WO1991005332A1 - Procede et dispositif de production d'ondes de choc induites par laser - Google Patents
Procede et dispositif de production d'ondes de choc induites par laser Download PDFInfo
- Publication number
- WO1991005332A1 WO1991005332A1 PCT/DE1990/000771 DE9000771W WO9105332A1 WO 1991005332 A1 WO1991005332 A1 WO 1991005332A1 DE 9000771 W DE9000771 W DE 9000771W WO 9105332 A1 WO9105332 A1 WO 9105332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- pulse
- optical
- fibers
- laser
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K15/00—Acoustics not otherwise provided for
- G10K15/04—Sound-producing devices
- G10K15/046—Sound-producing devices using optical excitation, e.g. laser bundle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B18/26—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00137—Details of operation mode
- A61B2017/00154—Details of operation mode pulsed
- A61B2017/00172—Pulse trains, bursts, intermittent continuous operation
- A61B2017/00176—Two pulses, e.g. second pulse having an effect different from the first one
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B2017/22005—Effects, e.g. on tissue
- A61B2017/22007—Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
- A61B2017/22008—Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted
Definitions
- the invention relates to a method in the preamble
- Light guide systems are from beson their interest in creating an optical breakthrough at the end of these light guide systems, which in turn acts as a source for secondary shock waves that can be used, for example, to erode and destroy material surfaces, membranes or concretions.
- shock waves generated in this way are used to crush the concretions of the kidneys, bladders, galls, pakreas and saliva stones.
- focusing optics 1, according to FIG. 1 are provided, or materials are introduced into the optical beam path that have the lowest possible breakthrough threshold, be it in form of solid surfaces, such as in the case of the so-called optoacoustic transducer 2 - according to FIG. 2 - or in the form of small suspended particles 4 in the liquid - according to FIG. 3 Particles are generated and can only be secondary to the Target structure work. If additional focusing auxiliary measures, such as distal optics 1 or 5 - according to FIG.
- the radiation can also be focused on the target structure to be destroyed and the breakthrough can be achieved directly on the surface.
- the optical breakthrough can only be achieved if the energy density (J / cm 2 ) is high enough, ie the fibers are sufficiently thin.
- the invention is based on the object of specifying a method and a device for generating laser-induced shock waves in which the conversion efficiency is increased. This object is achieved with the characterizing features of claim 1.
- the invention is based, among other things, on the knowledge that the damage thresholds of optical light guide systems not only have an integral upper limit power density both on the surface and in volume, but that the damage threshold is both wavelength and time-dependent.
- the energy for generating the optical breakthrough is transmitted in the form of two or more successive pulses through the optical waveguide, the time offset of the starting points of the individual pulses being determined by the desired steepness of the shock wave front.
- the method is used to transmit extremely high light intensities, which generate shock waves by means of an optical breakthrough in order to crush body concrements.
- the destruction threshold of the optical light guide systems is not exceeded.
- the refractive index of the target structure changes and the coupling of subsequent pulses improves.
- a subsequent pulse for example the second pulse
- forms in a different wavelength range preferably the first harmonic of the first pulse.
- the radiation of a pulsed simultaneous frequency-doubled Nd: YAG laser with Q-switching is used.
- the refractive index of the target structure changes when a short-wave guide pulse is used using non-linear optical effects. The resulting increase in Absorption improves the coupling of subsequent pulses, since the threshold for the optical breakthrough of the subsequent pulse or pulses has been significantly reduced.
- the first pulse with the higher photon energy ignites a plasma at the target structure, which is "pumped" as a good absorber with the subsequent pulses.
- the resulting greater energy content of the plasma in turn leads to an improvement in the efficiency of the conversion of laser energy into shock wave energy.
- a preferred embodiment of a device for carrying out the method according to the invention has a multi-fiber catheter, which transmits the frequency-multiplied pulse as a guide pulse over a part of the fibers and transmits the fundamental wavelength through the remaining fibers with a time delay, or in which a double or multiple pulse is passed over each fiber becomes.
- Another inexpensive embodiment of the multifiber catheter includes a central channel, for either an additional large diameter fiber for additive large single pulses, or an additional fiber for the guiding pulse, or a dormina basket, or a flexible endoscope, or for adding a liquid to reduce the Breakthrough threshold, or for flushing or suction.
- a device for performing the method according to the invention enables an increase in effectiveness in the generation of shock waves.
- shock waves For the laser-induced generation of shock waves, extremely high light intensities are transmitted via optical fibers and thus an optical breakthrough is generated at the exit point, which in turn triggers shock waves that are used to erode and destroy material surfaces, membranes or concretions.
- shock waves When the shock waves are triggered, not only the target objects are eroded, but also the fiber end.
- a device is therefore created which prevents the fiber output from becoming ineffective due to geometrical changes in the generation of shock waves or that "combustion products", in particular in medical applications, remain at the shock wave generation site.
- the shock waves on the target structure are generated almost in direct contact.
- the threshold for fiber destruction is very different for different wavelengths.
- the destruction thresholds of the target structures also show a corresponding wavelength dependency, so that it is assumed that the processes for fragmenting the target structure and the fiber end are the same.
- the possibility of transmitting higher energies is limited by the threshold for the destruction of the fiber end, so that the shock wave generation becomes ineffective for some applications.
- the location of the triggering of the shock wave can be spatially separated from the coupling out of the radiation at the fiber end by introducing a suitable material between the fiber end and the trigger point for the shock waves.
- a material which is harder than quartz and is therefore not fragmented by the shock waves is preferred, since it has a higher destruction threshold.
- protection can be achieved by applying a material to the fiber end that elastically to quasi-plastically dampens the shock waves striking the fiber end.
- the requirements for the material are sufficient transparency in the spectral range of the laser radiation used, short-term biological compatibility and mechanical damping of the shock wave. Tough, highly viscous polymers that have both elastic and plastic deformability are particularly suitable.
- Synthetic resins from various classes of material such as epoxy resins, in the form of a sight have proven particularly useful nellklebers, polyurethane resins (DD varnishes), polyvinyl acetate (or a corresponding adhesive).
- FIG. 5 shows an exemplary embodiment of a device for carrying out the method according to the invention
- FIG. 5a shows a diagram to illustrate the temporal course of the pulses in an exemplary embodiment of the method according to the invention
- FIG. 6 shows an overall view of a laser catheter for use with the method according to the invention
- FIG. 7 shows a sectional view of FIG. 6
- FIGS 8 to 12 different embodiments of devices for performing the method according to the invention.
- a Q-switched Nd: YAG laser or a Q-switched alexandrite laser is used for this.
- the radiation from the laser is doubled in frequency by a doubler crystal connected downstream of the actual laser generator, and the reason in a downstream optical beam path Wave 6 (cf. FIG. 5) and the frequency-doubled wave 7 are spectrally divided, the fundamental wave being delayed in time with respect to the frequency-doubled wave via an optical delay line 8 with two deflection prisms 8a and 8b, and then both together via a wavelength-selective beam splitter 10 onto the input aperture 9 of the optical fiber 14 are focused.
- the breakthrough threshold for the subsequent main pulse of the base emission can be lowered so much by the nonlinear optical change in refractive index and partial increase in absorption of the target structure when using so-called bare fibers, the breakthrough threshold is already reached on the target structure and thus complex optical fo kissing units or optomechanical end converters can be omitted.
- the time offset of two successive pulses is shown in detail in FIG. 5a.
- the laser power p is plotted as a function of time t. It can be seen here that a second pulse 15 with a wavelength of 1064 nm follows a first pulse 16 of 532 nm offset by approximately one pulse width. The amplitude of the second pulse 15 continues approximately the first pulse 16 in such a way that the two superimposed pulses form a total pulse with a rising edge which is reduced compared to the falling edge of the second pulse.
- FIG. 7 shows a cross section through an embodiment with 15 fibers.
- the coupling takes place from a plug 17 via a Y-piece 18.
- a central channel 19 forming an inner lumen serves to receive, for example, a guide wire.
- the multifaset is then connected to the Y-piece catheter with its distal exit opposite the Y-piece.
- FIG. 7 shows an equidistant annular arrangement of the fibers 19a around the central channel 19.
- the technique of the multiple pulse can be implemented in two different ways.
- the frequency-multiplied pulse is transmitted as a guide pulse through part of the fibers. With a time delay, the fundamental wavelength is transmitted through the remaining fibers and thus improved coupling to the target structure is used to generate shock waves. 2. In a second embodiment, a double or multiple pulse is transmitted over each fiber, so that the wavelength-dependent increase in the destruction threshold of the fiber and thus the increased energy transmission possibility is additionally exploited.
- the following options for increasing the efficiency in generating shock waves are favorable:
- an additional fiber with a large diameter in order to transmit additively large single pulse energies Support in the crushing of body stones, especially in the case of so-called "problem stones”.
- an additional fiber which, in a simplified embodiment of the double-pulse application, transmits the guide pulse to lower the breakdown threshold, while the fibers of the fiber bundle deliver the single pulse to pump the plasma.
- FIG. 8 shows an arrangement in which the quartz fiber 21 guides the light via a hard intermediate plate 22 to the target structure 23, on which the shock waves are triggered.
- Suitable materials for the intermediate plate are all substances which are transparent in the corresponding wavelength range and which have a greater hardness than quartz, such as sapphire or diamond tan.
- FIG. 9 shows a variant of the solution according to the invention by using a focusing sapphire tip 24 which, in addition to being more stable against destruction by the shock waves, also offers the advantage of focusing the radiation with the effect of a higher power density. This enables an increase in the transmitted energy of approximately 60%.
- Figure 10 shows an embodiment with a coating of a transparent and highly viscous plastic 25, which prevents fragmentation of the fiber end surface.
- This coating is preferably drop-shaped (FIG. 11), so that a focusing end member is produced, which in turn offers the advantage of focusing the radiation and generating a higher power density.
- a focusing end member is produced, which in turn offers the advantage of focusing the radiation and generating a higher power density.
- the coating of the fiber end surface can also be carried out over a longer length of the fiber (FIG. 12), so that when a tough plastic is used, the coating also acts as an additional protective jacket if the fiber end breaks and no fragments of the fiber remain at the application site.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Electromagnetism (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Otolaryngology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Laser Surgery Devices (AREA)
- Surgical Instruments (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Procédé de transmission d'intensités lumineuses extrêmement élevées par l'intermédiaire de systèmes à fibres optiques pour produire des ondes de choc afin de détruire des calculs dans le corps humain, dans lequel deux impulsions consécutives ou davantage sont transmises par l'intermédiaire d'un guide d'ondes lumineuses, la pente du front d'ondes de choc étant déterminée par le déplacement dans le temps des impulsions individuelles ainsi que dispositif pour la mise en ÷uvre de ce procédé.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19893933613 DE3933613C2 (de) | 1989-10-07 | 1989-10-07 | Vorrichtung zur Erzeugung von laserinduzierten Stoßwellen |
DEP3933613.1 | 1989-10-07 | ||
DE19893942920 DE3942920C2 (de) | 1989-10-07 | 1989-12-23 | Vorrichtung zum Schutz der Faserfläche eines Lichtwellenleiters bei der Erzeugung von laserinduzierten Stoßwellen |
DEP3942920.2 | 1989-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991005332A1 true WO1991005332A1 (fr) | 1991-04-18 |
Family
ID=25885927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1990/000771 WO1991005332A1 (fr) | 1989-10-07 | 1990-10-08 | Procede et dispositif de production d'ondes de choc induites par laser |
Country Status (2)
Country | Link |
---|---|
DE (2) | DE3933613C2 (fr) |
WO (1) | WO1991005332A1 (fr) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0571306A1 (fr) * | 1992-05-22 | 1993-11-24 | LASER MEDICAL TECHNOLOGY, Inc. | Dispositif et procédé pour enlever des dépôts sur les parois de passages |
WO1995024869A2 (fr) * | 1994-03-15 | 1995-09-21 | MEDOLAS GESELLSCHAFT FÜR MEDIZINTECHNIK mbH | Catheter-laser pour chirurgie de pontage |
WO1996032895A2 (fr) * | 1995-04-17 | 1996-10-24 | Coherent, Inc. | Procede et appareil permettant de manipuler, couper, enlever et coaguler des tissus cibles dans le corps d'un patient |
EP0785757A2 (fr) * | 1994-10-13 | 1997-07-30 | The General Hospital Corporation | Appareil d'eclairage lateral de tissus a deux impulsions |
US5963575A (en) * | 1993-03-27 | 1999-10-05 | Clyxon Laser Fur Mediziner GmbH | Q-switched laser system, in particular for laser lithotripsy |
US5964750A (en) * | 1994-03-15 | 1999-10-12 | Medolas Gesellschaft Fuer Medizintechnik Gmbh | Laser catheter for bypass surgery |
US6120498A (en) * | 1998-03-05 | 2000-09-19 | Jani; Mahendra G. | Aspirating handpieces for laser surgical operations |
US20160081749A1 (en) * | 2014-09-24 | 2016-03-24 | Ams Research, Llc | Surgical laser systems and laser lithotripsy techniques |
WO2016049160A1 (fr) * | 2014-09-24 | 2016-03-31 | Ams Research , Llc | Système de lithotripsie au laser |
WO2021183367A1 (fr) * | 2020-03-09 | 2021-09-16 | Boston Scientific Scimed, Inc. | Mise en forme d'impulsions laser pour améliorer l'efficacité de conversion et protéger un système de distribution de fibres optiques pour la rupture de calcium vasculaire |
US11517713B2 (en) | 2019-06-26 | 2022-12-06 | Boston Scientific Scimed, Inc. | Light guide protection structures for plasma system to disrupt vascular lesions |
US11583339B2 (en) | 2019-10-31 | 2023-02-21 | Bolt Medical, Inc. | Asymmetrical balloon for intravascular lithotripsy device and method |
US11648057B2 (en) | 2021-05-10 | 2023-05-16 | Bolt Medical, Inc. | Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device |
US11660427B2 (en) | 2019-06-24 | 2023-05-30 | Boston Scientific Scimed, Inc. | Superheating system for inertial impulse generation to disrupt vascular lesions |
US11672599B2 (en) | 2020-03-09 | 2023-06-13 | Bolt Medical, Inc. | Acoustic performance monitoring system and method within intravascular lithotripsy device |
US11672585B2 (en) | 2021-01-12 | 2023-06-13 | Bolt Medical, Inc. | Balloon assembly for valvuloplasty catheter system |
US11707323B2 (en) | 2020-04-03 | 2023-07-25 | Bolt Medical, Inc. | Electrical analyzer assembly for intravascular lithotripsy device |
US11717139B2 (en) | 2019-06-19 | 2023-08-08 | Bolt Medical, Inc. | Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium |
US11806075B2 (en) | 2021-06-07 | 2023-11-07 | Bolt Medical, Inc. | Active alignment system and method for laser optical coupling |
US11819229B2 (en) | 2019-06-19 | 2023-11-21 | Boston Scientific Scimed, Inc. | Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions |
US11839391B2 (en) | 2021-12-14 | 2023-12-12 | Bolt Medical, Inc. | Optical emitter housing assembly for intravascular lithotripsy device |
US11903642B2 (en) | 2020-03-18 | 2024-02-20 | Bolt Medical, Inc. | Optical analyzer assembly and method for intravascular lithotripsy device |
US12016610B2 (en) | 2020-12-11 | 2024-06-25 | Bolt Medical, Inc. | Catheter system for valvuloplasty procedure |
US12102384B2 (en) | 2019-11-13 | 2024-10-01 | Bolt Medical, Inc. | Dynamic intravascular lithotripsy device with movable energy guide |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4237154C1 (de) * | 1992-11-04 | 1994-03-03 | Dornier Medizintechnik | Verfahren und Vorrichtung zum selektiven Schneiden von biologischem Gewebe |
DE4310023A1 (de) * | 1993-03-27 | 1994-09-29 | Laser Medizin Zentrum Ggmbh Be | Gütegeschalteter Langpuls-Festkörperlaser mit faseroptischer Resonatorverlängerung |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3041875A1 (de) * | 1980-11-06 | 1982-06-09 | Krautkrämer, GmbH, 5000 Köln | Vorrichtung zur erzeugung von ultraschallwellen |
EP0144764A2 (fr) * | 1983-12-09 | 1985-06-19 | International Business Machines Corporation | Cathéter à laser |
AT380634B (de) * | 1985-01-14 | 1986-06-25 | Schmidt Kloiber Heinz | Einrichtung zur zerst!rung von harnwegkonkrementen |
DE3727003A1 (de) * | 1986-08-13 | 1988-02-25 | Messerschmitt Boelkow Blohm | Applikationsteil fuer ein starres oder flexibles endoskop |
EP0268019A1 (fr) * | 1986-11-13 | 1988-05-25 | Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung | Dispositif pour la fragmentation d'un corps solide suspendu dans un fluide |
WO1990004358A1 (fr) * | 1988-10-25 | 1990-05-03 | Karl Storz Gmbh & Co. | Procede et dispositif pour detruire un corps solide entoure d'un fluide |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4207874A (en) * | 1978-03-27 | 1980-06-17 | Choy Daniel S J | Laser tunnelling device |
DE3506249A1 (de) * | 1985-02-22 | 1986-08-28 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Verfahren und vorrichtung zur zertruemmerung eines festen koerpers |
-
1989
- 1989-10-07 DE DE19893933613 patent/DE3933613C2/de not_active Expired - Lifetime
- 1989-12-23 DE DE19893942920 patent/DE3942920C2/de not_active Expired - Lifetime
-
1990
- 1990-10-08 WO PCT/DE1990/000771 patent/WO1991005332A1/fr unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3041875A1 (de) * | 1980-11-06 | 1982-06-09 | Krautkrämer, GmbH, 5000 Köln | Vorrichtung zur erzeugung von ultraschallwellen |
EP0144764A2 (fr) * | 1983-12-09 | 1985-06-19 | International Business Machines Corporation | Cathéter à laser |
AT380634B (de) * | 1985-01-14 | 1986-06-25 | Schmidt Kloiber Heinz | Einrichtung zur zerst!rung von harnwegkonkrementen |
DE3727003A1 (de) * | 1986-08-13 | 1988-02-25 | Messerschmitt Boelkow Blohm | Applikationsteil fuer ein starres oder flexibles endoskop |
EP0268019A1 (fr) * | 1986-11-13 | 1988-05-25 | Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung | Dispositif pour la fragmentation d'un corps solide suspendu dans un fluide |
WO1990004358A1 (fr) * | 1988-10-25 | 1990-05-03 | Karl Storz Gmbh & Co. | Procede et dispositif pour detruire un corps solide entoure d'un fluide |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0571306A1 (fr) * | 1992-05-22 | 1993-11-24 | LASER MEDICAL TECHNOLOGY, Inc. | Dispositif et procédé pour enlever des dépôts sur les parois de passages |
US5963575A (en) * | 1993-03-27 | 1999-10-05 | Clyxon Laser Fur Mediziner GmbH | Q-switched laser system, in particular for laser lithotripsy |
WO1995024869A2 (fr) * | 1994-03-15 | 1995-09-21 | MEDOLAS GESELLSCHAFT FÜR MEDIZINTECHNIK mbH | Catheter-laser pour chirurgie de pontage |
WO1995024869A3 (fr) * | 1994-03-15 | 1995-11-09 | Medolas Ges Fuer Medizintechni | Catheter-laser pour chirurgie de pontage |
US5964750A (en) * | 1994-03-15 | 1999-10-12 | Medolas Gesellschaft Fuer Medizintechnik Gmbh | Laser catheter for bypass surgery |
EP0785757A2 (fr) * | 1994-10-13 | 1997-07-30 | The General Hospital Corporation | Appareil d'eclairage lateral de tissus a deux impulsions |
EP0785757A4 (fr) * | 1994-10-13 | 2000-04-26 | Gen Hospital Corp | Appareil d'eclairage lateral de tissus a deux impulsions |
WO1996032895A2 (fr) * | 1995-04-17 | 1996-10-24 | Coherent, Inc. | Procede et appareil permettant de manipuler, couper, enlever et coaguler des tissus cibles dans le corps d'un patient |
WO1996032895A3 (fr) * | 1995-04-17 | 1997-01-09 | Coherent Inc | Procede et appareil permettant de manipuler, couper, enlever et coaguler des tissus cibles dans le corps d'un patient |
US6120498A (en) * | 1998-03-05 | 2000-09-19 | Jani; Mahendra G. | Aspirating handpieces for laser surgical operations |
US11439465B2 (en) | 2014-09-24 | 2022-09-13 | Boston Scientific Scimed, Inc. | Surgical laser systems and laser lithotripsy techniques |
EP4413938A3 (fr) * | 2014-09-24 | 2024-09-18 | Boston Scientific Scimed, Inc. | Système de lithotritie laser |
CN106604690A (zh) * | 2014-09-24 | 2017-04-26 | 波士顿科学医学有限公司 | 激光碎石术系统 |
EP3197381B1 (fr) * | 2014-09-24 | 2020-03-25 | Boston Scientific Scimed, Inc. | Système de lithotripsie au laser |
EP3673853A1 (fr) * | 2014-09-24 | 2020-07-01 | Boston Scientific Scimed, Inc. | Système de lithotripsie au laser |
US20160081749A1 (en) * | 2014-09-24 | 2016-03-24 | Ams Research, Llc | Surgical laser systems and laser lithotripsy techniques |
WO2016049160A1 (fr) * | 2014-09-24 | 2016-03-31 | Ams Research , Llc | Système de lithotripsie au laser |
US11819229B2 (en) | 2019-06-19 | 2023-11-21 | Boston Scientific Scimed, Inc. | Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions |
US11717139B2 (en) | 2019-06-19 | 2023-08-08 | Bolt Medical, Inc. | Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium |
US11660427B2 (en) | 2019-06-24 | 2023-05-30 | Boston Scientific Scimed, Inc. | Superheating system for inertial impulse generation to disrupt vascular lesions |
US11911574B2 (en) | 2019-06-26 | 2024-02-27 | Boston Scientific Scimed, Inc. | Fortified balloon inflation fluid for plasma system to disrupt vascular lesions |
US11517713B2 (en) | 2019-06-26 | 2022-12-06 | Boston Scientific Scimed, Inc. | Light guide protection structures for plasma system to disrupt vascular lesions |
US11583339B2 (en) | 2019-10-31 | 2023-02-21 | Bolt Medical, Inc. | Asymmetrical balloon for intravascular lithotripsy device and method |
US12102384B2 (en) | 2019-11-13 | 2024-10-01 | Bolt Medical, Inc. | Dynamic intravascular lithotripsy device with movable energy guide |
US11672599B2 (en) | 2020-03-09 | 2023-06-13 | Bolt Medical, Inc. | Acoustic performance monitoring system and method within intravascular lithotripsy device |
CN115243634B (zh) * | 2020-03-09 | 2024-05-03 | 波士顿科学国际有限公司 | 激光脉冲整形以提高转换效率并保护破坏血管钙的光纤输送系统 |
CN115243634A (zh) * | 2020-03-09 | 2022-10-25 | 波士顿科学国际有限公司 | 激光脉冲整形以提高转换效率并保护破坏血管钙的光纤输送系统 |
WO2021183367A1 (fr) * | 2020-03-09 | 2021-09-16 | Boston Scientific Scimed, Inc. | Mise en forme d'impulsions laser pour améliorer l'efficacité de conversion et protéger un système de distribution de fibres optiques pour la rupture de calcium vasculaire |
US11903642B2 (en) | 2020-03-18 | 2024-02-20 | Bolt Medical, Inc. | Optical analyzer assembly and method for intravascular lithotripsy device |
US11707323B2 (en) | 2020-04-03 | 2023-07-25 | Bolt Medical, Inc. | Electrical analyzer assembly for intravascular lithotripsy device |
US12016610B2 (en) | 2020-12-11 | 2024-06-25 | Bolt Medical, Inc. | Catheter system for valvuloplasty procedure |
US11672585B2 (en) | 2021-01-12 | 2023-06-13 | Bolt Medical, Inc. | Balloon assembly for valvuloplasty catheter system |
US11648057B2 (en) | 2021-05-10 | 2023-05-16 | Bolt Medical, Inc. | Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device |
US11806075B2 (en) | 2021-06-07 | 2023-11-07 | Bolt Medical, Inc. | Active alignment system and method for laser optical coupling |
US11839391B2 (en) | 2021-12-14 | 2023-12-12 | Bolt Medical, Inc. | Optical emitter housing assembly for intravascular lithotripsy device |
Also Published As
Publication number | Publication date |
---|---|
DE3933613A1 (de) | 1991-04-18 |
DE3942920C2 (de) | 2000-11-30 |
DE3933613C2 (de) | 1998-10-08 |
DE3942920A1 (de) | 1991-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1991005332A1 (fr) | Procede et dispositif de production d'ondes de choc induites par laser | |
DE3506249C2 (fr) | ||
EP0143185B1 (fr) | Appareil combiné pour diagnostic et thérapie de l'oeil | |
EP0300315B1 (fr) | Générateur d'ondes de choc pour un appareil de destruction sans contact des calculs, présents dans un corps | |
DE69122279T2 (de) | Gewebeberührendes Laserabgabesystem | |
DE10140064A1 (de) | Vorrichtung zur Behandlung subkutaner Zellbereiche | |
DE60203922T2 (de) | Vorrichtung und verfahren zur erzeugung von hochdruckultraschallimpulsen | |
EP1018956A1 (fr) | Ensemble de traitement au laser pour la revascularisation de tissus musculaires | |
DE2538960C2 (de) | Vorrichtung zum berührungslosen Zertrümmern von in einem Lebewesen befindlichen Konkrementen | |
DE2733019A1 (de) | Vorrichtung zum zerkleinern von konkrementen im harnleiter | |
WO1998057707A1 (fr) | Instrument medical pour le traitement de tissus biologiques | |
WO2001000094A1 (fr) | Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression | |
WO2004020141A1 (fr) | Unite de formation de faisceau possedant deux lentilles axicon et dispositif pourvu de ladite unite permettant d'introduire de l'energie de rayonnement dans une piece constituee d'un metal peu absorbant | |
EP2705812A1 (fr) | Dispositif de découpage laser à l'intérieur d'un matériau transparent | |
DE10333770A1 (de) | Verfahren zur Materialbearbeitung mit Laserimpulsen grosser spektraler Bandbreite und Vorrichtung zur Durchführung des Verfahrens | |
EP0111047B1 (fr) | Dispositif pour la production d'une suite d'ondes de choc | |
EP0402433B1 (fr) | Dispositif pour detruire un corps solide entoure d'un fluide | |
DE69024949T2 (de) | Akustische stosswellen aussendender katheter mit endkappe | |
DE19826912A1 (de) | Kombiapplikator zur alternierenden und/oder gleichzeitigen Ultraschall- und Laserstrahlungsanwendung zur Phakoemulsifikation | |
DE3600713A1 (de) | Einrichtung zur zerstoerung von harnwegkonkrementen | |
DE3444824C2 (fr) | ||
DE3813482A1 (de) | Vorrichtung zur erzeugung von laserimpulsen einstellbarer dauer | |
DE10207737C1 (de) | Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen | |
DE3600730A1 (de) | Einrichtung zur zerstoerung von harnwegkonkrementen | |
DE2451624C2 (de) | Verfahren zum Verändern der Phasengeschwindigkeit von elastischen Oberflächenwellen in einem kristallinen Substrat durch Ionenimplantation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |