JPS61753A - Laminated high polymer piezo-electric type ultrasonic probe - Google Patents
Laminated high polymer piezo-electric type ultrasonic probeInfo
- Publication number
- JPS61753A JPS61753A JP59122280A JP12228084A JPS61753A JP S61753 A JPS61753 A JP S61753A JP 59122280 A JP59122280 A JP 59122280A JP 12228084 A JP12228084 A JP 12228084A JP S61753 A JPS61753 A JP S61753A
- Authority
- JP
- Japan
- Prior art keywords
- piezo
- laminated
- ultrasonic probe
- electrode
- electric body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 48
- 239000000523 sample Substances 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 claims description 52
- 238000010030 laminating Methods 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 abstract description 18
- 230000001070 adhesive effect Effects 0.000 abstract description 18
- 229920002981 polyvinylidene fluoride Polymers 0.000 abstract description 17
- 229910052709 silver Inorganic materials 0.000 abstract description 7
- 239000004332 silver Substances 0.000 abstract description 7
- 229910052802 copper Inorganic materials 0.000 abstract description 6
- 239000010949 copper Substances 0.000 abstract description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052731 fluorine Inorganic materials 0.000 abstract description 3
- 239000011737 fluorine Substances 0.000 abstract description 3
- 239000004925 Acrylic resin Substances 0.000 abstract description 2
- 229920000178 Acrylic resin Polymers 0.000 abstract description 2
- 239000002033 PVDF binder Substances 0.000 abstract description 2
- 238000005452 bending Methods 0.000 abstract 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 15
- 239000010410 layer Substances 0.000 description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
- G01H11/06—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
- G01H11/08—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0688—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
- B06B1/0692—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF with a continuous electrode on one side and a plurality of electrodes on the other side
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、高分子圧電体を複数回折り重ねて積層してな
る積層高分子圧電型超音波探触子の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a laminated polymer piezoelectric ultrasonic probe formed by folding and laminating a polymer piezoelectric material a plurality of times.
〔発明の技術的背景とその問題点]
従来よりリニア電子走査方式に使用されるリニア・アレ
イ型超音波探触子は、チタン酸鉛、チタン・ジルコンm
鉛等のセラミック圧電体を短冊状に切断したアレイ型が
用いられている。しかしながら、かかるセラミック圧電
体は堅く、脆い性質を有し、切断分割に際して欠損や割
れが発生し易く、しかも多くの短冊状電極を精密に形成
するには困難を伴い、コスト・の面からも多くの問題が
あった。[Technical background of the invention and its problems] Linear array type ultrasonic probes conventionally used in linear electronic scanning methods are made of lead titanate, titanium zirconium
An array type is used in which a ceramic piezoelectric material such as lead is cut into strips. However, such ceramic piezoelectric bodies are hard and brittle, and are easily damaged or cracked when cut and divided. Furthermore, it is difficult to precisely form many strip-shaped electrodes, and there are many costs and costs involved. There was a problem.
これに対して、ポリフッ化ビニリデン(以下、PVF2
と略す)、ポリフッ化ビニリデン−三フッ化゛エチレン
共重合体(以下、PVF2 ・TrFEと略す)等の含
フッ素系高分子或いは他の有機性合成高分子は、高温、
高電界下で分極処理することにより、圧電性、焦電性を
示すことが知られている。また、前記高分子圧電体の厚
み振動を利用した超音波探触子の開発が近年、盛んに行
われ七でいる。こうした高分子圧電体は、固有音響イン
ピータンスが生体のそれと近く、かつ弾性率が小さいこ
とから、高分子圧電体をリニア・アレイ型超音波探触子
へ応用する場合は、セラミック圧電体の例と異なり、必
ずしも高分子圧電体自体を短冊状に切断、分離する必要
がないと言われている。On the other hand, polyvinylidene fluoride (hereinafter referred to as PVF2)
Fluorine-containing polymers such as polyvinylidene fluoride-ethylene trifluoride copolymer (hereinafter abbreviated as PVF2/TrFE) or other organic synthetic polymers are
It is known that it exhibits piezoelectricity and pyroelectricity when polarized under a high electric field. Further, in recent years, development of ultrasonic probes that utilize the thickness vibration of the piezoelectric polymer has been actively conducted. These polymer piezoelectric materials have a specific acoustic impedance close to that of a living body and a small elastic modulus, so when applying polymer piezoelectric materials to linear array type ultrasound probes, ceramic piezoelectric materials are preferred. However, it is said that it is not necessarily necessary to cut and separate the polymer piezoelectric material itself into strips.
しかしながら、高分子圧電体のM電率は一般に10オ一
ダ程度とセラミック圧電体に比較して著しく小さく、し
かもリニア・アレイ型超音波探触子の駆動素子面積が小
さいために、電気インピーダンスが著しく高くなり、通
常、50Ω系の電源(発・受信回路)との電気的な整合
性が悪く、超音波探触子の損失低下が著しくなる。However, the M electric constant of a polymer piezoelectric material is generally about 10 orders of magnitude, which is significantly lower than that of a ceramic piezoelectric material.Moreover, the area of the driving element of a linear array ultrasonic probe is small, so the electrical impedance is low. Usually, electrical matching with a 50Ω power supply (emitting/receiving circuit) is poor, and the loss of the ultrasonic probe is significantly reduced.
このようなことから、高分子圧電体を適宜複数枚積層し
、実質的に膜厚が厚いものと同等にし、かつ電気インピ
ーダンスの低下を図ることが提案されている。その−例
として、第3図に示すように両面に短冊状電極1と共通
電極2とが形成された高分子圧電体3複数枚を用意し、
これら圧電体3を同一電極が互いに対向するように積層
し、対向する同一電極(例えば一層目と二層目どは短冊
状電極1が互いにする)を半田もしくは導電性接着剤4
を介して接続することにより、電気インピーダンスを低
下させた積層高分子圧電型超音波探触子が知られている
。例えば、単層で共振周波数fを有する膜厚の電気イン
ピーダンスをZoとすると、第3図図示の積層1lli
造では、Z=Zo/n2 (但し、rl ハ積層数
)で表わされ、二M!f4Rでは1/4、三層積層では
1 ′9の電気インピーダンスとなり、電源との電気的
整合が改善される。しかしながら、第3図に示す構造で
は、高分子圧電体3の電極1.2部分からリード線5a
、5bを取出し結線する場合、実用上大きな困難を伴う
。For this reason, it has been proposed to appropriately laminate a plurality of polymeric piezoelectric materials to make the thickness substantially equivalent to that of a thick film and to lower the electrical impedance. As an example, as shown in FIG. 3, a plurality of polymer piezoelectric materials 3 each having a strip-shaped electrode 1 and a common electrode 2 formed on both sides are prepared.
These piezoelectric bodies 3 are stacked so that the same electrodes face each other, and the facing identical electrodes (for example, the strip-shaped electrodes 1 are connected to each other in the first and second layers) are soldered or conductive adhesive 4
A laminated polymer piezoelectric ultrasonic probe is known in which the electrical impedance is lowered by connecting the ultrasonic probe through the . For example, if the electrical impedance of a single layer having a resonant frequency f is Zo, then the laminated layer 1lli shown in FIG.
In construction, it is expressed as Z=Zo/n2 (where rl is the number of laminated layers), and 2M! The electrical impedance is 1/4 for f4R and 1'9 for three-layer stacking, improving electrical matching with the power source. However, in the structure shown in FIG. 3, the lead wire 5a is
, 5b and connect them with each other, it is difficult in practice.
そこで、第4図に示すように、一枚の連続した高分子圧
電体3′を適宜折り重ね、所望厚さの積層体とし、電気
インピーダンスの低下とリード線取出しを容易にした超
音波探触子が提案されている。かかる超音波探触子は簡
便で、実用上において大きな効果が期待できるが、次の
ような問題を有する。Therefore, as shown in Fig. 4, a single continuous polymeric piezoelectric material 3' is appropriately folded to form a laminate with a desired thickness, thereby reducing electrical impedance and making it easier to take out lead wires. A child is proposed. Although such an ultrasonic probe is simple and can be expected to have great practical effects, it has the following problems.
即ち、一枚の連続した高分子圧電体3′を折り重ねる際
に、短冊状電極1を互いに正確に合せることが難しく、
その電極1が上下にずれを生じる。That is, when folding one continuous polymeric piezoelectric material 3', it is difficult to align the strip-shaped electrodes 1 with each other accurately;
The electrode 1 shifts vertically.
このようなずれを生じると、駆動素子の電気インピーダ
ンスの差異が生じたり、駆動素子間の短絡が発生したり
する。この問題は、高分子圧電体3−の折り重ね数(積
層数)の増加に伴って顕著となる。If such a shift occurs, a difference in electrical impedance of the driving elements may occur or a short circuit between the driving elements may occur. This problem becomes more noticeable as the number of folds (the number of stacked layers) of the polymer piezoelectric material 3- increases.
また、前述した第4図図示の超音波探触子にあっては、
高分子圧電体3′を折り重ねて積層するに際し、高分子
圧電体3′の屈曲部分が、見掛は上大きく脹らみ、該脹
らみ部分での電気的損失や超音波の故射ビームの乱れ等
が現われる。これは、一般的に厚さ100μm程度から
数μmの高分子圧電体を折り重ねる際に、高分子圧電体
の折り重ねムラや高分子圧電体の復元力等に加えて、該
高分子圧電体の積層接着に供される接着剤が高分子圧電
体の屈曲部先端部分内に集結する結果と考えられる。特
に、高分子圧電体の積層数が増加するに伴って前記現象
は顕著となり、高分子圧電体の積層数が三層以上の場合
には、第5図(a)に示すように高分子圧電体3−の屈
曲部分に前記現象が出現しやすくなる。即ち、一枚の連
続した高分子圧電体を適宜折り重ね、所°望の積層体を
構成する場合は、高分子圧電体の少なくとも一方にはエ
ポキシ樹脂、シアノアクリル系樹脂等の接着剤を塗布し
、屈曲せしめた高分子圧電体を均一に加圧して接着する
方法が採用される。この場合、471層する高分子圧電
体間は薄く、かつ均一な接着剤層が介在されることが超
音波探触子の特性向上の点で重要である。しかしながら
、第5図(b)に示すように高分子圧電体の3′の屈曲
部6には、前述した如く接着剤が集結し易く(図中の矢
印A)、かつ該接着剤は高分子圧電体3−の加圧(図中
の矢印B)によっても外部に流延しにくいため、接着剤
層が薄く、かつ均一にならず、その屈曲部6が膨出して
しまう。Furthermore, in the ultrasonic probe shown in FIG. 4 described above,
When the polymeric piezoelectric material 3' is folded and laminated, the bent portion of the polymeric piezoelectric material 3' appears to swell significantly, causing electrical loss and ultrasonic radiation at the swollen portion. Beam disturbances, etc. appear. Generally, when folding a polymer piezoelectric material with a thickness of about 100 μm to several μm, in addition to the folding unevenness of the polymer piezoelectric material and the restoring force of the polymer piezoelectric material, the polymer piezoelectric material This is thought to be the result of the adhesive used for lamination adhesion gathering within the tip of the bent portion of the polymer piezoelectric material. In particular, as the number of laminated layers of the polymer piezoelectric material increases, the above phenomenon becomes more noticeable, and when the number of laminated polymer piezoelectric materials is three or more, as shown in FIG. The above phenomenon tends to occur at the bent portion of the body 3-. That is, when a desired laminate is constructed by appropriately folding one continuous polymeric piezoelectric material, an adhesive such as epoxy resin or cyanoacrylic resin is applied to at least one of the polymeric piezoelectric materials. However, a method is adopted in which the bent polymer piezoelectric material is bonded by uniformly applying pressure. In this case, it is important from the viewpoint of improving the characteristics of the ultrasound probe that a thin and uniform adhesive layer be interposed between the 471 layers of polymer piezoelectric materials. However, as shown in FIG. 5(b), the adhesive tends to gather at the bend 6 at 3' of the polymer piezoelectric material as described above (arrow A in the figure), and the adhesive Since it is difficult to cast the adhesive to the outside even when the piezoelectric body 3- is pressurized (arrow B in the figure), the adhesive layer is thin and uneven, and its bent portion 6 bulges out.
上述した欠点を解消するために、一枚の連続した高分子
圧電体に予め接着剤を塗布し、該圧電体iを適宜折り重
ねた後、挟間回転ロールで加圧することによって、折り
重ねた高分子圧電体間の接着剤の量を最少限に、かつ積
層高分子圧電体を均一に加圧する方法が考えられる。し
かしながら、かかる方法では回転ロール間隙を精度よく
維持することが困難であるばかりでなく、回転ロールの
僅かな回転ムラや積層高分子圧電体のずれ等により高分
子圧電体に形成した互いに対向する短冊状電極間の位置
ずれを生じる等の問題を招く。In order to eliminate the above-mentioned drawbacks, adhesive is applied to a continuous piece of polymeric piezoelectric material in advance, the piezoelectric material i is appropriately folded, and then the folded high-molecular-weight piezoelectric material is A possible method is to minimize the amount of adhesive between the molecular piezoelectric materials and uniformly press the laminated polymer piezoelectric materials. However, with this method, it is not only difficult to accurately maintain the gap between the rotating rolls, but also due to slight unevenness in the rotation of the rotating rolls or misalignment of the laminated polymer piezoelectric material, strips facing each other formed on the polymer piezoelectric material may This results in problems such as misalignment between the shaped electrodes.
本発明は高分子圧電体を折り重ね易くてき、しかも高分
子圧電体の折り重ねに際して、その片面に形成した短冊
状電極の合せを容易にかつ正確に行なうことが可能で、
更に屈曲部の膨出を防止すると共に、積層高分子圧電体
間の接着剤を均一化することが可能な積層高分子圧電型
超音波探触子を提供しようとするものである。The present invention makes it easy to fold the polymer piezoelectric material, and when folding the polymer piezoelectric material, it is possible to easily and accurately align the strip-shaped electrode formed on one side of the polymer piezoelectric material.
Furthermore, it is an object of the present invention to provide a laminated polymer piezoelectric ultrasonic probe that can prevent bulges at bent portions and make the adhesive between laminated polymer piezoelectric bodies uniform.
本発明は、両面に電極が形成された高分子圧電体を折り
重ねて少なくとも2層以上に積層してなる積層高分子圧
電型超音波探触子において、前記高分子圧電体の折り目
に沿って微細孔を設(プたことを特徴とするものである
。かかる本発明によれば、既述の如く、高分子圧電体を
折り重ね易くてき、しかも高分子圧電体の折り重ねに際
して、−その片面に形成した短冊状電極の合せを容易に
かつ正確に行なうことが可能で、更に屈曲部の膨出を防
止すると共に、積層高分子圧電体間の接着剤を均一化す
ることが可能な積層高分子圧電型超音波探触子を得るこ
とができる。The present invention provides a laminated polymer piezoelectric ultrasonic probe in which a polymer piezoelectric material having electrodes formed on both sides is folded to form at least two layers, in which According to the present invention, as described above, the polymer piezoelectric material can be easily folded, and when the polymer piezoelectric material is folded, - A laminated structure that allows for easy and accurate alignment of strip-shaped electrodes formed on one side, prevents bulges at bent parts, and evens out the adhesive between laminated polymer piezoelectric bodies. A polymer piezoelectric ultrasonic probe can be obtained.
以下、本発明の実施例を第1図及び第2図を参照して詳
細に説明する。Embodiments of the present invention will be described in detail below with reference to FIGS. 1 and 2.
図中の11は、例えばアクリル樹脂からなる支持体であ
り、該支持体11上には例えば厚さ2゜0μmの音響反
射板と共通電極の電極部とを兼ねる銅板12が固定され
ている。この銅板12上には、1回折り重ねた積層圧電
体二が配設されている。この積層圧電体ユはPVF2圧
電体14を備えている。この圧電体14の一方の面には
銀。Reference numeral 11 in the figure is a support made of, for example, acrylic resin, and on the support 11 is fixed a copper plate 12 having a thickness of, for example, 2.0 μm and serving both as an acoustic reflection plate and an electrode portion of the common electrode. On this copper plate 12, a laminated piezoelectric body 2 which is folded once is arranged. This laminated piezoelectric body unit includes a PVF2 piezoelectric body 14. One surface of this piezoelectric body 14 is coated with silver.
製の短冊状電極15が、他方の面には銀製の共通電極1
6が、夫々形成されている。前記PVF2圧電体1/l
の短冊状電極15間の箇所には、該短冊状電極15の長
さ方向と直交するように微細孔17a、17bが2列設
けられている。そして前記圧電体14を、その圧電体1
4に予め接着剤を塗布した状態においてそれら微細孔1
7a、17bに沿って2回折り重ねて積層することによ
り、接着剤層18で固着積層された前記積層圧電体1β
−が構成されている。なお、かかる積層圧電体1β−を
前記銅板12上に載置することにより該積層圧電体13
の共通電極16が該銅板12に接触するようになる。a strip-shaped electrode 15 made of silver, and a common electrode 1 made of silver on the other side.
6 are formed respectively. Said PVF2 piezoelectric body 1/l
Two rows of fine holes 17a and 17b are provided between the strip-shaped electrodes 15 so as to be perpendicular to the length direction of the strip-shaped electrodes 15. Then, the piezoelectric body 14 is
4 with adhesive applied in advance, those micropores 1
The laminated piezoelectric body 1β is fixed and laminated with the adhesive layer 18 by folding twice along the lines 7a and 17b and laminating the piezoelectric body 1β.
− is configured. Note that by placing the laminated piezoelectric body 1β- on the copper plate 12, the laminated piezoelectric body 13
The common electrode 16 comes into contact with the copper plate 12.
前記積層圧電体ユは次のような方法により製作される。The laminated piezoelectric body unit is manufactured by the following method.
まず、厚さ50μmの一軸延伸したPVF2フィルムの
両面に例えば真空蒸着法により厚さ1μm程度の銀層を
蒸着し、100 ”Cの)温度、6kVの電界下にて1
時間分極を行なった後、空温まで冷却してPVF2圧電
体14を作製する。First, silver layers with a thickness of about 1 μm are deposited on both sides of a uniaxially stretched PVF2 film with a thickness of 50 μm, for example, by vacuum evaporation.
After time polarization, the PVF2 piezoelectric body 14 is produced by cooling to air temperature.
このPVF2圧電体14の一方の面の銀層を第2図に示
すようにその一軸延伸方向と平行となるようにパターニ
ングして短冊状電極15を形成づる。As shown in FIG. 2, the silver layer on one side of the PVF2 piezoelectric material 14 is patterned to be parallel to its uniaxial stretching direction to form a strip-shaped electrode 15.
これら短冊状電極15は単位素子電極幅が0.9mm、
電極長が458、単位素子間隙が0.1mmで、64素
子を形成している。つづいて、前記rf+ fftl状
電極15と反対側の面の銀層を必要に応じてパターニン
グして共通電極16とした後、前記短冊状電極15間の
折り重ね部分に相当する圧電体14の箇所に直径約50
1i mの微細孔17a、17bをレーザ加工により形
成する。次いて、前記PVF2圧電体14をそれら微細
孔17a、17bに沿って2回折り重ねた後、各層間に
エポキシ樹脂系接着剤(1ボテfり社製商品名;301
−2>を塗布し、加圧プレスにより固着積層して同第1
図に示す積層圧電体ユを製作する。These strip-shaped electrodes 15 have a unit element electrode width of 0.9 mm,
The electrode length is 458, the unit element gap is 0.1 mm, and 64 elements are formed. Subsequently, after patterning the silver layer on the opposite side of the rf+fftl electrode 15 as necessary to form a common electrode 16, a portion of the piezoelectric body 14 corresponding to the folded portion between the strip electrodes 15 is patterned. Approximately 50mm in diameter
1 im microscopic holes 17a and 17b are formed by laser processing. Next, after folding the PVF2 piezoelectric body 14 twice along the fine holes 17a and 17b, an epoxy resin adhesive (trade name: 301, manufactured by Botefri Co., Ltd.;
-2> was applied and laminated firmly using a pressure press.
The laminated piezoelectric unit shown in the figure is manufactured.
また、前記銅板12にはリード線19aが、前記積層圧
電体ユの各短冊状電極15には夫々リード線19bが接
続されている。更に、前記積層圧電I413を含む全体
には、例えば厚さ12μmのポリエステルフィルム20
が被覆されていると?共に、該フィルム20内にエポキ
ン樹脂層(エポテック社製商品名301.−2)21を
注入、充填して前記積層圧N体ユを支持体11に固定し
ている。Further, a lead wire 19a is connected to the copper plate 12, and a lead wire 19b is connected to each strip-shaped electrode 15 of the laminated piezoelectric body unit. Further, the entire layer including the laminated piezoelectric I413 is covered with a polyester film 20 having a thickness of 12 μm, for example.
Is it covered? At the same time, an Epoquine resin layer (trade name 301.-2, manufactured by Epotec Co., Ltd.) 21 is injected and filled into the film 20 to fix the laminated pressure N body to the support 11.
しかして本発明の超音波探触子は、折り重ねすべきPV
F2圧電体14に微細孔17a、17bが設けられいる
ため、該圧電体14に予め塗布された接着剤は同第1図
図示の如く前記微細孔17a、i7bを通って外部に流
延する。その結果、PVF2圧電体14の屈曲部が膨出
するのを防止できると共に、積層圧電体13の圧電体1
4間の余分な接着剤を除去でき、極めて均一かつ薄い接
着剤層18を形成できる。その結果、該超音波探触子を
動作させた場合、短冊状電極15の8素子に隣接する非
電圧印加部分の短冊状電極15部分での音響カップリン
グや電気的ストロークの影響を極めて少なくてきる。従
って、性能の優れた探触子を得ることができる。Therefore, the ultrasonic probe of the present invention has a PV to be folded.
Since the F2 piezoelectric body 14 is provided with fine holes 17a and 17b, the adhesive previously applied to the piezoelectric body 14 is cast to the outside through the fine holes 17a and i7b as shown in FIG. As a result, it is possible to prevent the bent portion of the PVF2 piezoelectric body 14 from bulging out, and the piezoelectric body 1 of the laminated piezoelectric body 13 can be prevented from expanding.
The excess adhesive between the adhesive layers 18 can be removed, and an extremely uniform and thin adhesive layer 18 can be formed. As a result, when the ultrasonic probe is operated, the effects of acoustic coupling and electrical strokes on the non-voltage applied portions of the strip electrode 15 adjacent to the eight elements of the strip electrode 15 can be extremely reduced. Ru. Therefore, a probe with excellent performance can be obtained.
また、PVF2圧電体14に微細孔17a、17Ll設
け、各微細孔17a、17bに沿ッテ2回折り重ねるこ
とによって、該圧電体14の折り重ね作業を容易に行な
うことができると共に、折り重ねにより対向する短冊状
電極15を上下正確に位置合せできる。その結果、短冊
状電極15の合せずれに伴う駆動素子の電気インピータ
ンスの差異が生じたり、駆動素子間の短絡が発生したり
するのを防止でき、信頼性の高いリニア・アレイ型超音
波探触子を得ることができる。事実、本実施例のリニア
・アレイ型超音波探触子は単位素子間の電気インピータ
ンスの差異が認められず、しかも該探触子の中位素子部
分の8素子と共通電極16との間にパルス電圧を印加し
たところ、5MHzという低い周波数で動作することが
確認された。Further, by providing the fine holes 17a and 17Ll in the PVF2 piezoelectric body 14 and folding it twice along each of the fine holes 17a and 17b, the piezoelectric body 14 can be easily folded and folded. This allows the opposing strip-shaped electrodes 15 to be accurately aligned vertically. As a result, it is possible to prevent differences in the electrical impedance of the drive elements due to misalignment of the strip-shaped electrodes 15 and short circuits between the drive elements, resulting in a highly reliable linear array type ultrasonic probe. You can get tentacles. In fact, in the linear array type ultrasonic probe of this embodiment, there is no difference in electrical impedance between the unit elements, and moreover, there is no difference in electrical impedance between the 8 elements in the middle element part of the probe and the common electrode 16. When a pulse voltage was applied to the device, it was confirmed that it operated at a low frequency of 5 MHz.
更に、PVF2圧電体14を幾重にも折り重ねて電気イ
ンピーダンスの低いリニア・アレイ型超音波探触子を1
する場合にも、その折り重ね作業を極めて簡便に行なう
ことができる。Furthermore, a linear array type ultrasonic probe with low electrical impedance is made by folding the PVF2 piezoelectric material 14 many times.
Even when doing so, the folding operation can be performed extremely easily.
更に、PVF2圧電体14の屈曲部分に微細孔17a、
17bを設け、該圧電体14の積層、接着峙に余分な接
着剤が該微細孔17a、17bがら外部に流延するため
、一体成型が可能となるばかりか、PVF2圧電体が例
えば凹面円筒状のような変形一体成型も可能となる。Furthermore, micro holes 17a are formed in the bent portion of the PVF2 piezoelectric body 14.
17b is provided, and excess adhesive is flowed outside through the fine holes 17a and 17b when the piezoelectric body 14 is laminated and bonded, so that not only integral molding is possible, but also the PVF2 piezoelectric body can be formed into, for example, a concave cylindrical shape. Modified integral molding such as this is also possible.
なお、上記実施例ではPVF2圧電体への微細孔の開口
をレーザ加工によって行なったが、これに限定されない
。例えば、溶融法や機械的な加工法により微細孔を開口
してもよい。また、該微細孔の位置は、前記実施例のよ
うに圧電体の非動作部分に開口することが望ましいが、
短冊状電極の形状により超音波探触子とじの動作に影響
がない場合には、該短冊状電極上に微細孔を開口しても
よい。更に、短冊状電極間の間隙が狭い場合には、電極
と前記間隙(非動作部分)の双方にまたがって微細孔を
開口してもよい。Note that in the above embodiment, the opening of the microholes in the PVF2 piezoelectric body was performed by laser processing, but the present invention is not limited to this. For example, the micropores may be opened by a melting method or a mechanical processing method. In addition, it is desirable that the position of the microhole be opened in the non-operating part of the piezoelectric body as in the above embodiment.
If the shape of the strip-shaped electrode does not affect the operation of closing the ultrasonic probe, a fine hole may be formed on the strip-shaped electrode. Furthermore, when the gap between the strip-shaped electrodes is narrow, micropores may be opened across both the electrodes and the gap (non-operating portion).
上記実施例では、高分子圧電体としてPV F2の圧電
体を使用したが、PVF2 ・TrFEなとの含フツ素
系合成高分子、或いは圧電性を示す他の有機高分子、又
はチタン酸鉛、チタン・ジルコン酸鉛などのセラミック
圧電体粉末を高分子樹脂に混入した、いわゆる複合圧電
体も同様に用いることができる。In the above example, a PV F2 piezoelectric material was used as the polymeric piezoelectric material, but fluorine-containing synthetic polymers such as PVF2 and TrFE, other organic polymers exhibiting piezoelectricity, or lead titanate, A so-called composite piezoelectric material in which a ceramic piezoelectric material powder such as titanium/lead zirconate is mixed into a polymer resin can also be used.
以上詳述した如く、本発明によれは高分子圧電体を折り
重ね易くでき、しかも高分子圧電体の折り重ねに際して
、その片面に形成した短冊状1tlの合せを容易にかつ
正確に行なうことが可能で、更に屈曲部の膨出を防止す
ると共に、積層高分子圧電体間の接着剤を均一化するこ
とが可能とし、ひいては製作性の向上、電気インピータ
ンスのばらつき、音響的、電気的なカップリングやクロ
ス1ヘークの影響を抑制して解像度の向上等を達成した
積層高分子圧電型超音波探触子を提供てきる。As detailed above, according to the present invention, it is possible to easily fold the polymer piezoelectric material, and when folding the polymer piezoelectric material, it is possible to easily and accurately align the strip-shaped 1tl formed on one side of the polymer piezoelectric material. In addition to preventing bulges at bent parts, it also makes it possible to make the adhesive between laminated polymer piezoelectric bodies uniform, which in turn improves manufacturability, reduces variations in electrical impedance, and reduces acoustic and electrical problems. We provide a laminated polymer piezoelectric ultrasonic probe that achieves improved resolution by suppressing the effects of coupling and cross-hake.
第1図は本発明の一実施例を示すリニア・アレイ型超音
波探触子の断面図、第2図は前記超音波探触子の積層圧
電体の作製を説明するだめの斜視図、第3図及び第4図
は夫々従来の超音波探触子の要部断面図、第5図(a)
、(b)は従来の超音波探触子の積層圧電体の問題点を
説明するkめ5の断面図である。
11・・支持体、13−・・積層圧電体、14・・・P
VF2rf電体、15:・・短冊状電極、16・・・共
通電極、17a、17b・・・微細孔、18・・・接着
剤層、20・・・フィルム。
出願人代理人 弁理士 鈴江武彦
第1図
第2図
第3図 第4図
第5図FIG. 1 is a sectional view of a linear array type ultrasonic probe showing an embodiment of the present invention, FIG. Figures 3 and 4 are sectional views of main parts of a conventional ultrasonic probe, and Figure 5(a)
, (b) is a cross-sectional view of k-5 illustrating the problems of the laminated piezoelectric material of the conventional ultrasonic probe. 11...Support body, 13-...Laminated piezoelectric body, 14...P
VF2rf electric body, 15:... strip-shaped electrode, 16... common electrode, 17a, 17b... micropore, 18... adhesive layer, 20... film. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
くとも2層以上に積層してなる積層高分子圧電型超音波
探触子において、前記高分子圧電体の折り目に沿って微
細孔を設けたことを特徴とする積層高分子圧電型超音波
探触子。In a laminated polymer piezoelectric ultrasonic probe formed by folding and laminating at least two layers of a polymer piezoelectric material having electrodes formed on both sides, micropores are provided along the folds of the polymer piezoelectric material. A laminated polymer piezoelectric ultrasonic probe characterized by:
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59122280A JPS61753A (en) | 1984-06-14 | 1984-06-14 | Laminated high polymer piezo-electric type ultrasonic probe |
US06/729,734 US4725994A (en) | 1984-06-14 | 1985-05-02 | Ultrasonic transducer with a multiple-folded piezoelectric polymer film |
DE8585105424T DE3570123D1 (en) | 1984-06-14 | 1985-05-03 | Ultrasonic transducer with a multiple-folded piezoelectric polymer film |
EP85105424A EP0167740B1 (en) | 1984-06-14 | 1985-05-03 | Ultrasonic transducer with a multiple-folded piezoelectric polymer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59122280A JPS61753A (en) | 1984-06-14 | 1984-06-14 | Laminated high polymer piezo-electric type ultrasonic probe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61753A true JPS61753A (en) | 1986-01-06 |
Family
ID=14832048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59122280A Pending JPS61753A (en) | 1984-06-14 | 1984-06-14 | Laminated high polymer piezo-electric type ultrasonic probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61753A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019021583A1 (en) * | 2017-07-26 | 2019-01-31 | ヤマハ株式会社 | Transducer |
-
1984
- 1984-06-14 JP JP59122280A patent/JPS61753A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019021583A1 (en) * | 2017-07-26 | 2019-01-31 | ヤマハ株式会社 | Transducer |
JP2019029733A (en) * | 2017-07-26 | 2019-02-21 | ヤマハ株式会社 | Transducer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4725994A (en) | Ultrasonic transducer with a multiple-folded piezoelectric polymer film | |
US9812634B2 (en) | Method of making thick film transducer arrays | |
US7148608B2 (en) | Multi-layer ceramic acoustic transducer | |
JPS61144565A (en) | High-polymer piezo-electric type ultrasonic probe | |
US7316059B2 (en) | Method of manufacturing an ultrasonic probe | |
JP4758634B2 (en) | Manufacturing method of multilayer ceramic acoustic transducer | |
US4704774A (en) | Ultrasonic transducer and method of manufacturing same | |
US7125468B2 (en) | Method of making ultrasound transducer or actuator | |
JPS61753A (en) | Laminated high polymer piezo-electric type ultrasonic probe | |
CN113066924B (en) | Thin film piezoelectric sensing element and manufacturing method thereof, sensing device and terminal | |
JP2004080193A (en) | Ultrasonic transducer and manufacturing method thereof | |
JP2001029346A (en) | Ultrasonic wave probe and manufacture therefor | |
JPS6181000A (en) | Piezo-electric type ultrasonic probe made of laminated polymer | |
JP2002232995A (en) | Ultrasonic wave probe and its manufacturing method | |
JPS62104182A (en) | Manufacture of stacked piezoelectric material | |
JPS61754A (en) | Laminated high polymer piezo-electric type ultrasonic probe | |
JPS61752A (en) | Laminated high polymer piezo-electric type ultrasonic probe | |
JPS6054599A (en) | Linear array type ultrasonic probe | |
JPS5997299A (en) | Ultrasonic wave probe | |
JPS61294997A (en) | Macromolecule piezoelectric type ultrasonic probe | |
JPS6269800A (en) | High molecular piezoelectric type ultrasonic probe | |
JPH10336792A (en) | Ultrasonic vibrator transducer and method for the same | |
JPH0657080B2 (en) | Ultrasonic probe and method of manufacturing the same | |
JPS61294996A (en) | Macromolecular piezoelectric type ultrasonic probe | |
JP2002345093A (en) | Manufacturing method for ultrasonic wave probe |