WO1991005332A1 - Procede et dispositif de production d'ondes de choc induites par laser - Google Patents

Procede et dispositif de production d'ondes de choc induites par laser Download PDF

Info

Publication number
WO1991005332A1
WO1991005332A1 PCT/DE1990/000771 DE9000771W WO9105332A1 WO 1991005332 A1 WO1991005332 A1 WO 1991005332A1 DE 9000771 W DE9000771 W DE 9000771W WO 9105332 A1 WO9105332 A1 WO 9105332A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
pulse
optical
fibers
laser
Prior art date
Application number
PCT/DE1990/000771
Other languages
German (de)
English (en)
Inventor
Gerhard Müller
Jürgen HELFMANN
Klaus DÖRSCHEL
Hansjörg ALBRECHT
Original Assignee
Laser-Medizin-Zentrum Gmbh Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser-Medizin-Zentrum Gmbh Berlin filed Critical Laser-Medizin-Zentrum Gmbh Berlin
Publication of WO1991005332A1 publication Critical patent/WO1991005332A1/fr

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/046Sound-producing devices using optical excitation, e.g. laser bundle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • A61B2017/00172Pulse trains, bursts, intermittent continuous operation
    • A61B2017/00176Two pulses, e.g. second pulse having an effect different from the first one
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22005Effects, e.g. on tissue
    • A61B2017/22007Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
    • A61B2017/22008Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted

Definitions

  • the invention relates to a method in the preamble
  • Light guide systems are from beson their interest in creating an optical breakthrough at the end of these light guide systems, which in turn acts as a source for secondary shock waves that can be used, for example, to erode and destroy material surfaces, membranes or concretions.
  • shock waves generated in this way are used to crush the concretions of the kidneys, bladders, galls, pakreas and saliva stones.
  • focusing optics 1, according to FIG. 1 are provided, or materials are introduced into the optical beam path that have the lowest possible breakthrough threshold, be it in form of solid surfaces, such as in the case of the so-called optoacoustic transducer 2 - according to FIG. 2 - or in the form of small suspended particles 4 in the liquid - according to FIG. 3 Particles are generated and can only be secondary to the Target structure work. If additional focusing auxiliary measures, such as distal optics 1 or 5 - according to FIG.
  • the radiation can also be focused on the target structure to be destroyed and the breakthrough can be achieved directly on the surface.
  • the optical breakthrough can only be achieved if the energy density (J / cm 2 ) is high enough, ie the fibers are sufficiently thin.
  • the invention is based on the object of specifying a method and a device for generating laser-induced shock waves in which the conversion efficiency is increased. This object is achieved with the characterizing features of claim 1.
  • the invention is based, among other things, on the knowledge that the damage thresholds of optical light guide systems not only have an integral upper limit power density both on the surface and in volume, but that the damage threshold is both wavelength and time-dependent.
  • the energy for generating the optical breakthrough is transmitted in the form of two or more successive pulses through the optical waveguide, the time offset of the starting points of the individual pulses being determined by the desired steepness of the shock wave front.
  • the method is used to transmit extremely high light intensities, which generate shock waves by means of an optical breakthrough in order to crush body concrements.
  • the destruction threshold of the optical light guide systems is not exceeded.
  • the refractive index of the target structure changes and the coupling of subsequent pulses improves.
  • a subsequent pulse for example the second pulse
  • forms in a different wavelength range preferably the first harmonic of the first pulse.
  • the radiation of a pulsed simultaneous frequency-doubled Nd: YAG laser with Q-switching is used.
  • the refractive index of the target structure changes when a short-wave guide pulse is used using non-linear optical effects. The resulting increase in Absorption improves the coupling of subsequent pulses, since the threshold for the optical breakthrough of the subsequent pulse or pulses has been significantly reduced.
  • the first pulse with the higher photon energy ignites a plasma at the target structure, which is "pumped" as a good absorber with the subsequent pulses.
  • the resulting greater energy content of the plasma in turn leads to an improvement in the efficiency of the conversion of laser energy into shock wave energy.
  • a preferred embodiment of a device for carrying out the method according to the invention has a multi-fiber catheter, which transmits the frequency-multiplied pulse as a guide pulse over a part of the fibers and transmits the fundamental wavelength through the remaining fibers with a time delay, or in which a double or multiple pulse is passed over each fiber becomes.
  • Another inexpensive embodiment of the multifiber catheter includes a central channel, for either an additional large diameter fiber for additive large single pulses, or an additional fiber for the guiding pulse, or a dormina basket, or a flexible endoscope, or for adding a liquid to reduce the Breakthrough threshold, or for flushing or suction.
  • a device for performing the method according to the invention enables an increase in effectiveness in the generation of shock waves.
  • shock waves For the laser-induced generation of shock waves, extremely high light intensities are transmitted via optical fibers and thus an optical breakthrough is generated at the exit point, which in turn triggers shock waves that are used to erode and destroy material surfaces, membranes or concretions.
  • shock waves When the shock waves are triggered, not only the target objects are eroded, but also the fiber end.
  • a device is therefore created which prevents the fiber output from becoming ineffective due to geometrical changes in the generation of shock waves or that "combustion products", in particular in medical applications, remain at the shock wave generation site.
  • the shock waves on the target structure are generated almost in direct contact.
  • the threshold for fiber destruction is very different for different wavelengths.
  • the destruction thresholds of the target structures also show a corresponding wavelength dependency, so that it is assumed that the processes for fragmenting the target structure and the fiber end are the same.
  • the possibility of transmitting higher energies is limited by the threshold for the destruction of the fiber end, so that the shock wave generation becomes ineffective for some applications.
  • the location of the triggering of the shock wave can be spatially separated from the coupling out of the radiation at the fiber end by introducing a suitable material between the fiber end and the trigger point for the shock waves.
  • a material which is harder than quartz and is therefore not fragmented by the shock waves is preferred, since it has a higher destruction threshold.
  • protection can be achieved by applying a material to the fiber end that elastically to quasi-plastically dampens the shock waves striking the fiber end.
  • the requirements for the material are sufficient transparency in the spectral range of the laser radiation used, short-term biological compatibility and mechanical damping of the shock wave. Tough, highly viscous polymers that have both elastic and plastic deformability are particularly suitable.
  • Synthetic resins from various classes of material such as epoxy resins, in the form of a sight have proven particularly useful nellklebers, polyurethane resins (DD varnishes), polyvinyl acetate (or a corresponding adhesive).
  • FIG. 5 shows an exemplary embodiment of a device for carrying out the method according to the invention
  • FIG. 5a shows a diagram to illustrate the temporal course of the pulses in an exemplary embodiment of the method according to the invention
  • FIG. 6 shows an overall view of a laser catheter for use with the method according to the invention
  • FIG. 7 shows a sectional view of FIG. 6
  • FIGS 8 to 12 different embodiments of devices for performing the method according to the invention.
  • a Q-switched Nd: YAG laser or a Q-switched alexandrite laser is used for this.
  • the radiation from the laser is doubled in frequency by a doubler crystal connected downstream of the actual laser generator, and the reason in a downstream optical beam path Wave 6 (cf. FIG. 5) and the frequency-doubled wave 7 are spectrally divided, the fundamental wave being delayed in time with respect to the frequency-doubled wave via an optical delay line 8 with two deflection prisms 8a and 8b, and then both together via a wavelength-selective beam splitter 10 onto the input aperture 9 of the optical fiber 14 are focused.
  • the breakthrough threshold for the subsequent main pulse of the base emission can be lowered so much by the nonlinear optical change in refractive index and partial increase in absorption of the target structure when using so-called bare fibers, the breakthrough threshold is already reached on the target structure and thus complex optical fo kissing units or optomechanical end converters can be omitted.
  • the time offset of two successive pulses is shown in detail in FIG. 5a.
  • the laser power p is plotted as a function of time t. It can be seen here that a second pulse 15 with a wavelength of 1064 nm follows a first pulse 16 of 532 nm offset by approximately one pulse width. The amplitude of the second pulse 15 continues approximately the first pulse 16 in such a way that the two superimposed pulses form a total pulse with a rising edge which is reduced compared to the falling edge of the second pulse.
  • FIG. 7 shows a cross section through an embodiment with 15 fibers.
  • the coupling takes place from a plug 17 via a Y-piece 18.
  • a central channel 19 forming an inner lumen serves to receive, for example, a guide wire.
  • the multifaset is then connected to the Y-piece catheter with its distal exit opposite the Y-piece.
  • FIG. 7 shows an equidistant annular arrangement of the fibers 19a around the central channel 19.
  • the technique of the multiple pulse can be implemented in two different ways.
  • the frequency-multiplied pulse is transmitted as a guide pulse through part of the fibers. With a time delay, the fundamental wavelength is transmitted through the remaining fibers and thus improved coupling to the target structure is used to generate shock waves. 2. In a second embodiment, a double or multiple pulse is transmitted over each fiber, so that the wavelength-dependent increase in the destruction threshold of the fiber and thus the increased energy transmission possibility is additionally exploited.
  • the following options for increasing the efficiency in generating shock waves are favorable:
  • an additional fiber with a large diameter in order to transmit additively large single pulse energies Support in the crushing of body stones, especially in the case of so-called "problem stones”.
  • an additional fiber which, in a simplified embodiment of the double-pulse application, transmits the guide pulse to lower the breakdown threshold, while the fibers of the fiber bundle deliver the single pulse to pump the plasma.
  • FIG. 8 shows an arrangement in which the quartz fiber 21 guides the light via a hard intermediate plate 22 to the target structure 23, on which the shock waves are triggered.
  • Suitable materials for the intermediate plate are all substances which are transparent in the corresponding wavelength range and which have a greater hardness than quartz, such as sapphire or diamond tan.
  • FIG. 9 shows a variant of the solution according to the invention by using a focusing sapphire tip 24 which, in addition to being more stable against destruction by the shock waves, also offers the advantage of focusing the radiation with the effect of a higher power density. This enables an increase in the transmitted energy of approximately 60%.
  • Figure 10 shows an embodiment with a coating of a transparent and highly viscous plastic 25, which prevents fragmentation of the fiber end surface.
  • This coating is preferably drop-shaped (FIG. 11), so that a focusing end member is produced, which in turn offers the advantage of focusing the radiation and generating a higher power density.
  • a focusing end member is produced, which in turn offers the advantage of focusing the radiation and generating a higher power density.
  • the coating of the fiber end surface can also be carried out over a longer length of the fiber (FIG. 12), so that when a tough plastic is used, the coating also acts as an additional protective jacket if the fiber end breaks and no fragments of the fiber remain at the application site.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Electromagnetism (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Laser Surgery Devices (AREA)
  • Surgical Instruments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

Procédé de transmission d'intensités lumineuses extrêmement élevées par l'intermédiaire de systèmes à fibres optiques pour produire des ondes de choc afin de détruire des calculs dans le corps humain, dans lequel deux impulsions consécutives ou davantage sont transmises par l'intermédiaire d'un guide d'ondes lumineuses, la pente du front d'ondes de choc étant déterminée par le déplacement dans le temps des impulsions individuelles ainsi que dispositif pour la mise en ÷uvre de ce procédé.
PCT/DE1990/000771 1989-10-07 1990-10-08 Procede et dispositif de production d'ondes de choc induites par laser WO1991005332A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19893933613 DE3933613C2 (de) 1989-10-07 1989-10-07 Vorrichtung zur Erzeugung von laserinduzierten Stoßwellen
DEP3933613.1 1989-10-07
DE19893942920 DE3942920C2 (de) 1989-10-07 1989-12-23 Vorrichtung zum Schutz der Faserfläche eines Lichtwellenleiters bei der Erzeugung von laserinduzierten Stoßwellen
DEP3942920.2 1989-12-23

Publications (1)

Publication Number Publication Date
WO1991005332A1 true WO1991005332A1 (fr) 1991-04-18

Family

ID=25885927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000771 WO1991005332A1 (fr) 1989-10-07 1990-10-08 Procede et dispositif de production d'ondes de choc induites par laser

Country Status (2)

Country Link
DE (2) DE3933613C2 (fr)
WO (1) WO1991005332A1 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571306A1 (fr) * 1992-05-22 1993-11-24 LASER MEDICAL TECHNOLOGY, Inc. Dispositif et procédé pour enlever des dépôts sur les parois de passages
WO1995024869A2 (fr) * 1994-03-15 1995-09-21 MEDOLAS GESELLSCHAFT FÜR MEDIZINTECHNIK mbH Catheter-laser pour chirurgie de pontage
WO1996032895A2 (fr) * 1995-04-17 1996-10-24 Coherent, Inc. Procede et appareil permettant de manipuler, couper, enlever et coaguler des tissus cibles dans le corps d'un patient
EP0785757A2 (fr) * 1994-10-13 1997-07-30 The General Hospital Corporation Appareil d'eclairage lateral de tissus a deux impulsions
US5963575A (en) * 1993-03-27 1999-10-05 Clyxon Laser Fur Mediziner GmbH Q-switched laser system, in particular for laser lithotripsy
US5964750A (en) * 1994-03-15 1999-10-12 Medolas Gesellschaft Fuer Medizintechnik Gmbh Laser catheter for bypass surgery
US6120498A (en) * 1998-03-05 2000-09-19 Jani; Mahendra G. Aspirating handpieces for laser surgical operations
US20160081749A1 (en) * 2014-09-24 2016-03-24 Ams Research, Llc Surgical laser systems and laser lithotripsy techniques
WO2016049160A1 (fr) * 2014-09-24 2016-03-31 Ams Research , Llc Système de lithotripsie au laser
WO2021183367A1 (fr) * 2020-03-09 2021-09-16 Boston Scientific Scimed, Inc. Mise en forme d'impulsions laser pour améliorer l'efficacité de conversion et protéger un système de distribution de fibres optiques pour la rupture de calcium vasculaire
US11517713B2 (en) 2019-06-26 2022-12-06 Boston Scientific Scimed, Inc. Light guide protection structures for plasma system to disrupt vascular lesions
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11819229B2 (en) 2019-06-19 2023-11-21 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device
US11903642B2 (en) 2020-03-18 2024-02-20 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US12016610B2 (en) 2020-12-11 2024-06-25 Bolt Medical, Inc. Catheter system for valvuloplasty procedure
US12102384B2 (en) 2019-11-13 2024-10-01 Bolt Medical, Inc. Dynamic intravascular lithotripsy device with movable energy guide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237154C1 (de) * 1992-11-04 1994-03-03 Dornier Medizintechnik Verfahren und Vorrichtung zum selektiven Schneiden von biologischem Gewebe
DE4310023A1 (de) * 1993-03-27 1994-09-29 Laser Medizin Zentrum Ggmbh Be Gütegeschalteter Langpuls-Festkörperlaser mit faseroptischer Resonatorverlängerung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3041875A1 (de) * 1980-11-06 1982-06-09 Krautkrämer, GmbH, 5000 Köln Vorrichtung zur erzeugung von ultraschallwellen
EP0144764A2 (fr) * 1983-12-09 1985-06-19 International Business Machines Corporation Cathéter à laser
AT380634B (de) * 1985-01-14 1986-06-25 Schmidt Kloiber Heinz Einrichtung zur zerst!rung von harnwegkonkrementen
DE3727003A1 (de) * 1986-08-13 1988-02-25 Messerschmitt Boelkow Blohm Applikationsteil fuer ein starres oder flexibles endoskop
EP0268019A1 (fr) * 1986-11-13 1988-05-25 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Dispositif pour la fragmentation d'un corps solide suspendu dans un fluide
WO1990004358A1 (fr) * 1988-10-25 1990-05-03 Karl Storz Gmbh & Co. Procede et dispositif pour detruire un corps solide entoure d'un fluide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207874A (en) * 1978-03-27 1980-06-17 Choy Daniel S J Laser tunnelling device
DE3506249A1 (de) * 1985-02-22 1986-08-28 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Verfahren und vorrichtung zur zertruemmerung eines festen koerpers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3041875A1 (de) * 1980-11-06 1982-06-09 Krautkrämer, GmbH, 5000 Köln Vorrichtung zur erzeugung von ultraschallwellen
EP0144764A2 (fr) * 1983-12-09 1985-06-19 International Business Machines Corporation Cathéter à laser
AT380634B (de) * 1985-01-14 1986-06-25 Schmidt Kloiber Heinz Einrichtung zur zerst!rung von harnwegkonkrementen
DE3727003A1 (de) * 1986-08-13 1988-02-25 Messerschmitt Boelkow Blohm Applikationsteil fuer ein starres oder flexibles endoskop
EP0268019A1 (fr) * 1986-11-13 1988-05-25 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Dispositif pour la fragmentation d'un corps solide suspendu dans un fluide
WO1990004358A1 (fr) * 1988-10-25 1990-05-03 Karl Storz Gmbh & Co. Procede et dispositif pour detruire un corps solide entoure d'un fluide

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571306A1 (fr) * 1992-05-22 1993-11-24 LASER MEDICAL TECHNOLOGY, Inc. Dispositif et procédé pour enlever des dépôts sur les parois de passages
US5963575A (en) * 1993-03-27 1999-10-05 Clyxon Laser Fur Mediziner GmbH Q-switched laser system, in particular for laser lithotripsy
WO1995024869A2 (fr) * 1994-03-15 1995-09-21 MEDOLAS GESELLSCHAFT FÜR MEDIZINTECHNIK mbH Catheter-laser pour chirurgie de pontage
WO1995024869A3 (fr) * 1994-03-15 1995-11-09 Medolas Ges Fuer Medizintechni Catheter-laser pour chirurgie de pontage
US5964750A (en) * 1994-03-15 1999-10-12 Medolas Gesellschaft Fuer Medizintechnik Gmbh Laser catheter for bypass surgery
EP0785757A2 (fr) * 1994-10-13 1997-07-30 The General Hospital Corporation Appareil d'eclairage lateral de tissus a deux impulsions
EP0785757A4 (fr) * 1994-10-13 2000-04-26 Gen Hospital Corp Appareil d'eclairage lateral de tissus a deux impulsions
WO1996032895A2 (fr) * 1995-04-17 1996-10-24 Coherent, Inc. Procede et appareil permettant de manipuler, couper, enlever et coaguler des tissus cibles dans le corps d'un patient
WO1996032895A3 (fr) * 1995-04-17 1997-01-09 Coherent Inc Procede et appareil permettant de manipuler, couper, enlever et coaguler des tissus cibles dans le corps d'un patient
US6120498A (en) * 1998-03-05 2000-09-19 Jani; Mahendra G. Aspirating handpieces for laser surgical operations
US11439465B2 (en) 2014-09-24 2022-09-13 Boston Scientific Scimed, Inc. Surgical laser systems and laser lithotripsy techniques
EP4413938A3 (fr) * 2014-09-24 2024-09-18 Boston Scientific Scimed, Inc. Système de lithotritie laser
CN106604690A (zh) * 2014-09-24 2017-04-26 波士顿科学医学有限公司 激光碎石术系统
EP3197381B1 (fr) * 2014-09-24 2020-03-25 Boston Scientific Scimed, Inc. Système de lithotripsie au laser
EP3673853A1 (fr) * 2014-09-24 2020-07-01 Boston Scientific Scimed, Inc. Système de lithotripsie au laser
US20160081749A1 (en) * 2014-09-24 2016-03-24 Ams Research, Llc Surgical laser systems and laser lithotripsy techniques
WO2016049160A1 (fr) * 2014-09-24 2016-03-31 Ams Research , Llc Système de lithotripsie au laser
US11819229B2 (en) 2019-06-19 2023-11-21 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US11911574B2 (en) 2019-06-26 2024-02-27 Boston Scientific Scimed, Inc. Fortified balloon inflation fluid for plasma system to disrupt vascular lesions
US11517713B2 (en) 2019-06-26 2022-12-06 Boston Scientific Scimed, Inc. Light guide protection structures for plasma system to disrupt vascular lesions
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US12102384B2 (en) 2019-11-13 2024-10-01 Bolt Medical, Inc. Dynamic intravascular lithotripsy device with movable energy guide
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
CN115243634B (zh) * 2020-03-09 2024-05-03 波士顿科学国际有限公司 激光脉冲整形以提高转换效率并保护破坏血管钙的光纤输送系统
CN115243634A (zh) * 2020-03-09 2022-10-25 波士顿科学国际有限公司 激光脉冲整形以提高转换效率并保护破坏血管钙的光纤输送系统
WO2021183367A1 (fr) * 2020-03-09 2021-09-16 Boston Scientific Scimed, Inc. Mise en forme d'impulsions laser pour améliorer l'efficacité de conversion et protéger un système de distribution de fibres optiques pour la rupture de calcium vasculaire
US11903642B2 (en) 2020-03-18 2024-02-20 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US12016610B2 (en) 2020-12-11 2024-06-25 Bolt Medical, Inc. Catheter system for valvuloplasty procedure
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device

Also Published As

Publication number Publication date
DE3933613A1 (de) 1991-04-18
DE3942920C2 (de) 2000-11-30
DE3933613C2 (de) 1998-10-08
DE3942920A1 (de) 1991-06-27

Similar Documents

Publication Publication Date Title
WO1991005332A1 (fr) Procede et dispositif de production d'ondes de choc induites par laser
DE3506249C2 (fr)
EP0143185B1 (fr) Appareil combiné pour diagnostic et thérapie de l'oeil
EP0300315B1 (fr) Générateur d'ondes de choc pour un appareil de destruction sans contact des calculs, présents dans un corps
DE69122279T2 (de) Gewebeberührendes Laserabgabesystem
DE10140064A1 (de) Vorrichtung zur Behandlung subkutaner Zellbereiche
DE60203922T2 (de) Vorrichtung und verfahren zur erzeugung von hochdruckultraschallimpulsen
EP1018956A1 (fr) Ensemble de traitement au laser pour la revascularisation de tissus musculaires
DE2538960C2 (de) Vorrichtung zum berührungslosen Zertrümmern von in einem Lebewesen befindlichen Konkrementen
DE2733019A1 (de) Vorrichtung zum zerkleinern von konkrementen im harnleiter
WO1998057707A1 (fr) Instrument medical pour le traitement de tissus biologiques
WO2001000094A1 (fr) Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression
WO2004020141A1 (fr) Unite de formation de faisceau possedant deux lentilles axicon et dispositif pourvu de ladite unite permettant d'introduire de l'energie de rayonnement dans une piece constituee d'un metal peu absorbant
EP2705812A1 (fr) Dispositif de découpage laser à l'intérieur d'un matériau transparent
DE10333770A1 (de) Verfahren zur Materialbearbeitung mit Laserimpulsen grosser spektraler Bandbreite und Vorrichtung zur Durchführung des Verfahrens
EP0111047B1 (fr) Dispositif pour la production d'une suite d'ondes de choc
EP0402433B1 (fr) Dispositif pour detruire un corps solide entoure d'un fluide
DE69024949T2 (de) Akustische stosswellen aussendender katheter mit endkappe
DE19826912A1 (de) Kombiapplikator zur alternierenden und/oder gleichzeitigen Ultraschall- und Laserstrahlungsanwendung zur Phakoemulsifikation
DE3600713A1 (de) Einrichtung zur zerstoerung von harnwegkonkrementen
DE3444824C2 (fr)
DE3813482A1 (de) Vorrichtung zur erzeugung von laserimpulsen einstellbarer dauer
DE10207737C1 (de) Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen
DE3600730A1 (de) Einrichtung zur zerstoerung von harnwegkonkrementen
DE2451624C2 (de) Verfahren zum Verändern der Phasengeschwindigkeit von elastischen Oberflächenwellen in einem kristallinen Substrat durch Ionenimplantation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE