WO2001000094A1 - Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression - Google Patents

Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression Download PDF

Info

Publication number
WO2001000094A1
WO2001000094A1 PCT/EP2000/004771 EP0004771W WO0100094A1 WO 2001000094 A1 WO2001000094 A1 WO 2001000094A1 EP 0004771 W EP0004771 W EP 0004771W WO 0100094 A1 WO0100094 A1 WO 0100094A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure chamber
instrument according
liquid
generating device
Prior art date
Application number
PCT/EP2000/004771
Other languages
German (de)
English (en)
Inventor
Andreas Menne
Thomas Jerger
Original Assignee
Ferton Holding S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7912495&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001000094(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ferton Holding S.A. filed Critical Ferton Holding S.A.
Priority to AT00941984T priority Critical patent/ATE311150T1/de
Priority to US10/018,805 priority patent/US6736784B1/en
Priority to EP00941984A priority patent/EP1187563B1/fr
Priority to DE50011757T priority patent/DE50011757D1/de
Publication of WO2001000094A1 publication Critical patent/WO2001000094A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/22Methods or devices for transmitting, conducting or directing sound for conducting sound through hollow pipes, e.g. speaking tubes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/24Methods or devices for transmitting, conducting or directing sound for conducting sound through solid bodies, e.g. wires

Definitions

  • the invention relates to a medical instrument for the treatment of biological tissue according to the preamble of claims 1 and 23 respectively.
  • Such instruments are used to accelerate the healing process for broken bones and .bone defects or also for periodontitis by means of pressure or shock waves or to get them started at all.
  • Another area of application is the treatment of pain associated with tendon insufficiency.
  • extra-corporal pressure wave devices used for such treatment, one is located at the focal point of an acoustic reflector, for example by means of a spark discharge, as specified in German Offenlegungsschrift DE 23 51 247 A. pulse-shaped pressure or shock wave generated, which is then focused by the reflector on the object to be sonicated. It is believed that pressure waves generate micro-damage in the biological tissue, which causes the body to take regeneration measures.
  • Such known pressure wave devices have a narrowly localized focus area, in which only a therapeutic effect is observed.
  • the reason for this is that these pressure wave devices - so-called extracorporeal lithotriptors - were developed for the destruction of body stones.
  • the entire energy is concentrated in a small area, in this case on the body stone to be destroyed.
  • a larger area must usually be sonicated evenly. This requires a complex movement mechanism and is also very time-consuming due to repeated visits to the treatment position.
  • German Offenlegungsschrift DE 197 25 477 AI describes a device in which unfocused, mechanically generated pressure waves are coupled into biological tissue with a transmission element. The user must point the blunt transmission element at the treatment site.
  • this very simple instrument has the consequence that the movement of the transmission element - even if it is only on a change in length is limited by the influence of a pressure wave - is unavoidable.
  • the stress caused by the deflection of the transmission element such as reddening and slight swelling, may be justifiable.
  • such an instrument would have to be placed on the gums, which does not withstand this strain.
  • the invention is therefore based on the object of designing a medical instrument and a method for transmitting pressure waves in such a way that, in a simple and cost-effective manner, it enables a uniform energy distribution of the pressure wave over a large effective area without the pressure wave being transmitted from the instrument damage the biological tissue the same.
  • the invention advantageously provides that the transmission device has a liquid-filled pressure chamber, the liquid of which transmits pressure waves coupled into a membrane arranged at the outlet end of the pressure chamber, which couples the pressure waves transmitted from the liquid into the biological tissue in an unfocused manner.
  • the impedance of the liquid substantially corresponds to the impedance of the biological tissue into which the pressure wave to be coupled ', the pressure wave resulting from the transfer of the liquid across the membrane to the biological tissue without transmission loss.
  • a uniform energy distribution of the pressure wave over a large area of effect are made possible without damaging the biological tissue during the transmission of the pressure wave.
  • a thin membrane is used as the coupling device. On the one hand, this closes the pressure chamber at its end on the output side and, on the other hand, is not a hindrance when the pressure waves are injected from the liquid into the biological tissue.
  • the entrance surface of the biological tissue is not mechanically loaded when the pressure wave is passed on through the membrane, so that the instrument can be used for all types of biological tissue. Impedance-adapted plastic films can be used as the membrane.
  • the pressure chamber preferably consists of an elongated channel.
  • the channel shape has the advantage that the pressure wave coupled in by the pressure wave generating device cannot migrate laterally and can in this way be transported over a longer distance than a plane wave without major losses.
  • the pressure wave is divided in this preferably tubular channel due to the running length and the non-linear reproductive properties, so that the elongate channel operates in the manner of a shock wave tube.
  • the ratio of the length of the pressure chamber to its diameter is preferably in the range between 2 and 10.
  • the pressure wave generating device can be arranged within the pressure chamber.
  • the pressure wave generating device generates a non-directional pressure wave that propagates in a spherical shape and, consequently, its energy with the distance rapidly decreasing from their place of origin. If the place of origin and application are not close to each other, only a small part of the energy used reaches its destination.
  • the pressure chamber filled with liquid can be designed such that the pressure wave generating device is arranged within the tubular channel in the vicinity of its input end.
  • the pressure wave generating device adjoins the pressure chamber.
  • the outlet interface of the pressure wave generating device is identical to the inlet interface of the pressure chamber.
  • the pressure wave generating device can apply the pressure waves. Generate piezoelectric, magnetostrictive, electrostrictive, magnetic, electrical or mechanical ways.
  • the pressure wave generating device can consist, for example, of an electrohydraulic probe arranged in the pressure chamber, which generates a pressure wave by sparkover.
  • the pressure wave generating device may comprise a piezo element which is arranged on the input side in 'the channel of the pressure chamber and directly adjacent to the liquid.
  • the pressure wave generating device can have an electromagnetically excited membrane, which is arranged on the input side in the pressure chamber and directly adjoins the liquid.
  • the pressure wave generating device mechanically couples the pressure waves into the pressure chamber and that a linearly guided, elastically mounted transmission element with an ner exit interface is coupled to the liquid of the pressure chamber and transmits mechanically induced pressure waves to the liquid.
  • an inner membrane which is elastically mounted in the axial direction and mechanically transmits the coupled pressure waves to the liquid, can be arranged at the input-side end of the pressure chamber.
  • the transmission element or the inner membrane is acted upon by a linearly movable back and forth impact part, which mechanically induces a pressure wave as a result of the force shock, which propagates to the exit interface of the membrane or the transmission element.
  • the striking part is guided coaxially to the transmission element.
  • the pressure wave generating device generates the injected pressure waves periodically.
  • a larger number of successive individual pulse-shaped pressure waves with weaker energy shows better healing success in the biological tissue than a single strong pressure pulse.
  • the pressure wave generating device can therefore work with a repetition frequency of individual pressure pulses between 1 and 20 Hz, wherein about 1000 to 2000 pressure pulses are required to treat the biological tissue.
  • the drive means for continuous operation are preferably designed in such a way that a periodic movement of the drive is possible. If, for example, a pneumatic percussion part is used which generates a pressure wave in the transmission element due to its impact, the air streams can be designed such that the percussion part ne continuously reciprocating and periodically hits the transmission element.
  • Electrically operated pressure wave generating devices are usually supplied by a capacitor bank.
  • the current supply for charging the batteries must be high enough so that the predetermined number of pressure pulses can be emitted with the necessary repetition frequency.
  • the cross section of the channel is flared or tapered in the direction of the outer membrane.
  • a pressure chamber tapering in the direction of the membrane amplifies the pressure wave by reducing its cross-section.
  • an expansion of the pressure chamber weakens the pressure wave, but sonicates a larger treatment area.
  • An impedance-adjusting medium can be arranged between the outer membrane and the biological tissue, which improves the coupling of the pressure waves into the biological tissue. If the membrane is not absolutely flat and without air pockets on the biological tissue, part of the pressure pulse is reflected by this acoustic discontinuity and the proportion of pressure waves that can be coupled in is reduced.
  • a suitable pasty impedance matching medium is, for example, an ultrasound gel or other pasty masses with an impedance similar to that of the biological tissue, such as petroleum jelly.
  • 1 shows a first embodiment with a mechanical pressure wave generating device
  • 2 shows a second embodiment with an electro-hydraulic probe as a pressure wave generating device
  • FIG. 3 shows a third exemplary embodiment with a piezoelectric pressure wave generating device
  • Fig. 5 shows a transmission device with a conically tapered pressure chamber
  • Fig. 6 shows a transmission device with a conically widening pressure chamber.
  • the handpiece 1 shown in Fig. 1 consists of a housing 2 of a mechanical pressure wave generating device 4 with an inner cylinder 7, in which a striking part 40 by means of pneumatic drive means 44 in connection with a dynamic pressure chamber 48, which coaxially surrounds the inner cylinder 7, between two end positions is moved back and forth.
  • a transmission device 8 for pressure waves is screwed onto the distal end of the housing 2.
  • the striking part 40 hydraulically, mechanically, electromagnetically or by other drive means.
  • the length of the acceleration path can be selected depending on the type of drive. With a pneumatically operated impact part 40 and a pneumatic pressure of approximately 0.3 MPa (3 bar), this is approximately 50 to 200 mm.
  • a magnet holder 50 is arranged, which can hold the metallic striking part 40 in its proximal end position until a pneumatic pressure applied via the connection 52 again Impact part 40 accelerated towards the distal end of the inner cylinder 7.
  • the air in the direction of movement of the striking part 40 in front of the striking part 40 is guided into the dynamic pressure chamber 48 via ring slots 54 located at the distal end of the inner cylinder 7.
  • a transmission element 30 arranged distally from the inner cylinder 7 at a high top speed of, for example, 10-25 m / s.
  • the transmission element 30 consists of an essentially cylindrical metallic probe with a flat or slightly smooth surface exit interface 32 which is curved on the inside or outside.
  • the transmission element 30 is guided in a sliding manner in a hollow cylindrical receiving part 34.
  • a collar 35 on the transmission element 30 serves as a stop part against the receiving part 34, a spring / damping element 38 being arranged between the collar 35 and the receiving part 34, which decouples the transmission element 30 from the receiving part 34 and also ensures that the transmission element 30 after the striking process returns to its starting position at the distal end of the inner cylinder 7.
  • An O-ring 37 which slidably receives the transmission element 30 seals the pressure wave generating device 4 against the transmission device 8 for the pressure waves.
  • the exit interface 32 of the transmission element 30 is in direct contact with a pressure chamber 12 of the transmission device 8 which is filled with liquid.
  • the liquid used is preferably a substance similar to the acoustic properties of biological tissue, such as water.
  • the pressure chamber 12 can have an elongated cylindrical shape in order to set up the pressure wave, but can also be kept very short if the pressure wave generating device 4 generates pressure waves of sufficient intensity.
  • the pressure chamber 12 is closed at the distal end by a membrane 16.
  • a tensioning device 20 tensions the membrane 16 over the distal end of the Pressure chamber 12 and closes its output end from the environment, so that the liquid 14 can not come out of the pressure chamber 3.
  • the spring / damping element 38 moves the transmission element 30 back into its starting position.
  • the striking part 40 is returned to its rest position at the proximal end of the inner cylinder 7 by the overpressure built up in the dynamic pressure chamber 48 and the backflow of air from the dynamic pressure chamber 48 through the ring slots 54 and held by the magnet holder 50.
  • the instrument is now ready to strike again.
  • FIG. 2 shows an embodiment with a spark discharge path for generating pressure waves.
  • An electrical circuit 19 supplies the two electrodes 21 of an electrohydraulic probe 18 with a short voltage pulse. If the surrounding liquid 14 in the pressure chamber 12 is electrically conductive, there is a sparkover between the electrodes 21. The sudden plasma formation associated therewith creates a pressure wave which propagates in the pressure chamber 12 and via the membrane 16 into the membrane 16 biological tissue in contact is coupled.
  • An alternative pressure wave generating device 3 is shown in FIG. 3.
  • An electrical circuit 23 supplies a voltage pulse to a piezoelectric element 22 arranged in the pressure chamber 12. As a result of the voltage pulse, the piezoelectric element 22 expands and generates a pressure wave in the surrounding liquid 14.
  • FIG. 4 shows a further alternative pressure wave generating device 4 with a coil arrangement 24, which is supplied with current by an electrical circuit 25.
  • An excitation membrane 26 is arranged distally in front of the coil arrangement 24.
  • the coil arrangement 24 induces an eddy current in the excitation membrane 26, which in turn builds up a magnetic field.
  • the repulsive forces between the coil arrangement 24 and the excitation membrane 26 the latter is jerkily moved away from the electrical coil arrangement 24 in the event of a short current pulse from the electrical circuit 25, as a result of which a pressure wave is coupled into the pressure chamber 12.
  • FIG. 5 shows a transmission device 8 in which the pressure chamber 12 tapers conically in the distal direction.
  • a pressure wave generated by a pressure wave generating device 4 is amplified as a result of the reduction in the effective cross section of the pressure chamber 12. If the pressure chamber 12 expands as shown in FIG. 6, the pressure wave is weakened but sonicates a larger area. If a division of the pressure wave is not necessary or not desired, the pressure chamber 12 can be kept short, as in the exemplary embodiments of FIGS. 2 to 4.
  • the transmission device 8 is designed as a screw head and can be screwed onto the pressure wave generating device 4 become.
  • a seal 10 seals the transmission device 8 against the receiving part 34 of the pressure wave transmission device 4.
  • the pressure chamber 12 can extend into the receiving part 34.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)
  • Materials For Medical Uses (AREA)

Abstract

L'invention concerne un instrument médical de traitement de tissu biologique, comportant un boîtier (2) constitué d'un dispositif (4) générateur d'ondes de pression et d'un dispositif de transmission (8) destiné à injecter des ondes de pression non focalisées dans le corps d'organismes vivants. Ce dispositif de transmission (8) comporte une chambre de pression (12) constituée d'une extrémité d'entrée et d'une extrémité de sortie et contenant un liquide (14). Les ondes de pression générées par le dispositif (4) générateur d'ondes de pression peuvent être injectées dans ce liquide et transmises à une membrane (16) disposée au niveau de l'extrémité de sortie de la chambre de pression (12). Cette membrane injecte ensuite les ondes de pression non focalisées transmises par le liquide, dans le tissu biologique.
PCT/EP2000/004771 1999-06-24 2000-05-25 Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression WO2001000094A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT00941984T ATE311150T1 (de) 1999-06-24 2000-05-25 Medizinisches instrument zur behandlung von biologischem gewebe sowie verfahren zum übertragen von druckwellen
US10/018,805 US6736784B1 (en) 1999-06-24 2000-05-25 Medical instrument for treating biological tissue and method for transmitting pressure waves
EP00941984A EP1187563B1 (fr) 1999-06-24 2000-05-25 Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression
DE50011757T DE50011757D1 (de) 1999-06-24 2000-05-25 Medizinisches instrument zur behandlung von biologischem gewebe sowie verfahren zum übertragen von druckwellen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19929112.8 1999-06-24
DE19929112A DE19929112A1 (de) 1999-06-24 1999-06-24 Medizinisches Instrument zur Behandlung von biologischem Gewebe sowie Verfahren zum Übertragen von Druckwellen

Publications (1)

Publication Number Publication Date
WO2001000094A1 true WO2001000094A1 (fr) 2001-01-04

Family

ID=7912495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004771 WO2001000094A1 (fr) 1999-06-24 2000-05-25 Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression

Country Status (6)

Country Link
US (1) US6736784B1 (fr)
EP (1) EP1187563B1 (fr)
AT (1) ATE311150T1 (fr)
DE (2) DE19929112A1 (fr)
ES (1) ES2253234T3 (fr)
WO (1) WO2001000094A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1389064A2 (fr) * 2001-01-26 2004-02-18 Yoni Iger Procede et appareil permettant la delivrance de substances a des composants biologiques
US6736784B1 (en) * 1999-06-24 2004-05-18 Ferton Holding S.A. Medical instrument for treating biological tissue and method for transmitting pressure waves
EP1574198B1 (fr) * 2004-03-10 2007-07-25 Elettronica Pagani S.r.l. Instrument pour le traitement médical de tissue par ondes de choc
US7521132B2 (en) 2005-04-29 2009-04-21 Ceratizit Austria Gesellschaft M.B.H. Coated tool

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130639A1 (de) 2001-06-26 2003-01-30 Hmt Ag Verfahren und Vorrichtung zum Erzeugen von Stoßwellen für medizinische Anwendungen
DE10215416B4 (de) 2002-04-08 2020-10-29 Ferton Holding S.A. Medizinisches Gerät zur Behandlung von biologischem Gewebe
US20040092819A1 (en) * 2002-08-16 2004-05-13 Hmt High Medical Technologies Ag Method for treating laminitis in horses, ponies and other equines with acoustic waves
US20040162582A1 (en) * 2003-02-13 2004-08-19 Hmt High Medical Technologies Ag Treatment of osteoarthritis
US20040162508A1 (en) * 2003-02-19 2004-08-19 Walter Uebelacker Shock wave therapy method and device
US8257282B2 (en) * 2004-02-19 2012-09-04 General Patent, Llc Pressure pulse/shock wave apparatus for generating waves having plane, nearly plane, convergent off target or divergent characteristics
DE10331694A1 (de) * 2003-07-11 2005-02-10 Karl Storz Gmbh & Co. Kg Vorrichtung zum Fragmentieren von Substanzen
DE102004046848A1 (de) * 2004-09-27 2006-04-06 Ferton Holding S.A. Vorrichtung und Verfahren zur Entfernung von Zahnapplikationen wie Brackets
US7578796B2 (en) * 2004-10-22 2009-08-25 General Patent Llc Method of shockwave treating fish and shellfish
US7857775B2 (en) * 2005-03-15 2010-12-28 Syneron Medical Ltd. Method for soft tissue treatment
WO2007108854A2 (fr) * 2005-12-30 2007-09-27 Sanuwave, Inc. Système applicateur d'ondes de pression acoustique à compresse de conduction
DE102006062356B3 (de) * 2006-12-22 2008-04-24 Storz Medical Ag Medizinisches Gerät zur Behandlung des menschlichen oder tierischen Körpers mit mechanischen Druck- oder Stoßwellen
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
US20220096112A1 (en) 2007-01-02 2022-03-31 Aquabeam, Llc Tissue resection with pressure sensing
DE202007007922U1 (de) * 2007-05-31 2008-10-09 Storz Medical Ag Medizinisches Gerät zur Behandlung des menschlichen oder tierischen Körpers mit mechanischen Druck- oder Stoßwellen
EP2259742B1 (fr) 2008-03-06 2020-01-01 AquaBeam LLC Ablation des tissus et cautérisation avec de l'énergie optique véhiculée dans un courant de fluide
US20100036294A1 (en) * 2008-05-07 2010-02-11 Robert Mantell Radially-Firing Electrohydraulic Lithotripsy Probe
ES2671898T3 (es) * 2008-06-13 2018-06-11 Shockwave Medical, Inc. Sistema de catéter con globo de ondas de choque
US10702293B2 (en) 2008-06-13 2020-07-07 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
US9072534B2 (en) 2008-06-13 2015-07-07 Shockwave Medical, Inc. Non-cavitation shockwave balloon catheter system
US20100023033A1 (en) * 2008-07-25 2010-01-28 Medtronic Vescular, Inc. Hydrodynamic Thrombectomy Catheter
US20100022943A1 (en) * 2008-07-25 2010-01-28 Medtronic Vascular, Inc. Hydrodynamic Thrombectomy Catheter
EP2529792B1 (fr) * 2008-10-31 2023-05-10 Ferton Holding SA Instrument destiné au traitement de tissus biologiques par ondes de pression de type ondes de choc
US9180280B2 (en) * 2008-11-04 2015-11-10 Shockwave Medical, Inc. Drug delivery shockwave balloon catheter system
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US9147046B2 (en) * 2010-04-28 2015-09-29 Empi, Inc. Systems and methods for modulating pressure wave therapy
US8574247B2 (en) 2011-11-08 2013-11-05 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US9504604B2 (en) * 2011-12-16 2016-11-29 Auris Surgical Robotics, Inc. Lithotripsy eye treatment
US9498236B2 (en) * 2012-01-31 2016-11-22 Hi Impacts Ltd High pressure ballistic extracorporeal shockwave device, system and method of use
JP6080872B2 (ja) 2012-02-29 2017-02-15 プロセプト バイオロボティクス コーポレイション 自動化された画像誘導組織切除および治療
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US9642673B2 (en) 2012-06-27 2017-05-09 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
WO2014025620A1 (fr) 2012-08-06 2014-02-13 Shockwave Medical, Inc. Cathéter à onde de choc
CA2881208C (fr) 2012-08-06 2020-06-30 Shockwave Medical, Inc. Electrodes a profil bas pour catheter a onde de choc d'angioplastie
US9554815B2 (en) 2012-08-08 2017-01-31 Shockwave Medical, Inc. Shockwave valvuloplasty with multiple balloons
US9138249B2 (en) 2012-08-17 2015-09-22 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US9522012B2 (en) 2012-09-13 2016-12-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9333000B2 (en) 2012-09-13 2016-05-10 Shockwave Medical, Inc. Shockwave catheter system with energy control
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
US9867635B2 (en) 2013-03-08 2018-01-16 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US10080576B2 (en) 2013-03-08 2018-09-25 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US10149720B2 (en) 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
ES2703539T3 (es) 2013-03-11 2019-03-11 Northgate Tech Inc Litotriptor electrohidráulico no focalizado
WO2014201165A1 (fr) 2013-06-11 2014-12-18 Auris Surgical Robotics, Inc. Système pour une chirurgie de cataracte assistée par robot
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
US9713509B2 (en) 2013-10-24 2017-07-25 Auris Surgical Robotics, Inc. Instrument device manipulator with back-mounted tool attachment mechanism
US9763741B2 (en) 2013-10-24 2017-09-19 Auris Surgical Robotics, Inc. System for robotic-assisted endolumenal surgery and related methods
US9730715B2 (en) 2014-05-08 2017-08-15 Shockwave Medical, Inc. Shock wave guide wire
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
EP3346899B1 (fr) 2015-09-09 2022-11-09 Auris Health, Inc. Manipulateur d'instrument pour système robotique chirurgical
US11484724B2 (en) 2015-09-30 2022-11-01 Btl Medical Solutions A.S. Methods and devices for tissue treatment using mechanical stimulation and electromagnetic field
US10018113B2 (en) * 2015-11-11 2018-07-10 General Electric Company Ultrasonic cleaning system and method
WO2017087195A1 (fr) 2015-11-18 2017-05-26 Shockwave Medical, Inc. Électrodes d'onde de choc
US10226265B2 (en) 2016-04-25 2019-03-12 Shockwave Medical, Inc. Shock wave device with polarity switching
WO2018067656A1 (fr) 2016-10-06 2018-04-12 Shockwave Meidcal, Inc. Réparation de feuillet aortique à l'aide d'applicateurs d'ondes de choc
US10357264B2 (en) 2016-12-06 2019-07-23 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
US10441300B2 (en) 2017-04-19 2019-10-15 Shockwave Medical, Inc. Drug delivery shock wave balloon catheter system
US11020135B1 (en) 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
US10966737B2 (en) 2017-06-19 2021-04-06 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
US10709462B2 (en) 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
US11864782B2 (en) 2017-11-30 2024-01-09 BTL Medical Solutions A. S. Shock wave device
EP3809988B1 (fr) 2018-06-21 2023-06-07 Shockwave Medical, Inc. Système de traitement d'occlusions dans des lumières corporelles
JP7515576B2 (ja) 2019-09-24 2024-07-12 ショックウェーブ メディカル, インコーポレイテッド 身体管腔内の血栓を治療するためのシステム
US11992232B2 (en) 2020-10-27 2024-05-28 Shockwave Medical, Inc. System for treating thrombus in body lumens
CN112438775B (zh) * 2020-11-23 2021-09-14 安庆市立医院 一种泌尿外科尿路结石碎石装置
US12023098B2 (en) 2021-10-05 2024-07-02 Shockwave Medical, Inc. Lesion crossing shock wave catheter
LU500838B1 (de) * 2021-11-08 2023-05-15 Toposens Gmbh Schallwandlervorrichtung
WO2024192084A1 (fr) * 2023-03-13 2024-09-19 Mississippi State University Amplificateur d'ondes pour dispositifs d'impact
US12035932B1 (en) 2023-04-21 2024-07-16 Shockwave Medical, Inc. Intravascular lithotripsy catheter with slotted emitter bands

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2351247A1 (de) 1973-10-12 1975-04-24 Dornier System Gmbh Einrichtung zum beruehrungsfreien zertruemmern von im koerper von lebewesen befindlichen konkrementen
US4603701A (en) * 1983-12-16 1986-08-05 Hewlett-Packard Company Stand-off device with special fluid
US5273027A (en) * 1990-03-27 1993-12-28 Olympus Optical Co., Ltd. Method for dissolving a thickened mass within a living body and dissolving therapeutic apparatus for same
WO1994017771A2 (fr) * 1993-02-10 1994-08-18 Siemens Aktiengesellschaft Procede et appareil de therapie analgesique et/ou permettant d'agir sur le systeme nerveux vegetatif
DE19525477A1 (de) 1994-07-12 1996-01-25 Ma Com Inc Monopulstransceiver
US5494038A (en) * 1995-04-25 1996-02-27 Abbott Laboratories Apparatus for ultrasound testing
WO1996025888A1 (fr) * 1995-02-21 1996-08-29 Exogen, Inc. Structure de retenue d'un gel
WO1996028213A1 (fr) * 1995-03-16 1996-09-19 Forskarpatent I Uppsala Ab Sonde a ultrasons
WO1998007470A1 (fr) * 1996-08-23 1998-02-26 Michael John Radley Young Appareil ameliore de traitement therapeutique par ultrasons
WO1998032379A1 (fr) * 1997-01-27 1998-07-30 Technion Research And Development Foundation Ltd. Systeme ultrasonore et procedes d'utilisation associes
DE19725477A1 (de) * 1997-06-17 1998-12-24 Ferton Holding Medizinisches Instrument zur Behandlung von biologischem Gewebe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970076A (en) * 1974-04-18 1976-07-20 Dornier System Gmbh Apparatus for heart stimulation
DE3038445A1 (de) * 1980-10-11 1982-05-27 Dornier Gmbh, 7990 Friedrichshafen Stosswellengenerator fuer medizinische anwendungsfaelle
DE3220751A1 (de) * 1982-06-02 1983-12-08 Jörg Dr. 8022 Grünwald Schüller Vorrichtung zur zertruemmerung von konkrementen, insbesondere von nierensteinen, im lebenden menschlichen oder tierischen koerper
DE3502751A1 (de) * 1985-01-28 1986-07-31 Siemens AG, 1000 Berlin und 8000 München Stosswellenrohr mit einer langen lebensdauer
FR2584148B1 (fr) * 1985-06-28 1989-05-05 Dory Jacques Generateur d'impulsions elastiques de grande puissance focalisees dans un liquide et obtenues par percussion
DE3812837A1 (de) * 1988-04-18 1989-11-02 Schubert Werner Bauelement fuer extracorporales einbringen von stosswellen
DE19532219C2 (de) * 1995-09-01 1997-07-31 Tzn Forschung & Entwicklung Energiewandler zur Hochleistungspulserzeugung
DE19618972C2 (de) * 1996-05-10 2000-06-15 Ferton Holding Delemont Handgerät zur Verwendung bei der Lithotripsie
DE19929112A1 (de) * 1999-06-24 2001-01-11 Ferton Holding Sa Medizinisches Instrument zur Behandlung von biologischem Gewebe sowie Verfahren zum Übertragen von Druckwellen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2351247A1 (de) 1973-10-12 1975-04-24 Dornier System Gmbh Einrichtung zum beruehrungsfreien zertruemmern von im koerper von lebewesen befindlichen konkrementen
US4603701A (en) * 1983-12-16 1986-08-05 Hewlett-Packard Company Stand-off device with special fluid
US5273027A (en) * 1990-03-27 1993-12-28 Olympus Optical Co., Ltd. Method for dissolving a thickened mass within a living body and dissolving therapeutic apparatus for same
WO1994017771A2 (fr) * 1993-02-10 1994-08-18 Siemens Aktiengesellschaft Procede et appareil de therapie analgesique et/ou permettant d'agir sur le systeme nerveux vegetatif
DE19525477A1 (de) 1994-07-12 1996-01-25 Ma Com Inc Monopulstransceiver
WO1996025888A1 (fr) * 1995-02-21 1996-08-29 Exogen, Inc. Structure de retenue d'un gel
WO1996028213A1 (fr) * 1995-03-16 1996-09-19 Forskarpatent I Uppsala Ab Sonde a ultrasons
US5494038A (en) * 1995-04-25 1996-02-27 Abbott Laboratories Apparatus for ultrasound testing
WO1998007470A1 (fr) * 1996-08-23 1998-02-26 Michael John Radley Young Appareil ameliore de traitement therapeutique par ultrasons
WO1998032379A1 (fr) * 1997-01-27 1998-07-30 Technion Research And Development Foundation Ltd. Systeme ultrasonore et procedes d'utilisation associes
DE19725477A1 (de) * 1997-06-17 1998-12-24 Ferton Holding Medizinisches Instrument zur Behandlung von biologischem Gewebe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736784B1 (en) * 1999-06-24 2004-05-18 Ferton Holding S.A. Medical instrument for treating biological tissue and method for transmitting pressure waves
EP1389064A2 (fr) * 2001-01-26 2004-02-18 Yoni Iger Procede et appareil permettant la delivrance de substances a des composants biologiques
EP1389064A4 (fr) * 2001-01-26 2005-12-28 Yoni Iger Procede et appareil permettant la delivrance de substances a des composants biologiques
EP1574198B1 (fr) * 2004-03-10 2007-07-25 Elettronica Pagani S.r.l. Instrument pour le traitement médical de tissue par ondes de choc
US7521132B2 (en) 2005-04-29 2009-04-21 Ceratizit Austria Gesellschaft M.B.H. Coated tool

Also Published As

Publication number Publication date
DE50011757D1 (de) 2006-01-05
EP1187563A1 (fr) 2002-03-20
ES2253234T3 (es) 2006-06-01
US6736784B1 (en) 2004-05-18
ATE311150T1 (de) 2005-12-15
DE19929112A1 (de) 2001-01-11
EP1187563B1 (fr) 2005-11-30

Similar Documents

Publication Publication Date Title
EP1187563B1 (fr) Instrument medical de traitement de tissu biologique et procede de transmission d'ondes de pression
EP0991447B1 (fr) Instrument medical pour le traitement de tissus biologiques
EP3960237B1 (fr) Instrument de traitement des tissus biologiques par ondes de pression de type ondes de choc
DE4213586C2 (de) Therapieeinrichtung zur Behandlung mit fokussierten akustischen Wellen
EP2157921B1 (fr) Appareil médical pour le traitement du corps humain ou animal par ondes de pression ou ondes de choc
EP1643919B1 (fr) Dispositif de fragmentation de substances
DE3808783C2 (fr)
EP0355178B1 (fr) Appareil pour la destruction à distance de concrétions dans le corps d'un être vivant
EP2529678B1 (fr) Appareil à ondes de pression pour le traitement du corps humain ou animal
DE10215416B4 (de) Medizinisches Gerät zur Behandlung von biologischem Gewebe
EP0822782B1 (fr) Systeme de traitement intracorporel
DE102007013288B4 (de) Vorrichtung zur Behandlung biologischer Körpersubstanzen mit mechanischen Druckwellen
DE2412690C3 (fr)
DE2412690A1 (de) Einrichtung zur zerstoerung von steinen in den harnwegen, insbesondere von harnleiter- und nierensteinen
DE20023753U1 (de) Medizinisches Instrument zur Behandlung von biologischem Gewebe
DE10130639A1 (de) Verfahren und Vorrichtung zum Erzeugen von Stoßwellen für medizinische Anwendungen
EP1502626B1 (fr) Appareil médical pour le traitement des tissues biologiques
EP4039202B1 (fr) Dispositif de génération d'ondes de choc, en particulier de génération d'un champ d'action d'onde de choc comprimé
EP2347407A1 (fr) Générateur d ondes d impulsions
EP2289435A1 (fr) Appareil à ondes de pression pour le traitement du corps humain ou animal doté de piles de couches piézoélectriques
DE102008051174A1 (de) Vorrichtung zum Einleiten von Stosswellen in einen lebenden Körper und deren Verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000941984

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000941984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10018805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000941984

Country of ref document: EP