WO1990010887A1 - Light shutter array and method of producing the same - Google Patents

Light shutter array and method of producing the same Download PDF

Info

Publication number
WO1990010887A1
WO1990010887A1 PCT/JP1990/000310 JP9000310W WO9010887A1 WO 1990010887 A1 WO1990010887 A1 WO 1990010887A1 JP 9000310 W JP9000310 W JP 9000310W WO 9010887 A1 WO9010887 A1 WO 9010887A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
individual electrodes
electrodes
individual
Prior art date
Application number
PCT/JP1990/000310
Other languages
French (fr)
Japanese (ja)
Inventor
Hidenori Sukigara
Kazuo Kobayashi
Original Assignee
Kabushiki Kaisha Sankyo Seiki Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5494289A external-priority patent/JPH02235017A/en
Priority claimed from JP141090A external-priority patent/JPH03206419A/en
Application filed by Kabushiki Kaisha Sankyo Seiki Seisakusho filed Critical Kabushiki Kaisha Sankyo Seiki Seisakusho
Publication of WO1990010887A1 publication Critical patent/WO1990010887A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/055Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic
    • G02F1/0551Constructional details

Definitions

  • the present invention relates to an optical shutter array and a method for manufacturing the same. More specifically, the present invention relates to an optical shutter array utilizing an electro-optic effect and a method for producing the same.
  • This optical shutter array is composed of a plate-like substance having an electro-optic effect, such as PLZT, in which thin electrodes are arranged in a comb-like manner, and the voltage applied to each electrode is controlled to generate a predetermined electric field in the PLZT. It is intended to be applied.
  • the electrode 101 is formed on the surface of PLZ L02, that is, the surfaces 102C and 102D orthogonal to the suitable light transmission direction, by aluminum deposition and etching treatment.
  • the electrode 101 is mounted on one surface 1G2C orthogonal to the light transmission direction of PLZT102, or as shown in Fig. 6B, it is mounted on both surfaces 1G2C, 1G2D of PLZT1G2.
  • An object of the present invention is to provide a shutter array that is inexpensive and operates reliably with a low driving voltage. Another object of the present invention is to provide a manufacturing method capable of easily manufacturing a shutter array having such a structure.
  • an optical shutter array comprises: a substrate having an aero-optical effect; a plurality of individual electrodes provided on one surface of the substrate parallel to a light transmission direction; A common electrode provided on the other surface of the substrate parallel to the surface of the substrate; a support member for sandwiching the individual electrode between the substrate and the substrate; Connected to and the terminal electrodes are provided so that the individual electrodes and the common electrode are substantially parallel to the incident light, and the terminal electrodes are substantially orthogonal to the incident light. It has been done.
  • the optical shutter array of the present invention includes a step of forming a plurality of mutually independent individual electrodes on one surface parallel to the light transmission direction of a substrate having an electro-optical effect; Forming a common electrode on the other surface of the substrate, forming a support member on the individual electrode side of the substrate, and laminating the substrate, the individual electrode, the common electrode, and the support member.
  • a step of forming a corresponding terminal electrode connected to each of the individual electrodes and the common electrode Therefore, it is parallel to the light transmission direction of the electro-optic effect element. Formed on a surface The electric field is applied between the individual electrode and the common electrode, the electro-optical effect appears uniform in the thickness direction.
  • the optical shutter array of the present invention can be driven at a low voltage.
  • a material having an electro-optical effect such as PZT
  • PZT a material having an electro-optical effect
  • another ceramic member is used in the portion where the terminal electrodes are wired
  • Cost reduction is possible.
  • the optical shutter array of the present invention has an electro-optical effect.
  • a block is formed by joining two sets of blocks, each of which is formed by laminating an individual electrode, a common electrode, and a support member on a substrate to be bonded, such that the common electrodes face each other, and forms one block.
  • Blocks are sliced on a surface perpendicular to the lamination direction, and the terminal electrodes are formed on the end surfaces of the individual electrodes and the common electrode exposed on the sliced surface. It can be made by the planar method, improving mass productivity.
  • FIG. 1A is a plan view showing an embodiment of the optical shutter array of the present invention
  • FIG. 1B is an enlarged sectional view taken along the line I-I of FIG.
  • f i 2 A--f i8, 2G are step diagrams showing an example of the manufacturing process of the optical shutter array according to the present invention.
  • ⁇ ig.3 shows another embodiment of the present invention, and is a plan view partially showing the configuration of an optical shutter array.
  • ⁇ ig.4A-Fig.4F is a process diagram showing an example of an electrode forming process of the optical shutter array according to the present invention.
  • Figure 5 shows the principle of the optical shutter.
  • Fig. 6A-Fig. 6C are cross-sectional front views illustrating the arrangement of the electrodes in a conventional optical shutter array.
  • FIG. 1A and FIG. 1B show one example of the optical shutter array of the present invention. An example will be described.
  • a set of shutter arrays 1 includes a substrate 2 made of a substance having an electro-optic effect, and a plurality of individual electrodes 3,..., 3 provided on one surface 2 ⁇ of the substrate 2 parallel to the light passing direction.
  • a common electrode 4 provided on the other surface 2 ⁇ of the substrate 2 parallel to the one surface 2 ⁇ ⁇ , and a support member 5 for sandwiching the individual electrodes 3,. .., 6 provided on the support member 5 and individually connected to each of the individual electrodes 3,..., And 3 ⁇ .
  • insulating layers 8, 9 also serving as SiO 2 and an adhesive of low melting point glass are provided between the common electrodes 4, 4 facing each other and between each individual electrode 4 and the supporting member 5. Formed and consolidated to form one block. Also, the individual electrodes 3,..., 3 are staggered so that the individual electrodes 3,..., 3 of one support member 5 are located between the individual electrodes 3,. Have been placed. The individual electrodes 3,..., 3 are arranged at regular intervals with a constant width in the present embodiment, but are not particularly limited to these widths and intervals. The interval is set.
  • Each of the individual electrodes 3,..., 3 is provided with a corresponding terminal electrode 6,..., 6 formed on and connected to the support member 5 so that each individual electrode can be individually controlled. Also low One terminal electrode 7 is simultaneously connected to the common electrodes 4 and 4 joined via an adhesive 8 such as melting glass and SiO 2.
  • the connection between the individual electrodes 3,... 3 and the terminal electrodes 6,... ..., 6 are formed.
  • the electrodes 3 and 4 are made of an electrode material such as aluminum or a transparent electrode material such as tin oxide, and are formed to a desired shape and thickness by vacuum evaporation or the like.
  • the common electrode 4 may not be a single electrode over the entire surface of the other surface 2B of the substrate 2 as shown in the figure, but may be formed as a plurality of electrodes corresponding to the individual electrodes 3,.
  • the substrate 2 having the electro-optic effect is a medium exhibiting a phenomenon that the birefringence changes in response to an applied electric field.
  • PLZT is a ceramic represented by the chemical formula (Pb, then a) (Zr, Ti) O3.
  • Pb, then a) (Zr, Ti) O3 For optical shutters, for example, PLZT 9Z65 / 35 is generally used. It is.
  • This PLZT has a high transmissivity and a large electro-optic coefficient, and has favorable conditions as a high-speed optical shutter such as a fast response speed and no moving parts.
  • the support member 5 ceramics can be usually used, but the support member 5 is not particularly limited thereto, and may be glass or the like.
  • the shutter array configured as described above, it operates as an optical shutter as follows.
  • the origin of the optical shutter is shown in ⁇ 8.5.
  • 110 is a polarizer
  • 111 is an analyzer
  • 1 is a shutter array
  • “ ⁇ 3 is a power supply
  • 114 is a light source
  • 1 is a switch.
  • Light incident from the light source 4 is The polarizer 110 converts the light into a linear light (I light, which is introduced into the shutter array 1).
  • P and ZT 2 are optically isotropic. Because it is a body, the light is blocked by the analyzer 111, and the light becomes stagnant.
  • P and ZT 2 show optical anisotropy.
  • the light plane rotates with the transmission of the light, and the light that reaches the analyzer 111 becomes elliptically polarized light or linearly polarized light depending on the applied voltage.
  • the light is rotated 90 degrees just because the half-wave phase is shifted, and the light is analyzed as a linear light. Since passing through the 11 1, the maximum of the output light intensity can be obtained
  • PLZT 2 causes birefringence and operates as a shutter.
  • the shutter portion A-1 of the PZT2 between them operates to transmit light.
  • reference numerals A-1, A-2, ..., A- ⁇ indicate shutter parts.
  • an electrode material such as aluminum is fixed to the entire surface 2A of the PLZT substrate 2 parallel to the light transmission direction by vacuum evaporation or the like to form a thin film 10 having a constant thickness (Fig. 2 A] ⁇ Stripe-shaped individual electrodes 3,..., 3 are formed on the A jg thin film 10 by photolithography [fig.2B].
  • the photolithography is performed, for example, by applying a positive type photo resist on the thin electrode material film 10 and irradiating only a portion where the electrode material is not required with a photo mask.
  • UV light is passed through the electrode to remove the photosensitizer with a developer, use the remaining photosensitizer as a protective film, and partially remove the electrode material 1G by etching.
  • the photosensitizer is removed.
  • an electrode material such as ⁇ is fixed to the other surface 2 B (back surface) of the substrate 2 parallel to the light transmission direction by vacuum evaporation or the like, and the common electrode 4 is formed on the entire surface. ].
  • the common electrode 4 may be formed only in a portion corresponding to the individual electrode by the same method as the individual electrodes 3,.
  • the common electrode 4 is provided separately at a position facing the individual electrodes 3,..., 3, the difference in expansion due to ripening when the insulating layers 8, 8 are bonded to each other causes the thinning of the common electrode and Si 02 The danger of peeling can be reduced, and since the electro-optical effect does not spread laterally at the common electrode portion, crosstalk can be prevented.
  • thin films 8 and 9 of Si 02 as an insulating material are formed by sputtering or the like so as to cover the electrodes 3,. [F ⁇ g .21)] ⁇
  • two sets of the above-mentioned blocks 11 are butted back to back so that the common electrodes 4, 4 face each other, and the individual electrodes 3,..., 3 on one support member 5 support the other.
  • the members 5 are arranged in a staggered manner so as to be located between the individual electrodes 3,..., 3, and a spacer (not shown) is sandwiched between the common electrodes 4. Further, a block of ceramics or the like as the support member 5 is stacked on each of the individual electrodes 3,..., 3 via a spacer (not shown). After that, the low-melting-point glass 12 is allowed to penetrate between the support member 5 and the individual electrode measurement insulating layer 9 and between the common electrode side insulating layer 8 in a ripened state, and the whole is formed into one block. Harden [fig.2 ⁇ ].
  • the block 1 3 laminated direction, that is P and by slice in light transmission over a direction perpendicular to the direction 1 8 of ZT substrate 2 is "F ⁇ g .2 F] 3 ⁇ 4 slice to desired thickness
  • the block chip 14 is polished, and an electrode material such as aluminum is formed into a thin film by vacuum deposition or the like on one surface of a surface orthogonal to the light transmission direction of the block chip 14.
  • the desired terminal electrodes 6,..., 6 are formed on the support member 5 by photolithography and the terminal electrodes 7 are formed on the common electrodes 4, 4. [ig.2G
  • the terminal electrodes 6,..., 6 are connected to the corresponding individual electrodes 3,..., 3 respectively, and the terminal electrode 7 is connected to both common electrodes 4, 4 at the same time.
  • the optical shutter array of this embodiment is different from that of fi9.1 in that the individual electrodes 3,..., 3 are formed on a surface 2A parallel to the light passing direction of the substrate 2. Multiple of ⁇ 1 5, ..., They differ in that they are embedded electrodes formed by embedding a conductive metal in 15.
  • the surface of the substrate 2 after the formation of the individual electrodes that is, one surface 2 ⁇ parallel to the light transmission direction of the substrate 2 is planarized, and the surface of the insulating layer 9 formed thereon is coated. Is prevented from becoming M convex, and uneven bonding at the time of bonding to the support member 5J, generation of stress distribution in the substrate 2 after bonding, and the like are prevented.
  • Fig.4 shows the method of forming the individual electrodes 3, ..., 3 in the optical shutter array having the configuration of fig.3.
  • a pattern for an embedded electrode is formed in a strip shape by a photolithography method or the like. More specifically, for example, a positive photoresist (photosensitive agent) 16 is uniformly applied to one surface 2A of the substrate 2 so that the individual electrodes 3,..., 3 are not required. UV light is irradiated through a photomask so that only the light is radiated, the photosensitive agent 16 in the exposed area is removed by the developing solution, and the photosensitive agent 16 is left by the remaining photosensitive agent.
  • a pattern for an embedded electrode is formed on tripe [fig.4B].
  • an etching technique (dry etching, wet etching) is used to form a ⁇ portion 15 on the substrate 2 [Hg.4C].
  • a conductive metal serving as an embedded electrode 3 is formed on the substrate 2 on which the upper portion 15 is formed.
  • AI, AI, Ag, Cu, Ni, Mo, W, etc. is coated using a technique such as vacuum deposition, sputtering, and plating [[ig. 4]. I) ⁇ .
  • the photosensitive agent 16 used as the protective film is removed to remove the conductive metal 17 other than the conductive metal 17 adhered to the portion 15 and the conductive material remaining in the portion 15 is removed.
  • the metal be the individual electrodes 3, ..., 3 [fig. 4 E]. That is, when the substrate 2 after the formation of the conductive metal film shown in ⁇ 8.4 L> is put in a solution in which the photosensitive agent 16 is dissolved, the conductive metal 17 on the photosensitive agent becomes the photosensitive agent 16. Both are peeled off, and only the conductive metal 17 in the upper part 15 remains on the substrate 2 to form the embedded electrode 3.
  • the surface of the substrate 2 will not be flat unless the depth of the groove 15 and the thickness of the conductive metal 17 are equal. Therefore, in such a case, it is preferable to flatten the substrate surface by lapping or the like.
  • the insulating layer 9 is formed on the surface 2 A parallel to the light transmission direction of the substrate 2 formed by embedding the individual electrodes 3,.
  • a common electrode 4 and an invisible eyebrow 8 are formed on the other surface 2B (II), which is parallel to one surface 2A, and a block equivalent to the previous Fis.2D is formed.
  • the common electrode 4 is not a single electrode over the entire surface of the other surface 2 B of the substrate 2 as shown in the figure, but a plurality of electrodes corresponding to the individual electrodes 3,.
  • the common electrode 4 is also formed by a buried electrode as in the case of the individual electrode 3 (.
  • the unevenness on the insulating layer 9 can be almost eliminated. So Even if a low-melting glass is applied on the surface, the unevenness in thickness is reduced, and the occurrence of uneven bonding at the time of bonding to the support member side is prevented.
  • the optical shutter array 1 is manufactured through the same steps as in the case of fiS.2E—FIG.2G.
  • one block is configured by combining two sets of optical shutter arrays.
  • the present invention is not particularly limited to this, and only one set of optical shutter arrays is used. It can also be used for shutters and the like.
  • the support member 5 is arranged outside the common electrode 4 so that the common electrode 4 is sandwiched between the substrate 2 and the support member 5. As shown in Fig. 1A, it is not necessary to arrange staggered electrodes 3,..., 3 and their terminal electrodes 6,..., 6 in a staggered pattern. Placement is selected ⁇
  • the optical shutter array of the present invention in which a large number of shutter elements are arranged one-dimensionally, constitutes an optical shutter by combining, for example, a polarizer and an analyzer. It can be applied to sensors, high-brightness projectors, optical switches, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The invention relates to the construction of a light shutter array utilizing an electrooptical effect and to a method of producing the same, and its object is to provide a light shutter array which is inexpensive but operates without fail at a low drive voltage. This array has a plurality of individual electrodes (3) and a common electrode (4) on each of planes (2A, 2B) in parallel with the direction of light transmission of the substrate (2) which exhibits an electrooptical effect, has a support member (5) that sandwiches the electrodes (3) between it and the substrate (2), and further has terminal electrodes (6) provided on the support member (5). According to the manufacturing method of the invention, two blocks are joined together in such a manner that the common electrodes (4) are opposed to each other back to back with an insulating material (8) interposed therebetween in order to constitute a single block, each of the above blocks having stacked thereon the individual electrodes (3) and the common electrode (4) on each of the planes (2A), (2B) in parallel with the direction of light transmission of the substrate (2) that exhibits an electrooptical effect, and further having the support member (5) for sandwiching the electrodes (3) between it and the substrate (2). The block thus constituted is sliced in the direction at right angles with the direction of stacking, and terminal electrodes (6), (7) are formed on the ends of the electrodes (3) and the common electrode (4), respectively, exposed on the sliced surfaces.

Description

明 細 書  Specification
光シャ ッ タ アレイ 及びその製造方法  Optical shutter array and method of manufacturing the same
技術分野  Technical field
本発明は、 光シャ ツ タアレイ 及びその製造方法に関する 。 更に詳述する と 、 本発明は電気光学効果を利用 した光シャ ッ タアレイ と その製法に関する 。  The present invention relates to an optical shutter array and a method for manufacturing the same. More specifically, the present invention relates to an optical shutter array utilizing an electro-optic effect and a method for producing the same.
背景技術  Background art
電気光学効果と して 、 印加鼋界に対 して媒質の複屈折が 変化する現象が知られて いる 。 そ して 、 この現象を利用 し 、 印加する電界を制御する こ と によ って媒質に光の透先 · 遮 光動作を行なわせる よ う に した光シャ ッ タアレイ が従来提 案されている 。 この光シ ャ ツ 夕アレイ は、 板状の電気光学 効果を有する物質例えば P L Z Tに薄型電極を く し歯状に 配置 し、 個々の電極にかかる鼋圧を制御 して P L Z Tに所 定の電界を印加する よ う に した ものである 。 電極 101 は、 従来、 アルミ蒸着とエ ッ チング処理によ って P L Z Τ Ί 02 の表面即ち光透適方向 と直交する面 102C, 102 D に形成され て いる 。 例えば、 Fig. 6 Aに示すよ う に P L Z T 102 の光 透過方向 と直交する一方の面 1G2Cに取付けた り 、 F ig. 6 B に示すよ う に P L Z T 1G2 の両面 1G2C, 1G2D に取付けた り As the electro-optic effect, a phenomenon in which the birefringence of a medium changes with respect to an applied field is known. By using this phenomenon, an optical shutter array has been proposed in which an applied electric field is controlled to allow the medium to perform light transmission / shielding operations. . This optical shutter array is composed of a plate-like substance having an electro-optic effect, such as PLZT, in which thin electrodes are arranged in a comb-like manner, and the voltage applied to each electrode is controlled to generate a predetermined electric field in the PLZT. It is intended to be applied. Conventionally, the electrode 101 is formed on the surface of PLZ L02, that is, the surfaces 102C and 102D orthogonal to the suitable light transmission direction, by aluminum deposition and etching treatment. For example, as shown in Fig. 6A, it is mounted on one surface 1G2C orthogonal to the light transmission direction of PLZT102, or as shown in Fig. 6B, it is mounted on both surfaces 1G2C, 1G2D of PLZT1G2.
(特開昭 62-42120号 ) 、 Fis. 6 Cに示すよ う に P L Z T 102 に溝加工を施して P し Z T 102 の深さ方向即ち光透過 方向に電極 101 を一部埋め込むよ う に して取付け られて い る 。 しか しながら 、 電気光学効果を有する物質 102 の光透過 方向 と直交する表面 1G2C, に電極 101 が形成されて い る場合、 物質内部で均一に電気光学効果が起こ り難いため 、 駆動電圧を高く しなく てはならない。 また、 電極の一部を 物質 102 内に埋め込む場合、 狭隘な耩 103 を加工する こ と が困難である し、 この溝加工のため P L Z T 1 G2 の機械的 強度が劣る と い う 問題がある 更に、 上述の従来のシャ ツ 夕アレイ は、 電気光学効果を有する物質 102 上に電極 1C1 の リ ー ド部分 104 も形成して いるため、 実際のシャ ツ タ部 分よ り も広いものが必要とな り 、 コス ト高と なる 。 (JP-A-62-42120), as shown in Fis. 6C, a groove is formed in the PLZT 102 so that the electrode 101 is partially embedded in the depth direction of the ZT 102, that is, in the light transmission direction. It is mounted. However, when the electrode 101 is formed on the surface 1G2C, which is orthogonal to the light transmission direction of the substance 102 having the electro-optical effect, the driving voltage is increased because the electro-optical effect is hard to occur uniformly inside the substance. You have to do it. Also, when a part of the electrode is embedded in the substance 102, it is difficult to process the narrow hole 103, and there is a problem that the mechanical strength of the PLZT 1 G2 is inferior due to the groove processing. However, in the conventional shutter array described above, since the lead portion 104 of the electrode 1C1 is also formed on the substance 102 having an electro-optical effect, it is necessary to have an area wider than the actual shutter portion. Therefore, the cost is high.
—方、 鼋気光学素子の製法と して 、 電気光学セラ ミ ッ ク スのグリ ーンシー 卜 と 電極層と の積層体を焼成 して一体化 する ものが従来ある (特開昭 63-256921 号) 。  On the other hand, as a method of manufacturing an aerial optical element, there has been a conventional method in which a laminate of a green sheet of an electro-optic ceramic and an electrode layer is sintered and integrated (Japanese Patent Application Laid-Open No. 63-256921). ).
発明の開示  Disclosure of the invention
本発明は、 安価でかつ低い躯動電圧によ って確実に作動 する シャ ツ 夕 アレイ を提洪する こ と を 目的と する 。 また、 本発明はそのよ う な構造のシャ ッ タアレイ を簡単に製造で き る製造方法を提供する こ と を 目的とする  An object of the present invention is to provide a shutter array that is inexpensive and operates reliably with a low driving voltage. Another object of the present invention is to provide a manufacturing method capable of easily manufacturing a shutter array having such a structure.
かかる 目的を達成するため、 本発明の光シャ ツ タアレイ は、 鼋気光学効果を有する基板と 、 前記基板の光透過方向 と平行な一方の面に設けられた複数の個別電極と 、 前記一 方の面と平行な前記基板の他方の面に設けられた共通電極 と 、 前記個別電極を前記基板と の間で挾む支持部材 と 、 前 記支持部材上に設けられて前記各個別電極に個々 に接続さ tiて いる端子電極と から成 り 、 前記個別電極と 前記共通電 極が入射光に対 しほぼ平行と なる よ う 設けられ、 かつ端子 電極が上記入射光に対 しほぼ直交する よ う に構成されて い る 。 In order to achieve the above object, an optical shutter array according to the present invention comprises: a substrate having an aero-optical effect; a plurality of individual electrodes provided on one surface of the substrate parallel to a light transmission direction; A common electrode provided on the other surface of the substrate parallel to the surface of the substrate; a support member for sandwiching the individual electrode between the substrate and the substrate; Connected to and the terminal electrodes are provided so that the individual electrodes and the common electrode are substantially parallel to the incident light, and the terminal electrodes are substantially orthogonal to the incident light. It has been done.
また、 本発明の光シャ ツ 夕 アレイ は、 電気光学効果を有 する基板の光透過方向 と 平行な一方の面に相互に独立 した 複数の個別電極を形成する工程と 、 前記一方の面と平行な 前記基板の他方の面に共通電極を形成する工程 と 、 前記基 板の前記個別電極側に支持部材を積層形成する工程と 、 前 記基板と 個別電極と共通電極及び支持部材を積層 して成る 2組のブロ ッ ク を 、 前記共通電極が背中合せに対向する よ う に絶緣材を介在させて接合 して 1 つのブロ ッ ク を形成す る工程と 、 このブロ ッ ク を積層方向 と直交する面でスライ スする工程と 、 前記個別電極の夫々 及び共通電極に接続さ れる対応端子電極を形成する工程によ って製造されて いる , したがって 、 電気光学効果素子の光の透過方向に平行な 面に形成された個別電極と共通電極と の間で電界が印加さ れ、 電気光学効果が厚み方向に均一に現れる 。  In addition, the optical shutter array of the present invention includes a step of forming a plurality of mutually independent individual electrodes on one surface parallel to the light transmission direction of a substrate having an electro-optical effect; Forming a common electrode on the other surface of the substrate, forming a support member on the individual electrode side of the substrate, and laminating the substrate, the individual electrode, the common electrode, and the support member. A step of forming one block by joining two sets of blocks with an insulating material therebetween so that the common electrode faces back to back, and forming the block perpendicular to the laminating direction. And a step of forming a corresponding terminal electrode connected to each of the individual electrodes and the common electrode. Therefore, it is parallel to the light transmission direction of the electro-optic effect element. Formed on a surface The electric field is applied between the individual electrode and the common electrode, the electro-optical effect appears uniform in the thickness direction.
このため、 本発明の光シャ ツ 夕 アレイ は低電圧で駆動で き る 。 また、 シャ ツ タ部分にだけ電気光学効果を有する物 質例えば P し Z Tを使用 し、 端子電極を配線する部分には 別のセラ ミ ッ クス部材を使用するため、 P L Z Tの使甩量 が少な く 低コ ス ト化が可能である 。  Therefore, the optical shutter array of the present invention can be driven at a low voltage. In addition, since a material having an electro-optical effect, such as PZT, is used only in the shutter portion, and another ceramic member is used in the portion where the terminal electrodes are wired, the use of PLZT is small. Cost reduction is possible.
また、 本発明の光シャ ツ タアレイ は、 電気光学効果を有 する基板に個別電極、 共通電極及び支持部材を積層形成 し た 2組のブロ ッ ク をそれらの共通電極が対向する よ う に背 中合せに接合 して 1 つのブロ ッ ク を形成し、 このブロ ッ ク を積層方向と直交する面でスライ ス し、 かつそのスライ ス された面に露出する個別電極及び共通電極の端面に端子電 極を形成する よ う に製造する よ う に したので、 プレーナ法 で作れ、 量産性が向上する 。 Further, the optical shutter array of the present invention has an electro-optical effect. A block is formed by joining two sets of blocks, each of which is formed by laminating an individual electrode, a common electrode, and a support member on a substrate to be bonded, such that the common electrodes face each other, and forms one block. Blocks are sliced on a surface perpendicular to the lamination direction, and the terminal electrodes are formed on the end surfaces of the individual electrodes and the common electrode exposed on the sliced surface. It can be made by the planar method, improving mass productivity.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
f ig. l Aは本発明の光シャ ツ タアレイ の一実施例を示す 平面図、 f ig. l Bは Fig. l Aの I 一 I線に沿 う 拡大断面図 である 。  FIG. 1A is a plan view showing an embodiment of the optical shutter array of the present invention, and FIG. 1B is an enlarged sectional view taken along the line I-I of FIG.
f i 2 A - - f i8, 2 Gは本発明に係る光シャ ッ 夕アレイ の 製造プロセスの一例を示す工程図である 。  f i 2 A--f i8, 2G are step diagrams showing an example of the manufacturing process of the optical shutter array according to the present invention.
Γ i g .3は本発明の他の実施例を示すもので、 光シャ ツタ アレイ の構成を部分的に示す平面図である  Γig.3 shows another embodiment of the present invention, and is a plan view partially showing the configuration of an optical shutter array.
ί i g .4 A - F i g .4 Fは本発明によ る光シャ ッ タアレイ の 電極形成プロセスの一例を示す工程図である 。  ίig.4A-Fig.4F is a process diagram showing an example of an electrode forming process of the optical shutter array according to the present invention.
Fig.5は光シャ ッ タの原理図である 。  Figure 5 shows the principle of the optical shutter.
Fig.6 A - Fig.6 Cは従来の光シャ ッ タアレイ の電極の 配置を説明する断面正面図である 。  Fig. 6A-Fig. 6C are cross-sectional front views illustrating the arrangement of the electrodes in a conventional optical shutter array.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の構成を図面に示す実施例に基づいて詳細 に説明する 。  Hereinafter, the configuration of the present invention will be described in detail based on an embodiment shown in the drawings.
F ig. 1 A及び f ig. 1 Bに本発明の光シャ ッタアレイ の一 実施例を示す。 この実施例は二組のシャ ツ タ アレ イ 1 , 1 を 、 それらの共通電極 4 同士が向い合せになる よ う に背中 合せに接合 して 1 つのブロ ッ ク と した のである 。 1 組の シャ ツ タアレイ 1 は、 電気光学効果を有する物質から成る 基板 2 と 、 基板 2 の光の通過方向 と平行な一方の面 2 Αに 設けられた複数の個別電極 3 , …, 3 と 、 基板 2 の前記一 方の面 2 Α と平行な他方の面 2 Βに設けられた共通電極 4 と 、 個別電極 3 , …, 3 を基板 2 と の間で挾む支持部材 5 と 、 この支持部材 5上に設けられて各個別電極 3 , …, 3 に個々 に接続されて いる端子電極 6 , ··· , 6 と から構成さ れて いる 》 そ して 、 この二組のシャ ツ タアレイ 1 , 1 は、 向い合 う 各共通電極 4 , 4 の間および各個別電極 4 と支持 部材 5 と の間に S i O 2 及び低融点ガラスの接着剤を兼ね た絶緣層 8, 9 が形成されて 1 つのブロ ッ ク を構成する よ う に固められて いる 。 また、 個別電極 3 , …, 3 は、 一方 の支持部材 5 厠の個別電極 3 , …, 3 が他方の支持部材 5 側の個別電極 3 , …, 3 間に位置する よ う に千鳥状に配置 されて いる 。 個別電極 3 , …, 3 は、 本実施例の場合、 一 定の幅で等間隔に配置されるが、 特にこの幅及び間隔に限 定される ものではな く 、 必要に応じてその幅及び間隔は設 定される 。 FIG. 1A and FIG. 1B show one example of the optical shutter array of the present invention. An example will be described. In this embodiment, two sets of shutter arrays 1 and 1 are joined back-to-back so that their common electrodes 4 face each other to form one block. A set of shutter arrays 1 includes a substrate 2 made of a substance having an electro-optic effect, and a plurality of individual electrodes 3,..., 3 provided on one surface 2 平行 of the substrate 2 parallel to the light passing direction. A common electrode 4 provided on the other surface 2 平行 of the substrate 2 parallel to the one surface 2 前 記, and a support member 5 for sandwiching the individual electrodes 3,. .., 6 provided on the support member 5 and individually connected to each of the individual electrodes 3,..., And 3}. In the array 1, 1, insulating layers 8, 9 also serving as SiO 2 and an adhesive of low melting point glass are provided between the common electrodes 4, 4 facing each other and between each individual electrode 4 and the supporting member 5. Formed and consolidated to form one block. Also, the individual electrodes 3,..., 3 are staggered so that the individual electrodes 3,..., 3 of one support member 5 are located between the individual electrodes 3,. Have been placed. The individual electrodes 3,..., 3 are arranged at regular intervals with a constant width in the present embodiment, but are not particularly limited to these widths and intervals. The interval is set.
前記個別鼋極 3 , …, 3 には対応する端子電極 6 , …, 6 がそれぞれ支持部材 5上に形成されて接続され、 各個別 電極を個々 に制御し得る よ う に設けられて いる 。 また、 低 融点ガラス · S i O 2 等の接着剤 8 を介 して接合された共 通電極 4 , 4 には一本の端子電極 7が同時に接続されて い る 。 個別電極 3 , …, 3 と端子電極 6 , …, 6の接続は、 個別電極 3 , …, 3の端部を基板 2 と支持部材 5 と の間に 露出させその上に直接端子電極 6 , …, 6 を形成する こ と によ って行なわれて いる 。 共通電極 4 , 4 と端子電極 7 と の接続も同様である 。 尚、 電極 3 , 4 にはアル ミ ニウム等 の 極材ある いは酸化すずなどの透明電極材が使用され、 所望の形^及び厚みに真空蒸着等によ って形成されて いる < また、 共通電極 4は図示の如く 基板 2の他方の面 2 Bの全 面に亙る 1本の電極とせず、 個別電極 3 , …, 3 に対応す る複数の電極と して形成して も良い。 Each of the individual electrodes 3,..., 3 is provided with a corresponding terminal electrode 6,..., 6 formed on and connected to the support member 5 so that each individual electrode can be individually controlled. Also low One terminal electrode 7 is simultaneously connected to the common electrodes 4 and 4 joined via an adhesive 8 such as melting glass and SiO 2. The connection between the individual electrodes 3,... 3 and the terminal electrodes 6,... …, 6 are formed. The same applies to the connection between the common electrodes 4 and 4 and the terminal electrode 7. The electrodes 3 and 4 are made of an electrode material such as aluminum or a transparent electrode material such as tin oxide, and are formed to a desired shape and thickness by vacuum evaporation or the like. The common electrode 4 may not be a single electrode over the entire surface of the other surface 2B of the substrate 2 as shown in the figure, but may be formed as a plurality of electrodes corresponding to the individual electrodes 3,.
電気光学効果を有する基板 2は、 印加電界に対 して複屈 折が変化する現象を呈する媒質であ り 、 例えば P L Z Tの 使用が好適である 。 P L Z Tは ( P b , し a ) ( Z r , T i ) O 3 の化学式で表わされるセラ ミ ッ クスで、 光シャ ッ タ用と しては例えば P L Z T 9 Z 6 5 / 3 5が一般的で ある 。 この P L Z Tは透過率が高く 大き な電気光学係数を 有し、 応答速度が速く可動部がない等の高速光シャ ツ 夕 と して有利な条件を備えている 。 また、 支持部材 5 と しては 通常セラ ミ ッ クスが使用可能であるが、 特にこれに限定さ れる ものではな く ガラス等でも良い。  The substrate 2 having the electro-optic effect is a medium exhibiting a phenomenon that the birefringence changes in response to an applied electric field. For example, it is preferable to use PLZT. PLZT is a ceramic represented by the chemical formula (Pb, then a) (Zr, Ti) O3. For optical shutters, for example, PLZT 9Z65 / 35 is generally used. It is. This PLZT has a high transmissivity and a large electro-optic coefficient, and has favorable conditions as a high-speed optical shutter such as a fast response speed and no moving parts. In addition, as the support member 5, ceramics can be usually used, but the support member 5 is not particularly limited thereto, and may be glass or the like.
以上のよ う に構成されたシャ ツ タアレイ によれば、 次の よ う に光シャ ッ タ と して作動する 。 光シャ ツ タの原堙を Π8.5 に示す。 f ig.5 において 、 11 0 は偏光子、 111 は検光子、 1 はシャ ツ タアレイ 、 "Π 3 は 電源 .、 114 は光源、 1 はスィ ツ チである 。 光源 "4 から 入射 した光は、 偏光子 110 によ り 直線(I光と な り 、 シャ ツ 夕アレイ 1 に導入される 。 こ こで、 シャ ツ タアレイ 1 に鼋 圧が印加されない場合、 P し Z T 2は光学的等方体である ため、 光は検光子 111 によ って遮られ光は才フ犹態になる < また、 シャ ツ タアレイ ] に電圧を印加する と 、 P し Z T 2 は光学的異方性を示すため、 光の透過に伴って塥光面が回 転 し、 検光子 111 に到達した光は、 印加電圧に応 じて楕円 偏光、 ある いは直線偏光と なる 。 こ こで、 作動電圧と して いわゆる半波長電压を印加する と 、 丁度、 半波長位相がず れるため光は 9 0 回転し、 直線状镉光となって検光子 11 1 を通過するので、 最大の出力光強度が得られる According to the shutter array configured as described above, it operates as an optical shutter as follows. The origin of the optical shutter is shown in タ 8.5. In FIG. 5, 110 is a polarizer, 111 is an analyzer, 1 is a shutter array, “Π3 is a power supply, 114 is a light source, 1 is a switch. Light incident from the light source 4 is The polarizer 110 converts the light into a linear light (I light, which is introduced into the shutter array 1). When no pressure is applied to the shutter array 1, P and ZT 2 are optically isotropic. Because it is a body, the light is blocked by the analyzer 111, and the light becomes stagnant. Also, when a voltage is applied to the shutter array, P and ZT 2 show optical anisotropy. Therefore, the light plane rotates with the transmission of the light, and the light that reaches the analyzer 111 becomes elliptically polarized light or linearly polarized light depending on the applied voltage. When a so-called half-wave power is applied, the light is rotated 90 degrees just because the half-wave phase is shifted, and the light is analyzed as a linear light. Since passing through the 11 1, the maximum of the output light intensity can be obtained
そ こで、 スィ ツチ 105 の操作によ って 、 任意の個別電極 3 , … , 3 と 共通電極 4 と の間に所定の鼋圧を印加 して電 界を形成すれば、 それらの間の P L Z T 2が複屈折を起し シャ ツ タ と して動作する 。 例えば f i g . 1 Aにおいて上側の 右端の個別電極 3 と共通電極 4 と の間に電界を加える と 、 それらの間の P し Z T 2のシャ ツ タ部分 A -1 が動作 し光を 通過させる 。 尚、 図中符号 A -1 , A -2 , … , A -Νはシャ ツ タ部を示す。  When a predetermined voltage is applied between any of the individual electrodes 3,..., 3 and the common electrode 4 by operating the switch 105, an electric field is generated between them. PLZT 2 causes birefringence and operates as a shutter. For example, when an electric field is applied between the upper rightmost individual electrode 3 and the common electrode 4 in FIG. 1A, the shutter portion A-1 of the PZT2 between them operates to transmit light. In the figure, reference numerals A-1, A-2, ..., A-Ν indicate shutter parts.
次に上述の構成の光シャ ッ タアレイ の製造方法について 説明する 。 まず、 P L Z T基板 2の光の透過方向 と平行な一方の面 2 Aにアルミニウム等の電極材を真空蒸着等によ って全面 に固着させ、 一定厚さの薄膜 1 0 を形成する [ Fig.2 A ] < その A jg 薄膜 1 0にフ ォ ト リ ソグラ フ ィ によ り ス ト ライ プ 状の個別電極 3 , ···, 3 を开 成する [ f ig.2 B ] 。 フ ォ ト リ ソグラフ ィ は、 例えばポジ型フ ォ ト レジス ト を電極材薄 膜 1 0の上に塗布し、 電極材を必要と しない箇所だけに光 が照射される よ う に フ ォ ト マスク を通して紫外線を照射 し, 現像液によ り感光剤を取 り 除いて 、 残った感光剤を保護膜 に してエッチングによ り電極材 1 G を部分的に取除く よ う に行なわれる , その後、 感光剤は除去される 。 また、 基板 2の光透過方向と平行な他方の面 2 B (裏面 ) に Α £ 等の 電極材を真空蒸着等によ って固着 し、 共通電極 4 を全面に 形成する 〖 Fig.2 C ] 。 この場合、 個別電極 3 , … , 3 と 同様の方法によ り 、 個別電極に対応する部分のみ共通電極 4 を形成して も良い。 共通電極 4 を個別電極 3 , … , 3 と 対向する位置に個別に設ければ、 絶縁層 8 , 8同士を接着 した時の熟によ る膨張の違いによって共通電極や S i 02 の薄膜が剥離する と い う 危険を減少させる こ と ができ る し また、 電気光学効果が共通電極部分で横に広がる こ と もな いから 、 ク ロス トーク も防止でき る効果がある 。 そ して 、 基板 2の両面に電極 3 , … , 3及び 4を被う よ う に、 スパ ッ タ リ ング等によって絶縁材と しての S i 02 の薄膜 8 , 9 を形成しブロ ッ ク 1 1 とする [ F Ί g .21) ] Φ 次いで、 2組の上述のブロ ッ ク 1 1 を共通電極 4 , 4 同 士が向い合う よ う に背中合せに突合せ、 かつ一方の支持部 材 5上の個別電極 3 , … , 3が他方の支持部材 5上の個別 電極 3 , … , 3の間に位置する よ う に千鳥状に配列 して 、 それらの共通電極 4 , 4の間にスぺーサ (図示省略 ) を挟 み込んで重ねる 。 更に、 各個別電極 3 , … , 3 厠にスベー サ (図示省略 ) を介 して支持部材 5 と してのセラ ミ ッ クス 等のブロ ッ ク を夫々重ねる 。 その後、 支持部材 5 と 個別電 極測絶縁層 9 と の間及び共通電極側絶緣層 8 と の間に加熟 状態下で低融点ガラス 1 2 を侵入させて全体を 1 つのプロ ッ ク状に固める [ f i g .2 Ε ] 。 Next, a method of manufacturing the optical shutter array having the above configuration will be described. First, an electrode material such as aluminum is fixed to the entire surface 2A of the PLZT substrate 2 parallel to the light transmission direction by vacuum evaporation or the like to form a thin film 10 having a constant thickness (Fig. 2 A] <Stripe-shaped individual electrodes 3,..., 3 are formed on the A jg thin film 10 by photolithography [fig.2B]. The photolithography is performed, for example, by applying a positive type photo resist on the thin electrode material film 10 and irradiating only a portion where the electrode material is not required with a photo mask. UV light is passed through the electrode to remove the photosensitizer with a developer, use the remaining photosensitizer as a protective film, and partially remove the electrode material 1G by etching. The photosensitizer is removed. Also, an electrode material such as Α is fixed to the other surface 2 B (back surface) of the substrate 2 parallel to the light transmission direction by vacuum evaporation or the like, and the common electrode 4 is formed on the entire surface. ]. In this case, the common electrode 4 may be formed only in a portion corresponding to the individual electrode by the same method as the individual electrodes 3,. If the common electrode 4 is provided separately at a position facing the individual electrodes 3,..., 3, the difference in expansion due to ripening when the insulating layers 8, 8 are bonded to each other causes the thinning of the common electrode and Si 02 The danger of peeling can be reduced, and since the electro-optical effect does not spread laterally at the common electrode portion, crosstalk can be prevented. Then, thin films 8 and 9 of Si 02 as an insulating material are formed by sputtering or the like so as to cover the electrodes 3,. [F Ί g .21)] Φ Next, two sets of the above-mentioned blocks 11 are butted back to back so that the common electrodes 4, 4 face each other, and the individual electrodes 3,..., 3 on one support member 5 support the other. The members 5 are arranged in a staggered manner so as to be located between the individual electrodes 3,..., 3, and a spacer (not shown) is sandwiched between the common electrodes 4. Further, a block of ceramics or the like as the support member 5 is stacked on each of the individual electrodes 3,..., 3 via a spacer (not shown). After that, the low-melting-point glass 12 is allowed to penetrate between the support member 5 and the individual electrode measurement insulating layer 9 and between the common electrode side insulating layer 8 in a ripened state, and the whole is formed into one block. Harden [fig.2 Ε].
このブロ ッ ク 1 3 を積層方向即ち P し Z T基板 2の光透 過方向 と直角な方向 1 8にスライ ス して所望の厚さ にする 「 F ί g .2 F ] ¾ スライ スされたブロ ッ クチ ッ プ 1 4は研磨 される 。 そ して 、 ブロ ッ クチ ッ プ 1 4の光透過方向 と直交 する面の片面にアル ミ ニウム等の電極材を真空蒸着等によ つて薄膜状に被膜し、 フ ォ ト リ ソグラ フ ィ によ って所望の 端子電極 6 , … , 6 を支持部材 5上に、 また共通電極 4 , 4上に端子電極 7 を形成する [ ig.2 G ] 。 端子電極 6 , … , 6は対応する個別電極 3 , … , 3 と夫々接続され、 端 子電極 7は双方の共通電極 4 , 4 と 同時に接続されて いる Fig.3に他の実施例を示す。 この実施例の光シャ ツ タァ レイ は、 f i 9. 1 のもの と は個別電極 3 , … , 3が基板 2の 光通過方向と平行な面 2 Aに形成された複数の瀵部 1 5 , … , 1 5に導電性金属を埋め込んで形成 した埋込鼋極であ る点で異なる 。 この光シャ ツ タアレイ の場合、 個別電極形 成後の基板 2の表面即ち基板 2の光透過方向 と平行な一方 の面 2 Αが平坦化され、 その上に被覆形成される絶縁層 9 の表面が M凸になる こ とが防止され、 支持部材 5 Jと の接 着時における接着むらの発生、 接着後の基板 2中の応力分 布の発生等が防止される 。 The block 1 3 laminated direction, that is P and by slice in light transmission over a direction perpendicular to the direction 1 8 of ZT substrate 2 is "F ί g .2 F] ¾ slice to desired thickness The block chip 14 is polished, and an electrode material such as aluminum is formed into a thin film by vacuum deposition or the like on one surface of a surface orthogonal to the light transmission direction of the block chip 14. The desired terminal electrodes 6,..., 6 are formed on the support member 5 by photolithography and the terminal electrodes 7 are formed on the common electrodes 4, 4. [ig.2G The terminal electrodes 6,…, 6 are connected to the corresponding individual electrodes 3,…, 3 respectively, and the terminal electrode 7 is connected to both common electrodes 4, 4 at the same time. The optical shutter array of this embodiment is different from that of fi9.1 in that the individual electrodes 3,..., 3 are formed on a surface 2A parallel to the light passing direction of the substrate 2. Multiple of 瀵部 1 5, …, They differ in that they are embedded electrodes formed by embedding a conductive metal in 15. In the case of this optical shutter array, the surface of the substrate 2 after the formation of the individual electrodes, that is, one surface 2 平行 parallel to the light transmission direction of the substrate 2 is planarized, and the surface of the insulating layer 9 formed thereon is coated. Is prevented from becoming M convex, and uneven bonding at the time of bonding to the support member 5J, generation of stress distribution in the substrate 2 after bonding, and the like are prevented.
次に、 f i g .3の構成の光シャ ツ タアレイ における個別電 極 3 , … , 3の形成方法を F i g · 4 に示す。  Next, Fig.4 shows the method of forming the individual electrodes 3, ..., 3 in the optical shutter array having the configuration of fig.3.
まず、 電気光学効果を有する P L Z T ( 9/65/35 ) 等か らなる基板 2 を用意する [ Fig.4 A ] ¾ 次に、 上記基板 2 の光透過方向 と平行な一方の面 2 Aにフ ォ ト リ ソ グラ フ ィ 一法等によ ってス ト ライ プ状に埋込電極用のパターンを形 成する 。 具体的に説明する と 、 基板 2の一方の面 2 Aに例 えばポジ型のフ ォ ト レジス ト (感光剤 ) 1 6 を均一に塗布 し、 個別電極 3 , … , 3 を必要と しない個所だけに光が照 射される よ う にフ ォ トマスク を通して紫外線を照射 し、 現 像液によ り露光部の感光剤 1 6 を取 り 除いて 、 残った感光 剤 1 6によ ってス トライ プ妆に埋込電極用のパターンを形 成する [ f ig.4 B ] 。 First, a PLZT (9/65/35) and whether Ranaru substrate 2 having an electro-optic effect [Fig.4 A] ¾ Next, on one surface 2 A light transmitting direction parallel to the substrate 2 A pattern for an embedded electrode is formed in a strip shape by a photolithography method or the like. More specifically, for example, a positive photoresist (photosensitive agent) 16 is uniformly applied to one surface 2A of the substrate 2 so that the individual electrodes 3,..., 3 are not required. UV light is irradiated through a photomask so that only the light is radiated, the photosensitive agent 16 in the exposed area is removed by the developing solution, and the photosensitive agent 16 is left by the remaining photosensitive agent. A pattern for an embedded electrode is formed on tripe [fig.4B].
次に、 残った感光剤 1 6を保護膜と してエ ッ チング技術 ( ドライ エ ッチング、 ウエ ッ トエ ッチング) によ り 、 基板 2に滂部 1 5 を形成する [ Hg.4 C ] . そ して 、 瀵部 1 5 が形成された基板 2上に埋込電極 3 と なる導電性金属 ( A I , A iュ , A g , C u , N i , M o , W , e t c . ) を 、 真空蒸着、 スパッ タ リ ング、 メ ツ キ等の技術を用いて被覆 する [ Γ i g . 4 I) 〗 。 その後、 保護膜と して用いた感光剤 1 6 を除去 して瀵部 1 5 に付着 した導電性金属 1 7以外の導 電性金属 1 7 を除去 し、 耩部 1 5 に残った導電性金属を個 別電極 3 , … , 3 とする [ f i g . 4 E ] 。 即ち、 ΙΊ 8 . 4 L>に 示す導電性金属被膜形成後の基板 2 を 、 感光剤 1 6 を溶解 する液中に入れる と 、 感光剤上の導電性金属 1 7 は、 感光 剤 1 6 と 共に剥離され、 潢部 1 5 内の導電性金属 1 7 のみ が基板 2 に残 り 、 埋込電極 3 が形成される 。 Next, using the remaining photosensitive agent 16 as a protective film, an etching technique (dry etching, wet etching) is used to form a 滂 portion 15 on the substrate 2 [Hg.4C]. Then, a conductive metal serving as an embedded electrode 3 is formed on the substrate 2 on which the upper portion 15 is formed. (AI, AI, Ag, Cu, Ni, Mo, W, etc.) is coated using a technique such as vacuum deposition, sputtering, and plating [[ig. 4]. I)〗. After that, the photosensitive agent 16 used as the protective film is removed to remove the conductive metal 17 other than the conductive metal 17 adhered to the portion 15 and the conductive material remaining in the portion 15 is removed. Let the metal be the individual electrodes 3, ..., 3 [fig. 4 E]. That is, when the substrate 2 after the formation of the conductive metal film shown in ΙΊ8.4 L> is put in a solution in which the photosensitive agent 16 is dissolved, the conductive metal 17 on the photosensitive agent becomes the photosensitive agent 16. Both are peeled off, and only the conductive metal 17 in the upper part 15 remains on the substrate 2 to form the embedded electrode 3.
尚、 この工法によ る と 、 溝 1 5 の深さ と 、 導電性金属 1 7 の膜厚が等 し く ないと 、 基板 2 の表面が平坦にならない。 したがって 、 このよ う な時は、 ラ ッ プ加工等によ って基板 表面を平坦化する と 良い。  According to this method, the surface of the substrate 2 will not be flat unless the depth of the groove 15 and the thickness of the conductive metal 17 are equal. Therefore, in such a case, it is preferable to flatten the substrate surface by lapping or the like.
さて 、 F ί g . 4 Eに示すよ う に溝部 1 5 に個別電極 3 , … 3 が埋め込まれて形成された基板 2 の光透過方向 と平行な —方の面 2 Aには絶縁層 9 が开 成され、 また一方の面 2 A と平行な他方の面 2 B (IIには共通電極 4 と絶緣眉 8が形成 され、 先の F i s . 2 D と等価なブロ ッ クが形成される [ F i g . 4 F ] 。 尚、 共通電極 4 を図示の如く 基板 2の他方の面 2 Bの全面に亙る一本の電極とせず、 個別電極 3 , … , 3 に 対応する複数の電極と して形成する場合には、 共通電極 4 厠も個別電極 3 ( と 同様に埋込電極で形成する 。 この と き 絶縁層 9 上の凹凸をほと んど無く すこ と ができ るため、 そ の上に低融点ガラスを塗布 して も 、 厚さのむ らが少な く な り 、 支持部材側と の接着時における接着む らの発生が防 される 。 As shown in Fίg. 4 E, the insulating layer 9 is formed on the surface 2 A parallel to the light transmission direction of the substrate 2 formed by embedding the individual electrodes 3,. A common electrode 4 and an invisible eyebrow 8 are formed on the other surface 2B (II), which is parallel to one surface 2A, and a block equivalent to the previous Fis.2D is formed. 4 F. Note that the common electrode 4 is not a single electrode over the entire surface of the other surface 2 B of the substrate 2 as shown in the figure, but a plurality of electrodes corresponding to the individual electrodes 3,. In this case, the common electrode 4 is also formed by a buried electrode as in the case of the individual electrode 3 (. At this time, the unevenness on the insulating layer 9 can be almost eliminated. So Even if a low-melting glass is applied on the surface, the unevenness in thickness is reduced, and the occurrence of uneven bonding at the time of bonding to the support member side is prevented.
以上の工程を経て F i g . 4 F に示すブロ ッ ク を形成した後 は、 f i S . 2 E — F i g . 2 G と 同様の工程を経て 、 光シャ ツ 夕 アレイ 1 が製造される 。  After the block shown in FIG. 4F is formed through the above steps, the optical shutter array 1 is manufactured through the same steps as in the case of fiS.2E—FIG.2G.
尚、 上述の実施例は本発明の好適な実施の一例ではある がこれに限定される ものではな く 本発明の要旨を逸脱しな い範囲において種々変^実施可能である 。 例えば、 本実施 例では 2組の光シャ ツ 夕アレイ を組合せて 1 つのブロ ッ ク を構成して いるが、 特にこれは限定される ものではな く 、 1 組の光シャ ッ タアレイ だけで光シャ ッ タ等に利用する こ と も可能である 。 この場合、 共通電極 4の外側に も支持部 材 5 を配置し、 共通電極 4 を基板 2 と支持部材 5 とで挾持 する よ う に構成する こ と が好ま しい。 また、 F i g . 1 Aに示 すよ う に假別鼋極 3 , …, 3及びその端子電極 6 , …, 6 は千鳥状に互い違いに配置しな く と も良く 、 必要に応じて その配置は選択される Φ The above embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in this embodiment, one block is configured by combining two sets of optical shutter arrays. However, the present invention is not particularly limited to this, and only one set of optical shutter arrays is used. It can also be used for shutters and the like. In this case, it is preferable that the support member 5 is arranged outside the common electrode 4 so that the common electrode 4 is sandwiched between the substrate 2 and the support member 5. As shown in Fig. 1A, it is not necessary to arrange staggered electrodes 3,…, 3 and their terminal electrodes 6,…, 6 in a staggered pattern. Placement is selected Φ
産業上の利用可能性  Industrial applicability
シャ ッタ素子を 1 次元的に多数配列 した本発明の光シャ ッ タアレイ は、 例えば偏光子、 検光子と組合せる こ と によ つて光シャ ツタを構成し、 閃光防止めがね、 高速光プ リ ン タ 、 高輝度プロジェ ク タ 、 光スィ ツチ等への応用が可能で ある 。  The optical shutter array of the present invention, in which a large number of shutter elements are arranged one-dimensionally, constitutes an optical shutter by combining, for example, a polarizer and an analyzer. It can be applied to sensors, high-brightness projectors, optical switches, etc.

Claims

請求の範囲 The scope of the claims
( 1 ) 電気光学効果を有する基板と 、 前記基板の光透過方 向 と平行な一方の面に設けられた複数の個別電極と 、 前記 一方の面と平行な前記基板の他方の面に設けられた共通電 極と 、 前記個別電極を前記基板と の間で挾む支持部材と 、 前記支持部材上に設けられて前記各個別電極に個々 に接続 されて いる端子電極と から成り 、 前記個別電極 と 前記共通 電極が入射光に対 しほぼ平行と なる よ う 設けられ、 かつ端 子電極が上記入射光に対 しほぼ直交する よ う に設けられた こ と を特徴とする光シャ ッ タアレイ 。  (1) a substrate having an electro-optical effect, a plurality of individual electrodes provided on one surface parallel to the light transmission direction of the substrate, and a plurality of individual electrodes provided on the other surface of the substrate parallel to the one surface A common electrode, a support member for sandwiching the individual electrode between the substrate, and a terminal electrode provided on the support member and individually connected to each of the individual electrodes. And a common electrode provided so as to be substantially parallel to the incident light, and a terminal electrode provided so as to be substantially orthogonal to the incident light.
( 2 } 請求項 1 記載の 2組の光シャ ッ タアレイ で構成され、 かつこれら光シャ ッ タアレイ が共通電極同士を絶縁層を介 して接合され、 前記共通電極同士を 1 つの共通電極用端子 で接続して成る こ と を特徴とする光シャ ツ 夕ア レイ 。  (2) The two sets of the optical shutter arrays according to claim 1, wherein the optical shutter arrays are connected to each other by a common electrode via an insulating layer, and the common electrodes are connected to one common electrode terminal. An optical shutter array, comprising:
( 3 ) 電気光学効果を有する基板と 、 前記基板の光透過方 向 と平行な一方の面に設けられた複数の個別電極と 、 前記 一方の面と平行な前記基板の他方の面に設けられた共通電 極と 、 前記個別電極の端部を露出させた状態で前記個別鼋 極を前記基板と の間で挾み込む第 1 の支持部材 と 、 前記共 通電極の端部を露出させた状態で前記共通電極を前記基板 と の間で挟み込む第 2 の支持部材と 、 前記個別電極の露出 端部に個々 に接続され前.記第 1 の支持部材上に引 き 出され る複数の個別電極用端子電極と 、 前記共通電極の露出端部 に接続され前記第 2 の支持部材上に引き 出される一つの共 通電極用端子電極と からなる こ と を特徴とする光シャ ッ タ アレイ 。 (3) a substrate having an electro-optic effect; a plurality of individual electrodes provided on one surface parallel to the light transmission direction of the substrate; and a plurality of individual electrodes provided on the other surface of the substrate parallel to the one surface. A common electrode, a first support member for sandwiching the individual electrode between the substrate and the substrate while exposing the end of the individual electrode, and exposing the end of the common electrode. A second support member that sandwiches the common electrode between the substrate and the substrate, and a plurality of individual members that are individually connected to exposed ends of the individual electrodes and that are drawn out on the first support member. An electrode terminal electrode, and one common electrode connected to the exposed end of the common electrode and drawn out on the second support member. An optical shutter array comprising: a terminal electrode for a through electrode;
( 4 ) 電気光学効果を有する第 1 の基板と 、 該第 1 の基板 と亜置される電気光学効果を有する第 2 の基板と 、 前記第 1 の基板と前記第 2 の基板と を電気的に分離するための絶 縁層と 、 前記第 〗 の基板の前記第 2 の基板が配置される厠 とは逆側の面に設けられた第 1 の複数の個別電極と 、 前記 第 1 の基板の前記第 2 の基板が配置される厠の面に設けら れた第 1 の共通電極と 、 前記第 2 の基板の前記第 1 の基板 が配置される側と は逆側の面に設けられた第 2 の複数の個 別電極と 、 前記第 2 の基板の前記第 1 の基板が配置される 厠の面に設けられた第 2の共通電極と 、 前記第 1 の複数の 個別電極のそれぞれの端部を露出させた状態で前記第 1 の 複数の個別電極を前記第 1 の基板と の間で挾み込む第 1 の 支持部材と 、 前記第 2の複数の個別電極のそれぞれの端部 を露出させた状態で前記第 2 の複数の個別電極を前記第 2 の基板と の間で挾み込む第 2の支持部材と 、 前記第 1 の複 数の個別電極の露出端部に個々 に接続され前記第 1 のま持 部材上に引き 出される第 1 の複数の個別電極甩端子電極と 、 前記第 2の複数の個別電極の露出端部に個々 に接続され前 記第 2の支持部材上に引き 出される第 2 の複数の個別電極 甩端子電極と 、 前記第 1 と第 2 の共通電極に接続される共 通電極用端子電極とからなる こ と を特徴とする光シャ ッ 夕 アレイ 。 (4) electrically connecting a first substrate having an electro-optic effect, a second substrate having an electro-optic effect, which is disposed in place of the first substrate, the first substrate and the second substrate; An insulating layer for separating the first substrate, a first plurality of individual electrodes provided on a surface of the second substrate opposite to a lavatory on which the second substrate is arranged, and the first substrate A first common electrode provided on a surface of the room on which the second substrate is disposed, and a first electrode provided on the surface of the second substrate opposite to the side on which the first substrate is disposed. A plurality of second individual electrodes, a second common electrode provided on a surface of the second substrate on which a first substrate is disposed, and a first plurality of individual electrodes, respectively. A first support member that sandwiches the first plurality of individual electrodes between the first substrate and the first substrate while exposing end portions of the second substrate; A second support member for sandwiching the second plurality of individual electrodes between the second substrate and the second substrate while exposing respective ends of the individual electrodes; and the first plurality of individual electrodes. A first plurality of individual electrodes and a terminal electrode which are individually connected to exposed ends of the electrodes and are drawn out on the first holding member; and individually connected to exposed ends of the second plurality of individual electrodes. And a second plurality of individual electrodes and a common terminal electrode connected to the first and second common electrodes. Features a light shutter array.
( 5 ) 前記第 1 の複数の個別電極 と 第 2 の複数の個別電極 と は、 第 1 の個別電極間に第 2 の個別電極が位置する よ う に位置されたこ と を特徴と する請求項 2 または 4記載の光 シャ ツ 夕アレイ 。 (5) The first plurality of individual electrodes and the second plurality of individual electrodes are located such that the second individual electrode is located between the first individual electrodes. The light shutter array described in 2 or 4.
( 6 ) 前記個別電極が前記基板の光透過方向と平行な面に 形成された耩部に導鼋牲金属を埋め込んで形成 した埋込電 極からなる こ と を特徴とする請求項 1 ない し 5 のいずれか に記載の光シャ ッ タアレイ 。  (6) The individual electrode comprises an embedded electrode formed by embedding a conductive metal in a portion formed on a surface parallel to a light transmission direction of the substrate. 6. The optical shutter array according to any one of 5.
( 7 ) 前記個別電極は一定幅で等間隔に形成されてお り 、 共通電極は基板の他方の面の全面に形成されたものである こ と を特徴とする請求項 1 ない し 6 のいずれかに記載の光 シャ ッ タ アレイ 。  (7) The method according to any one of claims 1 to 6, wherein the individual electrodes are formed at regular intervals with a constant width, and the common electrode is formed on the entire surface of the other surface of the substrate. An optical shutter array according to any of the above.
( 8 ) 電気光学効果を有する基板の材料が P L Z Tであ り 、 支持部材の材料がセラ ミ ッ クスである こ と を特徴とする請 求項 1 ない し 5 のいずれかに記載の光シャ ッ タアレイ  (8) The optical shutter according to any one of claims 1 to 5, wherein the material of the substrate having the electro-optical effect is PLZT, and the material of the supporting member is ceramics. Talay
( ) 電気光学効果を有する基板の光透過方向 と平行な一 方の面に相互に独立した複数の個別電極を开 成する工程と 前記一方の面と平行な前記基板の他方の面に共通電極を形 成する工程と 、 前記基板の前記個別電極 に支持部材を積 層形成する工程と 、 前記基板と個別電極と共通電極及び支 持部材を積層 して成る 2組のブロ ッ ク を 、 前記共通電極が 背中合せに対向する よ う に絶縁材を介在させて接合 して 1 つのブロ ッ ク を形成する工程と 、 このブロ ッ ク を積層方向 と直交する面でスライ スする工程と 、 前記個別電極の夫々 及び共通電極に接続される対応端子電極を形成する工程と から成る こ と を特徴とする光シャ ッ タアレイ の製造方法。 ( 1 0 } 基板の光透過方向 と平行な一方の面にエ ッチング によ って複数の瀵部を形成 し、 この瀵部に導電性金属を上 記基板と ほぼ同一面と なるよ う に埋設して個別電極を形成 する こ と を特徴とする請求項 9記載の光シャ ッ タアレイ の 製造方法 (A) a step of forming a plurality of mutually independent individual electrodes on one surface parallel to the light transmission direction of the substrate having an electro-optical effect, and a common electrode on the other surface of the substrate parallel to the one surface Forming a support member on the individual electrode of the substrate; and forming two sets of blocks formed by laminating the substrate, the individual electrode, a common electrode, and the support member. A step of forming one block by interposing an insulating material so that the common electrode faces back to back, forming a block, and a step of slicing the block on a surface orthogonal to the laminating direction; Each of the electrodes And forming a corresponding terminal electrode connected to the common electrode. A method for manufacturing an optical shutter array, comprising: (10) A plurality of portions are formed by etching on one surface parallel to the light transmission direction of the substrate, and a conductive metal is formed on this portion so that it is substantially flush with the substrate. 10. The method for manufacturing an optical shutter array according to claim 9, wherein the individual electrodes are formed by being buried.
PCT/JP1990/000310 1989-03-09 1990-03-09 Light shutter array and method of producing the same WO1990010887A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1/54942 1989-03-09
JP5494289A JPH02235017A (en) 1989-03-09 1989-03-09 Optical shutter array and its manufacture
JP141090A JPH03206419A (en) 1990-01-08 1990-01-08 Optical shutter array
JP2/1410 1990-01-08

Publications (1)

Publication Number Publication Date
WO1990010887A1 true WO1990010887A1 (en) 1990-09-20

Family

ID=26334618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000310 WO1990010887A1 (en) 1989-03-09 1990-03-09 Light shutter array and method of producing the same

Country Status (1)

Country Link
WO (1) WO1990010887A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118571A (en) * 1995-06-19 2000-09-12 Northwestern University Thin film electro-optic modulator for broadband applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189836A (en) * 1987-02-02 1988-08-05 Minolta Camera Co Ltd Optical shutter array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189836A (en) * 1987-02-02 1988-08-05 Minolta Camera Co Ltd Optical shutter array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118571A (en) * 1995-06-19 2000-09-12 Northwestern University Thin film electro-optic modulator for broadband applications

Similar Documents

Publication Publication Date Title
JP5441877B2 (en) Piezoelectric macro-fiber composite actuator and manufacturing method thereof
EP0244442B1 (en) Linear light valve arrays having transversely driven electro-optic gates and method of making such arrays
JP2001166301A (en) Liquid crystal display device with built-in back light and method of manufacture
US4501471A (en) Automated liquid crystal display and process
WO1990010887A1 (en) Light shutter array and method of producing the same
US7125468B2 (en) Method of making ultrasound transducer or actuator
JPH10144974A (en) Piezoelectric actuator and its manufacturing method
JP2002084008A (en) Sheared piezoelectric element of laminated structure
JPH04170077A (en) Pyroelectric infrared detector and manufacturing of the same
JPH0529890B2 (en)
JP4392195B2 (en) Polarization conversion element and method for manufacturing the same
JPS62235923A (en) Optical shutter element
JPH0478817A (en) Optical shutter array
JPH03118512A (en) Optical shutter array and its manufacture
JPS61195000A (en) Manufacture of composite piezoelectric body
JP2003075824A (en) Optical member and liquid crystal display device
JPS6279418A (en) Optical shutter array and its production
JPS6181000A (en) Piezo-electric type ultrasonic probe made of laminated polymer
JP2001033769A (en) Liquid crystal display panel
JPS63246721A (en) Optical phase modulator
JPS61145526A (en) Optical shutter element
JPH03206419A (en) Optical shutter array
JP2005037733A (en) Polarization transducer and block for polarization transducer
JPS602915A (en) Optical shutter element
JPS5997299A (en) Ultrasonic wave probe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB