JPS6181000A - Piezo-electric type ultrasonic probe made of laminated polymer - Google Patents

Piezo-electric type ultrasonic probe made of laminated polymer

Info

Publication number
JPS6181000A
JPS6181000A JP20196284A JP20196284A JPS6181000A JP S6181000 A JPS6181000 A JP S6181000A JP 20196284 A JP20196284 A JP 20196284A JP 20196284 A JP20196284 A JP 20196284A JP S6181000 A JPS6181000 A JP S6181000A
Authority
JP
Japan
Prior art keywords
electrode
strip
ultrasonic probe
electrodes
stripped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20196284A
Other languages
Japanese (ja)
Inventor
Nagao Kaneko
金子 長雄
Nanao Nakamura
中村 七男
Masao Koyama
小山 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20196284A priority Critical patent/JPS6181000A/en
Publication of JPS6181000A publication Critical patent/JPS6181000A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Abstract

PURPOSE:To suppress fluctuation of characteristics by bending a piezo-electric polymer thin film so that polarization axes of both side cross orthogonally and laminating them, and slicing one part of electrode into multiple strips at specified interval and forming its lengthwise direction parallel to the bending line. CONSTITUTION:Common electrode 2 is formed on one surface of a piezo-electric poly mer thin film 3, and a specified number of stripped electrodes 1, 1' are formed on the other side. And an adhesive layer 4 is formed on the side of the stripped electrode 1, 1'. One unit element B is constituted with the common electrode 2 and each one stripped electrode 1, which are located opposite through the film 3. The stripped electrode 1, 1' opposing the inner bending surface of the film 3 is accurately positioned so that the bending line of the film 3 and the lengthwise direction of the stripped electrodes 1, 1' are paralleled each other. A copper plate 5 has a function of both sound reflecting plate and electrode part of common electrode 2. Supporting body 6 is made of acryl resin, epoxy resin, etc. This constitution prevents the beam scatter ing and electrical loss, controls the deviation between each element, and reduces the crosstalk between the elements.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は積層高分子圧電型超音波探触子に関し更に詳し
くは、一枚の高分子圧電体薄膜を折9重ねることによっ
て積層された短冊状電極を有するリニア・プレイ型の超
音波探触子において、折曲部分での電気的損失や超音波
の放射ビームの乱れなどが発生せず、しかも、各電極に
よ)構成される素子間の特性のバラツキが少ない積層高
分子圧電型超音波探触子に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a laminated polymer piezoelectric ultrasonic probe, and more specifically, the present invention relates to a laminated polymer piezoelectric ultrasonic probe. In a linear play type ultrasonic probe with electrodes, there is no electrical loss at the bending part or disturbance of the ultrasonic radiation beam, and there is a This invention relates to a laminated polymer piezoelectric ultrasonic probe with little variation in characteristics.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超音波により例えば医用診断などを行なう手段として、
リニア電子走査方式を使用した超音波探触子、すなわち
リニア・アレイ型超音波探触子が実用化されている。従
来、かかる超音波探触子としては、チタン酸、チタン・
ツルコン酸mf!、トのセラミクス圧電体が使用されて
いた。これらのセラミクス圧電体は弾性率が高いため、
リニア・アレイ型とするためには、予め電極を設置しそ
れを所定間隔で支持体上に貼付し、隣接する素子間での
好ましくない相互作用を避けるため該圧電体を短冊状に
切断することが一般に行なわれている。
For example, as a means of performing medical diagnosis using ultrasound,
Ultrasonic probes using a linear electronic scanning method, ie, linear array type ultrasound probes, have been put into practical use. Conventionally, such ultrasonic probes have been made using titanic acid, titanium, etc.
Turconic acid mf! , ceramic piezoelectric materials were used. These ceramic piezoelectric materials have a high elastic modulus, so
To create a linear array type, electrodes are installed in advance and pasted on a support at predetermined intervals, and the piezoelectric material is cut into strips to avoid undesirable interactions between adjacent elements. is commonly practiced.

しかしながら、これらのセラミクス圧電体は、堅くて脆
い性質を有するため、上記のような切断・分割工程にお
いて、カケや割れなどが発生し易く、しかも、短冊状の
電極を精度よく形成することが困難であるため、製造コ
ストの面からも実用性に欠ける。
However, these piezoceramic materials are hard and brittle, so they are prone to chipping and cracking during the cutting and dividing process as described above, and it is difficult to accurately form strip-shaped electrodes. Therefore, it lacks practicality in terms of manufacturing cost.

これに対して、ボ゛リフツ化ビニリデン(以下、PVF
、  という)、ポリフッ化ビニリデン・三フッ化エチ
レン共重合体(以下、PVF、・TrFEという或いは
ポリビニリデンシアナミド等の有機合成高分子は、高温
及び高電界中で分極処理されることにより圧電性及び焦
電性を示すことが見い出された。その結果、上記有機合
成高分子が新たな圧電材料として注目されている。
On the other hand, polyvinylidene fluoride (hereinafter referred to as PVF)
Organic synthetic polymers such as polyvinylidene fluoride/trifluoroethylene copolymer (hereinafter referred to as PVF, TrFE, or polyvinylidene cyanamide) have piezoelectric properties and It was discovered that it exhibits pyroelectricity.As a result, the organic synthetic polymer described above is attracting attention as a new piezoelectric material.

かかる高分子圧電体は1分極方向両面に電極を設け、該
電極間に電圧を印加すると、厚み振動を励起することか
ら、最近、超音波探触子への応用が盛んに試みられてい
る。
Such a polymeric piezoelectric material has electrodes provided on both sides in one polarization direction, and when a voltage is applied between the electrodes, thickness vibration is excited, so that applications to ultrasonic probes have recently been actively attempted.

高分子圧電体は弾性率が小さいので、リニア・アレイ星
の探触子に適用する場合、上述したセラミクス圧電体の
ように切断時分割する必要がないという利点を有する。
Since the polymer piezoelectric material has a small elastic modulus, when it is applied to a linear array star probe, it has the advantage that there is no need for cutting time division unlike the above-mentioned ceramic piezoelectric material.

すなわち、一枚のセラミクス圧電体薄膜上に所定数の短
冊状電極を形成すれば足りるということである。しかも
、固有音響インピーダンスが生体のそれと近似している
ため、例えば臨床用診断装置などに応用した場合の効率
が非常に高い。
That is, it is sufficient to form a predetermined number of strip-shaped electrodes on one ceramic piezoelectric thin film. Moreover, since the specific acoustic impedance is close to that of a living body, the efficiency when applied to, for example, a clinical diagnostic device is extremely high.

しかしながら、その反面、高分子圧電体の誘電率は、一
般に10オ一ダ程度とセラミックス圧電体と比べてはる
かに小さいので、リニア櫓アレイ型超音波探触子のよう
に単位駆動面積、すなわち単位素子当υの面積が小さい
ものに適用した場合その電気インピーダンスが著しく高
くなってしまう。そのため、通常使用されている50Ω
系の電源(発・受信回路)との電気的な整合性が悪く。
However, on the other hand, the dielectric constant of polymer piezoelectric materials is generally about 10 orders of magnitude, which is much smaller than that of ceramic piezoelectric materials. When applied to an element with a small area υ, its electrical impedance becomes significantly high. Therefore, the commonly used 50Ω
Poor electrical compatibility with the system power supply (emitting/receiving circuit).

結果として、超音波探触子の電気的損失を招来する。As a result, electrical loss of the ultrasound probe is caused.

かかる問題を解消するためK、例えば、第3図に示した
ような積層構造の超音波探触子が提案されている。すな
わち、高分子圧電体薄膜3の両面に電極1および2ft
形成したもの全1単位とし、これを、高分子圧電体の分
極方向軸(図中、矢線で示した)が互いに対向するよう
に適宜数積層し、更に、分極方向軸が同一の層の電極間
i 1J−ド線で接続した構造のものである。このよう
な積層製超音波探触子において、単層で所定の共振周波
数を有する薄膜の電気インピーダンスt−Z0とすると
、その薄膜をn層積層した場合の電気インピーダンス2
は z=zO/n2 で表わされるため、二層積層では単層の場合の14三層
積層の場合にはもの電気インピーダンスとなシ、前述し
た電源との電気的整合性がかなり改善される。
In order to solve this problem, an ultrasonic probe having a laminated structure as shown in FIG. 3, for example, has been proposed. That is, electrodes 1 and 2ft are placed on both sides of the polymer piezoelectric thin film 3.
The formed product is one unit in total, and an appropriate number of layers are stacked so that the polarization direction axes of the polymer piezoelectric materials (indicated by arrows in the figure) face each other. It has a structure in which the electrodes are connected by a 1J- wire. In such a laminated ultrasonic probe, if the electrical impedance of a single layer thin film having a predetermined resonance frequency is t-Z0, then the electrical impedance 2 when the thin film is laminated in n layers is
is expressed as z=zO/n2. Therefore, in the case of a two-layer stack, the electrical impedance in the case of a single layer is the same as that in the case of a three-layer stack, and the electrical compatibility with the above-mentioned power supply is considerably improved.

ところが、第3図に示した積層構造では、各層の電極と
リード線との接続が極めて繁雑であるため、あまり実用
的であるとは言えない。
However, in the laminated structure shown in FIG. 3, the connection between the electrodes of each layer and the lead wires is extremely complicated, so it cannot be said to be very practical.

そのため、上記のような複数枚の薄膜を積層するのでは
なく、第4図に示すように、両面に電極が形成された一
枚の薄膜全その分極方向軸が互いに対向するように折υ
重ねて積層構造とした超音波探触子が提案されている(
特開昭56−47199号公報参照)。ンかる構造にお
いては、高分子圧電体薄膜3の両面に形成した電極12
よび2のうちの一方例えば電極1を短冊状電極とし、こ
の短冊状電極1の長手方向と直文する折り曲げ線に沿っ
て折り重ねて積WI構造としている。すなわち。
Therefore, instead of stacking multiple thin films as described above, a single thin film with electrodes formed on both sides is folded so that their polarization axes face each other, as shown in Figure 4.
An ultrasonic probe with a layered structure has been proposed (
(Refer to Japanese Patent Application Laid-Open No. 56-47199). In this structure, electrodes 12 formed on both sides of the polymer piezoelectric thin film 3
For example, one of electrodes 1 and 2 is a strip-shaped electrode, and the strip-shaped electrode 1 is folded along a bending line that is perpendicular to the longitudinal direction of the strip-shaped electrode 1 to form a stacked WI structure. Namely.

第4図において、短冊状電極1は紙面に垂直な方向を幅
方向とする態様で所定数配列されることになる。
In FIG. 4, a predetermined number of strip-shaped electrodes 1 are arranged in such a manner that the width direction is perpendicular to the plane of the paper.

上記の構造としたことにより、電気インピーダンスの低
下を図ることができ、又、同時に、電極2を共通電極と
して使用できるので、リード線の接続も簡便となシ、実
用性が向上する。
By adopting the above structure, it is possible to reduce the electrical impedance, and at the same time, since the electrode 2 can be used as a common electrode, the connection of the lead wire is simple and the practicality is improved.

しかしながら、一方では、上記折り重ね構造の超音波探
触子において、折曲部分近傍での電気的損失や超音波の
放射ビームの乱れなどが発生し、探触子としての機能が
著しく阻害されるという事実がある。この原因は矢のよ
うに推定、される。まず、高分子圧電体薄膜を折り重ね
る際には、各層間を接着し、かつ、対向する短冊状電極
位置を合わせるために、少なくとも短冊状電極が形成さ
れた面に、エポキシ樹脂、シアノアクリル系樹脂などの
接着剤を塗布し、折り重ねたのちに積層体を均一に加圧
して密着せしめることが一般に行なわれる。しかし、こ
のとき1M3図に示すように互いに対向する短冊状電極
1の間の接着剤が折曲部A内に集結し易く、しかも、集
結した接着剤は折曲後の加圧(図中、矢線)によっても
外部に流出しにくいため、折曲部A内の接着剤層が厚く
なシ折曲部Aが膨出した結果、電気インピーダンスが増
大してしまうものと考えられる。
However, on the other hand, in the above-mentioned folded structure ultrasound probe, electrical loss and disturbance of the ultrasonic radiation beam occur near the folded part, which significantly impairs the function of the probe. There is a fact that. The causes of this are estimated and determined like arrows. First, when folding polymer piezoelectric thin films, in order to bond each layer and align the opposing strip electrodes, at least the surface on which the strip electrodes are formed is coated with epoxy resin, cyanoacrylic resin, etc. Generally, an adhesive such as a resin is applied, the laminate is folded, and then the laminate is uniformly pressed to make them stick together. However, at this time, as shown in Figure 1M3, the adhesive between the strip-shaped electrodes 1 that face each other tends to gather in the bent part A, and the gathered adhesive is compressed after bending (in the figure, It is thought that the adhesive layer inside the bent portion A is thicker and the bent portion A bulges out, resulting in an increase in electrical impedance.

又、超音波探触子にあっては、その超音波の放射ビーム
を集束せしめるために圧電体を積層したのちに、この積
層体を湾曲させる場合がある。その場合、例えば、第5
図に示した積層体の中央部に上方向から外力を加えて全
体を湾曲した形状とする。このとき、上述した接着剤の
集結がとくに顕著となり、膨出した折曲部Aでの散乱効
果により、探触子の機能が阻害される。
Furthermore, in the case of an ultrasonic probe, in order to focus the ultrasonic radiation beam, piezoelectric bodies are laminated and then this laminated body is sometimes bent. In that case, for example, the fifth
An external force is applied from above to the central part of the laminate shown in the figure to form a curved shape as a whole. At this time, the aggregation of the adhesive described above becomes particularly noticeable, and the function of the probe is inhibited due to the scattering effect at the bulging bent portion A.

かかる問題を解消するためには、高分子圧電体に接着剤
t−塗布して折り重ねたのちに、挟間回転ロールなどに
より積層体を均一に加圧する方法が考えられるが、この
場合、回転ロールの間隙を精度よく維持することが困難
である上に、僅かな回転ムラによ)積層体の眉間でずれ
が生じ、その結果、対向する短冊状電極の位置ずれが発
生する等の不都合を招く。
In order to solve this problem, a method can be considered in which the polymer piezoelectric material is coated with an adhesive T- and then folded, and then the laminate is uniformly pressed using a rotating roll or the like, but in this case, the rotating roll Not only is it difficult to maintain the gap accurately, but also slight irregularities in rotation may cause misalignment between the eyebrows of the laminate, resulting in inconveniences such as misalignment of the opposing strip-shaped electrodes. .

更に、上記の折り重ねによる積層型超音波探触子におい
ては、対向する短冊状電極間の接着剤層が均一になりに
<<、各素子間での特性のバラツキが生じ易い。又、短
冊状電極の位置合せを正確に行なうことが困難であると
いう問題がある。
Furthermore, in the above-mentioned folded stacked ultrasonic probe, the adhesive layer between the opposing strip-shaped electrodes is not uniform, which tends to cause variations in characteristics between each element. Another problem is that it is difficult to accurately align the strip-shaped electrodes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来の問題を解消し短冊状電
極が形成された高分子圧電体薄膜を折り重ねて積層した
積層製超音波探触子において、接着剤の集結によシ折曲
部の膨出がなく、従って。
The purpose of the present invention is to solve the above-mentioned conventional problems and to provide a laminated ultrasonic probe in which thin polymer piezoelectric films on which strip-shaped electrodes are formed are folded and laminated. There is no bulge in the area, therefore.

折曲部での放射ビームの散乱や電気的損失が防止され、
しかも、各素子間の特性のバラツキが少なく、各層間に
おける短冊状電極の位置合せを容易に行なうことのでき
る構造の積層高分子圧電製超音波探触子の提供を目的と
する。
Radiation beam scattering and electrical losses at bends are prevented,
Moreover, it is an object of the present invention to provide a laminated polymer piezoelectric ultrasonic probe having a structure in which variations in characteristics between each element are small and the positioning of strip-shaped electrodes between each layer can be easily performed.

〔発明の概要〕[Summary of the invention]

本発明の積層高分子圧電型超音波探触子は、両面に電極
を有する高分子圧電体薄膜が、その分極方向軸が互いに
対向するように折り曲げられて積層され、かつ、各層間
が接着剤により固着されてなる積層高分子圧電製超音波
探触子において、一方の電体が、所定間隔で形成された
複数本の短冊状電極であシ、しかも、該短冊状電極の長
手方向が折り曲げ線と平行であることを特徴とする。
In the laminated polymer piezoelectric ultrasonic probe of the present invention, polymer piezoelectric thin films having electrodes on both sides are bent and laminated so that their polarization axes face each other, and adhesive is used between each layer. In a laminated polymer piezoelectric ultrasonic probe fixed by It is characterized by being parallel to the line.

本発明の超音波探触子は、高分子圧電体薄膜の折り重ね
積層体の端面に、各短冊状電極の両端が露出した構造で
あるため、各層間を密着せしめたときに、層間の接着剤
はこの両端面から外部に流延してしまい谷眉間には適正
量の接着剤が残留することとなシ、折曲部は膨出するこ
とがない。
The ultrasonic probe of the present invention has a structure in which both ends of each strip-shaped electrode are exposed on the end face of a folded laminate of polymeric piezoelectric thin films, so that when the layers are brought into close contact, there is no adhesion between the layers. The adhesive flows outward from both end faces, so that an appropriate amount of adhesive remains between the valleys and the eyebrows, and the bent portion does not bulge.

次いで、図面を参照しながら1本発明の超音波探触子の
構造について更に詳述する。
Next, the structure of the ultrasonic probe of the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の積層高分子圧電製超音波探触子の一例
を示す断面図であシ、高分子圧電体薄膜が1回折り重ね
られて二層に積層されたものである。
FIG. 1 is a sectional view showing an example of the laminated polymer piezoelectric ultrasonic probe of the present invention, in which a polymer piezoelectric thin film is folded once and laminated into two layers.

高分子圧電体薄膜3の一方の面には共通電極2が、他方
の面には所定数の短冊状電極1,1′がそれぞれ形成さ
れており、短冊状電極1.1′側の面に接着剤層4が形
成されている。そして、薄膜3と薄膜3t−介して互い
に対向する共通電極2と1個の短冊状゛成極lとによ)
、1個の単位素子B(図中、破線で囲まれた領域)が構
成される。該薄膜3の内側折曲面で互いに対向する短冊
状電極1.11は、正確に位置合せされることが必要で
ある。かかる積層体において、薄膜3の折曲げ線と短冊
状電極1,1′の長手方向とは互いに平行(紙面に垂直
な方向に)になっている。又、第1図において、5は、
音響反射板と共通電極2の電極部の機能を兼ねた銅板で
あり、6は1例えばアクリル樹脂、エポキシ樹脂などか
らなる支持体である。
A common electrode 2 is formed on one surface of the polymer piezoelectric thin film 3, and a predetermined number of strip-shaped electrodes 1, 1' are formed on the other surface. An adhesive layer 4 is formed. The thin film 3 and the common electrode 2 facing each other with the thin film 3t interposed therebetween and one strip-shaped polarization l)
, one unit element B (area surrounded by a broken line in the figure) is constructed. The strip-shaped electrodes 1.11 facing each other on the inner bent surface of the thin film 3 need to be accurately aligned. In such a laminate, the bending line of the thin film 3 and the longitudinal direction of the strip-shaped electrodes 1, 1' are parallel to each other (in a direction perpendicular to the plane of the paper). Also, in FIG. 1, 5 is
This is a copper plate that serves both as an acoustic reflector and as an electrode part of the common electrode 2, and 1 is a support made of, for example, acrylic resin or epoxy resin.

そして、全体が、例えばポリエステルフィルム7などで
被覆されている。
The entire structure is covered with, for example, a polyester film 7.

上記構成において、高分子圧電体としては、前述したよ
うなPVFt 、 PVFt ’TrFE 、ポリビニ
リゾ/アナミド或いはチタン酸塩、チタン・ノルコン酸
塩などのセラミクス圧電体粉末を高分子樹脂に混入した
所謂複合圧電体などが好適であり、その薄膜の厚さは数
μm−100μmの範囲で設定されることか好ましい。
In the above configuration, the polymer piezoelectric material is a so-called composite piezoelectric material in which a ceramic piezoelectric material powder such as PVFt, PVFt'TrFE, polyvinyrizo/anamide, titanate, titanium norconate, etc., as described above is mixed into a polymer resin. The thickness of the thin film is preferably set in the range of several μm to 100 μm.

一方、短冊状電極は、金、銀。On the other hand, the strip-shaped electrodes are made of gold and silver.

アルミニウムなどの金属を真空蒸着、スパッタあるいは
メッキ法などによ)形成されることが好ましく、幅が数
百μm % a mrg、長さが数頭〜数副及び隣接す
る電極間の距離が数十μm〜数団程度で適宜設定する。
It is preferably formed using metal such as aluminum by vacuum evaporation, sputtering, plating, etc., and has a width of several hundred μm% a mrg, a length of several heads to several sides, and a distance of several tens of meters between adjacent electrodes. Appropriately set the range from μm to several groups.

又、短冊状電極数、すなわち素子数も適宜選択する。更
に、積層時に使用する接着剤としてはとくに限定されな
いが、例えばエポキシ樹脂やシアンアクリル系樹脂など
が好ましい。
Further, the number of strip-shaped electrodes, that is, the number of elements, is also selected appropriately. Furthermore, the adhesive used during lamination is not particularly limited, but epoxy resins, cyan acrylic resins, and the like are preferred, for example.

かかる積層高分子圧電型超音波探触子は次のようにして
製造される。
Such a laminated polymer piezoelectric ultrasonic probe is manufactured as follows.

先ず、高分子圧電体を一軸延伸もしくはキャスティング
などによって形成された所定厚さの薄膜の両面に、例え
ば真空蒸着法によりを極層を蒸着形成したのち、高温、
高電界下にて分極処理を行なう。次いで、第2図に示し
たように、こうして得られた薄膜3の一方の面に形成さ
れた電極層1をパターニングして該薄膜3の一軸延伸方
向と平行な短冊状電極1,1′とする。しかるのち、該
短冊状電極1.1′が形成された面上に接着剤を塗布し
、該短冊状電極の長手方向と平行な線、すなわち図中一
点鎖線Cで示される折り曲げ線に沿って対向する短冊状
電極1,1′の位置金倉わせながら折り重ね、更に例え
ば加圧プレスにより眉間を固着する。
First, a polar layer is formed on both sides of a thin film of a predetermined thickness by uniaxial stretching or casting of a polymeric piezoelectric material, for example, by vacuum evaporation, and then heated at a high temperature.
Polarization treatment is performed under a high electric field. Next, as shown in FIG. 2, the electrode layer 1 formed on one side of the thin film 3 thus obtained is patterned to form strip-shaped electrodes 1, 1' parallel to the uniaxial stretching direction of the thin film 3. do. After that, adhesive is applied to the surface on which the strip-shaped electrode 1.1' is formed, and the strip-shaped electrode is bent along a line parallel to the longitudinal direction of the strip-shaped electrode, that is, a bending line shown by a dashed line C in the figure. The opposing strip-shaped electrodes 1 and 1' are folded over one another while aligning their positions, and then fixed between the eyebrows, for example, by pressure pressing.

このとき、折り重ねられた眉間から、余分な接着剤が積
層体の両端面に流延するので、それらを除去すればよい
。こうして、接着剤の集結による折曲部分の膨出が発生
せず、しかも、対向する短冊状電極間の接着剤層が非常
に均一となる。しかるのち、共通電極2及び各短冊状電
極にそれぞれリード線を接続したのち、第1図に示した
ような構造として超音波探触子を完成する。
At this time, excess adhesive flows from the folded eyebrows onto both end surfaces of the laminate, and can be removed. In this way, bulging of the bent portion due to adhesive concentration does not occur, and moreover, the adhesive layer between the opposing strip-shaped electrodes becomes extremely uniform. Thereafter, lead wires are connected to the common electrode 2 and each strip-shaped electrode, respectively, and then the ultrasonic probe is completed with a structure as shown in FIG. 1.

〔発明の実施例〕[Embodiments of the invention]

一軸延伸した厚さ50μmのP’VF、 フィルムの両
面に真空蒸着法により厚さ約0.5μmの銀層を形成し
、該フィルムに対し100’C,6KVにおいて1時間
分極処理金行なった。次いで1片面に形成された銀層を
7オトレノスト(FPPRN11400富士薬品工業)
によりパターニングして、エツチング加工した後、幅が
0.9m、長さが131+III+の短冊状電極を01
順間隔で64本形成し、64素子とした。
Silver layers of approximately 0.5 μm in thickness were formed on both sides of the uniaxially stretched P'VF film with a thickness of 50 μm by vacuum evaporation, and the film was subjected to a polarization treatment at 100° C. and 6 KV for 1 hour. Next, the silver layer formed on one side was coated with 7 Otrenost (FPPRN11400 Fuji Pharmaceutical Co., Ltd.)
After patterning and etching, a strip-shaped electrode with a width of 0.9 m and a length of 131+III+ was
Sixty-four pieces were formed at regular intervals, resulting in 64 elements.

他方の面の銀層はその状態で共通電極となる。しかるの
ち、該短冊状電極が形成されたフィルム面上に、エポキ
シ系接着剤301−2 (商品名;エボテイツク社製)
を50〜100μm程度の厚さに塗布したのち、上述し
たように短冊状電極の長手方向と平行な折り曲げ線に沿
って折り重ね、しかるのち加圧プレスによって固着した
。このとき、該積層体の両端面から流延する接着剤を除
去した。
The silver layer on the other side becomes a common electrode in that state. After that, epoxy adhesive 301-2 (trade name; manufactured by Evotake Co., Ltd.) is applied on the film surface on which the strip-shaped electrodes are formed.
was applied to a thickness of about 50 to 100 μm, and then folded along the bending line parallel to the longitudinal direction of the strip-shaped electrode as described above, and then fixed using a pressure press. At this time, the adhesive cast from both end faces of the laminate was removed.

更に、この積層体全第1図に示したように支持体上に固
着された銅板上に載置し、共通電極及び各短冊状電極に
リード線を接続して超音波探触子を完成した。
Furthermore, this entire laminate was placed on a copper plate fixed on a support as shown in Figure 1, and lead wires were connected to the common electrode and each strip-shaped electrode to complete an ultrasonic probe. .

この超音波探触子の電気インピーダンスは、単位素子当
り平均520Ωであり、単位素子間での電気インピーダ
ンスのバラツキは±3%以内の範囲にあることが確認さ
れた。更に、該探触子全8素子駆動による電子走査全実
施したところ、5浦tの中心周波数での動作が確認され
、かつ単位素子間での電気的クロストークの影響は極め
て小さいことがわかった。また、探触子の音場測定では
、電子集束された超音波ビームが70順に集束されてお
り、かつ第6図(a)に示したようにビームパターンが
左右対象な音場分布を呈していることから超音波の乱れ
がほとんどないことが明らかとなった。
It was confirmed that the electrical impedance of this ultrasonic probe was 520Ω on average per unit element, and the variation in electrical impedance between unit elements was within ±3%. Furthermore, when all eight elements of the probe were driven to perform electronic scanning, operation at a center frequency of 5 t was confirmed, and the influence of electrical crosstalk between unit elements was found to be extremely small. . In addition, in the sound field measurement of the probe, the electronically focused ultrasound beams are focused in 70 order, and the beam pattern exhibits a symmetrical sound field distribution as shown in Figure 6(a). It is clear that there is almost no disturbance in the ultrasonic waves.

比較のために、従来の構造とした外は上記実施例と同一
材料、同一寸法、同一素子数の超音波探触子を製造した
。すなわち、この探触子は短冊状電極の長手方向と直角
な折υ曲げ森に沿って折り重ねられた構造のものである
。この超音波探触子は電気インピーダンスが単位素子あ
たり平均550Ωであり、単位素子間の電気インピーダ
ンスのバラツキは+20%(最大で660Ω)〜−10
%(最小で500Ω)であシ、本発明の超音波探触子に
比べ電気インピーダンスのバラツキが著しく大きいこと
が判明した。また、この超音波探触子は、折曲部分で膨
出が認められ、音場測定では、第6図(b)に示したよ
うに、超音波ビームの左右対尿性が悪く、超音波ビーム
の乱れが確認された。
For comparison, an ultrasonic probe was manufactured having the same materials, the same dimensions, and the same number of elements as those of the above-mentioned embodiments, except that it had a conventional structure. That is, this probe has a structure in which the strip-shaped electrodes are folded along a bending line perpendicular to the longitudinal direction. This ultrasonic probe has an average electrical impedance of 550Ω per unit element, and the variation in electrical impedance between unit elements is +20% (maximum 660Ω) to -10%.
% (minimum 500Ω), it was found that the variation in electrical impedance was significantly larger than that of the ultrasonic probe of the present invention. In addition, this ultrasound probe was found to have a bulge at the bent part, and in the sound field measurement, as shown in Figure 6(b), the ultrasound beam had poor left and right urinary sensitivity, and the ultrasound Beam disturbance was confirmed.

尚1本実施例においてはPVF、  フィルムを単に折
り重ねただけであるが、その折曲部分に微細孔或いは溝
を設け、それらの部分で折曲することで、対向する短冊
状電極のパターン合せをさらに容易にすることができる
In this example, the PVF film was simply folded, but by providing micro holes or grooves in the folded parts and bending at these parts, the pattern of the opposing strip-shaped electrodes could be matched. can be made even easier.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らからように、本発明の積層高分子圧
′ilE型超音波探触子は、接着剤の集結による積層体
の折曲部分の膨出が回避されるため、折曲部分での放射
ビームの散乱や電気的損失が発生せず、かつ、各単位素
子間の特性上のバラツキが最小限に抑えられるため、隣
接する素子間の電気的クロストーク及び音響カップリン
グの影響を極めて小さくすることができ、その性能が従
来に比べて著しく向上する。
As is clear from the above explanation, the laminated polymer pressure 'ilE type ultrasonic probe of the present invention avoids bulging of the folded part of the laminate due to adhesive concentration. Since scattering of the radiation beam and electrical loss do not occur, and variations in characteristics between each unit element are minimized, the effects of electrical crosstalk and acoustic coupling between adjacent elements can be minimized. It can be made smaller and its performance is significantly improved compared to conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の積層高分子圧電型超音波探触子の概
略断面図、第2図は短冊状電極と折り重ね方向との関係
を示す斜視図、第3図及び第4図は従来の積1ピ高分子
圧電型超音波探触子積府体部分の概略断面図、第5図は
第4図の折曲部分の拡大図、第6図(a) 、 (b)
は超音波ビームの集束状況を示す図である。 1.1′・・・短冊状電極、2・・・共通電極、3・・
・高分子圧電体薄膜。
FIG. 1 is a schematic cross-sectional view of the laminated polymer piezoelectric ultrasonic probe of the present invention, FIG. 2 is a perspective view showing the relationship between the strip-shaped electrodes and the folding direction, and FIGS. 3 and 4 are A schematic cross-sectional view of the conventional 1-pi polymer piezoelectric ultrasonic transducer body part. Figure 5 is an enlarged view of the bent part in Figure 4. Figures 6 (a) and (b)
FIG. 2 is a diagram showing a focusing state of an ultrasonic beam. 1.1'...Strip electrode, 2...Common electrode, 3...
・Polymer piezoelectric thin film.

Claims (1)

【特許請求の範囲】[Claims] 両面に電極を有する高分子圧電体薄膜が、その分極方向
軸が互いに対向するように折り曲げられて積層されてな
る積層高分子圧電型超音波探触子において、一方の電極
が、所定間隔で形成された複数本の短冊状電極であり、
しかも、該短冊状電極の長手方向が折り曲げ線と平行で
あることを特徴とする積層高分子圧電型超音波探触子。
In a laminated polymer piezoelectric ultrasonic probe in which polymer piezoelectric thin films having electrodes on both sides are bent and laminated so that their polarization axes face each other, one electrode is formed at a predetermined interval. multiple strip-shaped electrodes,
Moreover, the laminated polymer piezoelectric ultrasonic probe is characterized in that the longitudinal direction of the strip-shaped electrode is parallel to the bending line.
JP20196284A 1984-09-28 1984-09-28 Piezo-electric type ultrasonic probe made of laminated polymer Pending JPS6181000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20196284A JPS6181000A (en) 1984-09-28 1984-09-28 Piezo-electric type ultrasonic probe made of laminated polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20196284A JPS6181000A (en) 1984-09-28 1984-09-28 Piezo-electric type ultrasonic probe made of laminated polymer

Publications (1)

Publication Number Publication Date
JPS6181000A true JPS6181000A (en) 1986-04-24

Family

ID=16449647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20196284A Pending JPS6181000A (en) 1984-09-28 1984-09-28 Piezo-electric type ultrasonic probe made of laminated polymer

Country Status (1)

Country Link
JP (1) JPS6181000A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225071A1 (en) * 2020-05-07 2021-11-11 富士フイルム株式会社 Piezoelectric element and piezoelectric speaker
WO2023047958A1 (en) * 2021-09-24 2023-03-30 富士フイルム株式会社 Multilayer piezoelectric element and electroacoustic transducer
WO2023054019A1 (en) * 2021-09-28 2023-04-06 富士フイルム株式会社 Piezoelectric film and laminated piezoelectric element
US11910159B2 (en) 2018-11-08 2024-02-20 Fujifilm Corporation Laminated piezoelectric element and electroacoustic transducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11910159B2 (en) 2018-11-08 2024-02-20 Fujifilm Corporation Laminated piezoelectric element and electroacoustic transducer
WO2021225071A1 (en) * 2020-05-07 2021-11-11 富士フイルム株式会社 Piezoelectric element and piezoelectric speaker
WO2023047958A1 (en) * 2021-09-24 2023-03-30 富士フイルム株式会社 Multilayer piezoelectric element and electroacoustic transducer
WO2023054019A1 (en) * 2021-09-28 2023-04-06 富士フイルム株式会社 Piezoelectric film and laminated piezoelectric element

Similar Documents

Publication Publication Date Title
US6467140B2 (en) Method of making composite piezoelectric transducer arrays
US6868594B2 (en) Method for making a transducer
US5844349A (en) Composite autoclavable ultrasonic transducers and methods of making
US9812634B2 (en) Method of making thick film transducer arrays
JPS6054600A (en) Method of producing composite electric transducer
US9327317B2 (en) Ultrasound transducer and method for making the same
JPS61144565A (en) High-polymer piezo-electric type ultrasonic probe
JP5083210B2 (en) Array-type ultrasonic probe and manufacturing method thereof
EP0167740B1 (en) Ultrasonic transducer with a multiple-folded piezoelectric polymer film
US4704774A (en) Ultrasonic transducer and method of manufacturing same
US20030127947A1 (en) Multi-piezoelectric layer ultrasonic transducer for medical imaging
JP2002084597A (en) Ultrasonic converter array and its manufacturing method
JPS6181000A (en) Piezo-electric type ultrasonic probe made of laminated polymer
JP2000131298A (en) Ultrasonic probe
JP3906126B2 (en) Ultrasonic transducer and manufacturing method thereof
JP3313171B2 (en) Ultrasonic probe and manufacturing method thereof
JP2002232995A (en) Ultrasonic wave probe and its manufacturing method
JP3934200B2 (en) Ultrasonic probe
JPH0683516B2 (en) Ultrasonic probe and method of manufacturing the same
JPS5997299A (en) Ultrasonic wave probe
JP3423788B2 (en) Ultrasonic probe
JPS61195000A (en) Manufacture of composite piezoelectric body
JPS61753A (en) Laminated high polymer piezo-electric type ultrasonic probe
JPS6054599A (en) Linear array type ultrasonic probe
JPS61752A (en) Laminated high polymer piezo-electric type ultrasonic probe