WO1991015780A1 - Method of processing doppler signal - Google Patents

Method of processing doppler signal Download PDF

Info

Publication number
WO1991015780A1
WO1991015780A1 PCT/JP1990/000437 JP9000437W WO9115780A1 WO 1991015780 A1 WO1991015780 A1 WO 1991015780A1 JP 9000437 W JP9000437 W JP 9000437W WO 9115780 A1 WO9115780 A1 WO 9115780A1
Authority
WO
WIPO (PCT)
Prior art keywords
doppler
signal
frequency
phase
pulse
Prior art date
Application number
PCT/JP1990/000437
Other languages
English (en)
French (fr)
Inventor
Shigeo Ohtsuki
Motonao Tanaka
Original Assignee
Shigeo Ohtsuki
Motonao Tanaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shigeo Ohtsuki, Motonao Tanaka filed Critical Shigeo Ohtsuki
Priority to PCT/JP1990/000437 priority Critical patent/WO1991015780A1/ja
Priority to ES90905636T priority patent/ES2094153T3/es
Priority to DK90905636.8T priority patent/DK0474867T3/da
Priority to EP90905636A priority patent/EP0474867B1/en
Publication of WO1991015780A1 publication Critical patent/WO1991015780A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target

Definitions

  • the present invention uses a Doppler signal processing method, in particular, captures the speed of a moving object as a Doppler frequency deviation using an ultrasonic wave or a mouth wave, and displays an image of the movement of the object or analyzes its characteristics.
  • the Doppler deviation signal is used in the ultrasonic application field to detect the movement of an object moving in the sea, or to detect the movement of blood flow in a subject in an ultrasonic diagnostic apparatus. It is used as a radar using microwaves, and can be used as a Doppler radar for detecting the moving speed of a flying object or a ship.
  • the principle of non-contact detection of the movement of an object using ultrasonic waves or microphone mouth waves is used as a Doppler displacement technique, in which a continuous wave or pulse wave is transmitted to an object at a specific transmission frequency. Since the echo reflected from the object undergoes Doppler frequency deviation according to the movement of the object at this time, the movement or speed of the object can be accurately detected by knowing the frequency deviation of the received echo. .
  • Ultrasonic Doppler diagnostic equipment has already been put into practical use as a device for observing the velocity of blood flow in a subject, especially for medical measurement using a medical device.
  • the desired detection accuracy could not be obtained in the early stage because the signal intensity of the reflected echo was extremely weak, but in recent years, with the development of the high-speed Fourier transform method, It has reached a practical level.
  • Such a Doppler method is applicable not only to the above-described ultrasonic wave but also to a radar device using a microwave, and its application field is extremely wide.
  • the information extracted from the Doppler deviation signal mainly consisted of Doppler frequency deviation simply due to the movement of the object, but recently, speed has been detected by Doppler frequency deviation. It is proposed that the frequency components be analyzed in more detail and used for quantitative measurement. As a result, the Doppler frequency deviation can be analyzed for the characteristic analysis of the living tissue of the subject in, for example, an ultrasonic diagnostic apparatus. The potential for the use of other components has been opened up.
  • the Doppler frequency deviation obtained by continuous wave or pulse wave has little information that can be obtained in real time, so it is difficult to obtain sufficient data for accurate characteristic analysis. Facing
  • Doppler shift frequency is restricted to a certain range. In other words, if the Doppler deviation frequency increases, precise velocity detection becomes possible, and as a result, it is possible to capture sufficient data necessary for quantitative analysis. Thing
  • the aliasing appears as a mosaic pattern in a Doppler diagnostic apparatus when displaying the movement of blood flow in a subject in a two-dimensional manner, and significantly degrades the characteristics of the apparatus in terms of image display. It is a cause to cause.
  • aliasing is related to the repetition frequency of the pulse in the intermittent pulse transmission characteristic of the pulse Doppler method together with the speed of the object, and it is necessary to minimize the occurrence of aliasing.
  • the return frequency of the transmitted pulse may be set as high as possible.
  • the aliasing was considered as an essential restriction, especially in the pulse Doppler method.
  • the Doppler shift frequency that can be captured by the pulsed Doppler method was naturally limited.
  • the restriction by the Doppler shift frequency is, on the other hand, a major problem when detecting a shift frequency that is low, for example, a slow motion. In this case, although aliasing does not occur, capture is not performed.
  • the low-frequency component is removed by a filter that is indispensable for processing the Doppler shift frequency, which has the disadvantage of making the quantitative analysis described above impossible. .
  • Akira is characterized in that the Doppler shift frequency that can be captured in real time can be arbitrarily expanded, compressed, or inverted by processing after measurement.
  • variable frequency Doppler system is known in this field, for example, US Pat. No. 4,534,357.
  • a broadband transmission signal is transmitted to a moving object, and the received echo similarly includes a wideband frequency.
  • a plurality of Doppler deviation signals having different frequencies are extracted from the wideband signal, and a difference signal is detected by detecting an average frequency of each of the plurality of signals.
  • the improved conventional apparatus is characterized in that an ultrasonic pulse is transmitted at irregular intervals in a pulse Doppler ultrasonic apparatus, and a phase difference is obtained.
  • aliasing can be prevented in a specific state, but only the measured values are still used, and it has been found that the effect of preventing aliasing is not so large.
  • the present invention proposes a completely novel system to solve the above-mentioned various problems in the related art.
  • the purpose of the present invention is to apply a Doppler deviation frequency obtained by transmitting a continuous wave or a pulse wave to a suitable system after capturing it.
  • the characteristic feature is that the Doppler shift frequency can be freely changed by performing various processes.
  • the taken-in Doppler deviation frequency can be arbitrarily multiplied to freely expand, compress, and invert the frequency.
  • the Doppler deviation frequency detected from the reflected echo and the transmitted wave by the same method as in the related art is temporarily stored in a memory, and then the data read from the memory is processed.
  • the phase difference at each point is predicted to be an arbitrary multiple, and this is measured as if measured. It outputs as if it were a Doppler shift frequency.
  • the frequency can be freely expanded, compressed, and inverted.
  • the obtained Doppler deviation signal is temporarily stored in a memory, and then the phase of the Doppler deviation signal at each time t is converted to a minute time ⁇ t at the time t.
  • the phase difference is replaced by a phase difference at a time separated by m ⁇ t, whereby Doppler displacement frequency conversion by a factor of m is performed.
  • a discrete pulse Doppler shift signal obtained by a known method is stored in a memory, and then the phase component of the pulse Doppler shift signal is multiplied by m.
  • m the phase component of the pulse Doppler shift signal
  • the pulse Doppler deviation signal is obtained by taking out the phase difference of the actually measured pulse Doppler component and assigning it as a phase multiplied by a predetermined coefficient q at a point that is continuous or close to the actual measurement period, As a result, a phase deviation component within an arbitrary period is obtained, and by setting the coefficient Q arbitrarily, the Doppler deviation signal can be expanded and compressed.
  • the aliasing is removed and the conversion of the Doppler shift frequency is performed. Is possible.
  • the repetition period of the pulse transmission is changed at a predetermined interval, the phase difference is extracted from the actually measured Doppler deviation signal, and the phase in the next period that is continued from the actually measured period is predicted. Then, a phase difference between the predicted phase and the phase actually measured at the above-described different cycle is obtained.
  • the phase difference between the actual value and the predicted value can be set to a short period in which aliasing does not occur.
  • a signal from which aliasing has been removed can be obtained from the phase difference having a short period obtained as a result.
  • FIG. 1 is a block circuit diagram showing a preferred embodiment in which the Doppler signal processing method according to the present invention is applied to a continuous wave Doppler method
  • FIG. 2 is a diagram showing measured Doppler deviation frequencies in FIG. Explanatory diagram showing an example of an enlarged frequency
  • FIG. 3 is an explanatory diagram showing a more detailed operation of FIG. 2
  • FIG. 4 is an enlarged and compressed waveform diagram showing frequency conversion of a continuous wave in the embodiment of FIG.
  • FIG. 5 is a waveform diagram showing the motion of the heart wall and the valve in an enlarged and compressed state, respectively.
  • FIG. 6 is a block diagram showing a preferred embodiment in which the Doppler signal processing method according to the present invention is applied to a pulse Doppler method
  • FIGS. 7, 8, and 9 are explanatory diagrams showing the frequency conversion action of the pulse Doppler method in FIG. 6, respectively.
  • FIG. 10 is a more specific block circuit diagram of the phase processing circuit in FIG. 6,
  • FIG. 11 is a more specific block circuit diagram of the amplitude processing circuit in FIG.
  • FIG. 1 shows a preferred embodiment of the Doppler device according to the present invention using a continuous wave.
  • a transmitter 12 transmits a continuous wave beam 12 a of an ultrasonic or microphone mouth wave to an object 10 having a motion as indicated by an arrow in the figure, and a reflected echo 10 a is transmitted from the object 10. It is reflected, and the reflected echo is received by the receiver 14.
  • the transmitted beam 12a of the transmitter 12 has a frequency of f Q
  • the reflected echo 10a has a Doppler shifted frequency of fl + ⁇ .
  • the transmitter 12 is controlled by a transmission control circuit 16, and a controller 18 controls the transmission control circuit 16.
  • the received signal converted into an electrical signal by the receiver 14 is sent to the Doppler displacement signal detector 20, where the transmission frequency f Q obtained from the transmission control circuit 16 and The operation is performed, and the Doppler frequency ⁇ ⁇ component is extracted.
  • the output of the Doppler displacement signal detector 20 is sampled at a predetermined sampling frequency in a sampling circuit 22 and further output as a digital signal.
  • the sampling circuit 22 is used to determine the amplitude and phase of the Doppler signal. Are output separately, and in the embodiment, the amplitude memory 24 and the phase memory 26 store the respective digital signals. What is special in the present invention is that the phase information stored in the phase memory 26 is subjected to a frequency conversion operation characteristic of the present invention in the phase permutation calculator 28. Frequency expansion, compression or inversion conversion is performed.
  • phase signal subjected to the frequency conversion in this manner and the output of the amplitude memory 24 are combined by the combiner 30 and output as a new frequency-converted Doppler deviation signal. Is forced.
  • FIG. 2 shows an example of frequency conversion of the Doppler shift signal obtained from the sampling circuit 22 in FIG. 1 described above
  • FIG. 2A shows the signal before conversion
  • FIG. Shows the waveform after the Doppler shift frequency is expanded.
  • the Doppler deviation signal has a sin component and a cos component, and one of them is shown in the figure, so it is not necessarily a correct expression.
  • the amplitude is A (t)
  • the phase angle is 0 (t)
  • both of these elements change with time.
  • Fig. 2B shows the Doppler expanded and transformed based on the new invention in which the amplitude (envelope) A (t) of the original signal D (t) is retained and the frequency (phase) is expanded. It shows the deviation signal Dr (t).
  • Fig. 3A shows the Doppler deviation signal D (t) measured in the same way as Fig. 2A.
  • the Doppler deviation frequency is constant, and the object 10 moves at a constant velocity. It is understood that The amplitude is also constant.
  • FIG. 3B shows the amplitude component A (t) of the Doppler excursion signal D (t), and the amplitude value can be obtained by time excursion as described above.
  • Fig. 3C shows the phase component ⁇ (t) of the Doppler displacement signal D (t). Since the object 10 is moving at a constant velocity as described above, this phase 0 (t) is It has a characteristic that changes linearly with time.
  • the information of the phase 0 (t) shown in FIG. 3C is subjected to frequency (phase) conversion by multiplying the information by an arbitrary multiple, and in FIG. Shown in D.
  • the expansion of the frequency at the time t is performed before and after the time t, and in the embodiment, the phase change at the minute time t before the time ⁇ 0 is changed to the phase change 0 during the time mt which is m times the minute time t.
  • phase permutation operation unit 28 in FIG. 1 previously sets the time of m ⁇ t which is m times the minute time ⁇ t at any time t.
  • the phase 0 (t — ⁇ ⁇ ⁇ ) of the Doppler excursion signal at time t (t-1 mm t) separated from time t by time t is compared with phase 0 (t) at time t. Find this phase change as
  • phase difference ⁇ ei is regarded as a phase change during a minute time ⁇ t
  • the characteristic shown in FIG. 3D is obtained.
  • a phase ⁇ 1 serving as a reference value of the phase difference ⁇ i is arbitrarily set in advance.
  • the time t is successively changed, and the phase difference ⁇ 0 is added to the previously obtained phase 0 (t), so that the Doppler shift frequency can be freely changed, As shown in Fig. 3, the Doppler shift frequency can be expanded.
  • the Doppler deviation signal D r (t) generated in this manner is as shown in FIG. 2B described above, and the Doppler deviation angular frequency ⁇ r of this signal is the Doppler deviation of the original signal D. It is understood that this is m times the angular frequency ⁇ r.
  • the Doppler starting signal detected by the actual measurement can multiply the Doppler deviation signal by m according to the present invention. Since m is a real number, the following facts are confirmed.
  • FIG. 4 is preferable as a waveform indicating the expansion and compression of the Doppler shift frequency in the continuous wave described above.
  • FIG. 4A shows a Doppler displacement input signal in which the signals of 157 Hz and 315 Hz are switched every four periods.
  • the frequency of the input signal is doubled, and it is understood that the frequency changes every eight periods, as is clear from the figure.
  • the repetition frequency of the wave number change does not change at all.
  • the frequency of the Doppler shift signal is changed at a set rate over time, but the amplitude is not changed.
  • Fig. 4 (C) shows the state after compression processing of 1 Z 2 times However, as shown in the figure, the frequency changes every two cycles. Of course, it is understood that the time interval at which the frequency is switched does not change in this compression processing.
  • Fig. 5 shows an example of processing the actual Doppler deviation signal.
  • Fig. 5A shows the measured Doppler excursion signal obtained by observing the heart wall that is beating at a slow speed
  • Fig. 5B shows the doubled frequency expansion processing. The result.
  • Fig. 5C shows a heart valve that moves at a relatively high speed as an input signal, and this input signal is subjected to 1 Z 2 times frequency compression processing. Is shown in
  • the present invention is effective in the above-described continuous wave Doppler method, the present invention is similarly applicable to a pulsed Doppler method.
  • the pulse Doppler method is equivalent to discretely sampling a continuous wave Doppler deviation signal.
  • the time difference ⁇ t in this case may be set as the pulse repetition period ⁇ .
  • the Doppler deviation signal at a desired time is predicted and obtained from the actual measurement value.
  • the desired magnification m can be set, and the present invention can be applied to the pulse Doppler method in the same manner as in the continuous wave Doppler method.
  • FIG. 6 shows a preferred embodiment of the apparatus when the present invention is applied to the pulse Doppler method.
  • a pulse beam 1 12a is transmitted from the transducer 40 to the object 110, and a reflected echo 110a from the object 110 is similarly detected by the transducer 40. .
  • a burst wave generator 42 is provided to form the transmit pulse beam 112a of the transducer 40, and the burst wave generator 42 is provided at a repetition period determined by the controller 44.
  • An excitation signal is supplied from the wave generator 42 to the transducer 40 at a desired repetition frequency.
  • the phase detector 46 When the transducer 40 receives the reflected echo 110a, the phase detector 46 outputs a Doppler displacement signal in the same manner as the Doppler displacement signal detector 20 of FIG. 1 described above.
  • the Doppler deviation signal of the desired measurement depth taken out from the sample hold circuit 48 is supplied to the amplitude processing circuit 50 and the phase processing circuit 52 similarly to the continuous wave Doppler method in FIG. Supplied with separate amplitude and phase processing power.
  • the Doppler shift frequency is converted in the phase processing circuit 52.
  • the Doppler-shifted frequency signal of an arbitrary frequency subjected to the phase (frequency) processing is synthesized with the amplitude signal in the synthesizer 54, and the DC component is removed by the filter 56 as in the conventional case. It is output to the subsequent frequency analyzer and the like, and is used as data for quantitative analysis or image display.
  • the desired Doppler shift frequency is calculated from the measured Doppler shift signal.
  • a new Doppler excursion signal is obtained by prediction, and this newly generated Doppler excursion signal is a signal that has been converted, expanded, compressed, or inverted to the Doppler deviation frequency before processing. ing.
  • a signal that determines the return frequency of the transmission pulse is supplied from the repetition frequency generator 58 to the controller 44, and as will be described in detail later, the repetition frequency
  • the wave number can be changed for each transmission cycle or for a specific plurality of cycles.
  • Fig. 7 shows an example of expanding the Doppler deviation frequency in the pulse Doppler method.
  • the signal at the time that is m times longer than the signal to be replaced is actually sampled, that is, m is a natural number.
  • the Figure 7 A shows the reflection echo real Hakachi of pulses transmitted intermittently, in accordance with the elapsed time t, the measured value M 1 (), M n> M, 2, M 1 3, M 1 4 , and these measured values are stored in the respective processing circuits 50, 52 in FIG.
  • the repetition frequency of the embodiment is constant for each transmission, and the repetition cycle is indicated by r in the figure.
  • [Phi gamma as the phase difference is respectively illustrated between points, ⁇ ⁇ , ⁇ 3, are shown as a ⁇ 4.
  • the present invention can be basically established, and the Doppler shift frequency can be expanded.
  • FIG. 7B shows the state after frequency conversion of the present invention in which the phase difference of m times is adopted at each point, and the phase difference between the points at each point is m times the measured value, that is, 3 times. Doubled.
  • the phase processing circuit 5 2 in FIG. 6 includes a variable multi-ply catcher, the c and outputs the phase difference temporarily stored in the memory in multiples arbitrarily set as m times to a new phase 3
  • the following frequency conversion is possible by setting the value of m.
  • FIG. 8 shows such another embodiment of the present invention.
  • the actual measurement at each point M is indicated by a triangle as in Fig. 7, while the phase after prediction is indicated by an X, and the actual measurement and prediction are shown in Fig. 8A and Fig. 8B, respectively.
  • the values and the output to which they are assigned are shown.
  • the prediction in this embodiment is performed as follows.
  • FIG. 8 shows a state in which two phase differences have been replaced.
  • FIG. 8 shows the basics of the prediction according to the present invention. On the other hand, such a prediction has a problem that aliasing must be considered.
  • mouth 27T [q] n + 27rnm q + q 0 ⁇ '' (5)
  • mouth represents the Gaussian symbol and represents the decimal part of q.
  • phase difference estimated from the measured phase difference between 0 and 0 e is
  • FIG. 9 represents the operation of this embodiment, the FIG. 9 A over time t, shows a point ⁇ Myu lambda actually measured by the pulse Doppler method.
  • the pulse repetition period is changed at each repetition or at an appropriate interval.
  • the repetition period is alternately switched to both (1 + P) and.
  • the prediction in this embodiment will be described with reference to FIG. 9B. From the point M i -M 2 , the prediction of S i is performed. This is based on the phase difference between the actually measured two points and the subsequent point M 2. It is extremely easy to predict because the phase difference from to the prediction point S ⁇ ⁇ ⁇ is equal.
  • both the phase difference is indicated by 2 7 ⁇ n + 0 2.
  • the time between S i -M 3 must be set at a short interval, during which aliasing does not occur, that is, at a high repetition frequency.
  • M 2 - represented by the phase difference Ha Ru value between M 3 ie (2 ⁇ ⁇ + ⁇ 6 ⁇ ).
  • S i - phase difference between M 3 are a simple algebraic expression-out ⁇ shown 0 2 - determined in the 0 1, from the 2 rn items are missing in this It is clear that no aliasing has occurred between S i -M 3 .
  • FIG. 9C the phase difference between M n and M 3 is predicted as a subsequent phase difference of the same period, and a predicted value S 2 is obtained.
  • Fig. 9 D and E are the repetitions of B and C described above. --
  • the phase difference signal intermittently obtained by removing the aliasing from the measured value including the aliasing is obtained.
  • the signal obtained by removing the aliasing thus obtained is frequency-compressed and output.
  • magnification P in this case is
  • the Doppler shift frequency can be converted while eliminating aliasing.
  • the specific circuit configuration of the phase processing circuit 5 shown in FIG. This will be described with reference to FIG.
  • the signal obtained from the sample hold circuit 48 in FIG. 6 actually has a sin component and a cos component as shown in FIG. 10, and each signal is digitized by the AD converters 60 and 62. Is converted to a signal
  • this phase calculation is not performed by the usual operation of the inverse trigonometric function, but is obtained by reading a conversion table of the phase ROM 64 prepared in advance.
  • phase signal read from the phase ROM 64 is sequentially read into the three cascaded latches 66, 68, and 70, and the contents are stored.
  • the latches 66, 68, and 70 that make up these memories are at point M in FIG. , ⁇ 2 , and ⁇ ⁇ ⁇ ⁇ 1 are retained
  • the oldest phase The phase of the next oldest point M 2 is multiplied by ( ⁇ 1) in the multiplier 74, and the output of both multipliers 72, 74 is added to the adder 72. 6 and the sum of the two is obtained. Therefore, the predicted value S i is output from the output of the adder 76 by such a memory and an arithmetic circuit.
  • the predicted value S is then supplied to a set of subtractors 78, 80, and the point M stored in the latch 66. Is subtracted by either the subtracter ⁇ 8 or 80. Selection of both subtracter 7 8 8 0 is performed by the switching signal 82, for example in the case of FIG. 9 B is the one to subtract the predicted value S ⁇ from the measured value M 3 subtracter 7 8 is used, and in the case of FIG. 9C, a subtractor 80 is used to subtract the actually measured value M 4 from the predicted value S 2 . As described above, the phase difference between p and p is obtained from one of the subtractors 780 and 80, and this phase difference is accumulated one after another. The operation is performed in cooperation with a latch 86 connected in parallel to the adder 8.
  • the output of the adder 84 is output to the synthesizer 54 in FIG. 6 as a newly generated frequency-converted phase signal from sinR0M88 and cosROM90.
  • FIG. 6 an example of the amplitude processing circuit 50 is shown in FIG. 11, and the sin signal and the cos signal are squared by the square operators 81 and 83, respectively. Are added in an adder 85.
  • the output of the adder 85 is square-rooted by the square root calculator 87, and further passed through the sample hold circuit 89 to be converted to the sixth data as the amplitude data from the DA converters 91 and 93, respectively. Sent to the synthesizer 54 in the figure
  • the synthesizer 54 shown in FIG. 6 synthesizes both the amplitude and the phase and outputs the result to the next-stage quantitative analysis circuit (not shown in detail).
  • the Doppler deviation frequency is converted from the phase actually measured by the Doppler method, whereby the expansion, compression, or inversion of the frequency can be freely controlled. And a signal that does not cause aliasing This has the advantage that the signal can be obtained easily or the low-speed signal can be detected accurately.
  • Doppler method is similarly applicable to either ultrasonic waves or microphone mouth waves in the present invention, and can be used in an extremely wide range of technical fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

明 細 書
ドプラ信号処理方法
[技術分野]
本発明は ドプラ信号処理方法、 特に超音波あるいはマ ィク口波を用いて動きのある対象物の速度を ドプラ周波 数偏位として取り込み、 対象物の動きを画像表示したり、 あるいは特性解析するための ドプラ信号処理方法に関す る 0
前記ドプラ偏位信号は超音波利用分野においては、 海 中を移動する対象物の動きを検出するソナー装置、 ある いは超音波診断装置において被検体内の血流の動きを検 出するために用いられ、 またマイクロ波を利用したレー ダにおいては、 飛行物体あるいは船舶等の移動速度を検 出する ドプラ レーダと して利用可能である。
[背景技術]
超音波あるいはマイク口波を用いて非接触に対象物の 動きを検出する原理が ドプラ偏位手法と して用いられて おり、 特定の送信周波数で連続波あるいはパルス波を対 象物に送信し、 このときに対象物から反射されるエコー が対象物の動きに応じた ドプラ周波数偏位を受けること から、 受信エコーの周波数偏位を知ることによって対象 物の動きあるいは速度が正確に検知し得る。
このような ドプラ偏位手法は、 近年において、 超音波 一 一
を用いた医用計測に応用されており、 特に被検体内の血 流の速度を観測する装置と して既に超音波ドプラ診断装 置が実用化されている。
この種の超音波ドプラ計測は、 その初期においては、 連铳波を対象物に送信して、 得られたエコー周波数と送 信周波数とのビー トを取り出し、 前記ドプラ周波数偏位 が検出されていた。
また、 近年においては、 前記連続波の送信に代えて、 間欠的にパルス信号を送信することにより、 対象物の位 置分解能も高めたパルス ドプラ法が同様に開発され、 対 象物の位置と速度とを同時に知ることが可能となってき た。
このパルス ドプラ法では、 、 反射エコーの信号強度が 極めて微弱であるために、 初期においては所望の検出精 度を得ることができなかったが、 近年において、 高速フ 一リエ変換手法の開発により、 十分な実用レベルに達し ている。
そして、 このような ドプラ手法は、 前述した超音波ば かりでなく、 マイクロ波を用いたレーダ装置にも同様に 利用可能であり、 その応用分野は極めて広範囲に亘る。
従来において、 ドプラ偏位信号から取り出される情報 は単に対象物の動きによる ドプラ周波数偏位が主なもの であったが、 最近、 ドプラ周波数偏位によって速度を検 出するばかりでなく、 この周波数成分を更に細かく分析 して定量計測に用いることが提案されており、 この結果、 例えば超音波診断装置において、 被検体の生体組織の特 性分析にも ドプラ周波数偏位成分が用いられる可能性が 開けてきた。
しかしながら、 現在において、 連続波あるいはパルス 波により求められた ドプラ周波数偏位はリアルタイムに 得られる情報が少ないために、 正確な特性分析を行うた めに十分なデータを得ることができないという課題に直 面している。
また、 他の問題は ドプラ偏位周波数が一定の範囲に制 約されてしまう こ とである。 すなわち、 ドプラ偏位周波 数が高く なれば、 精密な速度検出が可能となり、 この結 杲、 定量分析に必要な十分なデータを取り込むことが可 能であるが、 このような早い動きでは、 エリアシング
(折り返し現象) が生じてしまい、 この結果、 取り込ん だデータが折り返しによって極端に大きな誤差を含むこ ととなり、 到底正確な測定が期待できないという課題が 生じていた。
前記エリアシングは、 例えばドプラ診断装置において、 被検体内の血流の動きを二次元力ラ一表示する場合にモ ザイ クパターンと して現れ、 画像表示の面からも著しく 装置の特性を劣化させる原因となつている。 - -
周知のように、 エリアシ ングは対象物の速度と共にパ ルス ドプラ法において特有な間欠的なパルス送信におけ るパルスの繰返周波数と関連しており、 エリアシ ングを できるだけ起こさないようにするには、 送信するパルス の橾返周波数をできるだけ高く設定すればよい。
しかしながら、 当然において、 このような籙返周波数 の増加は、 送信パルスが対象物から反射してエコーとし て返って来るまでの間隔、 すなわち測定深度を制約する こととなり、 繰返周波数を高くすることは測定深度を著 しく短くする半面を有する。
従って、 前記エリアシングは特にパルス ドプラ法にお いて本質的な制約と考えられていた。
そして、 この結果、 パルス ドプラ法で取り込める ドプ ラ偏位周波数も自ずと制限される結果となっていた。 更に、 前記ドプラ偏位周波数による制約は、 一方にお いて、 偏位周波数が低い、 例えばゆつ く り した動きの検 出時にも大きな問題となり、 この場合にはエリアシ ング が生じないものの、 取り込まれた ドプラ偏位周波数を処 理するために不可欠なフィ ルタによつて低周波成分が除 去されてしまう こととなり、 このために前述した定量分 析を不可能としてしまうという欠点が生じていた。
前述した従来における数々の問題は、 基本的にパルス 偏位周波数が制限されているという課題に帰結し、 本発 - -
明はこのような実時間で取り込み得る ドプラ偏位周波数 を計測後の処理によって任意に拡大、 圧縮あるいは反転 の変換を可能と したことを特徴とする。
従来、 可変調周波数ドプラ方式がこの分野で公知であ り、 例えば米国特許第 4 , 5 3 4 , 3 5 7号が知られて いる。
この従来装置は、 動きのある対象物に対して広帯域の 送信信号が送られ、 受信されたエコーも同様に広帯域周 波数を含む。
そして、 この広帯域信号から複数の異なる周波数の ド ブラ偏位信号が取り出され、 この複数の信号のそれぞれ の平均周波数を検出することによって差信号が検出され ることとなる。
しかしながら、 このような従来装置においても、 実際 に測定された ドプラ偏位信号のみがデータと して用いら れ、 前述した本発明における課題である ドプラ偏位周波 数を任意に変換することが到底不可能であつた。
従来における更に他の ドプラ計側法と して、 高速血流 超音波 ドプラ計測法が 1 9 8 7年に提案されている。
この従来装置は、 電子情報通信学会技術報告 U S 8 7 一 5 0 〜 5 3 ( 1 9 8 7年 1 2月 1 4 日) 中の報告番号 U S 8 7 - 5 1 と して知られており、 日立製作所中央研 究所の西山久司、 小川敏雄、 片倉景義氏によって発表さ れている。
この改良された従来装置では、 パルス ドプラ超音波装 置において、 超音波パルスを不等間隔で送波し、 位相差 の差を求めることを特徴とする。
従って、 この装置によれば、 ある特定の状態において はェリアシングを防ぐことができるが、 依然と して実測 値のみが用いられ、 エリアシング防止効果はさほど大き く ないことが判明している。
[発明の開示]
本発明は上記従来における種々の課題を解決するため に全く新規な方式を提案したものであり、 その目的は、 連続波、 あるいはパルス波を送信して得られる ドプラ偏 位周波数をその取り込み後に適当な処理を施すことによ つて、 ドプラ偏位周波数を自由に変化させ得ることを特 徴とする。
すなわち、 本発明によれば、 前記取り込まれた ドプラ 偏位周波数を任意倍することによって周波数の拡大、 圧 縮、 反転の変換を自由に可能とするものである。
このために、 本発明によれば、 反射エコーと送信波と から従来と同様の方法によって検出された ドプラ偏位周 波数は一旦メモリに記憶され、 その後にメモリから読み 出されたデータを処理することによって、 各点における 位相差が任意倍数に予測されてこれをあたかも実測され た ドプラ偏位周波数であるかのように出力する。
従って、 前記倍数を適当に選択することによって、 周 波数を自由に拡大、 圧縮、 反転させることが可能となる。
本発明を連続波 ドプラ方式に適用した場合、 求められ た ドプラ偏位信号は一旦メモリに記憶され、 次に各時刻 t における ドプラ偏位信号の位相を、 当該時刻 t におけ る微小時間 Δ t 間の位相変化と して、 当該時刻 t から m Δ t だけ離れた時間の位相差で置き換え、 これによつて、 m倍の ドプラ偏位周波数変換が行われる。
また、 本発明をパルス ドプラ法に適用した場合、 周知 の方法によって得られた離散的なパルス ドプラ偏位信号 がメモリに記憶され、 次に、 このパルス ドプラ偏位信号 の位相成分が m倍されて新たな ドプラ偏位信号列が形成 される。
従って、 前記係数 mを所定値に設定することによって、 パルス ドプラ偏位周波数の拡大、 圧縮あるいは反転が得 られる。
更に、 本発明において、 パルス ドプラ偏位信号は実測 したパルス ドプラ成分の位相差を取り出してこの実測周 期に継続したあるいは近接した地点において、 所定の係 数 q倍した位相と して割り付けられ、 これによつて任意 の周期内での位相偏位成分が求められ、 前記係数 Qを任 意に設定することによって ドプラ偏位信号の拡大、 圧縮 - -
あるいは反転が行われる。
更に、 本発明において、 送信パルスの繰返周波数と対 象物の動きとの関係から実測値にエリアシングが生じた 場合においても、 このエリアシングを除去して前記ドプ ラ偏位周波数の変換を可能とする。
従来において、 このようなエリアシングの生じた実測 データは利用不能であつたが、 本発明によれば、 このよ うなエリアシングを含むデータからもエリアシングのな い、 更に ドプラ偏位周波数を変更あるいは変更しない信 号として自由に取り出すことができる。
すなわち、 この発明においては、 パルス送信の繰返周 期を所定間隔で変化し、 更に実測した ドプラ偏位信号か らその位相差を取り出してこの実測した周期に継続した 次の周期における位相を予測し、 この予測した位相と前 記異なる周期で実測した位相との位相差を求める。
この結果、 実刺値と予測値との位相差はエリアシング が生じない短い周期に設定可能であり、 この結果、 実測 したあるいは予測した位相差がエリァシングをたとえ含 んでいたとしても、 前述の如く して得られた短い周期の 位相差にはェリァシングが除去された信号が得られるこ ととなる。
従って、 このエリアシングが除去された信号を等間隔 の ドプラ偏位信号として取り込めば、 エリアシングを生 じない信号列が新たに作成されることとなる。
[図面の簡単な説明]
第 1 図は本発明に係る ドプラ信号処理方法が連続波 ド ブラ法に適用された好適な実施例を示すブロッ ク回路図、 第 2図は第 1図における実測された ドプラ偏位周波数 とこれを拡大した周波数の一例を示す説明図、
第 3図は第 2図の更に詳細な作用を示す説明図、 第 4図は擬似パルスを用いた第 1図の実施例における 連続波の周波数変換を示す拡大及び圧縮の波形図、
第 5図は心臓の壁及び弁の動きをそれぞれ拡大及び圧 縮して示した状態の波形図、
第 6図は本発明に係る ドプラ信号処理方法をパルス ド ブラ法に適用した場合の好適な実施例を示すプロッ ク回 路図、
第 7 , 8 , 9図はそれぞれ第 6図におけるパルス ドプ ラ法の周波数変換作用を示す説明図、
第 1 0図は第 6図における位相処理回路の更に具体的 なブロッ ク回路図、
第 1 1 図は第 6図における振幅処理回路の更に具体的 なブロック回路図である。
[発明を実施するための最良の形態]
前述した本発明を詳細に説明するために、 以下に添付 した図面に従って、 本発明の実施例を詳細に説明する。 一 —
連続波パルス法
第 1 図には連続波を用いた本発明に係る ドプラ装置の 好適な実施例が示されている。
図の矢印の如き動きを有する対象物 1 0 に対して送信 器 1 2からは超音波あるいはマイク口波の連続波ビーム 1 2 aが送信され、 対象物 1 0からは反射エコー 1 0 a が反射され、 この反射エコーが受信器 1 4 によって受信 される。
前記送信器 1 2 の送信ビーム 1 2 aは f Q なる周波数 を有し、 一方、 反射エコー 1 0 aは f fl + Δ ί なる ドプ ラ偏位を受けた周波数を有する。
図において、 前記送信器 1 2は送信制御回路 1 6 によ つて制御されており、 コン トローラ 1 8がこの送信制御 回路 1 6を制御している。
受信器 1 4 によって電気的な信号に変換された受信信 号は ドプラ偏位信号検出器 2 0へ送られ、 この検出器 2 0内において前記送信制御回路 1 6から得られる送信 周波数 f Q と演算され、 ドプラ周波数 Δ ί成分が取り出 される。
前記 ドプラ偏位信号検出器 2 0の出力はサンプリ ング 回路 2 2 において所定のサンプリ ング周波数でサンプリ ングされ、 更にデジタル信号として出力される。
前記サンプリ ング回路 2 2 は ドプラ信号の振幅と位相 とを別個に出力し、 実施例において、 振幅メモ リ 2 4及 び位相メモ リ 2 6がそれぞれのデジタル信号を記憶する。 本発明において特徵的なことは、 位相メモリ 2 6 に記 億された位相情報が位相置換演算器 2 8 において本発明 で特徴的な周波数変換演算に供されることであり、 これ によって、 後述する周波数の拡大、 圧縮あるいは反転の 変換が行われる。
そ して、 このようにして周波数変換が行われた位相信 号と前記振幅メモリ 2 4の出力とは合成器 3 0 にて合成 され、 新たな周波数変換された ドプラ偏位信号と して出 力される。
第 2図には前述した第 1図におけるサンプリ ング回路 2 2から得られる ドプラ偏位信号の周波数変換の一例が 示され、 第 2図 Aには変換前の信号が、 そして第 2図 B には ドプラ偏位周波数が拡大された後の波形が示されて いる。
もちろん、 ドプラ偏位信号は s i n成分と c o s成分 とを有し、 図においては、 その一方が示されているので、 必ずしも正しい表現ではないが、 図によって本発明にお ける振幅 (エンベロープ) を一定にしながら、 その内部 における位相あるいは周波数を変換できる様子を示す。 第 2図 Aにおいて、 振幅が A ( t ) で位相角が 0 ( t ) であり、 これらの両要素が時間と共に変化するる ドプラ 一
偏位信号 D ( t ) を考える。
この ドプラ偏位信号は
D ( t ) = A ( t ) e x p ( j ^ ( t ) ) ( 1 ) と 3¾わせな c
このとき、 ドプラ偏位角周波数 co d ( t ) は d ( t ) = d arg (D) / d t = d ^ / d t ( 2 ) である。
一方、 第 2図 Bは元の信号 D ( t ) の振幅 (ェンベロ ープ) A ( t ) をそのまま保有し、 周波数 (位相) を拡 大した新たな本発明に基づいて拡大変換された ドプラ偏 位信号 D r ( t ) を示している。
図から明らかな如く、 振幅 (エンベロープ) は A ( t ) として元の信号と何ら異なることなく、 一方その内部に おける ドプラ偏位角周波数は ω r ( t ) として拡大され ていることが理解される。
従って、 第 2図に示した如き拡大変換によれば、 動き の遅い対象物 1 0に対して得られた ドプラ偏位角周波数 を、 本来保有している情報を損なう ことなく拡大するこ とが可能となる。
そして、 このような拡大によれば、 低速反射体と静止 反射体との両者が混在した対象物に対しても両者の分離 を極めて容易にすることができる。
すなわち、 第 2図 Aの実測信号によれば、 図示してい ないが周知のフィ ルタ処理を行う際に低速成分が失われ、 動きの遅い反射体に対しては良好なデータを得ることが できないが、 第 2図 Bの如く ドプラ偏位角周波数を拡大 するこ とによって従来と同様のフィ ルタ作用を受けた後 においても低速反射体の保有する情報は十分に保つこと が可能となる。
以下に、 第 2図 Aから第 2図 Bへの位相 (周波数) 変 換、 実施例においては拡大変換の作用を第 3図に基づい て詳細に説明する。
第 3図 Aは第 2図 Aと同様に実測された ドプラ偏位信 号 D ( t ) を示し、 図においては、 ドプラ偏位周波数は 一定であり、 対象物 1 0 は等速運動をしていることが理 解される。 また、 その振幅も一定である。
第 3図 Bは ドプラ偏位信号 D ( t ) の振幅成分 A ( t ) を示し、 前述した如く時間の偏位によっても振幅値が一 疋 める。
—方、 第 3図 Cは ドプラ偏位信号 D ( t ) の位相成分 Θ ( t ) であり、 前述した如く対象物 1 0が等速運動を しているので、 この位相 0 ( t ) は時間と共に直線的に 変化する特性を有する。 一 一
なお、 第 3図 Cにおいては、 位相 0 ( t ) の折り返し、 すなわち、 Θ C t ) の最大値を 2 ττ η とする折り返しに 関しては無視されている。
本発明においては、 第 3図 Cに示される位相 0 ( t ) の情報からこれを任意倍数して周波数 (位相) 変換する ことが行われ、 図においては、 m倍拡大する状態が第 3 図 Dに示されている。
今、 任意の時刻 t を考える。
時刻 t における周波数の拡大は、 時刻 t の前後、 実施 例において、 前における微小時間厶 t での位相変化 厶 θ 0 を前記微小時間厶 t の m倍の時間 m t 間の位相変 化厶 0 , で置換することで得られる。
実際上、 この置換演算を行うため、 前述した第 1図に おける位相置換演算器 2 8は、 任意の時刻 t において微 小時間 Δ t での m倍である m Δ t の時間を予め設定し、 時刻 t から m厶 t だけ離れた時刻 ( t 一 m厶 t ) の ドプ ラ偏位信号の位相 0 ( t — πι Δ ΐ ) と時刻 t での位相 0 ( t ) とを比較し、 この位相変化分を として求め る
そして、 この位相差 Δ e i を微小時間 Δ t 間の位相変 化として見なすと、 第 3図 Dに示される特性が得られる。 時刻 t において前記位相差 Δ Θ iの基準値と な る位相 θ 1 は予め任意に設定される。 このようにして、 次々に時刻 t を変えて行き、 それ以 前に求めた位相 0 ( t ) に前記位相差 Δ 0を加えてゆけ ば、 ドプラ偏位周波数を自由に変化させることができ、 第 3図の如く ドプラ偏位周波数の拡大が可能となる。
このようにして変換された後の ドプラ偏位周波数を ω r ( t ) とすると、 ω τ ( t ) = lini (厶 ノ厶 t )
= lim ( ( 0 ( t ) — 0 ( t — ηι Δ ΐ ) ) < Δ ΐ ) = m lira(( 0 ( t ) 一 Θ ( t 一 m厶 t )) m Δ t ) == m d 0 d t
= m ω d ( t ) ··' ··· ( 3 ) となる。
したがって、 このようにして生成された ドプラ偏位信 号 D r ( t ) は前述した第 2図 Bのようになり、 この信 号の ドプラ偏位角周波数 ω r は元の信号 Dの ドプラ偏位 角周波数 ω rの m倍である.ことが理解される。
従って、 信号 D r ( t ) を求めると、
D r ( t ) = A ( t ) exp( j (m Θ ( t ) + Φ ))- ( 4 ) となる。 こ こで、 前記 øは定数となる。 - -
以上のようにして、 連続波を用いた ドプラ装置におい て、 実測により検出された ドプラ倡位信号はその ドプラ 偏位信号を本発明によって任意に m倍することが可能で あることが理解され、 この mは実数であるから、 以下の 事実が確定する。
すなわち、 m > 1 の時は ドプラ偏位周波数が拡大され
0 く mく 1 の時は、 圧縮される。
m = 0の時は動きのある対象物が静止する。
0 〉 mの時は所定の拡大あるいは圧縮率で動きが反転 する。
前述した連続波における ドプラ偏位周波数の拡大圧縮 を示す波形として第 4図が好適である。
第 4図 Aには 1 5 7 H z と 3 1 5 H zの信号を 4周期 毎に切り換えた ドプラ偏位入力信号が示されている。
そして、 第 4図 Bはこの入力信号に対して 2倍の周波 数拡大処理が行われており、 図から明らかな如く その周 波数が 8周期毎に変化していることが理解され、 また周 波数変化の繰返周波数は何ら変わらない。
また、 本発明の方法によれば、 ドプラ偏位信号の周波 数を時間の経過に伴い設定された割合で変えるが、 その 振幅は変わらないことが理解される。
第 4図 Cは反対に 1 Z 2倍の圧縮処理をした状態を示 し、 図示の如く 2周期毎に周波数が変化している もちろん、 この圧縮処理においても周波数が切換わる 時間間隔が変化していないことが理解される。
第 5図には実際の ドプラ偏位信号に対して処理を行つ た例を示す
第 5図 Aは遅い速度で鼓動する心臓の壁を観測対象と して得られた実測された ドプラ偏位信号を示し、 これに 対して第 5図 Bは 2倍の周波数拡大処理を行った結果で あ 。
一方、 第 5図 Cは比較的早い速度で運動する心臓の弁 を入力信号と して示し、 この入力信号に対して 1 Z 2倍 の周波数圧縮処理が行われ、 この結果が第 5図 Dに示さ れている。
従って、 実測した ドプラ偏位周波数に拘らず、 本発明 の演算処理によって任意の ドプラ偏位周波数の信号を取 り出すことが可能となり、 これによつて ドプラ僞位信号 に含まれる情報を有効に活用することが可能となる。 パルス ドプラ法への適用
前述した連続波による ドプラ法において本発明が有効 であることが既に明らかであるが、 本発明は更にパルス ドプラ法に対しても同様に適用可能である
パルス ドプラ法では連続波の ドプラ偏位信号を離散的 にサンプリ ングすることに相当するので、 前記連铳波に 一 一
おける時間差 Δ t をパルスの繰返周期 τ とすればよい。
そして、 このとき置換すべき m てだけ時間が離れた時 刻での信号が実測によって得られている場合、 すなわち mが自然数の場合にはこの時刻の位相をそのまま置換す れば前述したと同様の結果が得られる。
そして、 本発明においては、 前記置換すべき実測値が ない場合にも、 所望の時刻での ドプラ偏位信号を実測値 から予測して求め、 これによつて実測値がない場合にお いても所望の倍率 mを設定することが可能となり、 パル ス ドプラ法への適用に関しても前記連続波 ドプラ法と同 様に本発明が用いられる。
第 6図には本発明をパルス ドプラ法に適用した場合の 装置の好適な実施例が示されている。
図において、 対象物 1 1 0 に対して トラ ンスデューサ 4 0からパルス ビーム 1 1 2 aが送信され、 対象物 1 1 0からの反射エコー 1 1 0 aが同様に トラ ンスデューサ 4 0 によって検出される。
前記ト ラ ンスデューサ 4 0 の送信パルス ビーム 1 1 2 aを形成するために、 バース ト波発生器 4 2が設けられ ており、 コン トローラ 4 4にて定められた繰返周期でバ 一ス ト波発生器 4 2からは ト ラ ンスデューサ 4 0へ所望 の繰返周波数で励振信号が供給される。
周知のように、 パルス ドプラ法においては、 送信と受 信のタイ ミ ングが異なるので、 同一の トラ ンスデューサ
4 0が送受信に共用可能である。
トラ ンスデューサ 4 0が反射エコー 1 1 0 aを受信す ると、 位相検波器 4 6が前述した第 1 図の ドプラ偏位信 号検出器 2 0 と同様に ドプラ偏位信号を出力する。
実施例において、 この ドプラ偏位信号は距離分解能を 得るためにサンプルホール ド回路 4 8で所望の観測距離 の情報のみが取り出される。
前記サンプルホール ド回路 4 8から取り出された所望 測定深度の ドプラ偏位信号は前述した第 1 図における連 続波 ドプラ法と同様に、 振幅処理回路 5 0 と位相処理回 路 5 2 とにそれぞれ供給され、 別個の振幅及び位相処理 力 行われる。
勿論本発明において特徴的なことは位相処理回路 5 2 において ドプ'ラ偏位周波数の変換が行われることである。 後に詳述するように位相 (周波数) 処理された任意の 周波数の ドプラ偏位周波数信号は合成器 5 4において振 幅信号と合成され、 従来と同様にフィ ルタ 5 6 によって 直流分が除去され、 後段の周波数分析器その他に出力さ れ、 定量分析あるいは画像表示用データと して用いられ 0
従って、 本実施例におけるパルス ドプラ法においても、 実測された ドプラ偏位信号から所望の ドプラ偏位周波数 を有する新たな ドプラ偏位信号が予測して得られ、 この 新たに生成された ドプラ偏位信号は処理前の ドプラ偏位 周波数に拡大、 圧縮あるいは反転等の変換が行われた信 号となっている。
前述した連続波と同様に、 ドプラ偏位周波数の圧縮処 理を行えば、 エリアシングの妨害を受けることなく対象 物の速度を定量計測することが可能となる。
また、 ドプラ偏位周波数の拡大処理により、 従来困難 であつた低速度の測定を可能とすることができる。
なお、 第 6図において、 コン トローラ 4 4へは繰返周 波数発生器 5 8から送信パルスの綠返周波数を定める信 号が供耠されており、 後に詳述するように、 この繰返周 波数を各送信周期ごとにあるいは特定の複数周期毎に変 更することが可能である。
第 7図にはパルス ドプラ法において ドプラ偏位周波数 の拡大を行う一例が示され、 置換すべき m倍だけ距離が 離れた時刻での信号が実際にサンプリ ングされている、 すなわち mが自然数の場合を示し、 具体的な実施例で m = 3を図示している。
第 7図 Aは間欠的に送信されるパルスの反射エコー実 測値を示しており、 時刻 t の経過に従い、 実測値は M 1 (), M n > M , 2, M 1 3 , M 1 4の如く測定され、 これらの実測 値は第 6図において各処理回路 5 0, 5 2 に記憶される。 実施例の繰返周波数は、 各送信ごとに一定しており、 図 においてその繰返周期が rにて示されている。 また、 各 点間の位相差がそれぞれ図示の如く Φ γ , Φ ο , Φ 3 , ø 4 と して示されている。
今、 Μ13の地点に注目したとき、 連続波の場合と同様 に考えると、 第 3図に示される微少時間 Δ t は地点 M13 よりひとつ手前の地点 M12との時間となり、 これは実際 上繰返周期 t と等しい。
そして、 仮に 3倍の周波数拡大を行う場合、 第 3図の 説明をそのまま踏襲すれば、 地点 M13から 3地点戻った 地点 M1Qとの時間すなわち πι Δ tでの位相差を Δ t に置 換することが行われなければならない。
すなわち、 地点 M13について考えれば、 位相差 <63 を {φ ι + φ 9 + Φ ^ ) にて置換することとなる。
もちろん、 この置換によっても、 基本的に本発明の成 立は可能であり、 ドプラ偏位周波数の拡大を行う ことが 可能となる。
しかしながら、 パルス ドプラ法においては、 連続波ド ブラ法と異なり、 前記 Δ t は繰返周期て と等しく なるの で、 この値を極限値にまで小さ くすることができず、 必 ず有限値を有するので m Δ t 間における対象物 1 1 0の 動きが到底無視できる値ではなく なり、 動きの変化が速 い対象物に対しては、 実用的でないという欠点が生じる。 - . -
このような処理の遅れを解消するために、 本実施例で は、 現在の処理地点 1^^ 3から m Δ t だけ戻った M 1 Q地点 までの位相差を採用することなく 、 直接 Δ ίすなわち繰 返周波数 rの位相差 0 3 を m倍することが行われる。
第 7図 Bはこの m倍の位相差を各地点において採用し た本発明の周波数変換後の状態が示されており、 各地点 において地点間の位相差は全て実測値の m倍、 すなわち 3倍となっている。
第 6図における位相処理回路 5 2 は可変マルチプライ ャを含み、 任意に設定された倍数で一旦メモリ に記憶さ れた位相の差を m倍して新たな位相として出力している c 第 3図と同様に、 パルス ドプラ法においても、 mの値 を設定することによって以下のような周波数変換が可能 である。
m > 1 : 拡大
1 > m > 0 : 圧縮
m = 0 : 静止
0 > m : 反転
第 7図の周波数変換では実測値のみを用いて単なる演 算処理にて所望の処理が行われるが、 本発明において、 このような m倍処理を行う ことなく、 実測された位相差 から新たな予測を行う ことも可能であり、 第 8図にはこ のような本発明の他の実施例が示されている。 各地点 Mの実測は、 第 7図と同様に〇印で示され、 一 方予測された後の位相は、 X印にて示され、 それぞれ第 8図 Aと第 8図 Bが実測及び予測値と、 これらを割付け た出力を示す。
図から明らかな如く 、 繰返周期をてそして予測周期を q て と し、 第 8図 Aにおいて、 予測値が S n i , „2と して △印で示されている。
本実施例における予測は次のように行われる。
すなわち、 M n ()— M 2 1の変化は次の S 2 1間でも 時間的に比例する関係とするならば、 位相差も q倍した 値となり、 これを第 8図 Bの如く周期ての間に置換すれ ば、 所望の周波数変換作用が得られる。
第 8図においては、 2個の位相差の置換が行われた状 態を示している。
第 8図が本発明における予測の基本を示すが、 一方に おいて、 このような予測は、 エリアシングを考慮しなけ ればならないという問題がある。
エリアシングが 2 7Γ毎に生じることから、 周期 t 内の 位相変化は ( 2 n + ø ) で示される。 こ こで、 nが整 数で 0の時はェリアシングを起こ していないが、 その他 の場合にはエリアシングが発生している。
こ こで、 q ての位相差 Δ Θ は、 一 一
Α θ = q { 2 π η + φ )
= 2 7T [ q ] n + 2 7r n 厶 q + q 0 ·'' ( 5 ) と表される。 但し、 口 はガウス記号、 は qの小数 部分を表すものとする。
ところで、 計測される位相差 Δ ø Q は 厶 0 ο = ( 2 7τ η 厶 q + q 0 ) mod { 2 π ) …
( 6 )
でめる。
—方、 て間の計測された位相差から推定される位相差 厶 0 eは
Δ 0 e = ( q ø ) mod ( 2 7Γ ) … ( 7 ) なり、 ここで、 予測した位相差 Δ 0 eが厶 0 Q と一致 するためには、 n厶 q = 0 … ( 8 ) でなければならない。
エリアシングを起こ して n力 0でない場合には、 Δ q が 0、 すなわち qが整数でなければならない。 最も単純 な場合は、 q = 1でて と q てが等間隔である場合となる 以上のようにして、 第 8図の予測に際しては常にエリ ァシ ングを考慮しなければならず、 その予測条件が制約 されていることが理解されなければならない。
次に、 前述したエリアシングによる制約を克服し、 さ らに実測される位相差がェリァシングを含む場合におい ても本発明における周波数変換処理によってこのエリア シングを除去することが可能な本発明の他の実施例を説 明する。
第 9図がこの実施例の作用を示し、 第 9図 Aは時刻 t の経過と共に、 パルス ドプラ法によって実測された地点 〜ΜΛ を示している。
この実施例において特徴的なことは、 パルスの繰返周 期が各繰返ごとあるいは適当な間隔ごとに変化して設け られていることであり、 実際上、 第 9図の例によれば、 繰返周期がて と ( 1 + P ) て との両者に交互に切換えら れている。
今、 繰返周期 r内にエリアシ ングが含まれていること を考え、 勿論このことは ( 1 + P ) ての繰返期間にもェ リアシングが含まれていることを意味する。
本実施例において特徴的なことは、 第 9図 Aの実測値 と、 以下に述べる予測値 S i , s 2 , S Q , s4 との両 者からエリアシ ングが生じない程度に短い間隔の位相差 - -
を求め、 これを新たな時系列信号として用いるものであ つて、 実測値にはエリアシングが含まれていたにもかか わらず、 前記予測値との差を取ることによってエリアシ ングを除去することが可能となる。
第 9図の全体的な実施例としては、 このようにしてェ リアシングを除去した後に、 更にこの短い期間内での位 相差を長い期間の位相差として置換することにより、 ト ブラ偏位周波数の圧縮を行っている実施例を示している。
まず、 本実施例における予測を第 9図 Bにおいて説明 すると、 地点 M i - M 2 から、 S i の予測が行われ、 こ れは、 前記実測 2地点間の位相差と後の地点 M 2 から予 測点である S ¾ までの位相差が等しいことによつて極め て容易に予測可能である。
実施例においては、 両位相差は 2 7Γ n + 0 2 で示され ている。
もちろん、 後述するように、 このような予測を演算す るためには地点 M 2 の位相を 2倍したものから地点 の位相を差算することにより得ることが可能である。
—方、 本実施例において特徴的なことは、 それまでの 繰返周期 rに対して、 次の地点 M 3 を得るために ( 1 + P ) て なる周期の変更が行われていることであり、 この 結果、 地点 M 3 は前記予測点 S i より時間的に後の地点 となることが明らかである。 - 1 -
もちろん、 本実施例において、 S i - M3 間の時間は その間にェリアシングが生じない程度の短い間隔、 すな わち高い繰返周波数で設定されなければならない。
前記条件を満足した場合、 M2 - M3 間の位相差はあ る値すなわち ( 2 ττ η + <6 η ) で示される。
このときに、 前記 S丄 , Μ3 間の時間をエリアシング が生じない程度に設定するこ とによって、 Μ2 — Μ3 間 の位相差が 、 π ( η + 1 ) + ø 2 ) とならないことが 重要である。
第 9図 Βにおいて、 S i — M3 間の位相差は図示の如 き簡単な代数式から 02 - 01 と して求められ、 これに は 2 r nの項目が消失していることからも、 S i - M3 間にエリアシングが生じていないことは明らかである。 次に第 9図 Cで示されるように、 Mn — M3 間の位相 差がこれに引き続く 同一周期の位相差と して予測され、 予測値 S 2 が得られる。
そ して、 地点 M4 の実測は地点 M。 から周期てだけ離 れた位置で行われ、 この結果、 M4 - S 2 間は前記第 9 図 Bと同様に簡単な代数式によって ( 02 — ø 3) と し て得られる。 第 9図 Bと第 9図 Cとの差は時間的に予測 値が実測値より先行するか後追いするかの差に過ぎず、 原理的に両者は同一である。
第 9図 D, Eは前述した B , Cの繰り返しであり、 詳 - -
細に説明することなく 、 その内容は理解されるであろう。 以上のようにして、 第 9図の太い実線で示した如く 、 本 実施例によれば、 エリアシ ングを含む実測値からエリア シングを除去した間欠的に得られる位相差信号が求めら れることとなる。 そして、 本実施例においては、 このよ うにして求められたエリアシ ング除去された信号を周波 数圧縮して出力している。
このために、 第 9図 Fで示される如く、 新たな繰返周 波数列が想定され、 X印で示される如く、 この新たに想 定されたパルス列は、 前記綠返周期て と ( 1 + P ) て の 平均値である均一な周期を有し、 図の如く k て - ( 1 + 1 Z 2 p ) てで表されている。
そして、 前述した第 9図 B〜 Eで求められた各太い実 線で示されるエリアシングのない周期 P て間の位相差が 第 9図 Fで示されるように k q の等間隔位相差として圧 縮変換されることとなる。
従って、 本実施例によれば、 エリアシ ングの影響を無 視して極めて簡単に ドプラ偏位周波数の圧縮が得られる こととなる。
第 9図 Fにおいて、 k = C 1 + 1 / 2 p ) て の等間隔 で構成することにより、 サンプリ ングの不等間隔による 不必要な低周波成分での変調が防止される。
以上のようにして構成された ドプラ偏位周波数の圧縮 率 mは
P k = 2 p / ( 2 + p ) ( 9 ) であ 。
一方、 この場合の拡大率 Pは、
P 2 m / ( 2 - m ) ( 1 0 ) と して圧縮率 mから定めることができる。
以上のようにして、 本実施例によれば、 エリアシング を消しながら ドプラ偏位周波数の変換を行い得るが、 前 記第 6図に示した位相処理回路 5 の具体的な回路構成 を第 1 0図により説明する。
第 6図のサンプルホール ド回路 4 8から得られた信号 は第 1 0図に示される如く実際上 s i n成分と c o s成 分とを有し、 各信号は A D変換器 6 0 , 6 2 によりデジ タル信号に変換される
これらの両出力から位相が求められる力 実施例にお いて、 この位相演算は通常行われる逆三角関数の演算で はなく 、 予め作成された位相 R O M 6 4の変換テーブル を読み出すことによって求められる
このよ うな位相 R 0 M 6 の内容は周知の予め設定さ - -
れた記憶テーブルとその読出回路からなり、 詳細な説明 を省略する。
位相 R O M 6 4から読み出された位相信号は、 従属接 続された 3個のラ ッチ 6 6 , 6 8 , 7 0 に順次読み込ま れ、 その内容が記憶される。
例えば、 これらのメモリを構成するラ ッチ 6 6 , 6 8 , 7 0 には第 9図の地点 M。 , Μ 2 , Μ 1 のそれぞれの位 相が保持されることとなる
そして、 実施例においては、 最も古い位相!^ェ が乗算 器 7 2 において 2倍され、 一方、 次に古い地点 M 2 の位 相が乗算器 7 4において (― 1 ) 倍され、 両乗算器 7 2, 7 4の出力が加算器 7 6 に供耠されて両者の和がとられ 従って、 このようなメモリ と演算回路によって、 加算 器 7 6の出力からは予測値 S i が出力されることとなる。
前記予測値 Sェ は次に一組の引算器 7 8 , 8 0 に供給 され、 前記ラツチ 6 6に記憶されている地点 M。 の位相 といずれかの引算器 Ί 8 または 8 0 にて引き算される。 両引算器 7 8 , 8 0 の選択は切替信号 8 2 によって行わ れ、 例えば第 9図 Bの場合には、 実測値 M 3 から予測値 S { を引き算するために一方の引算器 7 8が用いられ、 第 9図 Cの場合には逆に引算器 8 0が用いられ、 予測値 S 2 から実測値 M 4 が引き算される。 以上のようにして、 p て間の位相差はいずれかの引算 器 7 8 または 8 0から求められ、 この位相差が次々と累 積算されるため、 加算器 8 4 に供給され、 この累積作用 は加算器 8 に並列に接続されたラ ツチ 8 6 との協動に より行われる、 。
そして、 加算器 8 4の出力は s i n R 0 M 8 8及び c o s R O M 9 0から新たに作られた周波数変換された位 相信号と して第 6図の合成器 5 4へ出力される。
—方、 第 6図において、 振幅処理回路 5 0 はその一例 が第 1 1図に示されており、 s i n信号及び c o s信号 がそれぞれ二乗演算器 8 1 , 8 3 にてそれぞれ二乗演算 され、 これらの出力は加算器 8 5 にて加算される。
更に、 加算器 8 5の出力は開平演算器 8 7 にて二乗根 がとられ、 更にサンプルホール ド回路 8 9を経てそれぞ れ D A変換器 9 1 , 9 3から振幅データと して第 6図の 合成器 5 4 に送られる
従って、 第 6図の合成器 5 4 は振幅と位相の両者を合 成して詳細には示していない次段の定量分析回路へ出力 される。
以上説明したように、 本発明によれば、 ドプラ法によ り実測された位相から ドプラ偏位周波数の変換を行い、 これによつて周波数の拡大、 圧縮あるいは反転を自由に 制御することが可能となり、 エリアシングを生じない信 号が容易に得られ、 あるいは低速信号の正確な検出を可 能とする利点がある。
前述した ドプラ法は本発明において超音波あるいはマ イ ク口波のいずれに対しても同様に適用可能であり、 極 めて広範囲の技術分野において利用可能である。

Claims

請求 の 範 囲
( 1 ) ドプラ偏位信号を記憶し、
各時刻 t における ドプラ偏位信号の位相を、 当該時刻 t における微小時間 Δ t 間の位相変化と して、 当該時刻 t から πι Δ t だけ離れた時間の位相変化で置換し、 前記 mの値を任意に選択するこ とによって、 ドプラ偏 位周波数の拡大、 圧縮、 反転の変換を行う ことを特徵と する ドプラ信号処理方法。
( 2 ) パルス ドプラ法によって得られた離散的な ドプラ 偏位信号を記憶し、
前記 ドプラ偏位信号の位相成分を m倍して新たな ドプ ラ偏位信号列を形成し、
前記係数 mを所定値に設定することによってパルス ド ブラ周波数の拡大、 圧縮、 反転の変換を行う ことを特徴 と したパルス ドプラ信号処理方法。
( 3 ) パルス ドプラ偏位信号を記億し、
前記 ドプラ偏位信号の位相成分を所定の係数 q倍して、 前記実測した周期での予測位相偏位成分と して割付け、 前記係数 qを任意に設定することにより、 パルス ドプ ラ周波数の拡大、 圧縮、 反転の変換を行う ことを特徴と するパルス ドプラ信号処理方法。
( 4 ) パルス送信信号の繰返周期を変化し、
実測したパルス ドプラ偏位信号の位相差から実測周期 に継続した同一周期における位相を予測し、
この予測した位相と前記異なる周期で実測した位相と の位相差を求め、
間欠的に得られた前記短い周期の位相差を等間隔の長 い周期の位相差として取り込み、
エリアシングを生じさせること無く ドプラ偏位周波数 の圧縮を行う ことを特徴とするパルス ドプラ信号処理方
& o
PCT/JP1990/000437 1990-03-30 1990-03-30 Method of processing doppler signal WO1991015780A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP1990/000437 WO1991015780A1 (en) 1990-03-30 1990-03-30 Method of processing doppler signal
ES90905636T ES2094153T3 (es) 1990-03-30 1990-03-30 Metodo para procesar una señal doppler.
DK90905636.8T DK0474867T3 (da) 1990-03-30 1990-03-30 Fremgangsmåde til behandling af dopplersignal
EP90905636A EP0474867B1 (en) 1990-03-30 1990-03-30 Method of processing doppler signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1990/000437 WO1991015780A1 (en) 1990-03-30 1990-03-30 Method of processing doppler signal

Publications (1)

Publication Number Publication Date
WO1991015780A1 true WO1991015780A1 (en) 1991-10-17

Family

ID=13986449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000437 WO1991015780A1 (en) 1990-03-30 1990-03-30 Method of processing doppler signal

Country Status (4)

Country Link
EP (1) EP0474867B1 (ja)
DK (1) DK0474867T3 (ja)
ES (1) ES2094153T3 (ja)
WO (1) WO1991015780A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105508A (ja) * 2017-12-12 2019-06-27 日本電気株式会社 信号処理装置、信号処理方法、プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385013B (zh) 2018-12-29 2021-12-28 华为技术有限公司 广播数据的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230077A (ja) * 1984-04-06 1985-11-15 セーゲーエール ユルトラゾニク ドツプラー効果による標的速度の測定からあらゆる曖昧さを除去する方法
JPS61279233A (ja) * 1985-05-30 1986-12-10 アドバンスト・テクノロジ−・ラボラトリ−ズ・インコ−ポレイテツド アンテイ・エイリアシングドプラ血流速計
JPS63179275A (ja) * 1987-01-21 1988-07-23 Aloka Co Ltd ドプラ信号変換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798590A (en) * 1968-09-12 1974-03-19 Us Navy Signal processing apparatus including doppler dispersion correction means
US4556067A (en) * 1984-01-10 1985-12-03 D. E. Hokanson, Inc. Bandwidth indicator for Doppler blood flowmeters
US4607642A (en) * 1984-04-19 1986-08-26 Advanced Technology Laboratories Unaliased quadrature audio synthesizer
CA1246732A (en) * 1984-06-23 1988-12-13 Aloka Co., Ltd. Doppler signal frequency converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230077A (ja) * 1984-04-06 1985-11-15 セーゲーエール ユルトラゾニク ドツプラー効果による標的速度の測定からあらゆる曖昧さを除去する方法
JPS61279233A (ja) * 1985-05-30 1986-12-10 アドバンスト・テクノロジ−・ラボラトリ−ズ・インコ−ポレイテツド アンテイ・エイリアシングドプラ血流速計
JPS63179275A (ja) * 1987-01-21 1988-07-23 Aloka Co Ltd ドプラ信号変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0474867A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105508A (ja) * 2017-12-12 2019-06-27 日本電気株式会社 信号処理装置、信号処理方法、プログラム

Also Published As

Publication number Publication date
ES2094153T3 (es) 1997-01-16
EP0474867A4 (en) 1992-05-13
DK0474867T3 (da) 1997-05-12
EP0474867A1 (en) 1992-03-18
EP0474867B1 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US4167879A (en) Method and apparatus for examining a solid
US5349960A (en) Ultrasonic diagnosis apparatus
JP2003010178A (ja) 超音波診断装置
JPS60103944A (ja) 超音波検査装置
US6758815B2 (en) Apparatus and method for indicating mechanical stiffness properties of body tissue
US5220923A (en) Ultrasonic doppler blood flowmeter
JPS60153849A (ja) 媒体の構造を特徴付けする方法及びこの方法を実施する装置
US4884448A (en) Ultrasonic doppler meter
WO1991015780A1 (en) Method of processing doppler signal
CN105919624A (zh) 一种高脉冲重复扫查频率信号的编码、成像方法和装置
JP4077092B2 (ja) ドップラ周波数測定方法およびドップラソナー
US4766905A (en) Ultrasonic transmitter/receiver
KR101809358B1 (ko) 새로운 평면파 합성을 이용한 초음파 도플러 영상 장치 및 그 제어 방법
JPH04215744A (ja) 速度測定装置
US5216639A (en) Method for processing a doppler signal
EP0512837B1 (en) Ultrasonic doppler imaging apparatus
JP3352211B2 (ja) 超音波ドプラ診断装置
JP2563656B2 (ja) 超音波ドプラ映像装置
JP3391578B2 (ja) 相関装置および流れ情報表示装置
JPS62152437A (ja) 超音波ドプラ診断装置
JP5559655B2 (ja) 超音波診断装置
Tanaka et al. Alias-free interpolation technique for pulsed Doppler signal
JPS58109040A (ja) 超音波診断装置
JPH08278295A (ja) パルス圧縮超音波探傷方法
JPH0213441A (ja) 超音波パルスドプラ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990905636

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990905636

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990905636

Country of ref document: EP