distance L.
前記流体圧 |g¾バルブ 4 0 4 a〜4 0 4 dからレーザチャンバ 4 0 1に至る主 配管 4 0 3の途中からは分岐配管 4 1 0が 設されている。 そしてこの分岐配管 4 1 0は、 所 ¾gg離 Lを引き回されて圧力検出器 4 1 1と接続されている。 圧力 検出器 4 1 1では、 主配管 4 0 3内すなわちレーザチャンバ 4 0 1内の圧力扰態 を検出可能となっている。  A branch pipe 410 is provided in the middle of the main pipe 403 extending from the fluid pressure | g¾ valve 404 a to 404 d to the laser chamber 401. The branch pipe 4110 is connected to the pressure detector 411 by being routed at a distance of ¾gg. The pressure detector 411 can detect the state of the pressure in the main pipe 403, that is, in the laser chamber 401.
前言 空ポンプ 4 0 5, 電磁弁ュニット 4 0 8および圧力検出器 4 1 1はそれ ぞれ制御部 4 1 2に接続されてその垂を制御されている。 制御部 4 1 2は、 た とえばメモリ等を備えたマイクロプロセッサで構成されており、 圧力検出器 4 1 1の検出値に基づいて、 電磁弁ュニット 4 0 8を制御して流体圧漏バルブ 4 0 4 a〜4 0 4 dの開閉度を調整してレーザチヤンバ 4 0 1内の圧力 態を制御す るようになっている。  Foreword The empty pump 405, the solenoid valve unit 408, and the pressure detector 411 are connected to the control unit 412 to control their drooping. The control unit 412 is constituted by, for example, a microprocessor having a memory or the like, and controls the solenoid valve unit 408 based on the detection value of the pressure detector 411 to control the fluid pressure leakage valve. The pressure inside the laser chamber 401 is controlled by adjusting the opening / closing degree of the 404 a to 404 d.
このように、 本 ^では主配管 4 0 3の開閉制御を行うバルブ機構を流体圧 駆動とし、 さらに圧力検出器 4 1 1を主配管 4 0 3から分岐して引き回した分岐 配管 4 1 0に接続することにより、 真空ポンプ 4 0 5 , 電磁弁ュニット 4 0 8お よび圧力検出器 4 1 1等の制御系をレーザチャンバ 4 0 1から引き離すことがで き、 全ての電気配線をレーザチャンバ 4 0 1から離れた位置で行うことができる。 このため、 レーザチャンバ 4 0 1で発生した電磁ノイズによる を受けること なく、 ガス供給 ' 制御か^!能となる。  As described above, in this embodiment, the valve mechanism for controlling the opening and closing of the main pipe 403 is driven by fluid pressure, and the pressure detector 411 is branched from the main pipe 403 to a branch pipe 411 which is routed. By connecting, the control system such as the vacuum pump 405, the solenoid valve unit 408, and the pressure detector 411 can be separated from the laser chamber 401, and all the electric wiring can be separated. 0 Can be performed at a position away from 1. Therefore, the gas supply is controlled without being affected by the electromagnetic noise generated in the laser chamber 401! It works.
なお、 お^管 4 0 6 , 制御配管 4 0 7 a〜4 0 7 dおよび分岐配管 4 1 0の引 き回し距離 Lについては、 真空ポンプ 4 0 5 , 電^^ユニット 4 0 8および圧力 検出器 4 1 1がレーザチャンバ 4 0 1の電磁ノイズを受けない纖の 最小限 の距離とすることか ましい。 すなわち、 RJ¾離としすぎると検出精度の低下、 駆動レスポンスの但:下等が されるためである。  The length L of the main pipe 406, the control pipe 407a to 407d, and the branch pipe 410 is determined by the vacuum pump 405, the electric unit 408, and the pressure. It is recommended that the detector 411 be set to the minimum distance of the fiber that does not receive the electromagnetic noise of the laser chamber 401. That is, if the RJ distance is too large, the detection accuracy is reduced, and the drive response is reduced.
本発明によれば、 ガスレーザにおける電磁ノイズの景^ Wを減少させ、 ガス供給 •お の ^¾作を防止することができる。 第 6の発明の実 »!1を第 1 4図のガスレーザ用制御装置の構成を示すプロック 図に従って説明する。 ADVANTAGE OF THE INVENTION According to this invention, the scene of electromagnetic noise in a gas laser can be reduced and the gas supply operation can be prevented. The invention of the sixth invention »! 1 is a block diagram showing the configuration of the gas laser control device shown in FIG. Description will be made with reference to the drawings.
同図において、 501は 16ビット系あるいは 32ビット系の CPUであり、 この CPU501からの命令によって、 出力波長モニタ装置 509およびレーザ 用高 ¾1£電源 510等の高 と、 およびガス処¾¾51 1等のィ¾»« と力 lj御される構成となっている。  In the figure, reference numeral 501 denotes a 16-bit or 32-bit system CPU, and according to an instruction from the CPU 501, the height of the output wavelength monitor 509 and the height of the laser ¾1 £ power supply 510, etc., and the gas processing 511, etc. It is configured to be controlled by the force lj.
前記 CPU501からの出力信号は高速タイマカウンタ 502と低速タイマ力 ゥンタ 503とに出力される。 これらのタイマカウンタ 502, 503は、 各々 独立に CPU 501からのクロック信号 CLを計数して所定の高速クロック信号 および低速ク口ック信号を^;する。  The output signal from the CPU 501 is output to a high-speed timer counter 502 and a low-speed timer counter 503. These timer counters 502 and 503 each independently count the clock signal CL from the CPU 501 and generate a predetermined high-speed clock signal and low-speed clock signal.
前記高速タイマカウンタ 502の出力のうち波長モニタ制御信号と 設定制 御信号とは各々 D/A変擬 504, 505および光電変擬 507 a, 507 bを経てデジタル光信号に変換さ 光フアイバケ一ブル 508 a ' 508 bお よび光電変 507 a, 507 bを経て再度デジタル電気信号に変換されて出 力波長モニタ装置 509およびレーザ出力用高電圧電源 510を制御する。 この ときの制御タイミングは前記高速タイマカウンタ 502からの高速クロック信号 に基づきパラレル TTL出力装置 506 aで生成さ 光電変 507 c→光 ファイバケーブル 508 c—光電変換器 507 cを経たタイミングトリガ信号に よって与えられる。 The wavelength monitor control signal and the setting control signal of the output of the high-speed timer counter 502 are converted into digital optical signals via D / A simulators 504 and 505 and photoelectric simulators 507a and 507b, respectively. After being converted into a digital electric signal again through 508a'508b and photoelectric conversion 507a and 507b, the output wavelength monitor device 509 and the high voltage power supply 510 for laser output are controlled. The timing trigger signal control timing which has passed through the high-speed based on a clock signal generator of photoelectric conversion in a parallel TTL output device 506 a 507 c → optical fiber cable 5 08 c- photoelectric converter 507 c from the high-speed timer counter 502 at this time Given by
一方、 ィ ffi タイマカウンタ 503からの出力は、 パラレル TTL出力装置 50 6 bおよび光電変換器 507 dを経てデジタル光信号に変換さ u 光ファイバケ —ブル 508 dおよび光電変換器 507 dを経て再度デジタル電気信号に変換さ れてレ—ザチャンバを含むガス処¾^ 511に送出される。 このガス処¾¾51 1ではガスバルブ開閉信号、 あるいは真空ポンプ ON/OFF信号としてガス交 換作業等が実行される。  On the other hand, the output from the timer counter 503 is converted to a digital optical signal via the parallel TTL output device 506b and the photoelectric converter 507d.The digital signal is again transmitted via the optical fiber cable 508d and the photoelectric converter 507d. It is converted into an electric signal and sent to the gas processing unit 511 including the laser chamber. In this gas processing 511, a gas exchange operation or the like is executed as a gas valve opening / closing signal or a vacuum pump ON / OFF signal.
このように、 本 例では高^ L糊タイマカウンタ 502により、 高速の演 算処理を とする出力波長のモニタ制御、 レーザ出力制御の時間基準を生成し、 一方ィ 処糊タイマカウンタ 503により低速の演算処理を煙とするガス交 換制御等の時間基準を^;している。 JiUのように大きな差異のある 2«の時 間 S を各々のタイマカウンタで分担して に計数することによって、 いずれ の制御をも停止させることなく、 複数の並行制御を実現すること力できる。 さらに本 例によれば制御信号の経由を光ファイバケーブル 5 0 8 a〜5 0 8 dによって行うことにより、 レーザチャンバあるいは他の駆動系から発生する 電磁ノィズの影響を但減でき、 制御系統の^ ¾作を防止できる効果もある。 本発明によれば、 単一の制御装置によつて複数の時間 に基づく制御が可能 となる。 産^ ±■の利用可能性 As described above, in this example, the high-L glue timer counter 502 generates a time reference for output wavelength monitor control and laser output control for high-speed arithmetic processing, while the low-glue timer counter 503 generates a low-speed glue timer. The time reference for gas exchange control using smoke as arithmetic processing is set to ^; By dividing the time S with a large difference such as JiU by each timer counter and counting to, Without having to stop the control of the other. Further, according to this example, by passing the control signal through the optical fiber cables 508a to 508d, the effect of electromagnetic noise generated from the laser chamber or other drive system can be reduced, but the control system ^ There is also an effect that can prevent the operation. According to the present invention, control based on a plurality of times can be performed by a single control device. Availability of ±± ■
本発明によれば、 波長選択素子の微調整を高精度で行うこと力 s 'できる結果、 レ —ザ^ ^器における出力波長をきわめて安定させることができる。 According to the present invention, fine adjustment can be force s' performs high-precision result of the wavelength selection element, Le - The ^ ^ can be extremely stable output wavelength in the vessel.
従つて、 半 ¾ ^製造におけるリソグラフィ工程での光源などの用途に棚に利 用できる。  Therefore, it can be used as a shelf for a light source in a lithography process in semi-manufacturing.

Claims

請 求 の 範 囲 The scope of the claims
( 1 ) 上に直列に配置さ 少なくとも一方の傾角を調整することでレ一 ザ媒質からのレーザ光を ¾^域ィ匕する少なくとも第 1および第 2の波長選択素子 を有するレーザ装置において、 前記傾角を微調整するために自動マイクロメータ へッドを傭えたレーザ装 go  (1) A laser device having at least a first and a second wavelength selection element arranged in series on at least one of which adjusts an inclination angle of at least one of the laser light from a laser medium to adjust a tilt angle of the laser light. Laser equipment with automatic micrometer head for fine adjustment of tilt angle go
( 2 ) 前記第 1の波長選択素子が粗調用で、 第 2の波長選択素子が Mffiであ る請求項 1記載のレーザ装 fio  (2) The laser device according to claim 1, wherein the first wavelength selection element is for coarse adjustment, and the second wavelength selection element is Mffi.
( 3 ) 前記波長選択素子がエタ口ンである請求項 1または 2記載のレーザ装 go (3) The laser device according to claim 1 or 2, wherein the wavelength selection element is an aperture.
( 4 ) 前記波長選択素子は、 周囲をホルダで さ 前記自動マイクロメ一 タヘッドは、 前記ホルダに、 波長選択素子を間にして 1対設けられていることを 特徴とする請求項 1記載のレーザ装 So (4) The laser device according to (1), wherein a pair of the automatic micrometer heads are provided on the holder with the wavelength selection element interposed therebetween. So
( 5 ) 自動マイクロメータヘッドは、 モータの回転量を検出するエンコーダを 有することを とする請求項 1記載のレーザ装 fio  (5) The laser device according to claim 1, wherein the automatic micrometer head has an encoder for detecting a rotation amount of the motor.
( 6 ) 出力レーザ光の波長測定部を有するとともに、 この波長測定部で得たレ 一ザ光の波長に基づき前記自動マイクロメータへッドを制御する主制御部を有し、 この主制御部は、 目的とする狭帯域化スぺクトルの基準中心波長を設定する目標 値設定手段と、 目標ィ t ^定手段で設定した »中心波長に対する前記波長測定部 で検出した測定中心波長の偏差を検出する偏差検出手段と、 この偏差検出手段で 検出した偏差を打ち消す方向に前記自動マイクロメータへッドに制御信号を送出 する制御手段とを有することを ¾とする請求項 1記載のレーザ装 go  (6) a main control unit for controlling the automatic micrometer head based on the wavelength of the laser light obtained by the wavelength measurement unit, the main control unit having a wavelength measurement unit for the output laser light; Is a target value setting means for setting a reference center wavelength of a target band-narrowing spectrum, and a deviation of a measurement center wavelength detected by the wavelength measurement unit with respect to the center wavelength set by the target setting means. 2. The laser device according to claim 1, further comprising: deviation detecting means for detecting; and control means for transmitting a control signal to the automatic micrometer head in a direction for canceling the deviation detected by the deviation detecting means.
( 7 ) レーザ ^器より出射されたレーザ光の光エネルギーを測定するレーザ発 振出力検出装置であって、  (7) A laser oscillation output detection device for measuring light energy of laser light emitted from a laser device,
レーザ 器の近傍に配置された受光部と、  A light receiving unit arranged near the laser device;
この受光部に一端力 続されてレーザ 器からの検出光を伝える光ファイバ 光フアイバの他端に接続された放¾¾5と、  An optical fiber connected to the other end of the optical fiber optical fiber, which is connected to the light receiving section by one end and transmits detection light from the laser device;
この放^^に対向して配置された光電変換素子と、  A photoelectric conversion element disposed opposite to the discharge,
光電変換素子からの検離号に基づいて前記レーザ光の発振出力を算出し前記 レーザ^器への制御信号を発生する主制御部とからなるレーザ発振出力検出装 A laser oscillation output detection device comprising: a main control unit for calculating an oscillation output of the laser beam based on a detection signal from a photoelectric conversion element and generating a control signal to the laser unit.
( 8 ) レーザ光を受光する受光素子と、 受光素子で光電変換された検出電気信 号をデジタル信号に変換する A/D変換部と、 A/D変換部からの信号を分析し てレーザ発振出力を算出する演算手段とを備えており、 前記受光素子と A/ D変 換部との間に少なくとも多段の積分器を備えた積分回路が介装されていることを 特徴とするレーザ究振出力検出装 So (8) A light-receiving element that receives the laser beam, an A / D converter that converts the electrical signal detected by the light-receiving element into a digital signal, and laser oscillation that analyzes the signal from the A / D converter Calculating means for calculating an output, wherein an integrating circuit having at least a multi-stage integrator is interposed between the light receiving element and an A / D converter. Output detector So
( 9 ) ガスレーザチャンバ内の放電電極に高電圧を供給する高 «Ε発生装置と、 この高 ME発生装置を制御するコンピュータとを有するレーザ装置において、 高 SE発生装置と電源とを接続する第 1電源線に第 1シールドを設けるととも に第 1電源凝の中途にノイズフィルタを介挿し、 電源とコンピュータとを接続す る第 2電源 に第 2シールドを設け、 前記高電圧発生装置と放電 S¾との間の高 圧コードに第 3シ一ルドを設け、 前記高 «Ε発生装置とコンピュータとを接続す る制御線を光ケーブルとしたことを とするレーザ装 go  (9) In a laser device having a high-frequency generator for supplying a high voltage to a discharge electrode in a gas laser chamber and a computer for controlling the high-ME generator, a first device for connecting a high-SE generator and a power source is provided. A first shield is provided on the power supply line, a noise filter is interposed in the middle of the first power supply, and a second shield is provided on the second power supply connecting the power supply and the computer. A third shield is provided in a high-voltage cord between the high-voltage cord and a control line for connecting the high-frequency generator and a computer to an optical cable.
( 1 0 ) レーザチャンバ内にレーザガスを供給' ^^するレーザ用ガス供給 '排 気装置であって、  (10) a laser gas supply for supplying a laser gas into the laser chamber;
ガス源とレーザチヤンバとの間に接続さ:^ 前記ガス源のレーザガスをチャン バ内に導入するための主配管と、  Connected between the gas source and the laser chamber: ^ a main pipe for introducing the laser gas of the gas source into the chamber;
前言 配管上に設けら 離隔位置から制御配管を通じて流体圧によつて勵 され主配管を開閉制御する流体圧 |g¾バルブと、  Foreword Fluid pressure that is provided on the piping and is controlled by the fluid pressure from the separated position through the control piping to control the opening and closing of the main piping.
前記制御配管の «5に接続された電磁 置と、  An electromagnetic device connected to 制 御 5 of the control pipe,
前言 配管からの分岐配管の «5に接続された圧力検出器と、  The pressure sensor connected to «5 of the branch pipe from the pipe,
前記電磁雜置および圧力検出器と電気赚により接続さ これらを電気的 に制御する制御部とを有しており、  A control unit electrically connected to the electromagnetic device and the pressure detector by an electric wire, and a control unit for electrically controlling these;
前記制御配管および分 管の配管距離を十分な長さとすることによって、 前 記電気酉 がレーザチヤンパで発生する電磁ノイズの景 を受けないようにした レ—ザ用ガス供給 · ^ ,  By making the piping distance between the control pipe and the branch pipe long enough, the electric rooster does not receive the view of the electromagnetic noise generated by the laser champer.
( 1 1 ) 少なくとも高 «®を要求される高速^ とィ 理を要求される低 速処¾¾とを備えており、 前記高 の基準クロックを生成する高速タイマ カウンタと、 の クロックを^:する タイマカウンタとによつ て各々の処理タイミングが して決定されることを ¾とするガスレーザ用制 御装 So (11) At least a high-speed ^ which requires a high level and a low-speed processing which requires a process, and a high-speed timer counter for generating the high-level reference clock, and a clock for: Timer counter Control device for gas lasers, where each processing timing is determined in advance.
(12) 前記高速処¾¾における制御項目は少なくとも放電開始信号の出力、 レ —ザ出力の検出およびその安定化制御信号の出力、 レーザ波長の検出およびその 安定化制御信号の出力であり、 前記イ &¾処¾^における制御項目は少なくともガ ス におけるガスバルブの開閉制御信号の出力であることを 16:とする請求項 (12) The control items in the high-speed processing are at least output of a discharge start signal, detection of a laser output and output of a stabilization control signal thereof, detection of a laser wavelength and output of a stabilization control signal thereof, and The control item in & ¾Process¾ ^ is at least the output of the gas valve opening / closing control signal in the gas, and is set to 16:
1 1記載のガスレーザ用制御装置。 11. The control device for a gas laser according to 1.
PCT/JP1991/000495 1990-04-16 1991-04-16 Laser device WO1991016745A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP9984790 1990-04-16
JP2/99847 1990-04-16
JP2/143446 1990-06-01
JP14344690A JPH0437178A (en) 1990-06-01 1990-06-01 Laser device
JP14601390A JPH0438887A (en) 1990-06-04 1990-06-04 Gas supply and exhaust device for laser
JP2/146011 1990-06-04
JP14601190A JPH0438884A (en) 1990-06-04 1990-06-04 Detector for laser oscillation output
JP14601290A JPH0438886A (en) 1990-06-04 1990-06-04 Controller for gas laser
JP2/146013 1990-06-04
JP2/146012 1990-06-04
JP19215790A JPH0477631A (en) 1990-07-20 1990-07-20 Apparatus for detecting laser oscillation output
JP2/192157 1990-07-20

Publications (1)

Publication Number Publication Date
WO1991016745A1 true WO1991016745A1 (en) 1991-10-31

Family

ID=27552084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000495 WO1991016745A1 (en) 1990-04-16 1991-04-16 Laser device

Country Status (2)

Country Link
CA (1) CA2059134A1 (en)
WO (1) WO1991016745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224757A (en) * 2019-05-13 2019-09-10 大族激光科技产业集团股份有限公司 A kind of laser control system and control method of electromagnetism interference

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI126608B (en) 2016-03-15 2017-03-15 Teknologian Tutkimuskeskus Vtt Oy Hyperspektrikuvausjärjestely

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175475A (en) * 1984-02-22 1985-09-09 Mitsubishi Electric Corp Automatic aligning device of laser oscillator
JPS62162379A (en) * 1986-01-11 1987-07-18 Nippon Kogaku Kk <Nikon> Pulse laser
JPS62281486A (en) * 1986-05-30 1987-12-07 Nec Corp Rare-gas halide excimer laser device
JPS6396976A (en) * 1986-10-14 1988-04-27 Fanuc Ltd High-frequency discharge-pumped laser
JPS63235084A (en) * 1987-03-20 1988-09-30 Fanuc Ltd Laser oscillation control device
JPS63273377A (en) * 1987-04-30 1988-11-10 Fanuc Ltd Laser oscillator
JPS63273378A (en) * 1987-04-30 1988-11-10 Fanuc Ltd Laser oscillator
JPS63273580A (en) * 1987-04-30 1988-11-10 Fanuc Ltd Power control system for cnc laser beam machine
JPS6418285A (en) * 1987-07-13 1989-01-23 Fanuc Ltd Laser output correction system
JPS6453589A (en) * 1987-08-25 1989-03-01 Komatsu Mfg Co Ltd Wavelength controller for excimer laser
JPH01168087A (en) * 1987-12-24 1989-07-03 Toshiba Corp Laser control apparatus
JPH01184887A (en) * 1988-01-13 1989-07-24 Toshiba Corp Pulse laser oscillator
JPH01251770A (en) * 1988-03-31 1989-10-06 Komatsu Ltd Method of controlling wavelength of laser
JPH0293331A (en) * 1988-09-30 1990-04-04 Komatsu Ltd Narrow band oscillation eximer laser apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175475A (en) * 1984-02-22 1985-09-09 Mitsubishi Electric Corp Automatic aligning device of laser oscillator
JPS62162379A (en) * 1986-01-11 1987-07-18 Nippon Kogaku Kk <Nikon> Pulse laser
JPS62281486A (en) * 1986-05-30 1987-12-07 Nec Corp Rare-gas halide excimer laser device
JPS6396976A (en) * 1986-10-14 1988-04-27 Fanuc Ltd High-frequency discharge-pumped laser
JPS63235084A (en) * 1987-03-20 1988-09-30 Fanuc Ltd Laser oscillation control device
JPS63273377A (en) * 1987-04-30 1988-11-10 Fanuc Ltd Laser oscillator
JPS63273378A (en) * 1987-04-30 1988-11-10 Fanuc Ltd Laser oscillator
JPS63273580A (en) * 1987-04-30 1988-11-10 Fanuc Ltd Power control system for cnc laser beam machine
JPS6418285A (en) * 1987-07-13 1989-01-23 Fanuc Ltd Laser output correction system
JPS6453589A (en) * 1987-08-25 1989-03-01 Komatsu Mfg Co Ltd Wavelength controller for excimer laser
JPH01168087A (en) * 1987-12-24 1989-07-03 Toshiba Corp Laser control apparatus
JPH01184887A (en) * 1988-01-13 1989-07-24 Toshiba Corp Pulse laser oscillator
JPH01251770A (en) * 1988-03-31 1989-10-06 Komatsu Ltd Method of controlling wavelength of laser
JPH0293331A (en) * 1988-09-30 1990-04-04 Komatsu Ltd Narrow band oscillation eximer laser apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microfilm of the Specification and Drawings Annexed to the Written Application of Utility Model Application No. 2460/1989, (NEC CORP.), 9 January 1989. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224757A (en) * 2019-05-13 2019-09-10 大族激光科技产业集团股份有限公司 A kind of laser control system and control method of electromagnetism interference

Also Published As

Publication number Publication date
CA2059134A1 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
US11913874B2 (en) Optical metrology tool equipped with modulated illumination sources
US7106763B2 (en) Wavelength control for cavity ringdown spectrometer
AU751519B2 (en) UV-VIS spectrophotometry
US6636297B2 (en) Vacuum ultraviolet laser wavelength measuring apparatus
WO1991016745A1 (en) Laser device
CN101451841A (en) 1.55 mum wavelength high precision fiber gyroscope for eliminating dead zone
WO2005001399A3 (en) Method and apparatus for measuring bandwidth of an optical spectrum output of a very small wavelength very narrow bandwidth high power laser
CA2010084C (en) Laser device
US9844125B2 (en) Apparatus for generating extreme ultra-violet beam using multi-gas cell modules
Cutler et al. Fourier transform-Raman spectroscopy using pulsed lasers—II
KR20030030910A (en) Stabilized pulse light drive circuit apparatus and method for endpoint detection in a semiconductor process
JP3029495B2 (en) Dry etching equipment
RU2133533C1 (en) Method of spectral filtration of optical signals and active quantum filter for its implementation
DeSilva Spectral analyzer for Thomson scattering
US11947268B2 (en) Energy correction module for an optical source apparatus
JPH0637384A (en) Light frequency stabilizing light source apparatus
Bukhanova et al. Radiation spectrum investigations of multibeam lasers
US11908716B2 (en) Image-based in-situ process monitoring
CN1057927A (en) Synchronistically automatic control device for laser oscillation amplifier chain
Ambrosio et al. Progress report on the LELA experiment
Asimov et al. Two-wavelength microsecond-time-delayed pulsed operation of a flash-lamp pumped titanium: sapphire laser
JPH0438884A (en) Detector for laser oscillation output
SU789849A1 (en) Pulse signal spectrum analyzer
RU2014695C1 (en) Method of determination of characteristics of waveguide components of radiation of gas laser
Lando et al. Modified off-axis unstable resonator for copper vapor laser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 2059134

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1991906973

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991906973

Country of ref document: EP