WO1990010940A1 - Stromwandleranordnung für dreileiter-drehstromsysteme, insbesondere zur stromistwerterfassung für geregelte, stromrichtergespeiste gleichstromverbraucher - Google Patents

Stromwandleranordnung für dreileiter-drehstromsysteme, insbesondere zur stromistwerterfassung für geregelte, stromrichtergespeiste gleichstromverbraucher Download PDF

Info

Publication number
WO1990010940A1
WO1990010940A1 PCT/EP1990/000261 EP9000261W WO9010940A1 WO 1990010940 A1 WO1990010940 A1 WO 1990010940A1 EP 9000261 W EP9000261 W EP 9000261W WO 9010940 A1 WO9010940 A1 WO 9010940A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
current transformer
turns
wire
Prior art date
Application number
PCT/EP1990/000261
Other languages
English (en)
French (fr)
Inventor
Wilhelm Reischer
Original Assignee
SIEMENS AKTIENGESELLSCHAFT öSTERREICH
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIEMENS AKTIENGESELLSCHAFT öSTERREICH, Siemens Aktiengesellschaft filed Critical SIEMENS AKTIENGESELLSCHAFT öSTERREICH
Priority to AT90903165T priority Critical patent/ATE91039T1/de
Priority to DE9090903165T priority patent/DE59001863D1/de
Publication of WO1990010940A1 publication Critical patent/WO1990010940A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/38Instruments transformers for polyphase ac
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • H01F2038/305Constructions with toroidal magnetic core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/91Two of three phases regulated

Definitions

  • the invention relates to a current transformer arrangement for three-wire three-phase systems, in particular for current actual value detection for regulated, converter-fed direct current consumers.
  • the mains-controlled converter with controllable semiconductors is an important control element in drive control.
  • a three-phase network is almost exclusively available.
  • the converter fulfills two tasks, namely the conversion of three-phase current into direct current in rectifier operation or the conversion of direct current into three-phase current in inverter operation, and the amplification of the power level of the controller to that of the machine.
  • the variable to be controlled is the direct current delivered by the converter to the machine.
  • shunts with potential separation shunt converter
  • magnetic amplifiers kramer converter
  • Hall probes with and without modulator amplifiers or field probes can be used in larger systems with necessary potential separation.
  • the measurement is generally carried out using an equivalent three-phase current, etc. by means of three-phase transformers.
  • the three-phase converter provides potential isolation.
  • the three-phase current is detected via three conventional converters which are designed for 0.1 A, 1 A or 5 A secondary nominal current.
  • the secondary current is rectified and passed through a load resistor, from which a proportional DC voltage is tapped can be.
  • a disadvantage here is the great expense of transformer iron and winding copper for the three current transformers, which are therefore heavy, voluminous and expensive. This effort is also great in the case of the generally known two-current converter V circuit. This has the disadvantage that the transducers mutually influence one another during demagnetization, since their demagnetization conditions fluctuate. This can lead to oscillations in the regulation.
  • a single current transformer is provided in the form of a push-through current transformer, that it is arranged on the three-phase side and that only two of the three phase conductors are threaded or inserted through the current transformer, in order to avoid this of the occurrence of a resulting flooding of zero, the two phase conductors with the same defined through-direction and a number of turns ratio of 1: 2 or with the same defined through-direction and the same number of turns, but with a current amount halved in a phase conductor or with the same
  • the number of turns, but with the opposite direction of insertion defined by the current transformer, is threaded or inserted so that the double amount of the measuring voltage occurring on the secondary side, due to the double value of the resulting flooding, is reduced to half its value by a correction circuit, and that Commands for switching the correction circuit on and off are derived from control pulses for the valves of the converter.
  • Fig. 1 shows the block diagram of a conventional single-quadrant drive with current control loop and speed control loop Fig. 2, 3 and 4 in principle similar arrangements for the
  • FIGS. 6 and 7 the temporal occurrence of the star voltages, control pulses, thyristor currents and the relevant secondary variables and FIGS. 8 and 9 two Embodiments of the electronic correction circuit.
  • the power section includes a thyristor converter 1 in a three-phase bridge circuit, commutation chokes 2, a direct current motor 3, an armature current sensor in the form of current transformers 4 arranged in the three-phase circuit and a speed sensor 5 in the form of a tachometer machine coupled to the direct current motor 3.
  • the control and regulating part includes a six-pulse control set 6, a current regulator 7, a speed regulator 8 and a setpoint generator 9 in the form of a potentiometer, in a known function.
  • the control set 6 is followed by an ignition pulse output stage 49 with distributor logic, which is used to generate the control pulses required for two successive current-carrying thyristors.
  • this stage 49 there is also pulse coupling to the thyristor that was previously in the conductive state.
  • Controlling a drive requires the command variable (setpoint) and the control variable (actual value) at the input of the controller.
  • the reference variable (setpoint) is specified as DC voltage.
  • the controlled variable (actual value), which is recorded with a sensor must be converted by means of a rectifier 10 to a DC voltage suitable for the controller input.
  • the choice of the encoder is based on the requirements placed on the drive. With the usual mains voltages of 380/500 V or higher, it is advisable to electrically isolate the control and regulating circuit from the power circuit.
  • the transducers used in drives are therefore generally of potential-isolating design. In the case of fully controlled bridge circuits, the current can in principle be detected on the direct current or alternating current side.
  • Connection of AC measuring devices is generally used, is also suitable as a transmitter.
  • FIG. 2, 3 and 4 show in principle similar arrangements for the current transformer part of a circuit according to the invention.
  • a so-called through current transformer is used here.
  • Through-current transformers which are commercially available and are used a lot for higher currents, have a through-opening 12 completely enclosed by the iron core 11.
  • it is not the primary winding, which is also connected to the terminals, that is used, but rather a primary current conductor, which is led one or more times through the through opening 12 of the current transformer 4 and which, for example, 100 times the nominal value of the primary current 6 times or 600
  • a nominal value of the primary current is carried out once to achieve the required nominal flooding of, for example, 600 AW.
  • the secondary winding 13 is usually designed for 5 A (1 A, 0.1 A) nominal current.
  • Push-through opening 12 of the current transformer 4 are carried out in the types according to the invention described below.
  • what is essential, namely to prevent the occurrence of a resulting zero flow and thus a gap in the secondary current, is achieved in that the two conductors R, S pass through with the opposite direction of insertion the push-through opening 12 of the current transformer 4 are guided.
  • the third conductor T is guided outside the iron core 11 of the current transformer 4.
  • a conductor e.g. S simple and a conductor e.g. R pushed through twice to form a feedback loop. Both conductors have the same defined insertion direction.
  • the third conductor T is also guided outside the iron core 11 of the current transformer 4.
  • the required AW ratio of 2: 1 according to the invention is achieved in that two conductors are simply pushed through, but in the case of one conductor half the current is conducted through a shunt 15 outside the iron core 11 of the current transformer 4. Of course, this is necessary that the shunt 15 and the shunted conductor piece have the same impedance. In addition, another conversion constant is to be used in the case of a calibration.
  • the resulting flooding caused by current flow in the two inserted conductors generates an impressed current in the secondary winding 13 which flows through the connected load resistor 14.
  • the course of the resulting floodings (AW) and the secondary currents proportional to them which are due to the inventive
  • the arrangement of the conductors and the conductor currents flowing in them is shown in the following figures.
  • FIG. 5 shows the known circuit diagram of a three-phase bridge circuit 16, which consists of the two three-pulse star circuits 17, 18. It has six thyristors 21-26, which are connected symmetrically to the phases R, S, T. The voltage star of the six voltages which follow one another at 60 ° is recorded below this. The thyristors must be fired in this order.
  • the numbers 21 - 26 on the voltage star, which correspond to the reference numbers for the thyristors, indicate this sequence.
  • the single-acting current blocks are in the supply line S and thus alternately in the thyristors 23 and 26 flow, characterized by horizontal hatching and the double-acting current blocks, which flow in the feed line R and thus alternately in the thyristors 21 and 24, by vertical hatching.
  • the current blocks through thyristors 22 and 25 are without influence. Geometric addition of the current blocks occurring at the same time results in the line drawing shown below for the directional size of the resulting passages.
  • FIG. 6 shows the secondary current or AW ratios for the arrangement according to FIG. 4.
  • the line is simple to construct on the basis of the information given above, it being noted that the current blocks which occur when the current flows through the conductor R and the thyristors 21 and 24, which are inserted twice, are hatched vertically.
  • the load resistor 14 which is connected to the secondary winding 13 of the current transformer 4 via a rectifier 10.
  • the load resistor 14 is connected in parallel with a resistor 27 of the same size via a transistor 28 during the period of twice the AW number.
  • the transistor 28 is controlled into a conductive state by a flip-flop 29, which is set for the thyristor 22 or 25 by means of the non-coupled control pulse (low) is reset by means of the subsequent, non-coupled control pulse for the thyristor 23 or 26.
  • control lines for the thyristors 22 and 25 are also connected to the inputs of an AND stage 30, the output of which is connected to the set input of the flip-flop 29.
  • control lines for the thyristors 23 and 26 are also connected to the inputs of an AND stage 31, the output of which is connected to the reset input of the flip-flop 29.
  • the rectification of the measuring current is carried out in a known manner by means of the rectifier 10.
  • a different sequence of those used to set and reset the flip-flop 29 must be used Control pulses are used. Of course, this also applies to an arrangement of the conductors according to FIG.
  • the advantage of this circuit lies in the fact that the iron core 11 of the current transformer 4 is not doubled so high in the doubly detected current, since in this case the resulting load resistance 14
  • the additional magnetization effort is only in Internal copper resistance of the secondary winding 13. As a result, no higher type power of the current transformer 4 is required.
  • FIG. 9 A correction circuit with somewhat more complex electronics is shown in FIG. 9.
  • an operational amplifier 32 makes it possible to load the current transformer 4 only with a very small burden voltage.
  • An impedance converter 33 is connected downstream of the operational amplifier 32 in order to be able to use a type of low current carrying capacity for the operational amplifier 32.
  • the load voltage drops across the load resistor 34 and is rectified in a known circuit via a full-wave measuring rectifier or absolute value generator.
  • Its first operational amplifier 35 which operates as an inverting rectifier, is connected to resistors 36 and 37, which have the same ohmic values as well as diodes 38 and 39.
  • Its second operational amplifier 40 which works as an inverting amplifier, is connected in the manner shown to the resistors 41-45 which have the same ohmic values.
  • An electronic switch 46 can be used to switch its gain between its full and half value. This switch 46 is again controlled by the output signal of the flip-flop 29 shown in FIG. 8.
  • the Zener diodes 47, 48 are used to discharge the burden current and thus to protect the operational amplifier 32 from overvoltage in the event that 4 overvoltages occur in the secondary winding 13 of the current transformer, which are caused by highly dynamic processes in the primary circuit, for example by switching processes or short circuits conclusions are caused.
  • the advantage of this circuit is that the current converter 4 practically works against the zero load voltage and therefore only a very small magnetizing current occurs.
  • This circuit is therefore particularly suitable for Current actual value detection with subsequent zero current signal via threshold switch is suitable. This is because the magnetizing current disturbing the zero current signal, which is known to be caused by the so-called. "Tail" of the demagnetization voltage delays the zero current signal, can be kept at a minimum value.
  • the electronic correction circuit is not necessary in the case of a pure zero-current signal, in the case of current or power measurements with pointer or digital instruments, or in the case of controls with a long smoothing time constant, since in the first case only the zeroing of the current is of interest and in the other cases the error caused by the measuring current occurring with double value can be calibrated or compensated for in the display.

Abstract

Bei einer Stromwandleranordnung für Dreileiter-Drehstromsysteme wird erfindungsgemäß ein einziger drehstromseitig angeordneter Durchsteckstromwandler (4) verwendet. Durch diesen sind zwei der insgesamt drei Phasenleiter durchgesteckt und zwar entweder mit gleicher Windungszahl und zueinander entgegengesetzten Durchsteckrichtungen oder mit gleicher Durchsteckrichtung und im Verhältnis 2:1 unterschiedlicher Windungszahl bzw. gleicher Durchsteckrichtung und einem in einem Phasenleiter durch einen Shunt (15) halbierten Stromfluß. Durch diese Anordnungen wird das Auftreten einer resultierenden Durchflutung vom Betrag Null vermieden. Die durch einen während jeder Periode zweimal auftretenden doppelten AW-Wert verursachte Sekundärspannung doppelten Betrages wird durch eine elektronische Korrekturschaltung halbiert. Deren Ansteuerbefehle werden aus geeigneten Ansteuerimpulsen für die Thyristoren (21-26) der Drehstrom-Brückenschaltung (16) abgeleitet. Zwei Korrekturschaltungen sind angegeben. Der Hauptvorteil liegt in der großen Ersparnis des Stromwandlermaterials und damit auch des Platzbedarfes.

Description

Stromwandleranordnung für Dreileiter-Drehstromsysteme, insbesondere zur Stromistwerterfassung für geregelte, stromrichtergespeiste Gleichstro Verbraucher
Gegenstand der Erfindung ist eine Stromwandleranordnung für Dreileiter-Drehstromsysteme, insbesondere zur Stromistwerter¬ fassung für geregelte, stromrichtergespeiste Gleichstromver¬ braucher.
In der Antriebsregelung ist der netzgeführte Stromrichter mit steuerbaren Halbleitern ein wichtiges Stellglied. Bei Einsatz von Stromrichtern für geregelte Gleichstromantriebe steht fast ausschließlich ein Drehstromnetz zur Verfügung. Dabei erfüllt der Stromrichter zwei Aufgaben, nämlich die Umformung von Dreh¬ strom in Gleichstrom bei Gleichrichterbetrieb oder die Umfor¬ mung von Gleichstrom in Drehstrom beim Wechselrichterbetrieb, sowie die Verstärkung des Leistungsniveaus der Regler auf das der Maschine. Die zu regelnde Größe ist der vom Stromrichter an die Maschine abgegebene Gleichstrom.
Zum Messen oder Erfassen dieses Gleichstroms können bei größere Anlagen mit notwendiger Potentialtrennung Shunts mit Potential¬ trennung (Shuntwandler) , Magnetverstärker (Krämerwandler), Hall sonden mit und ohne Modulatorverstärker oder Feldsonden verwen det werden. Bei Stromrichterspeisung wird jedoch allgemein die Messung über einen äquivalenten Drehstrom vorgenommen u.zw. mi tels Drehstromwandler. Durch den Drehstromwandler ist eine Po¬ tentialtrennung gegeben. Bei einer Stromrichterschaltung be- steht ein streng proportionaler Zusammenhang zwischen Drehstro und Gleichstrom. Bei einem im Stand der Technik allgemein be¬ kannten Meßprinzip für eine Drehstrombrückenschaltung wird der Drehstrom über drei herkömmliche Wandler erfaßt, die für 0,1 A, 1 A oder 5 A sekundären Nennstrom ausgelegt sind. Der Sekundär ström wird gleichgerichtet und über einen Bürdenwiderstand ge¬ leitet, an dem eine proportionale Gleichspannung abgegriffen werden kann. Nachteilig ist hier der große Aufwand an Trans¬ formatoreisen und Wicklungskupfer für die drei Stromwandler, die daher schwer, voluminös und teuer sind. Dieser Aufwand ist auch bei der allgemein bekannten Zwei-Strom-Wandler-V-Schaltung noch groß. Diese weist dazu den Nachteil auf, daß sich die Wand¬ ler bei der Abmagnetisierung gegenseitig beeinflussen, da ihre Abmagnetisierungsbedingungen schwanken. Dies kann zu Pendelun¬ gen der Regelung führen.
Eine Anordnung, die diese Nachteile nicht aufweist, ist dadurch gekennzeichnet, daß ein einziger Stromwandler in Form eines Durchsteckstromwandlers vorgesehen ist, daß dieser drehstrom- seitig angeordnet ist und daß nur zwei der drei Phasenleiter durch den Stromwandler gefädelt oder durchgesteckt sind, daß dabei zur Vermeidung des Auftretens einer resultierenden Durch¬ flutung vom Betrag Null die beiden Phasenleiter mit gleicher definierter Durchsteckrichtung und einem Windungszahlverhält- • nis von 1:2 oder mit gleicher definierter Durchsteckrichtung und gleicher Windungszahl, jedoch mit in einem Phasenleiter durch einen Shunt halbiertem Strombetrag oder mit gleichen
Windungszahlen, jedoch mit zueinander entgegengesetzter defi¬ nierter Durchsteckrichtung durch den Stromwandler gefädelt oder durchgesteckt sind, daß der aufgrund des dabei auftretenden doppelten Wertes der resultierenden Durchflutung sekundärseitig auftretende doppelte Betrag der Meßspannung durch eine Korrek¬ turschaltung auf seinen halben Wert reduziert wird, und daß die Befehle zum Ein- und Ausschalten der Korrekturschaltung aus An- steuerimpulsen für die Ventile des Stromrichters abgeleitet sind.
Der erzielbare Vorteil liegt in der beträchtlichen Reduktion des Aufwandes für lediglich einen Stromwandler, wobei die not¬ wendige, wenig aufwendige Korrekturelektronik aus der Stromver¬ sorgung für die Regler mitversorgt werden kann. Die Erfindung wird anhand von Ausführungsbeispielen mit Zeich¬ nungen näher erläutert. Es zeigen:
Fig. 1 den Blockschaltplan eines herkömmlichen Einquadrant¬ antriebes mit Stromregelkreis und Drehzahlregelkreis Fig. 2, 3 und 4 im Prinzip gleichartige Anordnungen für den
Stromwandlerteil einer erfindungsgemäßen Schal¬ tung Fig. 5 den bekannten Schaltplan einer Drehstrombrückenschaltung mit zugehörigem Spannungsstern Fig. 6 und 7 das zeitliche Auftreten der Sternspannungen, An- steueri pulse, Thyristorströme sowie der maßge- - benden sekundären Größen und die Fig. 8 und 9 zwei Ausführungsformen der elektronischen Korrek¬ turschaltung.
Die Fig. 1 zeigt den Blockschaltplan eines herkömmlichen Ein¬ quadrantantriebes mit Stromregelkreis und Drehzahlregelkreis. Zum Leistungsteil gehören ein Thyristorstromrichter 1 in Dreh¬ strom-Brückenschaltung, Kommutierungsdrosseln 2, ein Gleich- strommotor 3, ein Ankerstrommeßgeber in Form von im Drehstrom¬ kreis angeordneten Stromwandlern 4 und ein Drehzahlmeßgeber 5 in Form einer mit dem Gleichstrommotor 3 gekoppelten Tachome¬ termaschine. Zum Steuer- und Regelteil gehören ein sechspulsi- ger Steuersatz 6 , ein Stromregler 7, ein Drehzahlregler 8 und ein Sollwertgeber 9 in Form eines Potentiometers, in bekannter Funktion. Dem Steuersatz 6 ist eine Zündimpulsendstufe 49 mit Verteilerlogik nachgeschaltet, die zur Erzeugung der für je¬ weils zwei aufeinanderfolgend stromführende Thyristoren er¬ forderlichen Ansteuerimpulse dient. In dieser Stufe 49 findet auch die Impulsüberkopplung auf den jeweils vorher im leitenden Zustand befindlichen Thyristor statt.
Die Regelung eines Antriebes erfordert am Eingang des Reglers die Führungsgröße (Sollwert) und die Regelgröße (Istwert). Die Führungsgröße (Sollwert) wird als Gleichspannung vorgegeben. Die Regelgröße (Istwert), die mit einem Meßgeber erfaßt wird muß mittels eines Gleichrichters 10 auf eine für den Reglerein¬ gang geeignete Gleichspannung umgeformt werden. Die Wahl des Meßgebers richtet sich nach den Forderungen, die an den Antrieb gestellt werden. Bei den üblichen Netzspannungen von 380/500 V oder höher ist es zweckmäßig, den Steuer- und Regelkreis vom Leistungskreis galvanisch zu trennen. Die bei Antrieben verwen¬ deten Meßgeber sind daher im allgemeinen potentialtrennend aus¬ geführt. Der Strom kann bei vollgesteuerten Brückenschaltungen grundsätzlich auf der Gleichstrom- oder der Wechselstromseite erfaßt werden. Der normale Wechselstromwandler, wie er zum
Anschluß von Wechselstrom-Meßgeräten allgemein verwendet wird, ist auch als Meßgeber geeignet.
Die Fig. 2, 3 und 4 zeigen im Prinzip gleichartige Anordnungen für den Stromwandlerteil einer erfindungsgemäßen Schaltung. Ver¬ wendet wird hier ein sogenannter Durchsteckstromwandler. Durch¬ steckstromwandler die handelsüblich sind und für höhere Strom¬ stärken viel verwendet werden, weisen eine vom Eisenkern 11 vollständig umschlossene Durchstecköffnung 12 auf. Für höhere Stromstärken wird nicht die ebenfalls vorhandene, an Klemmen geführte Primärwicklung, sondern ein ein- oder mehrfach durch die Durchstecköffnung 12 des Stromwandlers 4 geführter Primär¬ stromleiter benützt, der z.B. für 100 A Nennwert des Primär¬ stromes 6 mal oder für 600 A Nennwert des Primärstromes 1 mal durchgeführt wird, um die erforderliche Nenndurchflutung von z.B. 600 AW zu erreichen. Die Sekundärwicklung 13 ist meist für 5 A (1 A, 0,1 A) Nennstrom ausgelegt. Als Primärwindungen zäh¬ len nur die Gänge im Inneren der Durchstecköffnung 12. Natür¬ lich hängt es von der Stromflußrichtung ab, ob der AW-Beitrag eines Leiters als positiv oder negativ zu werten ist. Während herkömmlich zur Drehstrommessung meist 3 derartige Stromwandler oder, in der Zwei-Stromwandler-V-Schaltung, zumindest 2 Strom¬ wandler verwendet werden, wobei letztere Schaltung wegen un¬ gleicher Ab agnetisierungsbedingungen für die beiden Strom- wandler zu Reglerschwingungen führen kann, wird erfindungsgemäß nur ein Durchsteckstromwandler benutzt. Dadurch ist eine große Einsparung an Gewicht, Volumen und Kosten gegeben.
Aus den Fig. 2, 3 und 4 ist erkennbar, daß nur jeweils zwei der insgesamt drei Phasenleiter des Drehstromsystems durch die
Durchstecköffnung 12 des Stromwandlers 4 durchgeführt sind und zwar in den nachfolgend beschriebenen erfindungsgemäßen Arten. Bei der Anordnung nach Fig. 2 wird das was wesentlich ist, näm¬ lich das Auftreten einer resultierenden Durchflutung vom Betrag Null und damit ein Lücken des Sekundärstromes zu verhindern, dadurch erzielt, daß die beiden Leiter R, S mit zueinander ent¬ gegengesetzter Durchsteckrichtung durch die Durchstecköffnung 12 des Stromwandlers 4 geführt sind. Selbstverständlich müssen die je nach auftretender Stromstärke erforderlichen Schleifen- zahlen berücksichtigt werden. Der dritte Leiter T wird außen am Eisenkern 11 des Stromwandlers 4 vorbeigeführt.
In Fig. 4 ist ein Leiter, z.B. S einfach und ein Leiter z.B. R unter Ausbildung einer Rückführschleife zweifach durchgesteckt. Dabei weisen beide Leiter die gleiche definierte Durchsteckrich tung auf. Der dritte Leiter T wird ebenfalls außen am Eisenkern 11 des Stromwandlers 4 vorbeigeführt.
In Fig. 3 wird das erfindungsgemäße erforderliche AW-Verhältnis von 2:1 dadurch erzielt, daß zwei Leiter einfach durchgesteckt sind, bei einem Leiter jedoch der halbe Strom durch einen Shunt 15 außen am Eisenkern 11 des Stromwandlers 4 vorbeigeführt wird Dazu ist es selbstverständlich erforderlich, daß der Shunt 15 und das geshuntete Leiterstück gleiche Impedanz aufweisen. Auße dem ist hier im Falle einer Eichung eine andere Umrechnungskon¬ stante anzuwenden. Die bei Stromfluß in den beiden durchgesteck ten Leitern jeweils verursachte resultierende Durchflutung er¬ zeugt in der Sekundärwicklung 13 einen eingeprägten Strom, der über den angeschlossenen Bürdenwiderstand 14 fließt. Der Ver- lauf der resultierenden Durchflutungen (AW) sowie der diesen proportionalen Sekundärströme, die aufgrund der erfindungsge- mäßen Anordnung der Leiter und der in diesen fließenden Leiter¬ ströme erzeugt werden, wird in den folgenden Figuren gezeigt.
Die Fig. 5 zeigt den bekannten Schaltplan einer Drehstrombrücken Schaltung 16, die aus den beiden dreipulsigen Sternschaltungen 17, 18 besteht. Sie weist sechs Thyristoren 21 - 26 auf, die symmetrisch an den Phasen R, S, T angeschlossen sind. Darunter ist der Spannungsstern der sechs jeweils unter 60° aufeinander¬ folgenden Spannungen aufgezeichnet. In dieser Reihenfolge müs- sen die Thyristoren nacheinander gezündet werden. Die Ziffern 21 - 26 am Spannungsstern, die mit den Bezugsziffern für die Thyristoren übereinstimmen, geben diese Reihenfolge an.
In Fig. 6 sind die drei Sternspannungen U,, U2, U, der beiden dreipulsigen Sternschaltungen 17, 18, aus denen die Drehstrom- Brückenschaltung 16 besteht, beim Zündwinkel = 0β in ihrem zeitlichen Verlauf dargestellt. Diese ergeben, in Reihe geschal¬ tet, die resultierende Spannung U... Darunter ist die zeitli¬ che Zuordnung der Zündimpulse für die einzelnen Thyristoren 21 - 26 angegeben, die schräg schraffiert dargestellt sind so¬ wie die Blöcke der dabei fließenden Thyristorströme, diese zur vereinfachten Erläuterung des Prinzips in schematisierter Form. Durch weitere Schraffur sind die Thyristorstromblöcke nach ihrer Bedeutung für das erfindungsgemäße Anordnungsbeispiel nach Fig. hervorgehoben. Da die Zuleitungen R und S durchgesteckt sind und daher die in ihnen fließenden Ströme Durchflutungen positiver und negativer Art, jedoch mit um den Faktor 2 unterschiedlichen Beträgen erzeugen, sind die einfach wirkenden Stromblöcke, die in der Zuleitung S und somit abwechselnd in den Thyristoren 23 und 26 fließen, durch horizontale Schraffur gekennzeichnet und die doppelt wirkenden Stromblöcke, die in der Zuleitung R und somit abwechselnd in den Thyristoren 21 und 24 fließen, durch vertikale Schraffur. Die Stromblöcke durch die Thyristoren 22 und 25 sind ohne Einfluß. Durch geometrische Addition der gleich zeitig auftretenden Stromblöcke ergibt sich der unten gezeichne¬ te Linienzug für die gerichtete Größe der resultierenden Durch- flutung, die von den in positiver oder negativer Zählrichtung die Durchstecköffnung 12 durchsetzenden Strömen erzeugt wird, der in einem anderen Maßstab der in der Sekundärwicklung 13 fließende Meßstrom bzw. die am Bürdenwiderstand 14 auftretende Bürdenspannung = Meßspannung entspricht. Der Linienzug läßt die lückenlose und vorzeichenrichtige Erfassung aller Primärströme erkennen. Allerdings tritt noch ein Sekundärstrom mit seinem doppelten Wert auf und zwar ausschließlich in dem Zeitabschnitt, in dem gleichzeitig ein Stromfluß durch den doppelt durchge- steckten Leiter R und den nichtdurchgesteckten Leiter T erfolgt, d.h. durch die Thyristoren 21 und 22 bzw. 24 und 25. Da zu dem die für die Regler 7, 8 nicht brauchbaren negativen Stromwerte auftreten, werden mittels nachfolgend beschriebener Schaltungen die erforderlichen Korrekturen vorgenommen. Die gleiche Form des Linienzuges ergibt sich auch für die Anordnung gemäß Fig. 3 jedoch, wie schon bei der Beschreibung dieser Figur erwähnt, mit um den Faktor 2 geänderten Maßstabsverhältnissen.
In Fig. 6 sind die Sekundärstrom- bzw. AW-Verhältnisse für die Anordnung gemäß Fig. 4 angegeben. Der Linienzug ist aufgrund de zuvor gebrachten Hinweise einfach zu konstruieren, wobei anzu¬ merken ist, daß hier die beim Stromfluß durch den doppelt durch gesteckten Leiter R und die Thyristoren 21 bzw. 24 auftretenden Stromblöcke vertikal schraffiert hervorgehoben sind.
Die Korrekturschaltung nach Fig. 8 zeigt den Bürdenwiderstand 14, der über einen Gleichrichter 10 an die Sekundärwicklung 13 des Stromwandlers 4 angeschlossen ist. Dem Bürdenwiderstand 14 wird während der Zeitspanne doppelter AW-Zahl ein gleichgroßer Widerstand 27 über einen Transistor 28 parallelgeschaltet. Da¬ durch steht dem mit seinem doppelten Wert auftretenden Meßstrom nur ein Bürdenwiderstand mit dem halben resultierenden Ohmwert zur Verfügung, sodaß die erwünschte Korrektur erfolgt. Dazu wird der Transistor 28 von einem Flip-Flop 29 in den leiten- den Zustand gesteuert, der mittels des nicht überkoppelten An- steuerimpulses (Low) für den Thyristor 22 bzw. 25 gesetzt und mittels des jeweils darauffolgenden nicht überkoppelten Ansteu- erimpulses für den Thyristor 23 bzw. 26 rückgesetzt wird. Dazu sind die Ansteuerleitungen für die Thyristoren 22 und 25 auch an die Eingänge einer AND-Stufe 30 geschaltet, deren Ausgang mit dem Setzeingang des Flip-Flop 29 verbunden ist. In gleicher Weise sind die Ansteuerleitungen für die Thyristoren 23 und 26 auch an die Eingänge einer AND-Stufe 31 geschaltet, deren Aus¬ gang mit dem Rücksetzeingang des Flip-Flop 29 verbunden ist. Die Gleichrichtung des Meßstromes erfolgt in bekannter Weise mittels des Gleichrichters 10. Bei anderer Anordnung der Leiter R, S, T bezüglich des Stromwandlers 4 muß, wie schon früher ausgeführt, eine andere Reihenfolge der zum Setzen und Rück¬ setzen des Flip-Flop 29 dienenden Ansteuerimpulse verwendet werden. Dies gilt seblstverständlich auch für eine Anordnung der Leiter nach Fig. 2, bei der erfindungsgemäß zwei der drei Primärleiter mit zueinander entgegengesetzter Durchsteckrich¬ tung durch die Durchstecköffnung 12 des Stromwandlers 4 geführt sind. Ein doppelter Betrag der resultierenden AW bzw. des Se¬ kundärstromes tritt, aus Fig. 7 erkennbar, dann auf, wenn beide durchgesteckten Leiter gleichzeitig stromführend sind, d.h. im Beispiel die Leiter R und S und die zugehörigen Thyristoren 21 und 26 bzw. 23 und 24. Es werden also hier die Ansteuerimpulse für die Thyristoren 21 und 24 auch zum Setzen und die jeweils darauffolgenden Ansteuerimpulse für die Thyristoren 22. und 25 auch zum Rücksetzen des Flip-Flop 29 heranzuziehen sein. Hier ist erkennbar und auch hervorzuheben, daß die resultierenden Linienzüge immer in der selben Form auftreten, die Lage der doppelten AW- bzw. Sekundärstromwerte jedoch je nach Anordnung der Leiter bezüglich des Stromwandlers 4 unterschiedlich ist.
Der Vorteil dieser Schaltung liegt darin, daß bei dem doppelt erfaßten Strom der Eisenkern 11 des Stromwandlers 4 nicht dop¬ pelt so hoch auf agnetisiert wird, da in diesem Fall der re¬ sultierende Bürdenwiderstand 14 | | 27 mit dem halben Ohmwert auftritt. Der zusätzliche Magnetisierungsaufwand liegt nur im Kupferinnenwiderstand der Sekundärwicklung 13. Dadurch ist kei¬ ne höhere Typenleistung des Stromwandlers 4 erforderlich.
Eine Korrekturschaltung mit einer etwas aufwendigeren Elektronik ist in Fig. 9 angegeben. In dieser ist es durch die Verwendung eines Operationsverstärkers 32 möglich, den Stromwandler 4 nur mit einer sehr kleinen Bürdenspannung zu belasten. Dem Opera¬ tionsverstärker 32 ist ein Impedanzwandler 33 nachgeschaltet, um für den Operationsverstärker 32 eine Type geringer Strom- tragfähigkeit verwenden zu können.
Am Bürdenwiderstand 34 fällt die Bürdenspannung ab, die über einen Vollweg-Meßgleichrichter oder Absolutwertbildner in be¬ kannter Schaltung gleichgerichtet wird. Sein erster, als in- vertierender Gleichrichter arbeitender Operationsverstärker 35 ist mit den Widerständen 36 und 37, die untereinander gleiche Ohmwerte aufweisen sowie mit Dioden 38 und 39 beschaltet. Sein zweiter, als invertierender Verstärker arbeitender Operations¬ verstärker 40 ist mit den untereinander gleiche Ohmwerte auf- weisenden Widerständen 41 - 45 in der gezeigten Weise beschal¬ tet.
Durch einen elektronischen Schalter 46 kann seine Verstärkung zwischen ihrem vollen und halben Wert umgeschaltet werden. Die Ansteuerung dieses Schalters 46 erfolgt wieder durch das Aus¬ gangssignal des in Fig. 8 gezeigten Flip-Flops 29.
Die Zenerdioden 47, 48 dienen zur Ableitung des Bürdenstromes und damit zum Überspannungsschutz für den Operationsverstärker 32 für den Fall, daß in der Sekundärwicklung 13 des Stromwand¬ lers 4 Überspannungen auftreten, die durch hochdynamische Vor¬ gänge im Primärstromkreis, etwa durch Schaltvorgänge oder Kurz¬ schlüsse verursacht sind. Der Vorteil dieser Schaltung liegt darin, daß der Stromwandler 4 praktisch gegen die Bürdenspan- nung null arbeitet und daher nur ein sehr kleiner Magnetisie¬ rungsstrom auftritt. Dadurch ist diese Schaltung besonders zur momentanwertrichtigen Stromistwerterfassung mit nachgeschalte¬ ter Stromnullmeldung über Schwellwertschalter geeignet. Dies deshalb, weil der bei der Stromnullmeldung störende Magneti¬ sierungsstrom, der bekanntlich durch das Verursachen des sogen. "Schweifes" der Abmagnetisierungsspannung die Stromnullmeldung verzögert, auf einem Minimalwert gehalten werden kann.
Abschließend sei noch erwähnt, daß bei reiner Stromnullmeldung, bei Strom- oder Leistungsmessungen mit Zeiger- oder Digital- instrurnenten oder bei Regelungen mit großer Glättuπgszeit- konstante die elektronische Korrekturschaltung nicht erforder¬ lich ist, da im ersten Fall nur das Nullwerden des Stromes interessiert und in den anderen Fällen der durch den mit doppeltem Wert auftretenden Meßstrom verursachte Fehler in die Anzeige eingeeicht bzw. ausgeglichen werden kann.
Bezugs zeichenliste :
1 = Thyristorstromrichter
2 = Kommutierungsdrosseln
3 = Gleichstrommotor
4 = Durchsteckstromwandler
5 = Drehzahlmeßgeber
6 = Steuersatz
7 = Stromregler
8 = Drehzahlregler
9 = Sollwertgeber
10 = Gleichrichter
11 = Eisenkern
12 = Durchstecköffnung
13 = Sekundärwicklung
14 = Bürdenwiderstand
15 = Shunt
16 = Drehstrombrückenschaltung
17, 18 = Sternschaltungen
21 ■ - 26 = Thyristoren
27 = Widerstand
28 = Transistor
29 = Flip-Flop
30, 31 = AND-Stufe
32, 35, 40 = Operationsverstärker
33 = Impedanzwandler
34 = Bürdenwiderstand
36, 37 = Widerstände
38, 39 = Dioden
41 - 45 = Widerstände
46 = Schalter
47, 48 = Zenerdioden
49 = Zündimpulsendstufe
R, S, T = Leiter
Ul- u2, u3 = Sternspannungen
UH*, = resultierende Spannung

Claims

Patentanspruch : 12
Stromwandleranordnung für Dreileiter-Drehstromsysteme, insbe¬ sondere zur Stromistwerterfassung für geregelte, stromrichter¬ gespeiste Gleichstromverbraucher, d a d u r c h g e k e n n z e i c h n e t , daß ein einziger Stromwandler (4) in Form eines Durchsteckstromwandlers vorgesehen ist, daß dieser dreh- stromseitig angeordnet ist und daß nur zwei der drei Phasenlei¬ ter durch den Stromwandler (4) gefädelt oder durchgesteckt sind, daß dabei zur Vermeidung des Auftretens einer resultierenden Durchflutung vom Betrag Null die beiden Phasenleiter mit glei¬ cher definierter Durchsteckrichtung und einem Windungszahlver¬ hältnis von 1:2 oder mit gleicher definierter Durchsteckrichtung und gleicher Windungszahl jedoch mit in einem Phasenleiter durch einen Shunt (15) halbierten Strombetrag oder mit gleichen Win¬ dungszahlen jedoch mit zueinander entgegengesetzter definierter Durchsteckrichtung durch den Stromwandler (4) gefädelt oder durchgesteckt sind, daß der aufgrund des dabei auftretenden doppelten Wertes der resultierenden Durchflutung sekundärsei- tig auftretende doppelte Betrag der Meßspannung durch eine Korrekturschaltung auf seinen halben Wert reduziert wird und daß die Befehle zum Ein- und Ausschalten der Korrekturschaltung aus AnSteuerimpulsen für die Ventile (21 bis 26) des Stromrich¬ ters (1) abgeleitet sind.
PCT/EP1990/000261 1989-03-09 1990-02-16 Stromwandleranordnung für dreileiter-drehstromsysteme, insbesondere zur stromistwerterfassung für geregelte, stromrichtergespeiste gleichstromverbraucher WO1990010940A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT90903165T ATE91039T1 (de) 1989-03-09 1990-02-16 Stromwandleranordnung fuer dreileiterdrehstromsysteme, insbesondere zur stromistwerterfassung fuer geregelte, stromrichtergespeiste gleichstromverbraucher.
DE9090903165T DE59001863D1 (de) 1989-03-09 1990-02-16 Stromwandleranordnung fuer dreileiter-drehstromsysteme, insbesondere zur stromistwerterfassung fuer geregelte, stromrichtergespeiste gleichstromverbraucher.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT539/89A AT393421B (de) 1989-03-09 1989-03-09 Stromwandleranordnung fuer dreileiter- drehstromsysteme zur stromistwerterfassung
ATA539/89 1989-03-09

Publications (1)

Publication Number Publication Date
WO1990010940A1 true WO1990010940A1 (de) 1990-09-20

Family

ID=3493293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1990/000261 WO1990010940A1 (de) 1989-03-09 1990-02-16 Stromwandleranordnung für dreileiter-drehstromsysteme, insbesondere zur stromistwerterfassung für geregelte, stromrichtergespeiste gleichstromverbraucher

Country Status (4)

Country Link
US (1) US5202621A (de)
EP (1) EP0453518B1 (de)
AT (2) AT393421B (de)
WO (1) WO1990010940A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501200A2 (de) * 1991-02-28 1992-09-02 Vacuumschmelze GmbH Stromsensor nach dem Kompensationsprinzip
DE102008020371A1 (de) * 2008-04-23 2009-10-29 Kriwan Industrie-Elektronik Gmbh Verfahren sowie Sensor-Messschaltung zum Überstromschutz eines Drehstromverbrauchers

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309349A (en) * 1992-09-22 1994-05-03 Industrial Technology Research Institute Current detection method for DC to three-phase converters using a single DC sensor
US5710534A (en) * 1995-04-25 1998-01-20 Abb Power T&D Company Inc. Electrical apparatus including electric field control means
US8692539B2 (en) * 2006-11-30 2014-04-08 Powersense A/S Faraday effect current sensor
US8619443B2 (en) 2010-09-29 2013-12-31 The Powerwise Group, Inc. System and method to boost voltage
US20110182094A1 (en) * 2007-08-13 2011-07-28 The Powerwise Group, Inc. System and method to manage power usage
US8085009B2 (en) 2007-08-13 2011-12-27 The Powerwise Group, Inc. IGBT/FET-based energy savings device for reducing a predetermined amount of voltage using pulse width modulation
US8085010B2 (en) 2007-08-24 2011-12-27 The Powerwise Group, Inc. TRIAC/SCR-based energy savings device for reducing a predetermined amount of voltage using pulse width modulation
US8120307B2 (en) 2007-08-24 2012-02-21 The Powerwise Group, Inc. System and method for providing constant loading in AC power applications
US8698447B2 (en) 2007-09-14 2014-04-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses
US8810190B2 (en) * 2007-09-14 2014-08-19 The Powerwise Group, Inc. Motor controller system and method for maximizing energy savings
US20090190378A1 (en) * 2008-01-29 2009-07-30 Hideo Ishii Power supply device outputting pulsed electrical current
EP2148210A1 (de) * 2008-07-21 2010-01-27 PowerSense A/S Dreiphasige optische Faraday-Stromsensoranordnung
US8004255B2 (en) * 2008-08-07 2011-08-23 The Powerwise Group, Inc. Power supply for IGBT/FET drivers
US8698446B2 (en) 2009-09-08 2014-04-15 The Powerwise Group, Inc. Method to save energy for devices with rotating or reciprocating masses
KR101816058B1 (ko) * 2009-09-08 2018-01-08 더 파워와이즈 그룹, 인코포레이티드 매스 회전식 또는 왕복식 장치에 의한 에너지 세이브 시스템 및 방법
DE102019209374A1 (de) * 2019-06-27 2020-12-31 Siemens Aktiengesellschaft Stromsensor und Verfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1227136B (de) * 1962-04-07 1966-10-20 Siemens Ag Anordnung zur Erzeugung einer Gleichspannung, die dem von einem Gleichrichter gelieferten Strom proportional ist
FR2106732A5 (de) * 1970-09-22 1972-05-05 Alsthom
US4683513A (en) * 1986-04-07 1987-07-28 Westinghouse Electric Corp. Dual current transformer current sensing method and sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668513A (en) * 1970-03-31 1972-06-06 Tokyo Shibaura Electric Co Upright type bushing current transformer
US4096539A (en) * 1976-08-31 1978-06-20 Scaturro Angelo J Detector of backfeed electrical currents
SU748528A1 (ru) * 1978-02-03 1980-07-15 Восточный научно-исследовательский институт по безопасности работ в горной промышленности Трансформатор тока нулевой последовательности
JPS62141977A (ja) * 1985-12-16 1987-06-25 Toshiba Corp プラズマ励起装置
DE3619801A1 (de) * 1986-06-12 1987-12-17 Leybold Heraeus Gmbh & Co Kg Kurzschlussfeste stromversorgung fuer elektronenstrahlkanonen und aehnliche waehrend des betriebs bisweilen kurzschluesse erzeugende verbraucher

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1227136B (de) * 1962-04-07 1966-10-20 Siemens Ag Anordnung zur Erzeugung einer Gleichspannung, die dem von einem Gleichrichter gelieferten Strom proportional ist
FR2106732A5 (de) * 1970-09-22 1972-05-05 Alsthom
US4683513A (en) * 1986-04-07 1987-07-28 Westinghouse Electric Corp. Dual current transformer current sensing method and sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501200A2 (de) * 1991-02-28 1992-09-02 Vacuumschmelze GmbH Stromsensor nach dem Kompensationsprinzip
EP0501200A3 (en) * 1991-02-28 1993-04-28 Vacuumschmelze Gmbh Compensation principle current sensor
DE102008020371A1 (de) * 2008-04-23 2009-10-29 Kriwan Industrie-Elektronik Gmbh Verfahren sowie Sensor-Messschaltung zum Überstromschutz eines Drehstromverbrauchers
DE102008020371B4 (de) * 2008-04-23 2019-11-14 Kriwan Industrie-Elektronik Gmbh Verfahren sowie Sensor-Messschaltung zum Überstromschutz eines Drehstromverbrauchers

Also Published As

Publication number Publication date
EP0453518B1 (de) 1993-06-23
ATE91039T1 (de) 1993-07-15
EP0453518A1 (de) 1991-10-30
ATA53989A (de) 1991-03-15
US5202621A (en) 1993-04-13
AT393421B (de) 1991-10-25

Similar Documents

Publication Publication Date Title
EP0453518B1 (de) Stromwandleranordnung für dreileiter-drehstromsysteme, insbesondere zur stromistwerterfassung für geregelte, stromrichtergespeiste gleichstromverbraucher
DE2701495A1 (de) Elektronische spannungs-regeleinrichtung fuer drehstrom-generatoren
DE2612256C2 (de)
DE4425903A1 (de) Vorrichtung mit einem Meßtransformator zur Erfassung der Position eines linear beweglichen Objektes
DE2130154B2 (de) Einrichtung zum Nachbilden mindestens einer Gleichstromgröße
DE2625354A1 (de) Uebertrager fuer gleich- und wechselstromsignale mit einem ferromagnetischen kern
DE1763849C3 (de) Frequenzumformer mit einer logischen Steuerschaltung
DE4142342C2 (de) Verfahren und Vorrichtung zur digitalen Strommessung
DE1261938B (de)
DE1812926A1 (de) Verfahren und Vorrichtung zur Messung des Schlupfes eines Asynchronmotors
EP0029903B1 (de) Messanordnung für elektrische Ströme
DE974154C (de) Wandler fuer vorzugsweise kleine Gleichstromgroessen auf Magnetverstaerkergrundlage
DE2554786C3 (de) Schaltungsanordnung zum Steuern oder Regeln der Drehzahl eines elektrischen Motors
DE3246329A1 (de) Elektronisches ueberstromrelais
DE3540777C2 (de)
DE3502871A1 (de) Verfahren und einrichtung zum messen eines magnetfeldes
DE3822051C2 (de)
DE2320229B2 (de) Schaltungsanordnung zur galvanisch getrennten uebertragung einer gleichspannung
DE1463259C3 (de) Stromversorgungseinrichtung für Wechselstrom konstanter Frequenz mit einem bei variabler Drehzahl antreibbaren Wechselstromgenerator
DE3437610A1 (de) Messverfahren und messeinrichtung fuer einen gleichstromsteller
DE3939890C2 (de)
DE895266C (de) Empfangsverfahren fuer Fernmessuebertragungen
DE2150117C3 (de) Anordnung zur Regelung der Geschwindigkeit eines an ein Wechselstromnetz angeschlossenen Mehrphasen-Asynchron-Schleif ringlauf ermotors
DE1257959B (de) Anordnung zur Messung eines wandernden veraenderlichen magnetischen Flusses
DE1663048B1 (de) Regelanordnung zur Erzielung einer gleichmaessigen Belastung von statischen Wechselrichtern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990903165

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990903165

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990903165

Country of ref document: EP