WO1991006397A1 - Method of machining slider for magnetic head - Google Patents
Method of machining slider for magnetic head Download PDFInfo
- Publication number
- WO1991006397A1 WO1991006397A1 PCT/JP1990/001390 JP9001390W WO9106397A1 WO 1991006397 A1 WO1991006397 A1 WO 1991006397A1 JP 9001390 W JP9001390 W JP 9001390W WO 9106397 A1 WO9106397 A1 WO 9106397A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slider
- processing
- magnetic head
- nozzle
- abrasive grains
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/187—Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/04—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C3/00—Abrasive blasting machines or devices; Plants
- B24C3/32—Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
- B24C3/322—Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for electrical components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C5/00—Devices or accessories for generating abrasive blasts
- B24C5/02—Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
- B24C5/04—Nozzles therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/10—Structure or manufacture of housings or shields for heads
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/48—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
- G11B5/58—Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B5/60—Fluid-dynamic spacing of heads from record-carriers
- G11B5/6005—Specially adapted for spacing from a rotating disc using a fluid cushion
Definitions
- the present invention relates to a magnetic head river slider processing method, and more particularly to a method input for processing a surface of a magnetic head slider that is in contact with a recording medium into a predetermined shape or property. .. Background technology
- the slider On the surface of the slider that holds the magnetic head that writes or reads signals in contact with the magnetic recording medium such as a hard disk or a disc, contact the above recording medium. Grooves and protrusions are formed for the purpose of training, and in the past, such processing was performed by machining. And hard disk drive and floppy disk drive Along with the miniaturization, the slider is also miniaturized, and the machining accuracy is gradually required to be high.
- the edge portion of the surface is not rounded, the hard disk or ⁇ ubi disk may be damaged. Therefore, conventionally, blending was performed as shown in Fig. 1. That is, the head slider (1) is held by the holding part (3) of the rotating disk, and is rotated about the rotating shaft (4). On the other hand, the urging force of the spring (5) presses the lapping sheet (7) from below through the pad (6) against the surface of the head slider (1). ..
- the method in which the surface of the slider for the magnetic head is subjected to the lapping sheet (7) as shown in Fig. 1 is inferior in the dimensional accuracy of the pellet and the lapping sheet or It has the shortcomings of short tape life and unevenness. Furthermore, the maintenance is difficult, and if the sheet is adjusted by the pad pressure, there is a drawback that the variation becomes large ( and it is very difficult to obtain a blended curved surface.
- the present invention has been made in view of the above problems, and is a method for processing a surface of a slider for a magnetic head with high precision and efficiency to give a predetermined shape or property.
- the purpose is to provide
- a first invention is a method of processing a surface of a magnetic head slider, which is in contact with a recording medium, to have a predetermined shape or property, in which a solid-gas two-phase flow of loose abrasive grains and a gas is injected by an injection nozzle. The spray is applied to the surface of the slider.
- the average particle size of the free particles is as follows.
- a third aspect of the present invention is the injection of the loose abrasive grains to provide the slider. Which has been subjected to a blending process that rounds the edges of the slider.
- a solid-gas two-phase flow of loose abrasive grains and gas is jetted by a jet nozzle having a horizontally long rectangular cross section.
- a fifth aspect of the present invention is that the nozzle nozzle has a rectangular cross section that is narrowed on both sides and rounded.
- the loose abrasive grains are carried by the gas and jetted onto the work piece, and the exposed portion of the slider is exposed by the loose abrasive grains.
- the exposed portion of the slider is exposed by the loose abrasive grains.
- free abrasive grains having an average grain size of 10 m or less are jetted together with gas onto the surface of the slider for magnetic heads with high precision machining. Become.
- the blending is performed by spraying loose abrasive grains, the blending is performed together with the groove machining or the surface machining.
- the nozzle nozzle have a rectangular cross section as in the fourth invention, or by squeezing both sides to make it round as in the fifth invention, the machining speed distribution in the long side direction of the port Can be made uniform, and by performing machining while moving the workpiece in such a direction in the direction orthogonal to the long side of the injection port, the slider for the magnetic head can be made highly efficient. Can be processed into.
- FIG. 1 is a vertical cross-sectional view of a main part showing a conventional blending process
- FIG. 2 is an external perspective view of a substrate forming a slider according to the first embodiment of the present invention
- FIG. 3 is the same vertical cross-section.
- Fig. 4 is a schematic perspective view showing the processing of this substrate
- Fig. 5 is a plan view of the machined slider
- Fig. 6 is a sectional view taken along line V-V in Fig. 5
- Fig. 7 is an enlarged sectional view of the rail portion
- Fig. 8 is a plan view of another slider.
- Fig. 9 and Fig. 9 are ⁇ i ones in Fig. 8! ! Line sectional view
- Fig. 9 and Fig. 9 are ⁇ i ones in Fig. 8! ! Line sectional view
- Fig. 9 and Fig. 9 are ⁇ i ones in Fig. 8! ! Line sectional view
- Fig. 9 and Fig. 9 are
- Fig. 10 is an enlarged sectional view of the rail part
- Fig. 11 is a plan view of the H-type negative pressure slider
- Figs. 12 and 13 are plan views of a slide with a notch
- Fig. 14 is a plan view of a slider with slanted grooves
- Fig. 15 is a front view of the same
- Fig. 16 is a plan view of a slider in which the edge portion of the groove is curved
- the same front view Fig. 18 is a plan view of a slider with varying groove depth
- Fig. 19 is a sectional view taken along the line ⁇ ⁇ 1 to ⁇ ⁇ in Fig. 18, and
- Fig. 20 is the lateral machining speed of the nozzle.
- Fig. 20 is the lateral machining speed of the nozzle.
- Fig. 21 is a graph showing the machining depth distribution by this nozzle
- Fig. 22 is a graph showing the machining speed distribution of the nozzle with narrowed edges on both sides of the nozzle.
- Fig. 23 is a graph of the same pressure distribution
- Fig. 24 is an external perspective view of a flying head that has been added by the method according to the second embodiment
- Fig. 25 is a mask.
- Fig. 26 is an external perspective view of the flying head
- Fig. 26 is a vertical cross-sectional view of the main part showing the blending process
- Fig. 27 is a plan view of my cross rider
- Fig. 28 is XX VI! ⁇ XXW line sectional view
- Figure 29 is a perspective view of the outside of the micro rider.
- the magnetic head for the hard disk is formed on the part that is known as a slider. It is intended to stabilize the floating characteristics of the slider, and grooves, recesses and protrusions of any shape are formed on the surface of the slider.
- a special mask material is used. By doing so, grooves, recesses, and protrusions with arbitrary shapes are formed.
- high hardness abrasive grains such as SiC, IC, CBN, and diamond powder with an average grain size of 10 / m or less were dried. It is carried by a carrier (gas pressure of 1 to 10ks Z cnf) and jetted onto the base material (10) of the slider. At this time, only the portion to be processed is exposed on the slider (10) in advance by using the mask material (14). Abrasive grains on the exposed surface strike at a high speed, that is, at an ultra-high speed of l O OmZ s ec or more, and the metabolite of the base material (10) is rapidly abraded.
- the speed and surface roughness of the machined surface are controlled by the grain size of the abrasive grains and the dynamic pressure of the carrier gas.
- the processing speed increases regardless of whether the abrasive grain size or the gas dynamic pressure increases.
- the surface property is improved as the particle size becomes smaller and the dynamic pressure decreases. Therefore, by using this phenomenon, the abrasive grain size is first increased, roughing is performed at a high gas pressure, and then the finishing process is performed at a low gas pressure by using abrasive grains with a small grain size. A processed surface having a good surface property can be obtained.
- the groove (11) is pre-machined on the base material (10) and the rails (12) on both sides are left.
- the stepped portion between the groove (11) and the rail (12) is made an inclined surface (13) if necessary.
- a mask (14) is formed on the rail (12) to expose only the portion to be micromachined.
- the nozzle (15) is used to perform the spraying process as shown in FIG.
- the workpiece (10) is made to scan in a predetermined direction.
- the slider is obtained by dividing the substrate (10) at predetermined positions.
- FIGS. 5 to 7 show a slider (16) for a magnetic head processed by such a method, and this slider (16) is Rails (12) are provided on both sides of the surface, and the shoulders of each rail (12) have a TPC (Tr ansver se Pr es re contour) groove
- the groove (17) is a groove for equalizing the flying height of the slider (16) on the inner peripheral side and the outer peripheral side of the recording medium.
- 6 and 7 show a mask (14) for forming these grooves (17).
- FIGs 8 to 10 show another example of the head slider (16).
- This head slider (16) is attached to the TPC groove (17) on both shoulders of the rails (12) on both sides. ) Is provided. That is, as shown in Figs. 8 and 9, on the rail (12), masks (14) are left on both sides of the rail (12), and the machining shown in Fig. 4 is performed. Therefore, a slider (16) having TPC grooves (17) on both shoulders can be obtained. By thus forming the TPC grooves (17) on both shoulders, it is possible to further reduce the difference in the flying height between the inner circumference side and the outer circumference side of the recording medium.
- the slider (16) shown in FIG. 11 forms a connecting part (18) having a surface continuous with the rail (12) so as to cross the groove (11) formed on the rails (l Ra 1 !) On both sides.
- a connecting part having a surface continuous with the rail (12) so as to cross the groove (11) formed on the rails (l Ra 1 !) On both sides.
- the H-type negative pressure slider (16) is formed.
- the slider (16) shown in Fig. 12 is a modification of the slider shown in Fig. 11 and has a notch (19) formed on the air inflow side.
- the position of the connecting part (18) is located slightly downstream, and notches (19) are formed on the inflow side and the outflow side of the atmosphere, respectively.
- the slider (16) shown in Fig. 14 and Fig. 15 has a trapezoidal shape for the middle atmospheric groove (11) formed between the rails (12) on both sides. It has a vertically elongated shape so that the width gradually increases from the side toward the outflow end.
- Figures 16 and 17 show atmospheric ditch (11) is further deformed, and the shape on both sides of the groove (11) that widens from the inflow end to the outflow end is curved.
- the width of the atmospheric groove (11) formed between the rails (12) it is possible to make the width constant and change the depth. That is, as shown in FIGS. 18 and 19, the groove (11) is made shallow on the inflow side and gradually changed so that it becomes deeper on the outflow end side.
- Such processing is obtained by changing the moving rate of the base material (10) with respect to the nozzle (15) shown in Fig. 4 to change the processing rate by the abrasive grains.
- the method of processing the slider (16) according to the present embodiment is such that the fine abrasive grains are conveyed by the dry carrier gas and sprayed onto the base material (10) that constitutes the slider. Therefore, the mask (14) is used to expose only the part to be processed, and the mask (14) is used to form grooves, recesses, and protrusions of any shape.
- the processing speed and the surface property of the processed surface can be controlled by the particle size of loose abrasive grains and the dynamic pressure of carrier gas.
- ⁇ — By controlling the grain size of the abrasive grains and the operation of the carrier gas by ⁇ —, it is possible to perform roughing and finishing, and thereby obtain a machined surface with good surface properties at high speed. It will be possible.
- the injection nozzle (15) suitable for such processing will be described.
- the abrasive is uniformly applied in the width direction of the nozzle (15). It is desirable that the particles be sprayed.
- High-hardness fine abrasive grains (having an average grain size of 10 m or less) are conveyed by high-pressure carrier gas and sprayed onto the workpiece, which is called Bauta'beam etching.
- U-beam etching is very similar to sandblasting, but the abrasive grain size used in sandblasting is 100 m or more, whereas that in powder-beam etching is 10 m or less.
- the controllability of processing also differs significantly. That is, in sandblasting, the abrasive grain flow and the carrier gas flow are essentially independent of each other, and the abrasive grain cannot follow the carrier gas flow. In grinding, the abrasive grains follow the flow of the carrier gas fairly well. Therefore, as shown in Fig. 20, by optimizing the tip shape of the nozzle (15) and controlling the pressure velocity distribution at the nozzle tip of the carrier gas, the machining speed is maximized. The distribution of processing depth can be made uniform.
- the disfiguring shape of its nozzle (22) is a perfect rectangle. From the experimental results, the pressure distribution of the carrier gas and the processing distribution when the abrasive particles are actually conveyed and processed are uniform as shown in the figure.
- Figure 21 shows the distribution of machining depth when the surface of the slider (16) is machined using such a nozzle (15).
- the shape of the opening (22) at the tip of the nozzle (15) is made rectangular, or by narrowing with both edges as shown in Fig. 22, the nozzle (15) is stopped.
- a uniform processing depth distribution can be obtained. Therefore, by using such a nozzle (15) and moving the workpiece (10) relative to the nozzle (15) as shown in Fig. 4, it becomes possible to perform surface machining. The surface roughness, parallelism, uniformity and waviness of the machined surface have been greatly improved.
- Fig. 24 shows a slider for magnetic head (16), which has a sliding surface consisting of rails (12) on both sides, and both ends of the rail (12) are inclined.
- the faces are (26) and (27).
- the inclination angle of one inclined surface (26) is about 1 °
- the inclination angle of the other inclined surface is about 20 °.
- a head (28) is attached to the slider (16) so that winding can be performed through the winding groove (29).
- the lead wire (30) is pulled out from the head tip (27). Then, in such a slider (16), the edge portions on both sides of the rail (12) are processed to form a blend processing surface (31).
- a resist mask (14) with a rubber hardness of about 60 ° is formed, which is a photosensitive polyurethane resin.
- the size of the mask (14) is the same as or slightly smaller than the surface of the rail (12).
- the material of the slider (16) is made of difficult-to-machine material, but ordinary ceramic or ferrite material may be used.
- FIG. Figure 26 shows the jetting direction perpendicular to the surface of the mask (14).
- the nozzle (15) has a rectangular spigot (22) on the tip side, and the mouth width is about 0.05 to 1 mm.
- the length of the nozzle (22) of the nozzle (15) can be set to the optimum length depending on the size of the slider (16), and here the maximum is about 200 mm.
- a loose abrasive grain supply pipe is connected to the nozzle (15), and loose abrasive grains made of SiC with a grain size of about 1 um are passed through this supply pipe at a high pressure of, for example, 2 to lOkgZ crf (16).
- the edges of the rails (12) are blended in this way to form a blended surface (31) composed of curved surfaces. By such a blending process, the groove (11) between the rails (12) can be simultaneously machined. Rails that make up the sliding surface
- the step between the surface of (12) and the groove (11) can be processed in a short time up to about 1 to 100 « ⁇ , and in the case of AlTiC material, the grain size of S i C is about 1 jum. , It is possible to obtain a surface roughness of about 0. Ol ⁇ m. Wear. Moreover, such fine processing can be performed in a short time. In other words, when finely processing the head slider (16), the shape accuracy of the blade processing and groove processing can be finished in the jum order.
- the slider (16) processed by the modified method will be described with reference to FIGS. 27 to 29.
- This slider (16) relates to a slider with a low flying height, and the slider size is about 2 mm in width and length in outline dimensions, and the thickness is 0.
- the rail (12) of this slider has the shape of a wing, as shown in Fig. 27, and one side is curved.
- the small stepped groove (34) formed on the side of the rail (12) by making it curved is shallower than the central atmospheric groove (11) and forms a groove that controls the fluid boundary layer region. I am configuring.
- the above-described blending can be performed even for the microfabrication of the microslider which is levitated by about 0. from the hard disk. That is, the edge portion of the rail (12) is blended to form a blended curved surface (31).
- the surface other than the groove (11) should be resist-processed in advance and the grain size of, for example, 5 mm or more should be used. Spray processing with grains and then rail
- the surface of the rail (12) will be pre-coated with a wing-shaped mask (14).
- the depth of the central groove (11) is about 50 Atm
- the groove (34) at the edge of the rail (12) is finished to 1 zm to several / s.
- the surface roughness of the blending and grooving can be finished to about O. O lxm.
- the slider (16) described above is applicable to composite type and monolithic type heads, but it can also be applied to thin film type sliders. It can also be applied to magneto-optical heads and other pickup heads. That is, the range of application of this processing method is not limited to the above, but can be applied to other wide ranges.
- the method of processing the slider according to the present embodiment is, for example, applying a photosensitive mask (14) of a photosensitive resin having the same shape as or slightly smaller than that of the rail, and approximately 1 m from the work surface perpendicularly or from an arbitrary angle
- a photosensitive mask (14) of a photosensitive resin having the same shape as or slightly smaller than that of the rail, and approximately 1 m from the work surface perpendicularly or from an arbitrary angle
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
A method of machining a slider (16) for a magnetic head used in a hard disk or a floppy disk in which a groove (11) and a recess can be formed in an arbitrary shape by using a masking material (14) and jetting fine abrasive grains carried by a carrier gas against the slider (16), and the edges of the surface of the slider (16) are rounded when necessary by blending-machining with the fine abrasive grains.
Description
明 細 書 Specification
発明の名称 磁気へッ ド用スラィ ダの加工方法 Title of invention Method for processing slider for magnetic head
技術分野 Technical field
本発明は磁気へッ ド川ス ライ ダの加 Ί:方法に係り、 特に記録媒 体と対接される磁気へッ ド用ス ライ ダの表面を所定の形状または 性状に加工する方法入力関する。 背景技術 The present invention relates to a magnetic head river slider processing method, and more particularly to a method input for processing a surface of a magnetic head slider that is in contact with a recording medium into a predetermined shape or property. .. Background technology
ハー ドディスクやフ ッ ビデイ スク等の磁気記録媒休と対接さ れて信号の書込みあるいは読出しを行なう磁気へッ ドを保持する スライ ダの表面には、 上記記錄媒体とのあたりをコ ン ト "ールす る目的で、 溝や突起を形成するようにしている。 従来はこのよう な加工を機械加工によつて行なうようにしていた。 そしてハ ー ド ディスク ドライブやフロ ッ ピディスク ドライブの小型化に伴つて、 ス ライダも小型化しており、 加工精度も次第に高精度が要求され るようになっている。 On the surface of the slider that holds the magnetic head that writes or reads signals in contact with the magnetic recording medium such as a hard disk or a disc, contact the above recording medium. Grooves and protrusions are formed for the purpose of training, and in the past, such processing was performed by machining. And hard disk drive and floppy disk drive Along with the miniaturization, the slider is also miniaturized, and the machining accuracy is gradually required to be high.
さらに上記のような磁気へッ ド用スライ ダにおいては、 その表 面のエツ ジの部分を丸く しておかないとハ ー ドデイ スクゃフ π ッ ビディスクを損傷する恐れがある。 そこで従来は第 1図のように してブレン ド加工を行なうようにしていた。 すなわちへッ ドスラ ィダ (1)を回転円板 )の保持部 (3)に保持するとともに、 回転軸 (4)を 中心として回転させる。 これに対してばね (5)の付勢力によつてパ ッ ド (6)を介してラ ッ ピングシ一 ト(7)を下方からへッ ドスライ ダ (1) の表面に押圧するようにしていた。 Further, in the above-mentioned magnetic head slider, if the edge portion of the surface is not rounded, the hard disk or π ubi disk may be damaged. Therefore, conventionally, blending was performed as shown in Fig. 1. That is, the head slider (1) is held by the holding part (3) of the rotating disk, and is rotated about the rotating shaft (4). On the other hand, the urging force of the spring (5) presses the lapping sheet (7) from below through the pad (6) against the surface of the head slider (1). ..
磁気へッ ド用スライ ダを機械加工によつて製作すると、 加工面 からの深さ方向で; オーダの深さの溝を精度よく形成すること が必要だが、 これは極めて困難である。 また負圧スライ ダを形成 する際のように、 溝を横切るように連結部を形成することは、 機
械加工では極めて困難である。 このためにその代替技術として、 フ ォ ト リ ソグラフィを伴ったィオンリ ミ ング法やプラズマエッチ ング法を利用する試みがなされている。 これらの方法によつて上 記のような困難がク リアされ、 高精度の加工が行われることにな る。 ところが加工速度が極めて遅く、 しかも作業の開始前に真空 排気を行なわなければならず、 これによつてさらに時間を要する 欠点がある。 またこのようなイオンミ リ ング法やプラズマエッチ ング法のための装置は高価であるために、 量産には不適当なもの める o When a slider for a magnetic head is manufactured by machining, it is necessary to precisely form a groove having an order depth in the depth direction from the machined surface, but this is extremely difficult. In addition, it is not possible to form a connecting portion across the groove, as when forming a negative pressure slider. It is extremely difficult to machine. For this reason, attempts have been made to use an ion-imaging method and a plasma etching method with photolithography as an alternative technique. With these methods, the above-mentioned difficulties will be cleared and high-precision machining will be performed. However, the processing speed is extremely slow, and moreover, it is necessary to evacuate before starting the work, and this has the disadvantage that it takes more time. In addition, since the equipment for such ion milling method and plasma etching method is expensive, it is not suitable for mass production.
また磁気へッ ド用スラィ ダの表面を第 1図に示すようなラ ッ ビ ングシ一ト(7)を用いてプレンド加工を行なう方法は、 プ レンドの 寸法精度が悪く、 ラ ッ ピングシー トまたはテープの寿命が短く、 ばらつきがある欠点がある。 さらにはメ イ ンテナンスが大変で、 シ一 トをパッ ド圧で調整すると、 ばらつきが多くなる欠点がある ( またプレン ド曲面を得るのが非常に難しい欠点がある。 発明の開示 In addition, the method in which the surface of the slider for the magnetic head is subjected to the lapping sheet (7) as shown in Fig. 1 is inferior in the dimensional accuracy of the pellet and the lapping sheet or It has the shortcomings of short tape life and unevenness. Furthermore, the maintenance is difficult, and if the sheet is adjusted by the pad pressure, there is a drawback that the variation becomes large ( and it is very difficult to obtain a blended curved surface.
本発明はこのような問題点に鑑みてなされたものであって、 磁 気へッ ド用スラィ ダの表面を高精度にかつ効率的に加工して所定 の形状または性状を付与するための方法を提供することを目的と するものである。 The present invention has been made in view of the above problems, and is a method for processing a surface of a slider for a magnetic head with high precision and efficiency to give a predetermined shape or property. The purpose is to provide
第 1の発明は、 記録媒体と対接される磁気へッ ド用スライダの 表面を所定の形状または性状の加工する方法において、 遊離砥粒 とガスとの固気 2相流を噴射ノ ズルによって前記スラィ ダの表面 に噴射するようにしたものである。 A first invention is a method of processing a surface of a magnetic head slider, which is in contact with a recording medium, to have a predetermined shape or property, in which a solid-gas two-phase flow of loose abrasive grains and a gas is injected by an injection nozzle. The spray is applied to the surface of the slider.
また第 2の発明は、 前記遊離 粒の平均粒径が 以下と し たものである。 In a second aspect of the invention, the average particle size of the free particles is as follows.
また第 3の発明は、 前記遊離砥粒の噴射によって前記スラィ ダ
の表面のェ ッ ジを丸くするブレ ン ド加工を行なうようにしたものA third aspect of the present invention is the injection of the loose abrasive grains to provide the slider. Which has been subjected to a blending process that rounds the edges of the
< 'ある。 <'Yes.
また第 4の発明は、 横長の矩形断面の噴口を有する噴射ノ ズル によつて遊離砥粒とガスとの固気 2相流を噴射するようにしたも のである。 In the fourth invention, a solid-gas two-phase flow of loose abrasive grains and gas is jetted by a jet nozzle having a horizontally long rectangular cross section.
また第 5の発明は、 前記ノ ズルの噴口の矩形断面の両側が絞ら れて丸く したものである。 A fifth aspect of the present invention is that the nozzle nozzle has a rectangular cross section that is narrowed on both sides and rounded.
挺って第 1の発明によると、 遊離砥粒がガスによって搬送され ながら被加工物に噴射されることになり、 ス ライ ダの表而であつ て露出している部分が遊離砥粒によって加工され、 任意形状の溝、 凹部、 突起等が形成され、 あるいはまた噴出している部分の表面 性状を所定の状態にすることが可能になる。 According to the first aspect of the invention, the loose abrasive grains are carried by the gas and jetted onto the work piece, and the exposed portion of the slider is exposed by the loose abrasive grains. As a result, grooves, recesses, protrusions, etc. of arbitrary shapes are formed, or the surface texture of the ejected portion can be brought into a predetermined state.
と く に第 2の発明においては、 平均粒径が 10 m 以下の遊離砥 粒をガスとともに噴射ノズルによって磁気へッ ド用スライ ダの表 面に噴射することによって、 高精度の加工が可能になる。 In particular, in the second aspect of the present invention, free abrasive grains having an average grain size of 10 m or less are jetted together with gas onto the surface of the slider for magnetic heads with high precision machining. Become.
また遊離砥粒の噴射によつてプレン ド加工を行なう第 3の発明 によれば、 溝加工あるいは表面加工の際に一緒にプレ ン ド加工が 行なわれることになる。 Further, according to the third invention in which the blending is performed by spraying loose abrasive grains, the blending is performed together with the groove machining or the surface machining.
また第 4の発明のようにノ ズルの噴口の断面を矩形にし、 ある いはまた第 5の発明のように、 その両側を絞って丸くすることに よって、 喷口の長辺方向の加工速度分布を均一にすることが可能 になり、 このようなノ ズルを上記噴射口の長辺と直交する方向に 被加工物を移動させながら加工を行なうことによって、 磁気へッ ド用スライ ダを高能率に加工できるようになる。 Also, by making the nozzle nozzle have a rectangular cross section as in the fourth invention, or by squeezing both sides to make it round as in the fifth invention, the machining speed distribution in the long side direction of the port Can be made uniform, and by performing machining while moving the workpiece in such a direction in the direction orthogonal to the long side of the injection port, the slider for the magnetic head can be made highly efficient. Can be processed into.
図面の簡単な説明 Brief description of the drawings
. 第 1図は従来のブレン ド加工を示す要部縦断面図、 第 2図は本 発明の第 1の実施例に係るスラィ ダを形成する基板の外観斜視図、 第 3図は同縦断面図、 第 4図はこの基板の加工を示す概略斜視図、
第 5図は加工されたスラィ ダの平面図、 第 6図は第 5図における V〜V線断面図、 第 7図はレールの部分の拡大断面図、 第 8図は 別のスライ ダの平面図、 第 9図は第 8図における \i一!!線断面図、 第 10図はレールの部分の拡大断面図、 第 11図は H型負圧スラィ ダ の平面図、 第 12図および第 13図は切欠きを有するス ライ ダの平面 図、 第 14図は溝を傾斜させたス ライ ダの平面図、 第 15図は同正面 図、 第 16図は溝のェッ ジの部分を曲線状にしたスラィ ダの平面図、 第 1?図は同正面図、 第 18図は溝の深さが変化するスライ ダの平面 図、 第 19図は第 18図における Χ \1〜Χ Ι線断面図、 第 20図は噴口 の横方向の加工速度の分布を示すグラ フ、 第 21図はこのノ ズルに よる加工深さの分布を示すグラフ、 第 22図は噴口の両側のェッ ジ を絞込んだノ ズルの加工速度の分布を示すグラフ、 第 23図は同圧 力分布のグラフ、 第 24図は第 2の実施例に係る方法でプレン ド加 ェしたフ ラ イ ングへッ ドの外観斜視図、 第 25図はマスクを施した フライ ングヘッ ドの外観斜視図、 第 26図はブレンド加工の状態を 示す要部縦断面図、 第 27図はマイ クロスライ ダの平面図、 第 28図 は第 27図における X X VI!〜 X X W線断面図、 第 29図はマイ ク ロ ス ラィダの外観斜視図である。 発明を実施するための最良の形態 FIG. 1 is a vertical cross-sectional view of a main part showing a conventional blending process, FIG. 2 is an external perspective view of a substrate forming a slider according to the first embodiment of the present invention, and FIG. 3 is the same vertical cross-section. Fig. 4 is a schematic perspective view showing the processing of this substrate, Fig. 5 is a plan view of the machined slider, Fig. 6 is a sectional view taken along line V-V in Fig. 5, Fig. 7 is an enlarged sectional view of the rail portion, and Fig. 8 is a plan view of another slider. Fig. 9 and Fig. 9 are \ i ones in Fig. 8! ! Line sectional view, Fig. 10 is an enlarged sectional view of the rail part, Fig. 11 is a plan view of the H-type negative pressure slider, and Figs. 12 and 13 are plan views of a slide with a notch. Fig. 14 is a plan view of a slider with slanted grooves, Fig. 15 is a front view of the same, Fig. 16 is a plan view of a slider in which the edge portion of the groove is curved, and Figs. The same front view, Fig. 18 is a plan view of a slider with varying groove depth, Fig. 19 is a sectional view taken along the line Χ \ 1 to Χ Ι in Fig. 18, and Fig. 20 is the lateral machining speed of the nozzle. Fig. 21 is a graph showing the machining depth distribution by this nozzle, and Fig. 22 is a graph showing the machining speed distribution of the nozzle with narrowed edges on both sides of the nozzle. Fig. 23 is a graph of the same pressure distribution, Fig. 24 is an external perspective view of a flying head that has been added by the method according to the second embodiment, and Fig. 25 is a mask. Fig. 26 is an external perspective view of the flying head, Fig. 26 is a vertical cross-sectional view of the main part showing the blending process, Fig. 27 is a plan view of my cross rider, and Fig. 28 is XX VI! ~ XXW line sectional view, Figure 29 is a perspective view of the outside of the micro rider. BEST MODE FOR CARRYING OUT THE INVENTION
ハー ドデイ スク用磁気へッ ドは、 スライダと証する部品上に形 成される。 ス ライ ダの浮上特性を安定化させる ΰ的で、 ス ライ ダ の表面に溝や任意形状の凹部、 突起等を形成するようにしている , 第 1の実施例においては特殊なマスク材を用いることによって、 任意形状の溝、 凹部、 突起を形成するようにしたものである„ m The magnetic head for the hard disk is formed on the part that is known as a slider. It is intended to stabilize the floating characteristics of the slider, and grooves, recesses and protrusions of any shape are formed on the surface of the slider. In the first embodiment, a special mask material is used. By doing so, grooves, recesses, and protrusions with arbitrary shapes are formed.
2図および第 3図に示すスラィ ダの素材(10)と しては、 アルチッ ク (M 203 · T i C)を初めとする高硬度セラ ミ ックスが適当である。 本加工法においてはこれらの高硬度セラ ミ ッ クスを高速かつ高精
度で加工することを可能にする。 もちろん通常のチタ ン酸力 リ ウ ム等のスラィ ダ材料の加工も可能である。 Is a of Surai da shown in FIGS. 2 and 3 material (10), high hardness Serra mix including the Aruchi' click (M 2 0 3 · T i C) is suitable. In this processing method, these high hardness ceramics are processed at high speed and with high precision. Allows processing in degrees. Of course, it is also possible to process ordinary slider materials such as titanium dioxide.
本加工法においては、 第 4図に示すように、 S i C, I C, C B N, ダイヤモ ン ド粉等の高硬度砥粒でしかも平均粒径が 1 0 / m 以下の ものを、 乾燥したキ ャ リ アガ (ガス圧 1 〜10ks Z cnf ) によって 搬送し、 ス ライ ダの基材(1 0)に噴射するものである。 このときに ス ライ ダ( 10 )上には予めマスク材( 14 )を用いて加工する個所だけ を露出させておく。 露出面に砥粒が高速、 すなわち l O OmZ s ec 以 上の超高速でぶっかり、 基材(1 0)の表而を高速に削っていく。 加 ェ速度および加工面の表面粗度は、 砥粒の粒径やキャ リ アガスの 動圧によつてコ ン ト 口ールされる。 加工速度は、 砥粒の粒径とガ スの動圧のどちらが増えても増加する。 これに対して表面性は、 粒径が小さ くなり、 動圧が下がるほど改善される。 従ってこの現 象を利用し、 初めは砥粒径を大きく し、 ガス圧大で粗加工を行な い、 その後に粒径の小さな砥粒を用い、 低いガス圧で仕上げ加工 を行なう ことにより、 表面性のよい加工面を得ることができる。 In this processing method, as shown in Fig. 4, high hardness abrasive grains such as SiC, IC, CBN, and diamond powder with an average grain size of 10 / m or less were dried. It is carried by a carrier (gas pressure of 1 to 10ks Z cnf) and jetted onto the base material (10) of the slider. At this time, only the portion to be processed is exposed on the slider (10) in advance by using the mask material (14). Abrasive grains on the exposed surface strike at a high speed, that is, at an ultra-high speed of l O OmZ s ec or more, and the metabolite of the base material (10) is rapidly abraded. The speed and surface roughness of the machined surface are controlled by the grain size of the abrasive grains and the dynamic pressure of the carrier gas. The processing speed increases regardless of whether the abrasive grain size or the gas dynamic pressure increases. On the other hand, the surface property is improved as the particle size becomes smaller and the dynamic pressure decreases. Therefore, by using this phenomenon, the abrasive grain size is first increased, roughing is performed at a high gas pressure, and then the finishing process is performed at a low gas pressure by using abrasive grains with a small grain size. A processed surface having a good surface property can be obtained.
具体的な製造プロセスについて説明する。 第 2図に示すように 基材(10)上に予め溝(11)を機械加工して形成するとともに、 その 両側レール(12)を残すようにする。 この場合において溝(1 1 )と レ ール(12)との間の段差の部分を必要であれば傾斜面(13)とするよ うにしている。 そしてレール(12)上にマス ク (14)を形成し、 微細 加工を行なう部分のみを露出させる。 このような状態においてノ ズル(15)によって第 4図に示すように喷射加工を行なう。 このと きに被加工物(10)を所定の方向に走査させるようにする。 そして 微細加工を終わったならば、 基材(10)を所定の位置で分割するこ とによって、 ス ライ ダが得られることになる。 A specific manufacturing process will be described. As shown in FIG. 2, the groove (11) is pre-machined on the base material (10) and the rails (12) on both sides are left. In this case, the stepped portion between the groove (11) and the rail (12) is made an inclined surface (13) if necessary. Then, a mask (14) is formed on the rail (12) to expose only the portion to be micromachined. In this state, the nozzle (15) is used to perform the spraying process as shown in FIG. At this time, the workpiece (10) is made to scan in a predetermined direction. After finishing the fine processing, the slider is obtained by dividing the substrate (10) at predetermined positions.
第 5図〜第 7図はこのような方法によって加工された磁気へッ ド用ス ライ ダ(16)を示すものであつて、 このス ライ ダ(16)はその
表面の両側にレール(12)を備えるとともに、 それぞれのレール (12)の肩の部分には T P C ( Tr ansver se Pr essu re Con t ou r)溝FIGS. 5 to 7 show a slider (16) for a magnetic head processed by such a method, and this slider (16) is Rails (12) are provided on both sides of the surface, and the shoulders of each rail (12) have a TPC (Tr ansver se Pr es re contour) groove
(17)を形成するようにしている。 この溝(17)は、 ス ライ ダ(16)の 浮上量を記録媒体の内周側と外周側で均一化するための溝である。 なお第 6図および第 7図には、 これらの溝(17)を形成するための マスク (14)を図示している。 (17) is formed. The groove (17) is a groove for equalizing the flying height of the slider (16) on the inner peripheral side and the outer peripheral side of the recording medium. 6 and 7 show a mask (14) for forming these grooves (17).
第 8図〜第 10図は別のへッ ドスライダ(16)の例を示すものであ つて、 このへッ ドスラィダ(16)は両側のレール(12)の両肩の部分 にそれぞれ T P C溝(17)を備えている。 すなわち第 8図および第 9図に示すように、 レール(12)上において、 その両側の部分に隙 間を残してマス ク (14)を し、 第 4図に示すような加工を行なう ことによって、 両肩の部分に T P C溝(17)を有するスライ ダ(16) が得られることになる。 このように両肩の部分に T P C溝(17)を 形成することによって、 記録媒体の内周側と外周側との間での浮 上量の差をより少なくすることが可能になる。 Figures 8 to 10 show another example of the head slider (16). This head slider (16) is attached to the TPC groove (17) on both shoulders of the rails (12) on both sides. ) Is provided. That is, as shown in Figs. 8 and 9, on the rail (12), masks (14) are left on both sides of the rail (12), and the machining shown in Fig. 4 is performed. Therefore, a slider (16) having TPC grooves (17) on both shoulders can be obtained. By thus forming the TPC grooves (17) on both shoulders, it is possible to further reduce the difference in the flying height between the inner circumference side and the outer circumference side of the recording medium.
第 11図に示すスラィダ(16)は、 両側のレール(l Ra1!に形成され ている溝(11)を横切るようにレール(12)と連続する表面を有する 連結部(18)を形成するようにしたものである。 このような連結部The slider (16) shown in FIG. 11 forms a connecting part (18) having a surface continuous with the rail (12) so as to cross the groove (11) formed on the rails (l Ra 1 !) On both sides. Such a connecting part
(18)を形成することによって、 H型負圧スラィダ(16)が形成され ることになる。 第 12図に示すス ライダ(16)は、 第 11図に示すス ラ ィダに変形を加えたものであって、 空気の流入側に切欠き(19)を 形成するようにしている。 また第 13図に示すスラィ ダは連結部 (18)の位置をやや下流側にするとともに、 大気の流入側と流出側 にそれぞれ切欠き(19)を形成するようにしている。 By forming (18), the H-type negative pressure slider (16) is formed. The slider (16) shown in Fig. 12 is a modification of the slider shown in Fig. 11 and has a notch (19) formed on the air inflow side. In the slider shown in Fig. 13, the position of the connecting part (18) is located slightly downstream, and notches (19) are formed on the inflow side and the outflow side of the atmosphere, respectively.
第 14図および第 15図に示すス ライ ダ(16)は、 両側のレール(12) 間に形成される中間の大気溝(11)の形状を台形型にし、 この溝 (11)を流入端側から流出端に向けて次第にその幅が広くなるよう に縦長の合形状の形状にしている。 第 16図および第 17図は大気溝
(11)をさ らに変形させたものであって、 流入端から流出端に向け て広がる溝(11 )の両側の形状を曲面形状としたものである。 The slider (16) shown in Fig. 14 and Fig. 15 has a trapezoidal shape for the middle atmospheric groove (11) formed between the rails (12) on both sides. It has a vertically elongated shape so that the width gradually increases from the side toward the outflow end. Figures 16 and 17 show atmospheric ditch (11) is further deformed, and the shape on both sides of the groove (11) that widens from the inflow end to the outflow end is curved.
レール (12)間に形成される大気溝(11)の形状については、 その 幅を一定にして深さを変えることも可能である。 すなわち第 18図 および第 19図に示すように、 溝(11)を流入側で浅くするとともに、 流出端側で深く なるようにその深さを次第に変化させるようにし ている。 このような加工は、 第 4図に示すノ ズル(15)に対する基 材(10)の移動速度を変化させることによつて砥粒による加工の割 合を変化させて得られるものである。 Regarding the shape of the atmospheric groove (11) formed between the rails (12), it is possible to make the width constant and change the depth. That is, as shown in FIGS. 18 and 19, the groove (11) is made shallow on the inflow side and gradually changed so that it becomes deeper on the outflow end side. Such processing is obtained by changing the moving rate of the base material (10) with respect to the nozzle (15) shown in Fig. 4 to change the processing rate by the abrasive grains.
このように本実施例に係るスライ ダ(16)の加工方法は、 微細砥 粒を乾燥したキャ リ アガスによって搬送しながらスラ イ ダを構成 する基材(10)に噴射するようにしたものであって、 マスク (14)を 用いて加工する個所だけを露出させるようにしており、 このマス ク (14)によって任意形状の溝、 凹部、 突起を形成するようにして いる。 このような方法は、 遊離砥粒の粒径やキャ リ アガスの動圧 によつて加工速度や加工面の表面性をコ ン ト π —ルできる。 砥粒 の粒径とキヤ リ ァガスの動作をコ ン ト π —ルすることによって、 荒加工と仕上げ加工とを行なうことが可能になり、 これによつて 高速で表面性のよい加工面を得ることが可能になる。 As described above, the method of processing the slider (16) according to the present embodiment is such that the fine abrasive grains are conveyed by the dry carrier gas and sprayed onto the base material (10) that constitutes the slider. Therefore, the mask (14) is used to expose only the part to be processed, and the mask (14) is used to form grooves, recesses, and protrusions of any shape. In such a method, the processing speed and the surface property of the processed surface can be controlled by the particle size of loose abrasive grains and the dynamic pressure of carrier gas. By controlling the grain size of the abrasive grains and the operation of the carrier gas by π —, it is possible to perform roughing and finishing, and thereby obtain a machined surface with good surface properties at high speed. It will be possible.
またこのような加工法によれば、 従来の機械加工では困難な負 圧スライ ダ (第 11図〜第 13図参照) や T P C溝(17)を有するスラ ィダ(16)を得ることができる。 またマスク材(14)を用いることに よって、 任意形状の溝、 凹部、 突起を形成することが可能になる < これらの外形は任意形状とすることが可能であって、 最適設計さ れたスライ ダを実際に加工成形できるようになる。 またマスク材 Moreover, according to such a processing method, it is possible to obtain a negative pressure slider (see FIGS. 11 to 13) and a slider (16) having a TPC groove (17), which are difficult to perform by conventional machining. .. Also, by using the mask material (14), it is possible to form grooves, recesses, and protrusions of any shape. <These external shapes can be formed in any shape, and an optimally designed slider is used. You will be able to actually process and mold the da. Also mask material
(14)を用いることによって、 従来の機械加工に比べ、 高精度で加 ェができるようになる。 さ らにはイ オ ン ミ リ ング法に比べ加工速 度が向上する。 また加工の開始前に真空排気等の準備段階を要す
ることがなく、 イオンミ リ ング法に比べ、 加工の全ェ稃の時問が 大幅に短縮され、 量産性に優れることになる。 しかも装^が比較 的簡単であり、 量産機としての価格もィ 才ンミ リ ング機に比べて 安くすることができる。 By using (14), it becomes possible to perform processing with higher accuracy compared to conventional machining. Moreover, the processing speed is improved compared to the ion milling method. In addition, preparation steps such as evacuation are required before starting processing. In comparison with the ion milling method, the time required for all processing is significantly shortened, and mass productivity is excellent. Moreover, the equipment is relatively simple to install, and the price as a mass-produced machine can be lower than that of an embedded machine.
つぎにこのような加工に用いて好適な噴射ノ ズル(1 5)について 説明する。 第 4図に示すように、 ノ ズル(15)に対して基材(10)を 相対的に移動させながら砥粒加工を行なう場合には、 このノ ズル (15)の幅方向において均一に砥粒が噴射されることが望ま しい。 高圧のキヤ リ ァガスによつて高硬度の微細砥粒(平均粒径が 1 0 m 以下) を搬送させ、 被加工物に吹付ける方法をと く にバウタ'ビー ムエッチングと称している。 Next, the injection nozzle (15) suitable for such processing will be described. As shown in Fig. 4, when performing abrasive grain processing while moving the base material (10) relative to the nozzle (15), the abrasive is uniformly applied in the width direction of the nozzle (15). It is desirable that the particles be sprayed. High-hardness fine abrasive grains (having an average grain size of 10 m or less) are conveyed by high-pressure carrier gas and sprayed onto the workpiece, which is called Bauta'beam etching.
ノ、。ウダビームエッチングはサンドブラス ト加工によく似ている が、 サン ドブラス ト加工で用いる砥粒径が 100 m 以上であるの に対して、 パウダビームエッチングではその粒径が 10〃m 以下で あり、 加工の制御性においても著しく異なる。 すなわちサ ン ドブ ラス ト加工においては、 砥粒の流れとキャ リ ァガスの流れとは本 質的に独立であって、 砥粒はキャ リアガス流に追随し得ないのに 対して、 パウダビームエツチ ングにおいては、 砥粒はキ ヤ リアガ スの流れにかなりよく追随する。 従って第 20図に示すように、 ノ ズル(15)の先端形状を最適化して、 キャ リ アガスのノ ズル先端で の圧力速度分布をコ ン ト口 一ルすることにより、 加工速度を最大 にし、 加工深さの分布を均一化することができる。 No ,. U-beam etching is very similar to sandblasting, but the abrasive grain size used in sandblasting is 100 m or more, whereas that in powder-beam etching is 10 m or less. The controllability of processing also differs significantly. That is, in sandblasting, the abrasive grain flow and the carrier gas flow are essentially independent of each other, and the abrasive grain cannot follow the carrier gas flow. In grinding, the abrasive grains follow the flow of the carrier gas fairly well. Therefore, as shown in Fig. 20, by optimizing the tip shape of the nozzle (15) and controlling the pressure velocity distribution at the nozzle tip of the carrier gas, the machining speed is maximized. The distribution of processing depth can be made uniform.
第 20図に示すノズルにおいては、 その噴口(22)の断而形状を完 全な矩形としている。 実験結果から、 キャ リ ァガスの圧力分布お よび実際に砥粒を搬送して加工したときの加工分布が図のように 均一化されている。 第 21図はこ C ようなノズル(15)を用いてスラ ィダ(16)の表面を加工したときの加工深さの分布を示している。 第 20図の加工速度のグラフおよび第 21図の加工深さの分布図力、
ら明らかなように、 ノ ズル(15)の噴口(22)の両端のェッ ジの部分 で、 圧力分布および加工深さ分布ともに局部的に若干の増加が見 られた。 これは噴口(22)の壁との間の粘性抵抗によるものであつ て、 ガスが壁を伝わって流れようとし、 エツ ジの部分でキャ リ ア ガスの流量が増加しているためと推定される。 このような両端に おける分布の不均一性を改善するために、 第 22図に示すように噴 口 (23)のェッ ジの部分を絞込んだ形状としている。 このような形 状とすることによって、 第 23図に示すように、 噴口(23)の長辺方 向の位置に対する圧力分布はほぼ均一化し、 最適なノ ズル(15)が 得られるようになった。 In the nozzle shown in Fig. 20, the disfiguring shape of its nozzle (22) is a perfect rectangle. From the experimental results, the pressure distribution of the carrier gas and the processing distribution when the abrasive particles are actually conveyed and processed are uniform as shown in the figure. Figure 21 shows the distribution of machining depth when the surface of the slider (16) is machined using such a nozzle (15). The machining speed graph of Fig. 20 and the machining depth distribution map of Fig. 21, As is clear from the above, a slight local increase in both pressure distribution and working depth distribution was observed at the edges of the edges of the nozzle (15) nozzle (22). This is due to the viscous resistance between the nozzle and the wall of the nozzle (22), and it is presumed that the gas is trying to flow through the wall and the flow rate of the carrier gas increases at the edge. It In order to improve the non-uniformity of the distribution at both ends, as shown in Fig. 22, the shape of the edge of the nozzle (23) is narrowed. With such a shape, as shown in Fig. 23, the pressure distribution with respect to the position in the long side direction of the injection port (23) becomes almost uniform, and the optimum nozzle (15) can be obtained. It was
このようにノ ズル(15)の先端部における開口部(22)の形状を矩 形しに、 あるいはまた第 22図のように両エツジで絞込むことによ つて、 ノ ズル(15)を静止した状態で加工した場合に、 均一な加工 深さ分布が得られるようになつた。 従ってこのようなノ ズル(15) を用いて被加工物(10)を第 4図に示すようにノ ズル(15)に対して 相対的に移動させることによって、 面加工を行なうことが可能に なり、 加工面の表面粗度、 平行度、 均一性、 うねり等が大幅に改 善された。 In this way, the shape of the opening (22) at the tip of the nozzle (15) is made rectangular, or by narrowing with both edges as shown in Fig. 22, the nozzle (15) is stopped. When processed in this state, a uniform processing depth distribution can be obtained. Therefore, by using such a nozzle (15) and moving the workpiece (10) relative to the nozzle (15) as shown in Fig. 4, it becomes possible to perform surface machining. The surface roughness, parallelism, uniformity and waviness of the machined surface have been greatly improved.
つぎに第 2の実施例のスライ ダの加工方法を説明する。 この方 法はスライダ(16)の表面のェッ ジの部分を砥粒加工によつてブレ ンド仕上げを行なう ものであつて、 これによつてェッ ジの部分を 丸く して曲面を形成するものである。 第 24図は磁気へッ ド用スラ ィ ダ(16)を示すものであって、 その両側にはレール(12)から成る スライ ド面が形成されており、 レール(12)の両端はそれぞれ傾斜 面(26) , (27) になっている。 こ こで一方の傾斜面(26)はその傾斜 角が約 1 ° 、 また他方の傾斜面はその傾斜角が約 20° になってい る。 またスライ ダ(16)にはへッ ドチップ(28)が取付けられており、 巻線溝(29)を通して巻線が行なわれるようになつている。 そして
リ一ド線(30)がへッ ドチップ(27)から引出されている。 そしてこ のようなスラィ ダ(16)において、 そのレール(12)の両側のェッ ジ の部分を加工してブレンド加工面(31)を形成するようにしている。 Next, a method of processing the slider of the second embodiment will be described. In this method, the edge of the edge of the slider (16) is finished by abrasive graining, and the edge is rounded to form a curved surface. Is. Fig. 24 shows a slider for magnetic head (16), which has a sliding surface consisting of rails (12) on both sides, and both ends of the rail (12) are inclined. The faces are (26) and (27). Here, the inclination angle of one inclined surface (26) is about 1 °, and the inclination angle of the other inclined surface is about 20 °. A head (28) is attached to the slider (16) so that winding can be performed through the winding groove (29). And The lead wire (30) is pulled out from the head tip (27). Then, in such a slider (16), the edge portions on both sides of the rail (12) are processed to form a blend processing surface (31).
プレンド加工を行なう場合には第 25図に示すように、 レール When performing blending, as shown in Fig. 25,
(12)の表面から傾斜面(26), (27) の表面にかけて感光性ポリ ウレ タ ン樹脂であってゴム硬度が約 60° 程度のレジス トマス ク (1 4)を 形成する。 この場合にマスク (14)の大きさはレール(12)の表面と 同一かやや小さな寸法とすることが望ましい。 こ こではスライ ダ (16)の材料として難削材のアルチッ クを使用したが、 通常のセ ラ ミ ックゃフヱライ ト材でもよい。 From the surface of (12) to the surfaces of inclined surfaces (26) and (27), a resist mask (14) with a rubber hardness of about 60 ° is formed, which is a photosensitive polyurethane resin. In this case, it is desirable that the size of the mask (14) is the same as or slightly smaller than the surface of the rail (12). Here, the material of the slider (16) is made of difficult-to-machine material, but ordinary ceramic or ferrite material may be used.
マスク (14)を形成したならば、 微細遊離砥粒を含んだ固気 2相 流を第 26図に示すように、 レジス トマスク (14)に対して垂直に、 または任意の角度で噴射させる。 第 26図は噴射方向がマスク (14) の表面に対して垂直な状態を示している。 またノ ズル(15)はその 先端側に矩形の喷ロ(22)を備えており、 その口幅は 0. 05〜 1 mm程 度の値になっている。 なおノ ズル(15)の噴口(22)の長さはス ラ イ ダ(16)の大きさにより最適な長さとすることができ、 こ こでは最 大 200mm程度までとしている。 After the mask (14) is formed, a solid-gas two-phase flow containing fine loose abrasive grains is jetted perpendicularly to the resist mask (14) or at an arbitrary angle, as shown in FIG. Figure 26 shows the jetting direction perpendicular to the surface of the mask (14). The nozzle (15) has a rectangular spigot (22) on the tip side, and the mouth width is about 0.05 to 1 mm. The length of the nozzle (22) of the nozzle (15) can be set to the optimum length depending on the size of the slider (16), and here the maximum is about 200 mm.
ノ ズル(15)には遊離砥粒供給管が接続されており、 この供給管 を通して粒径が 1 u m 程度の S i C から成る遊離砥粒を例えば 2〜 lOkgZ crfの高圧でスライダ(16)の表面に噴射するようにしており、 このようにしてレール(12)の両側のェッジの部分をブレンド加工 し、 曲面から成るプレンド加工面(31)を形成するようにしている。 このようなプレン ド加工によって、 レール(12)間の溝(1 1 )の溝 加工も同時に行なうことができる。 スライ ド面を構成するレール A loose abrasive grain supply pipe is connected to the nozzle (15), and loose abrasive grains made of SiC with a grain size of about 1 um are passed through this supply pipe at a high pressure of, for example, 2 to lOkgZ crf (16). The edges of the rails (12) are blended in this way to form a blended surface (31) composed of curved surfaces. By such a blending process, the groove (11) between the rails (12) can be simultaneously machined. Rails that make up the sliding surface
(12)の表面と溝(11)との間の段差を 1〜100 « πι 程度まで短時間 で溝加工することができ、 アルチック材の場合には 1 ju m 程度の 粒径の S i C を使用すれば 0. Ol ^ m 程度の表面粗度を得ることがで
きる。 しかもこのような微細加工を短時間で行なう ことができる。 すなわちへッ ドスライ ダ(16)を微細加工する場合にブレ ン ド加ェ と溝加工の形状精度も ju m オーダで仕上げることが可能になる。 つぎに変形例の方法によつて加工されるスライ ダ(16)を第 27図 〜第 29図によって説明する。 このス ライ ダ(1 6)はフ ラ イ ング高さ が低いスラィ ダに関するものであって、 スライ ダサイズは外形寸 法でその幅および長さが 2 mm程度であって、 厚さが 0. 5mm程度の 値を有し、 非常に小さ くかつ軽量の寸法を有するものである。 ま たこのスラィ ダはレール(12)が第 27図に示すように翼の形状を冇 しており、 その一側部が曲面になっている。 そしてレール(12)を 曲面にしたことによってその側部に生じる小さな段差の溝(34)は、 中央の大気溝(11)よりも浅くなつており、 流体の境界層領域を制 御する溝を構成している。 The step between the surface of (12) and the groove (11) can be processed in a short time up to about 1 to 100 «πι, and in the case of AlTiC material, the grain size of S i C is about 1 jum. , It is possible to obtain a surface roughness of about 0. Ol ^ m. Wear. Moreover, such fine processing can be performed in a short time. In other words, when finely processing the head slider (16), the shape accuracy of the blade processing and groove processing can be finished in the jum order. Next, the slider (16) processed by the modified method will be described with reference to FIGS. 27 to 29. This slider (16) relates to a slider with a low flying height, and the slider size is about 2 mm in width and length in outline dimensions, and the thickness is 0. It has a value of about 5 mm, and has very small and lightweight dimensions. In addition, the rail (12) of this slider has the shape of a wing, as shown in Fig. 27, and one side is curved. The small stepped groove (34) formed on the side of the rail (12) by making it curved is shallower than the central atmospheric groove (11) and forms a groove that controls the fluid boundary layer region. I am configuring.
このようにハー ドディスクから 0. 程度浮上させるマイ ク ロスライダの微細加工にも、 上述のブレン ド加工を行なう ことが できる。 すなわちレール(12)のェッ ジの部分はブレン ド加工され て曲面から成るプレン ド加工面(31)を形成するようにしている。 In this way, the above-described blending can be performed even for the microfabrication of the microslider which is levitated by about 0. from the hard disk. That is, the edge portion of the rail (12) is blended to form a blended curved surface (31).
プレンド加工の方法は上述の場合と同様であるが、 中央の溝 The method of blending is the same as above, but with the center groove
(11)を前以つて加工する場合には、 あまり表面性を必要としない ときは予め溝(11)以外の面をレジス ト処理しておき、 粒径の大き な例えば 5 〃m 以上の砥粒によつて噴射加工し、 その後のレールWhen processing (11) in advance, if the surface property is not so required, the surface other than the groove (11) should be resist-processed in advance and the grain size of, for example, 5 mm or more should be used. Spray processing with grains and then rail
(12)のェッジの部分のブレンド加工と浅い溝(34)の加工とを同時 に行なうことができる。 なおこの場合にはレール(12)の表面に予 め翼型のマスク (14)を施しておく ことになる。 この場合において 中央の溝(11)の深さは 50 At m 程度であって、 レール(12)のエッ ジ の部分の溝(34)は 1 z m 〜数/ 程度に仕上げることになる。 そ してプレンド加工および溝加工の表面粗さも O. O l x m 程度に仕上 げることができる。
なお上述のスラィダ(16)はコ ンポジッ ト型、 モノ リ シッ ク型の へッ ドに対応するものであるが、 薄膜へッ ドのスラィ ダにも適用 可能である。 また光磁気へッ ドやその他のピッ クアップへッ ドに も適用可能である。 すなわちこの加工法の応用範囲は、 上記のも のに限らず、 その他の広い範囲に適用可能である。 It is possible to simultaneously perform blending processing of the wedge portion of (12) and processing of the shallow groove (34). In this case, the surface of the rail (12) will be pre-coated with a wing-shaped mask (14). In this case, the depth of the central groove (11) is about 50 Atm, and the groove (34) at the edge of the rail (12) is finished to 1 zm to several / s. Also, the surface roughness of the blending and grooving can be finished to about O. O lxm. The slider (16) described above is applicable to composite type and monolithic type heads, but it can also be applied to thin film type sliders. It can also be applied to magneto-optical heads and other pickup heads. That is, the range of application of this processing method is not limited to the above, but can be applied to other wide ranges.
このように本実施例に係るスラィダの加工方法は、 例えばレー ルと同一あるいはやや小さな形状の感光性樹脂のレビス トマス ク (14)を施し、 被加工面に垂直または任意の角度から 1 m 程度の 粒径の微細砥粒を高圧で噴射させることによって、 プレンド加工 と溝加工や穴加工等を同時に行なうようにしたものである。 従つ て従来技術にはない表面仕上げを行なうことができるとともに、 加工時間の短縮化を図ることが可能になる。
As described above, the method of processing the slider according to the present embodiment is, for example, applying a photosensitive mask (14) of a photosensitive resin having the same shape as or slightly smaller than that of the rail, and approximately 1 m from the work surface perpendicularly or from an arbitrary angle By spraying fine abrasive grains with the same grain size at high pressure, blending, grooving, and hole machining are performed simultaneously. Therefore, it is possible to perform a surface finish that is not possible with conventional techniques and to shorten the processing time.
Claims
1. 記録媒体と対接される磁気へッ ド用スラィ ダの表而を所定の 形状または性状に加工する方法において、 遊離砥粒とガスとの 固気 2相流を噴射ノ ズルによつて前記スラィ ダの表面に噴射す るようにしたことを特徴とする磁気へッ ド用スライ ダの加工方 法。 1. In a method of processing a magnetic head slider, which is in contact with a recording medium, into a predetermined shape or property, a solid-gas two-phase flow of loose abrasive grains and gas is sprayed by a spray nozzle. A method for processing a slider for a magnetic head, characterized in that the slider is sprayed onto the surface of the slider.
2. 前記遊離砥粒の平均粒径が lO x m 以下であることを特徴とす る請求項第 1項に記載の磁気へッ ド用スライ ダの加工方法。 2. The method for processing a slider for a magnetic head according to claim 1, wherein the average particle diameter of the loose abrasive particles is 10 or less.
3. 前記遊離砥粒の喷射によって前記スラィ ダの表面のェッ ジを 丸くするブレン ド加工を行なうようにしたことを特徴とする請 求項第 1項に記載の磁気へッ ド用スライ ダの加工方法。 3. The slider for the magnetic head according to claim 1, wherein a blending process of rounding the edge of the surface of the slider is performed by the shot of the loose abrasive grains. Processing method.
4. 横長の矩形断面の噴口を有する噴射ノ ズルによって遊離砥粒 とガスとの固気 2相流を噴射するようにしたこ とを特徴とする 請求項第 1項に記載の磁気へッ ド用スライ ダの加工方法。 4. The magnetic head according to claim 1, characterized in that a solid-gas two-phase flow of free abrasive grains and gas is injected by an injection nozzle having a horizontally long rectangular cross section. For processing slides for automobiles.
5. 前記ノ ズルの噴口の矩形断面の両側から絞られて丸く なつて いることを特徴とする請求項第 4項に記載の磁気へッ ド用スラ ィダの加工方法。
5. The method of processing a magnetic head slider according to claim 4, wherein the nozzle nozzle has a rectangular cross section which is narrowed from both sides and rounded.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1/283640 | 1989-10-30 | ||
JP1283640A JP2940023B2 (en) | 1989-10-30 | 1989-10-30 | Processing method using loose abrasive |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991006397A1 true WO1991006397A1 (en) | 1991-05-16 |
Family
ID=17668140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1990/001390 WO1991006397A1 (en) | 1989-10-30 | 1990-10-30 | Method of machining slider for magnetic head |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2940023B2 (en) |
KR (1) | KR100275055B1 (en) |
GB (1) | GB2245203B (en) |
WO (1) | WO1991006397A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5625513A (en) * | 1994-11-14 | 1997-04-29 | Nec Corporation | Floating head slider having uniform spacing from recording medium surface |
US5774304A (en) * | 1996-01-16 | 1998-06-30 | Seagate Technology, Inc. | Disc head slider having center rail with asymmetric edge steps |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0773425A (en) * | 1993-08-31 | 1995-03-17 | Sony Corp | Production of floating magnetic head device |
US5442850A (en) * | 1993-11-01 | 1995-08-22 | International Business Machines Corporation | Magnetic head slider process |
JP2790048B2 (en) * | 1994-08-30 | 1998-08-27 | 日本電気株式会社 | Flying surface processing method for magnetic head slider |
JP3086784B2 (en) * | 1996-08-19 | 2000-09-11 | 株式会社不二製作所 | Blasting method and apparatus |
US6405426B1 (en) | 1998-01-05 | 2002-06-18 | Alps Electric Co., Ltd. | Method of manufacturing a stepped magnetic head slider |
KR100798904B1 (en) * | 2006-10-23 | 2008-01-29 | 백우인 | Disposable syringe |
KR100926457B1 (en) * | 2009-07-07 | 2009-11-13 | (주)레프코리아 | A street light advanced ability for emittingthermal energy |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542110A (en) * | 1977-06-08 | 1979-01-09 | Hitachi Ltd | Production of floating type magnetic head |
JPS59132416A (en) * | 1982-11-26 | 1984-07-30 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | Magnetic head slider assembly |
JPS6076961A (en) * | 1983-09-30 | 1985-05-01 | Sony Corp | Working method of solid material |
JPS61240427A (en) * | 1985-04-17 | 1986-10-25 | Seiko Epson Corp | Magnetic head |
JPS6222066U (en) * | 1985-07-25 | 1987-02-10 | ||
JPS6229253U (en) * | 1985-07-31 | 1987-02-21 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56132416A (en) * | 1980-03-19 | 1981-10-16 | Toyota Motor Corp | Device for disposing of exhaust gas of diesel engine |
JPS6274572A (en) * | 1985-09-27 | 1987-04-06 | Hitachi Metals Ltd | Method of chamfering magnetic head |
-
1989
- 1989-10-30 JP JP1283640A patent/JP2940023B2/en not_active Expired - Fee Related
-
1990
- 1990-10-30 KR KR1019900017406A patent/KR100275055B1/en not_active IP Right Cessation
- 1990-10-30 WO PCT/JP1990/001390 patent/WO1991006397A1/en unknown
-
1991
- 1991-06-13 GB GB9112704A patent/GB2245203B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542110A (en) * | 1977-06-08 | 1979-01-09 | Hitachi Ltd | Production of floating type magnetic head |
JPS59132416A (en) * | 1982-11-26 | 1984-07-30 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | Magnetic head slider assembly |
JPS6076961A (en) * | 1983-09-30 | 1985-05-01 | Sony Corp | Working method of solid material |
JPS61240427A (en) * | 1985-04-17 | 1986-10-25 | Seiko Epson Corp | Magnetic head |
JPS6222066U (en) * | 1985-07-25 | 1987-02-10 | ||
JPS6229253U (en) * | 1985-07-31 | 1987-02-21 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5625513A (en) * | 1994-11-14 | 1997-04-29 | Nec Corporation | Floating head slider having uniform spacing from recording medium surface |
US5774304A (en) * | 1996-01-16 | 1998-06-30 | Seagate Technology, Inc. | Disc head slider having center rail with asymmetric edge steps |
Also Published As
Publication number | Publication date |
---|---|
JP2940023B2 (en) | 1999-08-25 |
GB2245203B (en) | 1993-08-18 |
JPH03149184A (en) | 1991-06-25 |
GB2245203A (en) | 1992-01-02 |
KR910008655A (en) | 1991-05-31 |
GB9112704D0 (en) | 1991-07-31 |
KR100275055B1 (en) | 2000-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7275311B2 (en) | Apparatus and system for precise lapping of recessed and protruding elements in a workpiece | |
US5028242A (en) | Lapping member and lapping tape | |
WO1991006397A1 (en) | Method of machining slider for magnetic head | |
CN110387213B (en) | Method for manufacturing soft elastic abrasive, cutting tool and method for processing die | |
JP2024012429A (en) | Chamfering device with blast unit and chamfering method | |
KR100278138B1 (en) | Magnetic Head and Manufacturing Method of Magnetic Head | |
US5156704A (en) | Method for fabricating magnetic head air bearing sliders | |
JPH0773425A (en) | Production of floating magnetic head device | |
US5816506A (en) | Nozzle and nozzle processing method | |
JPH02134727A (en) | Production of magnetic disk | |
JPH10134317A (en) | Substrate for thin-film magnetic head and its production | |
JP2002184730A (en) | Semiconductor device processing hard foamed resin grooved pad and pad groove cutting tool | |
JPH05162077A (en) | Powder beam deposition and etching method and slider for record regeneration head worked by this method | |
JPH0423283A (en) | Slider for floating type magnetic head | |
JP2967311B2 (en) | Polishing tape | |
JPH043378A (en) | Slider face working method for floating head slider | |
US20020132571A1 (en) | Method of manufacturing magnetic head | |
JPH04259971A (en) | Surface working method for slider for head | |
JPH02205401A (en) | Working method for fine groove | |
EP0617413A2 (en) | Magnetic head sliders and a process for producing the same | |
CN116900955A (en) | Grinding wheel surface dressing device and dressing method thereof | |
JPH05189736A (en) | Magnetic disk substrate and magnetic disk formed by using the same and production thereof | |
JPS6322949B2 (en) | ||
JPH04201071A (en) | Polishing jig and method for magnetic head slider | |
JPS62297069A (en) | Polishing grindstone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): GB US |