WO1991005211A1 - Condenseur pour automobile et methode pour sa realisation - Google Patents

Condenseur pour automobile et methode pour sa realisation Download PDF

Info

Publication number
WO1991005211A1
WO1991005211A1 PCT/FR1990/000702 FR9000702W WO9105211A1 WO 1991005211 A1 WO1991005211 A1 WO 1991005211A1 FR 9000702 W FR9000702 W FR 9000702W WO 9105211 A1 WO9105211 A1 WO 9105211A1
Authority
WO
WIPO (PCT)
Prior art keywords
plates
hollows
elongated
opposite
heat exchange
Prior art date
Application number
PCT/FR1990/000702
Other languages
English (en)
Inventor
Paul K. Beatenbough
Original Assignee
Valeo Thermique Moteur
Valeo Engine Cooling, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermique Moteur, Valeo Engine Cooling, Incorporated filed Critical Valeo Thermique Moteur
Priority to BR909006944A priority Critical patent/BR9006944A/pt
Priority to DE90914931T priority patent/DE69004793T2/de
Publication of WO1991005211A1 publication Critical patent/WO1991005211A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F2001/027Tubular elements of cross-section which is non-circular with dimples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/454Heat exchange having side-by-side conduits structure or conduit section
    • Y10S165/464Conduits formed by joined pairs of matched plates
    • Y10S165/467Conduits formed by joined pairs of matched plates with turbulence enhancing pattern embossed on joined plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49359Cooling apparatus making, e.g., air conditioner, refrigerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49396Condenser, evaporator or vaporizer making

Definitions

  • the invention relates to a condenser for a motor vehicle and a method for producing it, this condenser having a particular application in uses where resistance to high internal pressures of a fluid is necessary.
  • the heat exchangers still used such as condensers for motor vehicle air conditioning systems usually comprise a tube configured in the form of a continuous coil inside which fluids can flow in gaseous and / or liquid forms.
  • a cooling means such as ambient air, passes over the tubes and fins allowing the heat exchange of the very hot fluid in the tube towards the cooling means.
  • the continuous tubes are made from U-shaped elements to allow insertion through the fins and, after assembly, the elements are connected to each other by U-shaped brackets of so as to constitute a tube in the form of a continuous serpentine.
  • the condensers comprise manifold boxes spaced apart and parallel to each other, said boxes being connected to each other by a multiplicity of parallel heat exchange tubes so as to allow the circulation of the ._
  • fluid such as a fluid in gaseous and / or liquid form between the manifolds.
  • the multiplicity of tubes are circular or rectangular in configuration and have fins of flat or corrugated shapes disposed through or between the tubes so as to increase the heat exchange efficiency of the heat exchange tubes.
  • the device is formed, in known manner, by inserting the multiplicity of tubes into holes provided on the manifolds, placing corrugated fins between the tubes and welding or brazing the tubes to the manifolds and the fins to the tubes.
  • the refrigerant gas flows through the heat exchange tubes and is cooled or substantially condensed into a liquid by the flow of cooling air sweeping the tubes.
  • the direction of the cooling stream and the cooling air flow are generally perpendicular to each other.
  • the longitudinal dimension of one of the edges of the tube perpendicular to the air flow is the leading edge in contact with the air flow and the width of this leading edge is generally considered to be the transverse dimension of the tube d 'heat exchanger.
  • the transverse dimension of a tube is thus the average width of the tube.
  • a round tube has a transverse dimension equal to its diameter and a rectangular tube has a transverse dimension equal to the width of its leading edge.
  • cylindrical shaped heat exchange tubes can decrease the efficiencies required in many modern automotive applications.
  • the width of the leading edge represents an obstruction to the air flows and it is generally desired to minimize this obstruction.
  • the smallest round tubes used commercially have a diameter greater than 5.08mm (0.2 inches) creating a barrier causing the formation of transverse dimension of less than 5.08mm (0.2 inches).
  • substantially rectangular heat exchange tubes In order to reduce the width of the leading edge, for example by reducing the transverse dimension, substantially rectangular heat exchange tubes have been proposed and have found a degree of acceptance in the industry thanks to the different rectangular configurations. variables.
  • US-A-4 615 385 although particularly relating to a manifold construction, describes a heat exchange tube of rectangular shape with a plurality of tubes connected in parallel between the manifolds.
  • the tube is described as being flat such that the smallest dimension of the rectangle includes a circular surface which is arranged in the device including the transverse dimension.
  • US-A-4,688,311 describes a method for manufacturing a heat exchange tube of rectangular shape which can be effective in resisting the high internal pressures of the fluid of an automobile air conditioning system.
  • a rectangular tube comprising the circular configuration of the transverse dimension of US-A-615 385 is internally connected with an insert in the form of a corrugated fin which is fixed with the interior of the tube along its longitudinal dimension.
  • the internal fins serve as tension spacers to aid resistance to internal fluid pressures.
  • Such tubes require the use of additive materials during their development and it is not easy to manufacture them because of the difficulties of inserting the fins inside the tube.
  • One of the objects of the invention is to provide heat exchange structures having effective resistances to air flows in their transverse dimensions.
  • Another object of the invention is to provide heat exchange structures having resistances to the internal pressures of the fluids.
  • Another object of the invention is to provide an automotive condenser having resistance to the internal pressures of the fluids.
  • the invention relates to a condenser for a motor vehicle comprising elongated generally rectangular and hollow heat exchange structures extending between manifolds.
  • the hollow structures include opposite elongated plates connected along their longitudinal edges to define a passage extending in the longitudinal direction of the plate, said opposite plates being corrugated in a transverse structure so as to define generally parallel bumps and depressions and arranged obliquely to the longitudinal direction.
  • the hollows of a first plate are arranged to cross the hollows of a second plate in such a way that the maximum distance between the crossing points of the intersecting hollows is not greater than 5.08mm (0.2 inches).
  • the intersecting recesses are contiguous and the opposing bumps define intersecting passages, arranged obliquely, and extending longitudinally through the heat exchange structure.
  • the automobile condensers according to the invention are manufactured by a method according to which the elongated plates corrugated in a cross section so as to have a plurality of bumps angularly arranged obliquely and extending longitudinally, said bumps being separated by hollows, being arranged in such a way that the apexes of the hollows of a first plate cross the apexes of the hollows of a second plate at a maximum distance between the crossing points which does not exceed 5.08mm (0.2 inches).
  • the hollows of said first and second plates are joined to the crossing points and the bumps define hollow passages angularly arranged in intersecting and extending longitudinally in a tubular heat exchange structure.
  • Figure 1 is a perspective view of the automobile condenser obtained according to the present invention.
  • Figure 2 is an enlarged partial sectional view along approximately line 2-2 of Figure 1.
  • Figure 3 is a plan view of the heat exchange structure obtained according to the present invention.
  • Figure 4 is an enlarged sectional view along line 4-4 of Figure 3.
  • Igure 5 is a view similar to FIG. 4 but showing the parts in assembly condition, this view being taken on line 5-5 of FIG. 3.
  • FIG. 1 An embodiment of an automobile condenser according to the invention is illustrated in FIG. 1. It is however understandable that the present invention can be used in a plurality of other condensers in which a heat exchange structure is provided between manifolds.
  • a condenser for an automobile is illustrated and includes an intake manifold 11 and, disposed generally parallel thereto, being opposite, an exhaust manifold 12.
  • the intake manifold 11 includes an intake 13 and the evacuation manifold 12 includes an outlet 14.
  • a plurality of hollow heat exchange structures 15 extend between the opposite manifolds and, disposed between the structures, are corrugated fins 16 in heat exchange relationship with the hollow heat exchange structures.
  • the plurality of heat exchange structures 15 are connected to the intake manifold 11 and to the exhaust manifold 12 by solder joints 17 as best shown in FIG. 2.
  • the corrugated fins 16 are inserted between the plurality of heat exchange structures and are in intimate contact with them.
  • a first hot fluid in gaseous form such as a refrigerant enters the intake manifold 11 through the intake 13 flows along the longitudinally extending passages of the plurality hollow heat exchange structures and inside the outlet manifold 12.
  • the flow of gaseous fluid, along the exchange structures is directed by the hollows and bumps, arranged angularly, opposite elongated plates , in a discontinuous and undulating circuit in which the flow of fluid is passively separated and mixed by the circuits crossing intersecting hollows by increasing the contact of the flow of fluid with the elongated plates.
  • the heat of the fluid is dissipated towards the opposite plates of the heat exchange structures and towards the corrugated fins in contact with them.
  • a second flow of fluid such as ambient air, flows through the condenser in such a way that the second fluid flows along the cross section of the heat exchange structures and along the corrugated fins.
  • the heat is dissipated from such structures and fins towards the second fluid sweeping them, when the heat of the second fluid is less important than the heat of the heat exchange structure and / or of the corrugated fins.
  • the first gaseous fluid condenses into a liquid which flows along the remaining length of the heat exchange structures to the outlet manifold 12 and via outlet 14 for processing in other parts of the system.
  • FIG 2 illustrates a sectional view of the condenser of Figure 1, in which the inlet and outlet manifolds 11 and 12 are provided with a plurality of elongated holes 18 substantially parallel and separate , configured to receive the open ends of the plurality of elongated hollow heat exchange structures and allow circulation of gaseous and / or liquid material therebetween.
  • the exchange structures are sealed with the manifolds by suitable connecting means which provide sufficient structural integrity so as to withstand the pressures generated inside the system when the condenser is used.
  • the solder joint 17 is illustrated as a preferred embodiment when the building materials are aluminum.
  • the heat sink fins can preferably be connected to the heat exchange structures with a conductive material thermal, or can be linked to structures depending on the expected services of the system.
  • planar fins can generally be provided with elongated rods generally shaped in relation to the cross section of the heat exchange structures and can be inserted around these structures.
  • the corrugated dissipative fins or the flat fins comprise at least the same width as the heat exchange structures, said fins being in contact with the exchange structures as much as possible along the width of said exchange structures.
  • the heat sink fins are fine and made from high level thermal conductive material.
  • the fins 16 of the condenser 10 comprise a thin conductive material of approximately the same width as the heat exchange structures 15 and are intimately linked between the plurality of exchange structures to maintain their structural integrity in the condenser.
  • Figures 3, 4 and 5 illustrate a preferred embodiment of the heat exchange structures according to the invention in which the bumps generally form rectangular passages in the central section of the body of the structure and passages having a generally circular surface are formed with contiguous longitudinal edges.
  • a heat exchange structure 15 comprises an elongated corrugated upper plate 19 and an elongated corrugated lower plate 20 contiguous to the intersecting recesses 21 to form generally rectangular passages 22.
  • the undulations in the plate 19 are oblique with respect to the undulations of the plate 20.
  • passages 26 By joining the opposing plates by covering its outer longitudinal edge 24 with the inner longitudinal edge 25, there are formed passages 26 having a substantially circular surface.
  • the edges 24 and 25 can be carried together and be united in a common plane parallel to the main plane of the plates and can even comprise an elongated flat surface.
  • the longitudinal edges are brazed at the interface 28 and the intersecting recesses 21 are brazed at the intersecting point 19 to ensure the structural integrity of the hollow passages of the heat exchange structures.
  • the hollows and bumps of the elongated plates can be suitably formed by stamping, embossing or the like by forming the hollows of desired shape in the elongated plates.
  • the surface between the recesses includes adjacent bumps.
  • bumps can be stamped or otherwise formed in the plates in order to be erected above. above the plate plane.
  • the bumps and the hollows will present an oblique angle to the longitudinal direction of the elongated plate.
  • the oblique angle will be of the order of 10 to 85 ° considering the longitudinal direction of the plate and preferably of the order of 20 to 70A
  • the first and second opposite elongated plates, having recesses angularly arranged, are assembled in such a way that the recesses of the first plate cross the opposite recesses of the second plate. It is not essential for the hollows or bumps of the first plate to be in the same oblique angle in the longitudinal direction as those of the second plate, although this is generally preferred.
  • angles of the intersection of the hollows which is an angle formed by the hollows crossing and opening in the longitudinal direction of the assembled plates, can generally be of the order of 20 to 170A
  • FIG. 3 illustrates elongate contiguous plates in which the intersecting hollows form an angle A of the order of 90 ".
  • An angle will approach 0 ° when the oblique angle of the hollows of the opposed elongate plates will approach the longitudinal direction and will approach 180 ° when the oblique angles will approach a perpendicular to the longitudinal direction.
  • the hollows in the opposite plates are preferably formed with a small radius of apex inside their apices.
  • the inner apex radius is preferably no greater than 1.5 times the thickness of the material from which the plate is made and most preferably less than the thickness of the material.
  • the width of a hump includes the dimension of the plate between the vertices of adjacent hollows and of such dimension is variable depending on the internal pressure considered inside the exchange structure and the extent of the junction of the hollow intersecting opposite plates.
  • the width of the bumps on a plate with a The defined number of contiguous intersecting depressions in an internal high pressure system will typically be smaller than that in an internal low pressure system.
  • the width of the bumps is preferably greater than two and a half times the thickness of the material from which the plate is produced and less than seven times this thickness.
  • the thickness of the material of the opposite plates is from 0.30 mm to 0.76 mm (0.012 to 0.030 inches) and preferably from 0.30 to 0, 71 mm (0.012 to 0.028 inches).
  • the internal radius of the recesses is preferably of the order of 1.5 times the thickness of the material of the thickness of the plate or less and the width of the bumps is preferably of 2.5 to 7 times the thickness of the material of the plaque.
  • the heat exchange structures having the configuration of the invention and dimensioned according to the preferred data can thus preferably be produced having a transverse dimension of the order of 3.17 mm (0.125 inches) or less.
  • the condensers of the invention may be constructed from a suitable material which will withstand the effects of corrosion and internal pressures of system fluid.
  • Typical materials include malleable materials such as aluminum and copper and in particular alloys.
  • the materials can be internally or externally plated, treated or other.
  • each of the components of a condenser is formed from the same material when joined together.
  • the plates used to make the heat exchange structures will be formed from the same material.
  • manifolds and heat exchange structures will also be formed from the same metal or a metal alloy when brazed or welded together. It is understandable that, although the illustrated invention includes a condenser for an automobile, the invention is applicable to multiple uses of heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Le condenseur comprend des structures d'échange thermique creuses allongées s'étendant entre les boîtes collectrices (11, 12), les structures creuses étant formées par des plaques allongées (19, 20) opposées ondulant en section transversale pour former une pluralité de bosses et creux (21) opposés s'étendant longitudinalement dans lequel les creux opposés se croisent à une distance maximale entre les points des creux se croisant de pas plus de 5,08 mm (0,2 inches) et lesdits creux se croisant étant réunis à tous les points de croisement en définissant des passages creux (22) s'étendant longitudinalement entre les creux reliés.

Description

CONDENSEUR POUR AUTOMOBILE ET METHODE POUR
SA REALISATION L'invention est relative à un condenseur pour véhicule automobile et une méthode pour sa réalisation, ce condenseur ayant une application particulière dans des utilisations où la résistance à des hautes pressions internes d'un fluide est nécessaire.
L'usage général d'échangeurs de chaleur dans l'industrie automobile, associé au besoin continuel de disposer d'appareils plus légers et plus efficaces, a entraîné le développement d'une multiplicité de nouveaux produits et de nouvelles configurations dans la fabrication de condenseurs utilisés dans des systèmes de climatisation de véhicule automobile.
Initialement, les échangeurs de chaleur encore utilisés, tels que des condenseurs pour des sytèmes de climatisation de véhicule automobile comprennent habituellement un tube configuré en forme de serpentin continu à l'intérieur duquel peut s'écouler des fluides sous formes gazeuses et/ou liquides.
Des ailettes planes ou ondulées, mises en contact avec le tube en forme de serpentin, procurent une augmentation des surfaces d'échange thermique.
Un moyen de refroidissement, tel que l'air ambiant, passe sur les tubes et ailettes en permettant l'échange thermique du fluide très chaud dans le tube vers le moyen de refroidissement.
Pour permettre un assemblage commode, les tubes continus sont fabriqués à partir d'éléments en forme de U pour permettre l'insertion à travers les ailettes et, après assemblage, les éléments sont reliés les uns aux autres par des crosses en forme de U de manière à constituer un tube en forme de serpentin continu.
De manière connue, les condenseurs comprennent des boîtes collectrices espacées et parallèles l'une à l'autre, lesdites boîtes étant connectées l'une avec l'autre par une multiplicité de tubes d'échange de chaleur parallèles de façon à autoriser la circulation du ._
fluide, tel qu'un fluide sous forme gazeuse et/ou liquide entre les boîtes collectrices.
La multiplicité de tubes sont de configuration circulaire ou rectangulaire et ont des ailettes de formes 5 plates ou ondulées disposées à travers ou entre les tubes de manière à augmenter l'efficacité d'échange de chaleur des tubes d'échange thermique.
Le dispositif est formé, de manière connue, en insérant la multiplicité de tubes dans des trous prévus 10 sur les boîtes collectrices, en plaçant des ailettes ondulées entre les tubes et en soudant ou brasant les tubes aux boîtes collectrices et les ailettes aux tubes.
Lors du fonctionnement de ce condenseur, le gaz réfrigérant parcourt les tubes d'échange thermique et est 15 refroidi ou condensé substantiellement en un liquide par le flux d'air de refroidissement balayant les tubes.
La direction du courant réfrigérant et du flux de l'air de refroidissement sont généralement perpendiculaires l'un à l'autre. 20 La dimension longitudinale d'un des bords du tube perpendiculaire au courant d'air est le bord d'attaque en contact avec le flux d'air et la largeur de ce bord d'attaque est généralement considérée comme la dimension transversale du tube d'échangeur thermique. 25 La dimension transversale d'un tube est ainsi la largeur moyenne du tube.
De ce fait, un tube rond a une dimension transversale égale à son diamètre et un tube rectangulaire a une dimension transversale égale à la 30 largeur de son bord d'attaque.
Il a été reconnu que les tubes d'échange thermique de forme cylindrique peuvent diminuer les efficacités nécessaires dans plusieurs applications modernes dans l'automobile. En particulier, la largeur du bord d'attaque représente une obstruction aux flux d'air et il est généralement souhaité de minimiser cette obstruction.
Quoique la configuration de forme circulaire est particulièrement adaptée à résister aux hautes pressions internes du fluide des systèmes de condenseur de véhicule automobile, des problèmes significatifs, lors de l'assemblage, ont été rencontrés en formant des condenseurs pour automobile à partir de tubes d'échange thermique circulaires et de petites dimensions de moins de 5,08mm (0,2 inches).
Ainsi, les plus petits tubes ronds utilisés dans le commerce ont un diamètre plus grand que 5,08mm (0,2 inches) en créant une barrière entraînant la formation de dimension transversale de moins de 5,08mm (0,2 inches) .
Dans le but de réduire la largeur du bord d'attaque, par exemple en réduisant la dimension transversale, des tubes d'échange de chaleur sensiblement rectangulaires ont été proposés et ont trouvé un degré d'acceptation dans l'industrie grâce aux différentes configurations rectangulaires variables.
De telles configurations permettent une dimension transversale plus petite que les tubes ronds , 'cependant il était désirable de minimiser encore l'obstruction du flux d'air pour l'efficacité totale du condenseur.
US-A-4 615 385, bien que concernant particulièrement une construction de boîte collectrice, décrit un tube d'échange thermique de forme rectangulaire avec une pluralité de tubes connectés en parallèle entre les boîtes collectrices.
De ce fait, le tube est décrit comme étant plat de telle manière que la plus petite dimension du rectangle inclut une surface circulaire qui est disposée dans le dispositif en comprenant la dimension transversale. US-A-4 688 311 décrit un procédé pour fabriquer un tube d'échange thermique de forme rectangulaire qui peut être efficace en résistant aux hautes pressions internes du fluide d'un système de climatisation d'automobile.
De ce fait, un tube rectangulaire comprenant la configuration circulaire de la dimension transversale de l'US-A— 615 385 est relié de manière interne avec un insert en forme d'ailette ondulée qui est fixé avec l'intérieur du tube le long de sa dimension longitudinale.
Les ailettes internes servent d'entretoises de tension pour aider à la résistance aux pressions internes des fluides. De tels tubes demandent l'utilisation de matériaux additifs lors de leur élaboration et il est peu aisé de les fabriquer à cause des difficultés d'insertion des ailettes à l'intérieur du tube.
Un des objets de l'invention est de disposer des structures d'échange thermique ayant des résistances efficaces aux flux d'air dans leurs dimensions transversales.
Un autre objet de l'invention est de prévoir des structures d'échange thermique ayant des résistances aux pressions internes des fluides.
Un autre objet de l'invention est de prévoir un condenseur automobile ayant une résistance aux pressions internes des fluides.
C'est encore un autre objet de l'invention de prévoir un procédé de fabrication d'une structure d'échange thermique ayant une résistance aux flux d'air efficace et une résistance aux pressions internes des fluides.
Ceci et d'autres objets de l'invention sont décrits dans la suite de la description. L'invention concerne un condenseur pour véhicule automobile comprenant des structures d'échange thermique de forme allongée généralement rectangulaires et creuses s'étendant entre des boîtes collectrices. Les structures creuses comprennent des plaques allongées opposées reliées le long de leurs bords longitudinaux pour définir un passage s'étendant dans la direction longitudinale de la plaque, lesdites plaques opposées étant ondulées dans une structure transversale de manière à définir des bosses et des creux généralement parallèles et disposés obliquement à la direction longitudinale.
Les creux d'une première plaque sont disposés pour croiser les creux d'une seconde plaque d'une manière telle que la distance maximale entre les points de croisement des creux se croisant n'est pas plus grande que 5,08mm (0,2 inches).
Les creux se croisant sont jointifs et les bosses sOpposant définissent des passages se croisant, disposés obliquement, et s'étendant longitudinalement à travers la structure d'échange thermique.
Les condenseurs pour automobile selon l'invention sont fabriqués par un procédé selon lequel les plaques allongées ondulées dans une section transversale de manière à avoir une pluralité de bosses disposées angulairement de manière oblique et s'étendant longitudinalement, lesdites bosses étant séparées par des creux, en étant arrangées d'une manière telle que lapex des creux d'une première plaque croisent les apex des creux d'une seconde plaque à une distance maximale entre les points de croisement qui ne dépasse pas 5,08mm (0,2 inches) .
Les creux de ladite première et seconde plaques sont jointifs aux points de croisement et les bosses définissent des passages creux disposés angulairement en se croisant et s'étendant longitudinalement dans une structure d'échange thermique tubulaire.
De multiples structures d'échange thermique tubulaires sont assemblées de manière parallèle pour former le condenseur avec une première extrémité des structures d'échange thermique s'étendant jusqu'à la première boîte collectrice et une seconde extrémité desdites structures d'échange thermique s'étendant à une seconde boîte collectrice pour former un condenseur pour automobi1e.
La figure 1 est une vue en perspective du condenseur pour automobile obtenu selon la présente invention.
La figure 2 est une vue en coupe partielle élargie selon approximativement la ligne 2-2 de la figure 1.
La figure 3 est une vue en plan de la structure d'échange thermique obtenue selon la présente invention. La figure 4 est une vue en coupe élargie selon la ligne 4-4 de la figure 3.
La "igure 5 est une vue similaire à la figure 4 mais montrant les pièces en condition d'assemblage, cette vue étant prise selon la ligne 5-5 de la figure 3.
Un exemple de réalisation d'un condenseur pour automobile selon l'invention est illustré à la figure 1. Il est cependant compréhensible que la présente invention peut être utilisée dans une pluralité d'autres condenseurs dans lesquels une structure d'échange thermique est prévue entre les boîtes collectrices. En se référant maintenant à la figure 1 où un condenseur pour automobile est illustré et compren une boîte collectrice d'admission 11 et, disposé généralement parallèle à celle-ci, en étant opposée, une boîte collectrice d'évacuation 12. La boîte collectrice d'admission 11 comprend une admission 13 et la boîte collectrice d'évacuation 12 comprend une évacuation 14.
Une pluralité de structures d'échange thermique creuses 15 s'étendent entre les boîtes collectrices opposées et, disposées entre les structures, sont insérées des ailettes ondulées 16 en relation d'échange thermique avec les structures d'échange thermique creuses. Dans la réalisation de la figure 1, la pluralité de structures d'échange thermique 15 sont reliées à la boîte collectrice d'admission 11 et à la jfeoîte collectrice d'évacuation 12 par des joints de brasure 17 comme mieux représenté sur la figure 2. Les ailettes ondulées 16 sont insérées entre la pluralité de structures d'échange thermique et sont en contact intime avec celles-ci.
Lors du fonctionnement de l'exemple illustré, un premier fluide chaud et sous forme gazeuse tel qu'un réfrigérant pénètre dans la boîte collectrice d'admission 11 par l'admission 13 s'écoule le long des passages s'étendant longitudinalement de la pluralité des structures d'échange thermique creuses et â l'intérieur de la boîte collectrice d'évacuation 12. Le courant de fluide gazeux, le long des structures d'échange, est dirigé par les creux et bosses, disposés angulairement, des plaques allongées opposées, dans un circuit discontinu et ondulé dans lâ-quel le flot de fluide est passivement séparé et mélangé par les circuits se croisant des creux jointifs en augmentant le contact du flot de fluide avec les plaques allongées.
La chaleur du fluide est dissipée ers les plaques opposées des structures d'échange thermique et vers les ailettes ondulées en contact avec celles-ci. Un second flot de fluide, tel que de l'air ambiant, parcourt le condenseur d'une manière telle que le second fluide s'écoule le long de la section transversale des structures d'échange thermique et le long des ailettes ondulées.
La chaleur est dissipée à partir de telles structures et ailettes vers le second fluide les balayant, lorsque la chaleur du second fluide est moins importante que la chaleur de la structure d'échange thermique et/ou des ailettes ondulées.
Avec la dissipation de chaleur suffisante à partir du premier fluide gazeux vers le second fluide, le premier fluide gazeux se condense en un liquide qui s'écoule le long de la longueur restante des structures d'échange thermique vers la boîte collectrice d'évacuation 12 et par l'évacuation 14 pour le traitement dans d'autres parties du système.
En se référant maintenant à la figure 2 qui illustre une vue en section du condenseur de la figure 1, dans lequel les boîtes collectrices d'admission et d'évacuation 11 et 12 sont munies d'une pluralité de trous allongés 18 sensiblement parallèles et séparés, configurés pour recevoir les extrémités ouvertes de la pluralité de structures d'échange thermique 15 creuses allongées et permettre une circulation de matériau gazeux et/ou liquide entre ceux-ci. Les structures d'échange sont étanchées avec les boîtes collectrices par des moyens de liaison appropriés qui procurent une intégrité structurelle suffisante de manière à résister aux pressions générées à l'intérieur du système lorsque le condenseur sera utilisé. Le joint de brasure 17 est illustré en tant que réalisation préférentielle lorsque les matériaux de construction sont en aluminium.
Les ailettes dissipatrices thermiques peuvent être reliées aux structures d'échange termique, de manière préférentielle, avec un matériau conducteur thermique, ou peuvent être reliées aux structures en dépendant des services escomptés du système.
Comme une alternative aux ailettes ondulées décrites précédemment, des ailettes planes peuvent généralement être prévues avec des trσùs allongés généralement conformés en relation avec la section transversale des structures d'échange thermique et peuvent être insérés autour de ces structures.
Il est préférable que les ailettes ondulées dissipatrices ou les ailettes plates comprennent au moins la même largeur que les structures d'échange thermique,lesdites ailettes étant en contact avec les structures d'échange le plus possible le long de la largeur desdites structures d'échange thermique. Les ailettes dissipatrices thermiques son€ fines et fabriquées à partir de matériau conducteur thermique de haut niveau.
Les ailettes 16 du condenseur 10 comprennent un matériau fin conducteur d'à peu près la même largeur que les structures d'échange thermique 15 et sont liées intimement entre la pluralité de structures d'échange pour maintenir leur intégrité structurelle dans le condenseur.
Les figures 3, 4 et 5 illustrent une réalisation préférentielle des structures d'échange thermique 15 selon l'invention dans lesquelles les bosses forment généralement des passages rectangulaires dans la section centrale du corps de la structure et des passages ayant une surface généralement circulaire sont formés aux bords longitudinaux jointifs.
De ce fait, une structure d'échange thermique 15 comprend une plaque supérieure allongée ondulée 19 et une plaque inférieure allongée ondulée 20 jointives aux creux se croisant 21 pour former des passages généralement rectangulaires 22. Les ondulations dans la plaque 19 sont obliques par rapport aux ondulations de la plaque 20.
En joignant les plaques opposées par recouvrement de son bord longitudinal extérieur 24 sur le bord longitudinal interne 25, il est formé des passages 26 ayant une surface sensiblement circulaire. Alternativement les bords 24 et 25 peuvent être portés ensemble et être réunis dans un plan commun parallèle au plan principal des plaques et peuvent même comprendre une surface plate allongée.
Dans la réalisation préférentielle illustrée, les bords longitudinaux sont brasés à l'interface 28 et les creux se croisant 21 sont brasés au point se croisant 19 pour assurer l'intégrité structurelle des passages creux des structures d'échange thermique.
Les creux et bosses des plaques allongées peuvent être convenablement formés par estampage, bosselage ou autres en formant les creux de forme désirée dans les plaques allongées. Lorqu'une série de creux adjacents généralement parallèles sont formés ainsi, la surface entre les creux comprend des bosses adjacentes.
Il est compréhensible que d'autres moyens bien connus de l'Art sont à considérer pour la formation de creux et bosses et il est possible que les bosses puissent être estampées ou formées d'une autre manière dans les plaques pour s'ériger au-dessus du plan de la plaque.
Généralement les bosses et les creux présenteront un angle oblique à la direction longitudinale de la plaque allongée.
De manière préférentielle, l'angle oblique sera de l'ordre de 10 à 85° en considérant la direction longitudinale de la plaque et de manière préférentielle de l'ordre 20 à 70A Les première et seconde plaques allongées opposées, ayant des creux disposés angula±rement, sont assemblées de manière telle que les creux de la première plaque croisent les creux opposés de la seconde plaque. II n'est pas essentiel pour les creux ou bosses de la première plaque d'être dans le même angle oblique à la direction longitudinale que ceux de la seconde plaque, bien que ceci est généralement préféré.
Les angles des croisements des creux, qui est un angle formé par les creux se croisant et s'ouvrant clans la direction longitudinale des plaques assemblées peuvent généralement être de l'ordre de 20 à 170A
La figure 3 illustre des plaques allongées jointives dans lesquelles les creux se croisant forment un angle A de l'ordre de 90".
Un angle approchera 0° lorsque l'angle oblique des creux des plaques allongées opposées approchera la direction longitudinale et approchera 180° lorsque les angles obliques approcheront une perpendiculaire à la direction longitudinale.
Les creux dans les plaques opposées sont de manière préférentielle formés avec un petit rayon de sommet intérieur à leurs apex.
Le rayon de sommet intérieur n'est préférabîement pas plus grand que une fois et demie l'épaisseur du matériau à partir duquel la plaque est fabriquée et le plus préférentiellement moins que l'épaisseur du matériau.
La largeur d'une bosse comprend la dimension de la plaque entre les sommets de creux adjacents et de telle dimension est variable en dépendant de la pression interne considérée à l'intérieur de la structure d'échange et de l'étendue de la jonction des creux se croisant des plaques opposées. Ainsi, pour prévoir une très grande résistance à la rupture, la largeur des bosses sur une plaque avec un nombre défini de creux se croisant jointifs, dans un système à haute pression interne, sera de manière typique plus petit que celui dans un système à basse pression interne. Généralement, la largeur des bosses est de manière préférentielle, plus grande que deux fois et demie l'épaisseur du matériau à partir duquel la plaque est élaborée et moins que sept fois cette épaisseur. Dans une application de l'invention à un condenseur automobile, il est préféré que l'épaisseur du matériau des plaques opposées soit de 0,30mm à 0,76mm (0,012 à 0,030 inches) et de manière préférentielle de 0,30 à 0,71 mm (0,012 à 0,028 inches).
Le rayon interne des creux est preferablement de l'ordre de 1,5 fois l'épaisseur du matériau de l'épaisseur de la plaque ou moins et la largeur des bosses est preferablement de 2,5 à 7 fois l'épaisseur du matériau de la plaque.
Les structures d'échange de chaleur ayant la configuration de l'invention et dimensionnées selon les données préférentielles peuvent ainsi preferablement être réalisées en ayant une dimension transversale de l'ordre de 3,17mm (0,125 inches) ou moins.
De manière typique, les condenseurs de l'invention peuvent être élaborés à partir d'un matériau convenable qui résistera aux effets de corrosion et aux pressions internes de fluide du système.
Des matériaux typiques incluent les matériaux malléables tels que l'aluminium et le cuivre et en particulier les allie ^s.
Les matériaux peuvent être intérieurement ou extérieurements plaqués, traités ou autres.
Typiquement, il est souhaitable d'utiliser un matériau le plus fin possible dans les structures d'échange pour gagner un maximum d'efficacité dans le processus d'échange thermique. Généralement, chacun des composants d'un condenseur est formé à partir du même matériau lorqu'ils sont réunis ensemble. Par exemple, les plaques utilisées pour fabriquer les structures d'échange thermique seront formées à partir du même matériau.
Les boîtes collectrices et les structures d'échange thermique seront formées aussi à partir du même métal ou d'un alliage de métal lorsqu'ils sont brasés ou soudés ensemble. II est compréhensible que, bien que l'invention illustrée comprenne un condenseur pour automobile, l'invention est applicable à de multiples utilisations d'échangeurs de chaleur.

Claims

REVENDICATIONS
1) Condenseur pour automobile comprenant des structures d'échange thermique (15)creuses allongées généralement rectangulaires s'étendant entre des boîtes collectrices (11,12), lesdites structures creuses comprenant des première et deuxième plaques allongées (19,20) opposées réunies le long de leurs bords longitudinaux allongés pour définir un passage s'étendant dans une direction longitudinale, lesdites plaques opposées ondulant dans une structure transversale pour définir des creux (21) généralement parallèles inclinés obliquement par rapport à la direction longitudinale, les creux (21) de la première plaque opposée étant angulairement disposés pour croiser les creux (21) opposés de ladite seconde plaque, à une distance maximale entre les points de croisement des creux (21) ne dépassant pas 5,08mm (0,2 inches) et lesdits creux se croisant étant jointifs à tous les points de croisement. 2) Condenseur selon la revendication 1, caractérisé en ce que les angles formés par le croisement des creux des plaques opposées est de l'ordre de 20 à 170°.
3) Condenseur selon la revendication 1, caractérisé en ce que les bords jointifs s'étendant longitudinalement des plaques allongées comprennent une dimension transversale de moins de 3,17mm (0,125 inches).
4) Condenseur selon la revendication 1, caractérisé en ce que lesdites plaques allongées (19,20) ont une épaisseur de matériau de l'ordre de 0,30 à 0,76mm (0,012 à 0,030 inches).
5) Condenseur selon la revendication 1, caractérisé en ce que les bosses entre les creux (21) opposés ont une section transversale généralement rectangulaire. 6) Condenseur selon la revendication 5, caractérisé en ce que les bosses et creux sont disposés à distance du bord longitudinal jointif desdites plaques allongées. 7) Condenseur selon la revendication 6, caractérisé en ce que les bords longitudinaux (24,25) desdites plaques allongées sont jointifs pour former un passage (26) s'étendant longitudinalement en comprenant une surface généralement circulaire. 8) Condenseur selon la revendication 7, caractérisé en ce que la surface généralement circulaire (26) comprend des bords (24,25) superposés desdites plaques allongées (19,20).
9) Condenseur selon la revendication 1, caractérisé en ce que lesdits creux sont jointifs par brasage ou moyens de soudage.
10) Condenseur selon la revendication 1, caractérisé en ce qu'il comprend des ailettes dissipatrices d'énergie (16) s'étendant à partir des structures creuses allongées.
11) Condenseur pour automobile comprenant des structures d'échange de chaleur creuses allongées généralement rectangulaires s'étendant entre des boîtes collectrices (11,12), lesdites structures creuses comprenant une première et seconde plaques allongées opposées (19,20) en ayant une épaisseur moyenne de l'ordre de 0,30 à 0,76mm (0,012 à 0,030 inches) jointive le long des bords longitudinaux allongés (24,25) pour définir un passage s'étendant dans une direction longitudinale, lesdites plaques allongées opposées ondulant dans une section transversale pour définir des bosses et creux généralement parallèles disposés angulairement de manière oblique à la direction longitudinale, avec les creux (21) de la première plaque opposée et angulairement disposés pour croiser les creux (21) de la seconde plaque opposée à une distance maximale entre les points des creux se croisant (29) de pas plus que 5,08mm (0,2 inches) et en étant jointives dans tous les croisements.
12) Procédé pour élaborer un condenseur automobile selon la revendication 1, comprenant : formation de plaques allongées ondulant dans une section transversale et ayant une pluralité de bosses généralement parallèles séparées par des creux et disposées angulairement de manière oblique par rapport aux bords longitudinaux des plaques ; arrangement desdites plaques de telle sorte que les apex des creux de la première plaque soient disposés pour croiser les apex des creux de la seconde plaque à une distance maximale entre les points des creux se croisant de pas plus grande que 5,08mm (0,2 inches) ; jonction des apex des creux de ladite première et seconde plaques et des bords longitudinaux desdites plaques pour former une structure d'échange thermique tubulaire ; assemblage de la première extrémité de ladite structure d'échange thermique à une première boîte collectrice ; et liaison de la seconde extrémité de ladite structure d'échange thermique à une seconde boîte collectrice pour former un condenseur automobile.
13) Structure d'échange thermique creuse comprenant des première et seconde plaques allongées opposées réunies le long de leurs bords longitudinaux allongés pour définir un passage s'étendant dans une direction longitudinale, lesdites plaques opposées ondulant dans une structure transversale pour définir des bosses et creux généralement parallèles disposés angulairement obliques par rapport à la direction longitudinale, avec les creux de la première plaque opposée étant angulaire disposés pour croiser les creux de ladite seconde plaque à une distance maximale entre les points des creux se croisant de pas plus que 5,08mm (0,2 inches) et lesdits creux se croisant étant réunis à tous les points de croisement.
PCT/FR1990/000702 1989-10-04 1990-10-03 Condenseur pour automobile et methode pour sa realisation WO1991005211A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR909006944A BR9006944A (pt) 1989-10-04 1990-10-03 Condensador para automovel,processo para elaborar o mesmo e estrutura de troca termica oca
DE90914931T DE69004793T2 (de) 1989-10-04 1990-10-03 Fahrzeugkondensator.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US417,049 1989-10-04
US07/417,049 US4932469A (en) 1989-10-04 1989-10-04 Automotive condenser

Publications (1)

Publication Number Publication Date
WO1991005211A1 true WO1991005211A1 (fr) 1991-04-18

Family

ID=23652357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1990/000702 WO1991005211A1 (fr) 1989-10-04 1990-10-03 Condenseur pour automobile et methode pour sa realisation

Country Status (7)

Country Link
US (1) US4932469A (fr)
EP (1) EP0447528B1 (fr)
JP (1) JPH04505362A (fr)
BR (1) BR9006944A (fr)
CA (1) CA2037901A1 (fr)
DE (1) DE69004793T2 (fr)
WO (1) WO1991005211A1 (fr)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279360A (en) * 1985-10-02 1994-01-18 Modine Manufacturing Co. Evaporator or evaporator/condenser
DE69023925T2 (de) * 1989-02-06 1996-05-23 Furukawa Electric Co Ltd Herstellungsverfahren einer halbleiter-kühlanordnung vom wärmerohr-typ.
US5271151A (en) * 1990-04-23 1993-12-21 Wallis Bernard J Method of making a high pressure condenser
US5129144A (en) * 1990-06-19 1992-07-14 General Motors Corporation Method of making a combination radiator and condenser apparatus for motor vehicle
JPH04177094A (ja) * 1990-11-13 1992-06-24 Sanden Corp 積層型熱交換器
US5125453A (en) * 1991-12-23 1992-06-30 Ford Motor Company Heat exchanger structure
US5185925A (en) * 1992-01-29 1993-02-16 General Motors Corporation Method of manufacturing a tube for a heat exchanger
KR950009505B1 (ko) * 1993-03-05 1995-08-23 주식회사두원공조 자동차의 에어콘용 열교환기의 제조방법
JP3364665B2 (ja) * 1993-03-26 2003-01-08 昭和電工株式会社 熱交換器用冷媒流通管
US5931226A (en) * 1993-03-26 1999-08-03 Showa Aluminum Corporation Refrigerant tubes for heat exchangers
US5784776A (en) * 1993-06-16 1998-07-28 Showa Aluminum Corporation Process for producing flat heat exchange tubes
US5441105A (en) * 1993-11-18 1995-08-15 Wynn's Climate Systems, Inc. Folded parallel flow condenser tube
JPH07180984A (ja) * 1993-12-21 1995-07-18 Sanden Corp 熱交換器及びその製造方法
CA2150437C (fr) * 1995-05-29 1999-06-08 Alex S. Cheong Echangeur a plaques muni d'un passage onduleux ameliore
US5826646A (en) * 1995-10-26 1998-10-27 Heatcraft Inc. Flat-tubed heat exchanger
US5775412A (en) * 1996-01-11 1998-07-07 Gidding Engineering, Inc. High pressure dense heat transfer area heat exchanger
US6016864A (en) * 1996-04-19 2000-01-25 Heatcraft Inc. Heat exchanger with relatively flat fluid conduits
US5771964A (en) * 1996-04-19 1998-06-30 Heatcraft Inc. Heat exchanger with relatively flat fluid conduits
EP1223391B8 (fr) * 1996-12-25 2005-12-21 Calsonic Kansei Corporation Structure d'assemblage d'un condenseur
AT407920B (de) * 1997-03-25 2001-07-25 Ktm Kuehler Gmbh Plattenwärmetauscher, insbesondere ölkühler
JP4122578B2 (ja) * 1997-07-17 2008-07-23 株式会社デンソー 熱交換器
CA2215173C (fr) * 1997-09-11 2004-04-06 Thomas F. Seiler Dispositif d'assemblage a extremites deportees et saillies d'ecartement pour echangeurs thermiques
US6155135A (en) * 1998-11-23 2000-12-05 American Axle & Manufacturing, Inc. Drive unit with lubricant cooling cover
US6401804B1 (en) * 1999-01-14 2002-06-11 Denso Corporation Heat exchanger only using plural plates
US6155339A (en) * 1999-06-18 2000-12-05 Grapengater; Richard B. Obround header for a heat exchanger
US6209202B1 (en) 1999-08-02 2001-04-03 Visteon Global Technologies, Inc. Folded tube for a heat exchanger and method of making same
JP2001165532A (ja) * 1999-12-09 2001-06-22 Denso Corp 冷媒凝縮器
US7011142B2 (en) * 2000-12-21 2006-03-14 Dana Canada Corporation Finned plate heat exchanger
US6523260B2 (en) 2001-07-05 2003-02-25 Harsco Technologies Corporation Method of making a seamless unitary body quadrilateral header for heat exchanger
JP5250924B2 (ja) * 2001-07-16 2013-07-31 株式会社デンソー 排気熱交換器
US6595273B2 (en) 2001-08-08 2003-07-22 Denso Corporation Heat exchanger
US6830100B2 (en) * 2001-11-02 2004-12-14 Thermalex, Inc. Extruded manifold
CA2372399C (fr) * 2002-02-19 2010-10-26 Long Manufacturing Ltd. Echangeur de chaleur a ailettes compactes
US8087452B2 (en) * 2002-04-11 2012-01-03 Lytron, Inc. Contact cooling device
JP3812487B2 (ja) * 2002-04-16 2006-08-23 株式会社デンソー 熱交換器
CA2389119A1 (fr) * 2002-06-04 2003-12-04 Christopher R. Shore Echangeur thermique a ailettes a plaques laterales
CA2423193A1 (fr) * 2003-03-24 2004-09-24 Dana Canada Corporation Echangeur de chaleur a refroidissement sur plaques laterales
US7311139B2 (en) * 2005-08-11 2007-12-25 Generac Power Systems, Inc. Heat exchanger
JP2007278558A (ja) * 2006-04-04 2007-10-25 Denso Corp 冷媒放熱器
JP5082120B2 (ja) * 2007-03-23 2012-11-28 国立大学法人 東京大学 熱交換器
DE102008064090A1 (de) * 2008-12-19 2010-08-12 Mahle International Gmbh Abgaskühler
SE534695C2 (sv) * 2009-12-23 2011-11-22 Fueltech Sweden Ab Ackumulatortank
KR20130065174A (ko) * 2011-12-09 2013-06-19 현대자동차주식회사 차량용 열교환기
US20150285569A1 (en) * 2014-04-04 2015-10-08 Delphi Technologies, Inc. Heat exchanger with dimpled manifold
US11333448B2 (en) * 2018-09-18 2022-05-17 Doosan Heavy Industries & Construction Co., Ltd. Printed circuit heat exchanger and heat exchange device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470455A (en) * 1978-06-19 1984-09-11 General Motors Corporation Plate type heat exchanger tube pass
EP0206836A1 (fr) * 1985-06-28 1986-12-30 Nippondenso Co., Ltd. Echangeur de chaleur à plaques

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615385B1 (en) * 1985-04-12 1994-12-20 Modine Mfg Co Heat exchanger
US4805693A (en) * 1986-11-20 1989-02-21 Modine Manufacturing Multiple piece tube assembly for use in heat exchangers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470455A (en) * 1978-06-19 1984-09-11 General Motors Corporation Plate type heat exchanger tube pass
EP0206836A1 (fr) * 1985-06-28 1986-12-30 Nippondenso Co., Ltd. Echangeur de chaleur à plaques
US4696342A (en) * 1985-06-28 1987-09-29 Nippondenso Co., Ltd. Plate-type heat exchanger

Also Published As

Publication number Publication date
DE69004793D1 (de) 1994-01-05
DE69004793T2 (de) 1994-03-17
EP0447528A1 (fr) 1991-09-25
US4932469A (en) 1990-06-12
EP0447528B1 (fr) 1993-11-24
JPH04505362A (ja) 1992-09-17
BR9006944A (pt) 1991-10-08
CA2037901A1 (fr) 1991-04-05

Similar Documents

Publication Publication Date Title
EP0447528B1 (fr) Condenseur pour automobile
FR2465981A1 (fr) Echangeur de chaleur a tubes concentriques et ailette interne
WO2009141379A1 (fr) Echangeur de chaleur a plaques, notamment pour vehicules automobiles
FR2798990A1 (fr) Double echangeur de chaleur pour conditionneur d'air de vehicule
FR2575279A1 (fr) Echangeur a plaques
EP1172625A2 (fr) Ailette d'échange thermique pour échangeur de chaleur à plaques brasées, et échangeur de chaleur correspondant
FR2824895A1 (fr) Ailette ondulee a persiennes pour echangeur de chaleur a plaques, et echangeur a plaques muni de telles ailettes
CA1072077A (fr) Tube echangeur de chaleur et mode de fabrication
EP1426722B1 (fr) Plaque d'un échangeur thermique et échangeur thermique à plaques
EP3561428B1 (fr) Caloduc a pompage capillaire a fonctionnement ameliore
EP3234488B1 (fr) Plaque d'echange thermique a microcanaux et echangeur thermique comportant au moins une telle plaque
EP0445006B1 (fr) Echangeur de chaleur à écoulement circulaire
FR2704635A1 (fr) Radiateur d'automobile eet procédé de fabrication.
FR3070480B1 (fr) Plaque d'echange thermique a microcanaux comportant un element d'assemblage en bordure de plaque
WO2017032567A1 (fr) Échangeur de chaleur
FR2629190A1 (fr) Echangeur de chaleur pour le changement d'etat d'un fluide tel qu'evaporateur pour une installation de climatisation, en particulier pour vehicule automobile
FR3056737B1 (fr) Boite collectrice, echangeur thermique et procede d’assemblage correspondants
FR3073611B1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation de geometrie variable
FR2574532A1 (fr) Echangeur de chaleur destine en particulier aux evaporateurs ou condenseurs parcourus par le liquide frigorigene d'equipements de climatisation de vehicule, et procede de fabrication associe
BE417766A (fr)
WO2023072571A1 (fr) Paire de plaques d'echangeur de chaleur avec rainures et creux
BE542365A (fr)
FR2572798A1 (fr) Echangeur de chaleur a plaques du type a " plaques-ailettes " et son procede de fabrication
WO2004017005A2 (fr) Echangeur de plan, en particulier pour vehicule automobile, et procede pour sa fabrication
FR2991760A1 (fr) Echangeur thermique et procede de realisation d'un collecteur associe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2037901

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990914931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990914931

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990914931

Country of ref document: EP