WO2001000094A1 - Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression - Google Patents
Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression Download PDFInfo
- Publication number
- WO2001000094A1 WO2001000094A1 PCT/EP2000/004771 EP0004771W WO0100094A1 WO 2001000094 A1 WO2001000094 A1 WO 2001000094A1 EP 0004771 W EP0004771 W EP 0004771W WO 0100094 A1 WO0100094 A1 WO 0100094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- pressure chamber
- instrument according
- liquid
- generating device
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/225—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/22—Methods or devices for transmitting, conducting or directing sound for conducting sound through hollow pipes, e.g. speaking tubes
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/24—Methods or devices for transmitting, conducting or directing sound for conducting sound through solid bodies, e.g. wires
Definitions
- the invention relates to a medical instrument for the treatment of biological tissue according to the preamble of claims 1 and 23 respectively.
- Such instruments are used to accelerate the healing process for broken bones and .bone defects or also for periodontitis by means of pressure or shock waves or to get them started at all.
- Another area of application is the treatment of pain associated with tendon insufficiency.
- extra-corporal pressure wave devices used for such treatment, one is located at the focal point of an acoustic reflector, for example by means of a spark discharge, as specified in German Offenlegungsschrift DE 23 51 247 A. pulse-shaped pressure or shock wave generated, which is then focused by the reflector on the object to be sonicated. It is believed that pressure waves generate micro-damage in the biological tissue, which causes the body to take regeneration measures.
- Such known pressure wave devices have a narrowly localized focus area, in which only a therapeutic effect is observed.
- the reason for this is that these pressure wave devices - so-called extracorporeal lithotriptors - were developed for the destruction of body stones.
- the entire energy is concentrated in a small area, in this case on the body stone to be destroyed.
- a larger area must usually be sonicated evenly. This requires a complex movement mechanism and is also very time-consuming due to repeated visits to the treatment position.
- German Offenlegungsschrift DE 197 25 477 AI describes a device in which unfocused, mechanically generated pressure waves are coupled into biological tissue with a transmission element. The user must point the blunt transmission element at the treatment site.
- this very simple instrument has the consequence that the movement of the transmission element - even if it is only on a change in length is limited by the influence of a pressure wave - is unavoidable.
- the stress caused by the deflection of the transmission element such as reddening and slight swelling, may be justifiable.
- such an instrument would have to be placed on the gums, which does not withstand this strain.
- the invention is therefore based on the object of designing a medical instrument and a method for transmitting pressure waves in such a way that, in a simple and cost-effective manner, it enables a uniform energy distribution of the pressure wave over a large effective area without the pressure wave being transmitted from the instrument damage the biological tissue the same.
- the invention advantageously provides that the transmission device has a liquid-filled pressure chamber, the liquid of which transmits pressure waves coupled into a membrane arranged at the outlet end of the pressure chamber, which couples the pressure waves transmitted from the liquid into the biological tissue in an unfocused manner.
- the impedance of the liquid substantially corresponds to the impedance of the biological tissue into which the pressure wave to be coupled ', the pressure wave resulting from the transfer of the liquid across the membrane to the biological tissue without transmission loss.
- a uniform energy distribution of the pressure wave over a large area of effect are made possible without damaging the biological tissue during the transmission of the pressure wave.
- a thin membrane is used as the coupling device. On the one hand, this closes the pressure chamber at its end on the output side and, on the other hand, is not a hindrance when the pressure waves are injected from the liquid into the biological tissue.
- the entrance surface of the biological tissue is not mechanically loaded when the pressure wave is passed on through the membrane, so that the instrument can be used for all types of biological tissue. Impedance-adapted plastic films can be used as the membrane.
- the pressure chamber preferably consists of an elongated channel.
- the channel shape has the advantage that the pressure wave coupled in by the pressure wave generating device cannot migrate laterally and can in this way be transported over a longer distance than a plane wave without major losses.
- the pressure wave is divided in this preferably tubular channel due to the running length and the non-linear reproductive properties, so that the elongate channel operates in the manner of a shock wave tube.
- the ratio of the length of the pressure chamber to its diameter is preferably in the range between 2 and 10.
- the pressure wave generating device can be arranged within the pressure chamber.
- the pressure wave generating device generates a non-directional pressure wave that propagates in a spherical shape and, consequently, its energy with the distance rapidly decreasing from their place of origin. If the place of origin and application are not close to each other, only a small part of the energy used reaches its destination.
- the pressure chamber filled with liquid can be designed such that the pressure wave generating device is arranged within the tubular channel in the vicinity of its input end.
- the pressure wave generating device adjoins the pressure chamber.
- the outlet interface of the pressure wave generating device is identical to the inlet interface of the pressure chamber.
- the pressure wave generating device can apply the pressure waves. Generate piezoelectric, magnetostrictive, electrostrictive, magnetic, electrical or mechanical ways.
- the pressure wave generating device can consist, for example, of an electrohydraulic probe arranged in the pressure chamber, which generates a pressure wave by sparkover.
- the pressure wave generating device may comprise a piezo element which is arranged on the input side in 'the channel of the pressure chamber and directly adjacent to the liquid.
- the pressure wave generating device can have an electromagnetically excited membrane, which is arranged on the input side in the pressure chamber and directly adjoins the liquid.
- the pressure wave generating device mechanically couples the pressure waves into the pressure chamber and that a linearly guided, elastically mounted transmission element with an ner exit interface is coupled to the liquid of the pressure chamber and transmits mechanically induced pressure waves to the liquid.
- an inner membrane which is elastically mounted in the axial direction and mechanically transmits the coupled pressure waves to the liquid, can be arranged at the input-side end of the pressure chamber.
- the transmission element or the inner membrane is acted upon by a linearly movable back and forth impact part, which mechanically induces a pressure wave as a result of the force shock, which propagates to the exit interface of the membrane or the transmission element.
- the striking part is guided coaxially to the transmission element.
- the pressure wave generating device generates the injected pressure waves periodically.
- a larger number of successive individual pulse-shaped pressure waves with weaker energy shows better healing success in the biological tissue than a single strong pressure pulse.
- the pressure wave generating device can therefore work with a repetition frequency of individual pressure pulses between 1 and 20 Hz, wherein about 1000 to 2000 pressure pulses are required to treat the biological tissue.
- the drive means for continuous operation are preferably designed in such a way that a periodic movement of the drive is possible. If, for example, a pneumatic percussion part is used which generates a pressure wave in the transmission element due to its impact, the air streams can be designed such that the percussion part ne continuously reciprocating and periodically hits the transmission element.
- Electrically operated pressure wave generating devices are usually supplied by a capacitor bank.
- the current supply for charging the batteries must be high enough so that the predetermined number of pressure pulses can be emitted with the necessary repetition frequency.
- the cross section of the channel is flared or tapered in the direction of the outer membrane.
- a pressure chamber tapering in the direction of the membrane amplifies the pressure wave by reducing its cross-section.
- an expansion of the pressure chamber weakens the pressure wave, but sonicates a larger treatment area.
- An impedance-adjusting medium can be arranged between the outer membrane and the biological tissue, which improves the coupling of the pressure waves into the biological tissue. If the membrane is not absolutely flat and without air pockets on the biological tissue, part of the pressure pulse is reflected by this acoustic discontinuity and the proportion of pressure waves that can be coupled in is reduced.
- a suitable pasty impedance matching medium is, for example, an ultrasound gel or other pasty masses with an impedance similar to that of the biological tissue, such as petroleum jelly.
- 1 shows a first embodiment with a mechanical pressure wave generating device
- 2 shows a second embodiment with an electro-hydraulic probe as a pressure wave generating device
- FIG. 3 shows a third exemplary embodiment with a piezoelectric pressure wave generating device
- Fig. 5 shows a transmission device with a conically tapered pressure chamber
- Fig. 6 shows a transmission device with a conically widening pressure chamber.
- the handpiece 1 shown in Fig. 1 consists of a housing 2 of a mechanical pressure wave generating device 4 with an inner cylinder 7, in which a striking part 40 by means of pneumatic drive means 44 in connection with a dynamic pressure chamber 48, which coaxially surrounds the inner cylinder 7, between two end positions is moved back and forth.
- a transmission device 8 for pressure waves is screwed onto the distal end of the housing 2.
- the striking part 40 hydraulically, mechanically, electromagnetically or by other drive means.
- the length of the acceleration path can be selected depending on the type of drive. With a pneumatically operated impact part 40 and a pneumatic pressure of approximately 0.3 MPa (3 bar), this is approximately 50 to 200 mm.
- a magnet holder 50 is arranged, which can hold the metallic striking part 40 in its proximal end position until a pneumatic pressure applied via the connection 52 again Impact part 40 accelerated towards the distal end of the inner cylinder 7.
- the air in the direction of movement of the striking part 40 in front of the striking part 40 is guided into the dynamic pressure chamber 48 via ring slots 54 located at the distal end of the inner cylinder 7.
- a transmission element 30 arranged distally from the inner cylinder 7 at a high top speed of, for example, 10-25 m / s.
- the transmission element 30 consists of an essentially cylindrical metallic probe with a flat or slightly smooth surface exit interface 32 which is curved on the inside or outside.
- the transmission element 30 is guided in a sliding manner in a hollow cylindrical receiving part 34.
- a collar 35 on the transmission element 30 serves as a stop part against the receiving part 34, a spring / damping element 38 being arranged between the collar 35 and the receiving part 34, which decouples the transmission element 30 from the receiving part 34 and also ensures that the transmission element 30 after the striking process returns to its starting position at the distal end of the inner cylinder 7.
- An O-ring 37 which slidably receives the transmission element 30 seals the pressure wave generating device 4 against the transmission device 8 for the pressure waves.
- the exit interface 32 of the transmission element 30 is in direct contact with a pressure chamber 12 of the transmission device 8 which is filled with liquid.
- the liquid used is preferably a substance similar to the acoustic properties of biological tissue, such as water.
- the pressure chamber 12 can have an elongated cylindrical shape in order to set up the pressure wave, but can also be kept very short if the pressure wave generating device 4 generates pressure waves of sufficient intensity.
- the pressure chamber 12 is closed at the distal end by a membrane 16.
- a tensioning device 20 tensions the membrane 16 over the distal end of the Pressure chamber 12 and closes its output end from the environment, so that the liquid 14 can not come out of the pressure chamber 3.
- the spring / damping element 38 moves the transmission element 30 back into its starting position.
- the striking part 40 is returned to its rest position at the proximal end of the inner cylinder 7 by the overpressure built up in the dynamic pressure chamber 48 and the backflow of air from the dynamic pressure chamber 48 through the ring slots 54 and held by the magnet holder 50.
- the instrument is now ready to strike again.
- FIG. 2 shows an embodiment with a spark discharge path for generating pressure waves.
- An electrical circuit 19 supplies the two electrodes 21 of an electrohydraulic probe 18 with a short voltage pulse. If the surrounding liquid 14 in the pressure chamber 12 is electrically conductive, there is a sparkover between the electrodes 21. The sudden plasma formation associated therewith creates a pressure wave which propagates in the pressure chamber 12 and via the membrane 16 into the membrane 16 biological tissue in contact is coupled.
- An alternative pressure wave generating device 3 is shown in FIG. 3.
- An electrical circuit 23 supplies a voltage pulse to a piezoelectric element 22 arranged in the pressure chamber 12. As a result of the voltage pulse, the piezoelectric element 22 expands and generates a pressure wave in the surrounding liquid 14.
- FIG. 4 shows a further alternative pressure wave generating device 4 with a coil arrangement 24, which is supplied with current by an electrical circuit 25.
- An excitation membrane 26 is arranged distally in front of the coil arrangement 24.
- the coil arrangement 24 induces an eddy current in the excitation membrane 26, which in turn builds up a magnetic field.
- the repulsive forces between the coil arrangement 24 and the excitation membrane 26 the latter is jerkily moved away from the electrical coil arrangement 24 in the event of a short current pulse from the electrical circuit 25, as a result of which a pressure wave is coupled into the pressure chamber 12.
- FIG. 5 shows a transmission device 8 in which the pressure chamber 12 tapers conically in the distal direction.
- a pressure wave generated by a pressure wave generating device 4 is amplified as a result of the reduction in the effective cross section of the pressure chamber 12. If the pressure chamber 12 expands as shown in FIG. 6, the pressure wave is weakened but sonicates a larger area. If a division of the pressure wave is not necessary or not desired, the pressure chamber 12 can be kept short, as in the exemplary embodiments of FIGS. 2 to 4.
- the transmission device 8 is designed as a screw head and can be screwed onto the pressure wave generating device 4 become.
- a seal 10 seals the transmission device 8 against the receiving part 34 of the pressure wave transmission device 4.
- the pressure chamber 12 can extend into the receiving part 34.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Surgical Instruments (AREA)
- Materials For Medical Uses (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT00941984T ATE311150T1 (de) | 1999-06-24 | 2000-05-25 | Medizinisches instrument zur behandlung von biologischem gewebe sowie verfahren zum übertragen von druckwellen |
US10/018,805 US6736784B1 (en) | 1999-06-24 | 2000-05-25 | Medical instrument for treating biological tissue and method for transmitting pressure waves |
EP00941984A EP1187563B1 (fr) | 1999-06-24 | 2000-05-25 | Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression |
DE50011757T DE50011757D1 (de) | 1999-06-24 | 2000-05-25 | Medizinisches instrument zur behandlung von biologischem gewebe sowie verfahren zum übertragen von druckwellen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19929112.8 | 1999-06-24 | ||
DE19929112A DE19929112A1 (de) | 1999-06-24 | 1999-06-24 | Medizinisches Instrument zur Behandlung von biologischem Gewebe sowie Verfahren zum Übertragen von Druckwellen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001000094A1 true WO2001000094A1 (fr) | 2001-01-04 |
Family
ID=7912495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2000/004771 WO2001000094A1 (fr) | 1999-06-24 | 2000-05-25 | Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression |
Country Status (6)
Country | Link |
---|---|
US (1) | US6736784B1 (fr) |
EP (1) | EP1187563B1 (fr) |
AT (1) | ATE311150T1 (fr) |
DE (2) | DE19929112A1 (fr) |
ES (1) | ES2253234T3 (fr) |
WO (1) | WO2001000094A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1389064A2 (fr) * | 2001-01-26 | 2004-02-18 | Yoni Iger | Procede et appareil permettant la delivrance de substances a des composants biologiques |
US6736784B1 (en) * | 1999-06-24 | 2004-05-18 | Ferton Holding S.A. | Medical instrument for treating biological tissue and method for transmitting pressure waves |
EP1574198B1 (fr) * | 2004-03-10 | 2007-07-25 | Elettronica Pagani S.r.l. | Instrument pour le traitement médical de tissue par ondes de choc |
US7521132B2 (en) | 2005-04-29 | 2009-04-21 | Ceratizit Austria Gesellschaft M.B.H. | Coated tool |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10130639A1 (de) | 2001-06-26 | 2003-01-30 | Hmt Ag | Verfahren und Vorrichtung zum Erzeugen von Stoßwellen für medizinische Anwendungen |
DE10215416B4 (de) † | 2002-04-08 | 2020-10-29 | Ferton Holding S.A. | Medizinisches Gerät zur Behandlung von biologischem Gewebe |
US20040092819A1 (en) * | 2002-08-16 | 2004-05-13 | Hmt High Medical Technologies Ag | Method for treating laminitis in horses, ponies and other equines with acoustic waves |
US20040162582A1 (en) * | 2003-02-13 | 2004-08-19 | Hmt High Medical Technologies Ag | Treatment of osteoarthritis |
US20040162508A1 (en) * | 2003-02-19 | 2004-08-19 | Walter Uebelacker | Shock wave therapy method and device |
US8257282B2 (en) * | 2004-02-19 | 2012-09-04 | General Patent, Llc | Pressure pulse/shock wave apparatus for generating waves having plane, nearly plane, convergent off target or divergent characteristics |
DE10331694A1 (de) * | 2003-07-11 | 2005-02-10 | Karl Storz Gmbh & Co. Kg | Vorrichtung zum Fragmentieren von Substanzen |
DE102004046848A1 (de) * | 2004-09-27 | 2006-04-06 | Ferton Holding S.A. | Vorrichtung und Verfahren zur Entfernung von Zahnapplikationen wie Brackets |
US7578796B2 (en) * | 2004-10-22 | 2009-08-25 | General Patent Llc | Method of shockwave treating fish and shellfish |
US7857775B2 (en) * | 2005-03-15 | 2010-12-28 | Syneron Medical Ltd. | Method for soft tissue treatment |
WO2007108854A2 (fr) * | 2005-12-30 | 2007-09-27 | Sanuwave, Inc. | Système applicateur d'ondes de pression acoustique à compresse de conduction |
DE102006062356B3 (de) * | 2006-12-22 | 2008-04-24 | Storz Medical Ag | Medizinisches Gerät zur Behandlung des menschlichen oder tierischen Körpers mit mechanischen Druck- oder Stoßwellen |
US9232959B2 (en) | 2007-01-02 | 2016-01-12 | Aquabeam, Llc | Multi fluid tissue resection methods and devices |
US20220096112A1 (en) | 2007-01-02 | 2022-03-31 | Aquabeam, Llc | Tissue resection with pressure sensing |
DE202007007922U1 (de) * | 2007-05-31 | 2008-10-09 | Storz Medical Ag | Medizinisches Gerät zur Behandlung des menschlichen oder tierischen Körpers mit mechanischen Druck- oder Stoßwellen |
EP2259742B1 (fr) | 2008-03-06 | 2020-01-01 | AquaBeam LLC | Ablation des tissus et cautérisation avec de l'énergie optique véhiculée dans un courant de fluide |
US20100036294A1 (en) * | 2008-05-07 | 2010-02-11 | Robert Mantell | Radially-Firing Electrohydraulic Lithotripsy Probe |
ES2671898T3 (es) * | 2008-06-13 | 2018-06-11 | Shockwave Medical, Inc. | Sistema de catéter con globo de ondas de choque |
US10702293B2 (en) | 2008-06-13 | 2020-07-07 | Shockwave Medical, Inc. | Two-stage method for treating calcified lesions within the wall of a blood vessel |
US9072534B2 (en) | 2008-06-13 | 2015-07-07 | Shockwave Medical, Inc. | Non-cavitation shockwave balloon catheter system |
US20100023033A1 (en) * | 2008-07-25 | 2010-01-28 | Medtronic Vescular, Inc. | Hydrodynamic Thrombectomy Catheter |
US20100022943A1 (en) * | 2008-07-25 | 2010-01-28 | Medtronic Vascular, Inc. | Hydrodynamic Thrombectomy Catheter |
EP2529792B1 (fr) * | 2008-10-31 | 2023-05-10 | Ferton Holding SA | Instrument destiné au traitement de tissus biologiques par ondes de pression de type ondes de choc |
US9180280B2 (en) * | 2008-11-04 | 2015-11-10 | Shockwave Medical, Inc. | Drug delivery shockwave balloon catheter system |
US9044618B2 (en) | 2008-11-05 | 2015-06-02 | Shockwave Medical, Inc. | Shockwave valvuloplasty catheter system |
US9147046B2 (en) * | 2010-04-28 | 2015-09-29 | Empi, Inc. | Systems and methods for modulating pressure wave therapy |
US8574247B2 (en) | 2011-11-08 | 2013-11-05 | Shockwave Medical, Inc. | Shock wave valvuloplasty device with moveable shock wave generator |
US9504604B2 (en) * | 2011-12-16 | 2016-11-29 | Auris Surgical Robotics, Inc. | Lithotripsy eye treatment |
US9498236B2 (en) * | 2012-01-31 | 2016-11-22 | Hi Impacts Ltd | High pressure ballistic extracorporeal shockwave device, system and method of use |
JP6080872B2 (ja) | 2012-02-29 | 2017-02-15 | プロセプト バイオロボティクス コーポレイション | 自動化された画像誘導組織切除および治療 |
US10383765B2 (en) | 2012-04-24 | 2019-08-20 | Auris Health, Inc. | Apparatus and method for a global coordinate system for use in robotic surgery |
US9642673B2 (en) | 2012-06-27 | 2017-05-09 | Shockwave Medical, Inc. | Shock wave balloon catheter with multiple shock wave sources |
WO2014025620A1 (fr) | 2012-08-06 | 2014-02-13 | Shockwave Medical, Inc. | Cathéter à onde de choc |
CA2881208C (fr) | 2012-08-06 | 2020-06-30 | Shockwave Medical, Inc. | Electrodes a profil bas pour catheter a onde de choc d'angioplastie |
US9554815B2 (en) | 2012-08-08 | 2017-01-31 | Shockwave Medical, Inc. | Shockwave valvuloplasty with multiple balloons |
US9138249B2 (en) | 2012-08-17 | 2015-09-22 | Shockwave Medical, Inc. | Shock wave catheter system with arc preconditioning |
US9522012B2 (en) | 2012-09-13 | 2016-12-20 | Shockwave Medical, Inc. | Shockwave catheter system with energy control |
US9333000B2 (en) | 2012-09-13 | 2016-05-10 | Shockwave Medical, Inc. | Shockwave catheter system with energy control |
US10231867B2 (en) | 2013-01-18 | 2019-03-19 | Auris Health, Inc. | Method, apparatus and system for a water jet |
US9867635B2 (en) | 2013-03-08 | 2018-01-16 | Auris Surgical Robotics, Inc. | Method, apparatus and system for a water jet |
US10080576B2 (en) | 2013-03-08 | 2018-09-25 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US10149720B2 (en) | 2013-03-08 | 2018-12-11 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
ES2703539T3 (es) | 2013-03-11 | 2019-03-11 | Northgate Tech Inc | Litotriptor electrohidráulico no focalizado |
WO2014201165A1 (fr) | 2013-06-11 | 2014-12-18 | Auris Surgical Robotics, Inc. | Système pour une chirurgie de cataracte assistée par robot |
US10426661B2 (en) | 2013-08-13 | 2019-10-01 | Auris Health, Inc. | Method and apparatus for laser assisted cataract surgery |
US9713509B2 (en) | 2013-10-24 | 2017-07-25 | Auris Surgical Robotics, Inc. | Instrument device manipulator with back-mounted tool attachment mechanism |
US9763741B2 (en) | 2013-10-24 | 2017-09-19 | Auris Surgical Robotics, Inc. | System for robotic-assisted endolumenal surgery and related methods |
US9730715B2 (en) | 2014-05-08 | 2017-08-15 | Shockwave Medical, Inc. | Shock wave guide wire |
US10792464B2 (en) | 2014-07-01 | 2020-10-06 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
US9788910B2 (en) | 2014-07-01 | 2017-10-17 | Auris Surgical Robotics, Inc. | Instrument-mounted tension sensing mechanism for robotically-driven medical instruments |
EP3346899B1 (fr) | 2015-09-09 | 2022-11-09 | Auris Health, Inc. | Manipulateur d'instrument pour système robotique chirurgical |
US11484724B2 (en) | 2015-09-30 | 2022-11-01 | Btl Medical Solutions A.S. | Methods and devices for tissue treatment using mechanical stimulation and electromagnetic field |
US10018113B2 (en) * | 2015-11-11 | 2018-07-10 | General Electric Company | Ultrasonic cleaning system and method |
WO2017087195A1 (fr) | 2015-11-18 | 2017-05-26 | Shockwave Medical, Inc. | Électrodes d'onde de choc |
US10226265B2 (en) | 2016-04-25 | 2019-03-12 | Shockwave Medical, Inc. | Shock wave device with polarity switching |
WO2018067656A1 (fr) | 2016-10-06 | 2018-04-12 | Shockwave Meidcal, Inc. | Réparation de feuillet aortique à l'aide d'applicateurs d'ondes de choc |
US10357264B2 (en) | 2016-12-06 | 2019-07-23 | Shockwave Medical, Inc. | Shock wave balloon catheter with insertable electrodes |
US10441300B2 (en) | 2017-04-19 | 2019-10-15 | Shockwave Medical, Inc. | Drug delivery shock wave balloon catheter system |
US11020135B1 (en) | 2017-04-25 | 2021-06-01 | Shockwave Medical, Inc. | Shock wave device for treating vascular plaques |
US10966737B2 (en) | 2017-06-19 | 2021-04-06 | Shockwave Medical, Inc. | Device and method for generating forward directed shock waves |
US10709462B2 (en) | 2017-11-17 | 2020-07-14 | Shockwave Medical, Inc. | Low profile electrodes for a shock wave catheter |
US11864782B2 (en) | 2017-11-30 | 2024-01-09 | BTL Medical Solutions A. S. | Shock wave device |
EP3809988B1 (fr) | 2018-06-21 | 2023-06-07 | Shockwave Medical, Inc. | Système de traitement d'occlusions dans des lumières corporelles |
JP7515576B2 (ja) | 2019-09-24 | 2024-07-12 | ショックウェーブ メディカル, インコーポレイテッド | 身体管腔内の血栓を治療するためのシステム |
US11992232B2 (en) | 2020-10-27 | 2024-05-28 | Shockwave Medical, Inc. | System for treating thrombus in body lumens |
CN112438775B (zh) * | 2020-11-23 | 2021-09-14 | 安庆市立医院 | 一种泌尿外科尿路结石碎石装置 |
US12023098B2 (en) | 2021-10-05 | 2024-07-02 | Shockwave Medical, Inc. | Lesion crossing shock wave catheter |
LU500838B1 (de) * | 2021-11-08 | 2023-05-15 | Toposens Gmbh | Schallwandlervorrichtung |
WO2024192084A1 (fr) * | 2023-03-13 | 2024-09-19 | Mississippi State University | Amplificateur d'ondes pour dispositifs d'impact |
US12035932B1 (en) | 2023-04-21 | 2024-07-16 | Shockwave Medical, Inc. | Intravascular lithotripsy catheter with slotted emitter bands |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2351247A1 (de) | 1973-10-12 | 1975-04-24 | Dornier System Gmbh | Einrichtung zum beruehrungsfreien zertruemmern von im koerper von lebewesen befindlichen konkrementen |
US4603701A (en) * | 1983-12-16 | 1986-08-05 | Hewlett-Packard Company | Stand-off device with special fluid |
US5273027A (en) * | 1990-03-27 | 1993-12-28 | Olympus Optical Co., Ltd. | Method for dissolving a thickened mass within a living body and dissolving therapeutic apparatus for same |
WO1994017771A2 (fr) * | 1993-02-10 | 1994-08-18 | Siemens Aktiengesellschaft | Procede et appareil de therapie analgesique et/ou permettant d'agir sur le systeme nerveux vegetatif |
DE19525477A1 (de) | 1994-07-12 | 1996-01-25 | Ma Com Inc | Monopulstransceiver |
US5494038A (en) * | 1995-04-25 | 1996-02-27 | Abbott Laboratories | Apparatus for ultrasound testing |
WO1996025888A1 (fr) * | 1995-02-21 | 1996-08-29 | Exogen, Inc. | Structure de retenue d'un gel |
WO1996028213A1 (fr) * | 1995-03-16 | 1996-09-19 | Forskarpatent I Uppsala Ab | Sonde a ultrasons |
WO1998007470A1 (fr) * | 1996-08-23 | 1998-02-26 | Michael John Radley Young | Appareil ameliore de traitement therapeutique par ultrasons |
WO1998032379A1 (fr) * | 1997-01-27 | 1998-07-30 | Technion Research And Development Foundation Ltd. | Systeme ultrasonore et procedes d'utilisation associes |
DE19725477A1 (de) * | 1997-06-17 | 1998-12-24 | Ferton Holding | Medizinisches Instrument zur Behandlung von biologischem Gewebe |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3970076A (en) * | 1974-04-18 | 1976-07-20 | Dornier System Gmbh | Apparatus for heart stimulation |
DE3038445A1 (de) * | 1980-10-11 | 1982-05-27 | Dornier Gmbh, 7990 Friedrichshafen | Stosswellengenerator fuer medizinische anwendungsfaelle |
DE3220751A1 (de) * | 1982-06-02 | 1983-12-08 | Jörg Dr. 8022 Grünwald Schüller | Vorrichtung zur zertruemmerung von konkrementen, insbesondere von nierensteinen, im lebenden menschlichen oder tierischen koerper |
DE3502751A1 (de) * | 1985-01-28 | 1986-07-31 | Siemens AG, 1000 Berlin und 8000 München | Stosswellenrohr mit einer langen lebensdauer |
FR2584148B1 (fr) * | 1985-06-28 | 1989-05-05 | Dory Jacques | Generateur d'impulsions elastiques de grande puissance focalisees dans un liquide et obtenues par percussion |
DE3812837A1 (de) * | 1988-04-18 | 1989-11-02 | Schubert Werner | Bauelement fuer extracorporales einbringen von stosswellen |
DE19532219C2 (de) * | 1995-09-01 | 1997-07-31 | Tzn Forschung & Entwicklung | Energiewandler zur Hochleistungspulserzeugung |
DE19618972C2 (de) * | 1996-05-10 | 2000-06-15 | Ferton Holding Delemont | Handgerät zur Verwendung bei der Lithotripsie |
DE19929112A1 (de) * | 1999-06-24 | 2001-01-11 | Ferton Holding Sa | Medizinisches Instrument zur Behandlung von biologischem Gewebe sowie Verfahren zum Übertragen von Druckwellen |
-
1999
- 1999-06-24 DE DE19929112A patent/DE19929112A1/de not_active Ceased
-
2000
- 2000-05-25 WO PCT/EP2000/004771 patent/WO2001000094A1/fr active IP Right Grant
- 2000-05-25 DE DE50011757T patent/DE50011757D1/de not_active Expired - Lifetime
- 2000-05-25 AT AT00941984T patent/ATE311150T1/de not_active IP Right Cessation
- 2000-05-25 ES ES00941984T patent/ES2253234T3/es not_active Expired - Lifetime
- 2000-05-25 EP EP00941984A patent/EP1187563B1/fr not_active Expired - Lifetime
- 2000-05-25 US US10/018,805 patent/US6736784B1/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2351247A1 (de) | 1973-10-12 | 1975-04-24 | Dornier System Gmbh | Einrichtung zum beruehrungsfreien zertruemmern von im koerper von lebewesen befindlichen konkrementen |
US4603701A (en) * | 1983-12-16 | 1986-08-05 | Hewlett-Packard Company | Stand-off device with special fluid |
US5273027A (en) * | 1990-03-27 | 1993-12-28 | Olympus Optical Co., Ltd. | Method for dissolving a thickened mass within a living body and dissolving therapeutic apparatus for same |
WO1994017771A2 (fr) * | 1993-02-10 | 1994-08-18 | Siemens Aktiengesellschaft | Procede et appareil de therapie analgesique et/ou permettant d'agir sur le systeme nerveux vegetatif |
DE19525477A1 (de) | 1994-07-12 | 1996-01-25 | Ma Com Inc | Monopulstransceiver |
WO1996025888A1 (fr) * | 1995-02-21 | 1996-08-29 | Exogen, Inc. | Structure de retenue d'un gel |
WO1996028213A1 (fr) * | 1995-03-16 | 1996-09-19 | Forskarpatent I Uppsala Ab | Sonde a ultrasons |
US5494038A (en) * | 1995-04-25 | 1996-02-27 | Abbott Laboratories | Apparatus for ultrasound testing |
WO1998007470A1 (fr) * | 1996-08-23 | 1998-02-26 | Michael John Radley Young | Appareil ameliore de traitement therapeutique par ultrasons |
WO1998032379A1 (fr) * | 1997-01-27 | 1998-07-30 | Technion Research And Development Foundation Ltd. | Systeme ultrasonore et procedes d'utilisation associes |
DE19725477A1 (de) * | 1997-06-17 | 1998-12-24 | Ferton Holding | Medizinisches Instrument zur Behandlung von biologischem Gewebe |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6736784B1 (en) * | 1999-06-24 | 2004-05-18 | Ferton Holding S.A. | Medical instrument for treating biological tissue and method for transmitting pressure waves |
EP1389064A2 (fr) * | 2001-01-26 | 2004-02-18 | Yoni Iger | Procede et appareil permettant la delivrance de substances a des composants biologiques |
EP1389064A4 (fr) * | 2001-01-26 | 2005-12-28 | Yoni Iger | Procede et appareil permettant la delivrance de substances a des composants biologiques |
EP1574198B1 (fr) * | 2004-03-10 | 2007-07-25 | Elettronica Pagani S.r.l. | Instrument pour le traitement médical de tissue par ondes de choc |
US7521132B2 (en) | 2005-04-29 | 2009-04-21 | Ceratizit Austria Gesellschaft M.B.H. | Coated tool |
Also Published As
Publication number | Publication date |
---|---|
DE50011757D1 (de) | 2006-01-05 |
EP1187563A1 (fr) | 2002-03-20 |
ES2253234T3 (es) | 2006-06-01 |
US6736784B1 (en) | 2004-05-18 |
ATE311150T1 (de) | 2005-12-15 |
DE19929112A1 (de) | 2001-01-11 |
EP1187563B1 (fr) | 2005-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1187563B1 (fr) | Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression | |
EP0991447B1 (fr) | Instrument medical pour le traitement de tissus biologiques | |
EP3960237B1 (fr) | Instrument de traitement des tissus biologiques par ondes de pression de type ondes de choc | |
DE4213586C2 (de) | Therapieeinrichtung zur Behandlung mit fokussierten akustischen Wellen | |
EP2157921B1 (fr) | Appareil médical pour le traitement du corps humain ou animal par ondes de pression ou ondes de choc | |
EP1643919B1 (fr) | Dispositif de fragmentation de substances | |
DE3808783C2 (fr) | ||
EP0355178B1 (fr) | Appareil pour la destruction à distance de concrétions dans le corps d'un être vivant | |
EP2529678B1 (fr) | Appareil à ondes de pression pour le traitement du corps humain ou animal | |
DE10215416B4 (de) | Medizinisches Gerät zur Behandlung von biologischem Gewebe | |
EP0822782B1 (fr) | Systeme de traitement intracorporel | |
DE102007013288B4 (de) | Vorrichtung zur Behandlung biologischer Körpersubstanzen mit mechanischen Druckwellen | |
DE2412690C3 (fr) | ||
DE2412690A1 (de) | Einrichtung zur zerstoerung von steinen in den harnwegen, insbesondere von harnleiter- und nierensteinen | |
DE20023753U1 (de) | Medizinisches Instrument zur Behandlung von biologischem Gewebe | |
DE10130639A1 (de) | Verfahren und Vorrichtung zum Erzeugen von Stoßwellen für medizinische Anwendungen | |
EP1502626B1 (fr) | Appareil médical pour le traitement des tissues biologiques | |
EP4039202B1 (fr) | Dispositif de génération d'ondes de choc, en particulier de génération d'un champ d'action d'onde de choc comprimé | |
EP2347407A1 (fr) | Générateur d ondes d impulsions | |
EP2289435A1 (fr) | Appareil à ondes de pression pour le traitement du corps humain ou animal doté de piles de couches piézoélectriques | |
DE102008051174A1 (de) | Vorrichtung zum Einleiten von Stosswellen in einen lebenden Körper und deren Verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2000941984 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000941984 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10018805 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000941984 Country of ref document: EP |