JPS61754A - Laminated high polymer piezo-electric type ultrasonic probe - Google Patents

Laminated high polymer piezo-electric type ultrasonic probe

Info

Publication number
JPS61754A
JPS61754A JP59122281A JP12228184A JPS61754A JP S61754 A JPS61754 A JP S61754A JP 59122281 A JP59122281 A JP 59122281A JP 12228184 A JP12228184 A JP 12228184A JP S61754 A JPS61754 A JP S61754A
Authority
JP
Japan
Prior art keywords
electrode
piezo
laminated
ultrasonic probe
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59122281A
Other languages
Japanese (ja)
Inventor
Nagao Kaneko
金子 長雄
Nanao Nakamura
中村 七男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59122281A priority Critical patent/JPS61754A/en
Priority to US06/729,734 priority patent/US4725994A/en
Priority to DE8585105424T priority patent/DE3570123D1/en
Priority to EP85105424A priority patent/EP0167740B1/en
Publication of JPS61754A publication Critical patent/JPS61754A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • B06B1/0692Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF with a continuous electrode on one side and a plurality of electrodes on the other side

Abstract

PURPOSE:To obtain a laminated high polymer piezo-electric type ultrasonic probe with a higher resolution and the like, by providing a groove section on one side of a high polymer piezo-electric body having electrodes on both sides thereof along the crease thereof to position the electrode patterns on both sides thereof accurately with an easier bending. CONSTITUTION:A strips-shaped electrode 15 is provided on one side of a high polymer based piezo-electric body 14 made of polyvinylidene fluoride (PVF2), a copolymer of the polyvinylidene fluoride and ethylene trifluoride and a groove 17 is provided on one side thereof with a common electrode 16 formed on the other side thereof, for example, at a part along the crease on the electrode 16 side thereof to obtain a piezo-electric body 14. The piezo-electric body 14 thus obtained is bent and laminated at the groove 17, which then, is covered with a conductive paste 18 to eliminate electric separation of the common electrode 16. Otherwise, a connection metal 23 is applied in the groove 17 by evaporation or the like to obtain a laminated piezo-electric body 13. Then, the electrode 16 is connected to a copper electrode 12 on a support 11 while leads 19a and 19b are connected respectively to the electrode 15 and the copper electrode 12, then, they are entirely covered with a polyester film 20 and an epoxy resin 21 is injected to solidify. Thus, a highly reliable ultrasonic probe is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高分子圧電体を複数回折り重ねて積層してな
る積層高分子圧電型超音波探触子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a laminated polymer piezoelectric ultrasonic probe formed by folding and laminating a polymer piezoelectric material a plurality of times.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来よりリニア電子走査方式に使用されるリニア・アレ
イ型超音波探触子は、チタン酸鉛、チタン・ジルコン酸
鉛等のセラミック圧電体を短冊状に切断したアレイ型が
用いられている。しかしながら、かかるセラミック圧電
体は堅く、脆い性質を有し、切断分割に際して欠損や割
れが発生し易く、シかも多くの短冊状ittを精密に形
成するには困難を伴い、コス1への面からも多くの問題
があった。
BACKGROUND ART Conventionally, linear array type ultrasonic probes used in linear electronic scanning systems have been array type ultrasonic probes in which a ceramic piezoelectric material such as lead titanate or titanium/lead zirconate is cut into strips. However, such ceramic piezoelectric bodies are hard and brittle, and are prone to chipping and cracking when cut and divided, making it difficult to precisely form many strip-shaped itts, and from the viewpoint of cost 1. There were also many problems.

これに対して、ポリフッ化ビニリデン(以下、PVF2
ど略す)、ポリフッ化ビニリデン−三フフ化エチレン共
重合体(以下、PVF2 ・TrFEと略す)等の含フ
ッ素系高分子或いは他の有機性合成高分子は、高湿、高
電界下で分極処理することにより、圧電性、焦電性を示
すことが知られている。また、前記高分子圧電体の厚み
振動を1用した超音波探触子の開発が近年、盛んに行わ
れ1でいる。こうした高分子圧電体は、固有音響インピ
ーダンスが生体のそれと近く、かつ弾性率が小さいこと
から、高分子圧電体をリニア・アレイ型超音波探触子へ
応用する場合は、セラミック圧電体の例と異なり、必ず
しも高分子圧電体自体を短冊状に切断、分離する必要が
ないと言われている。
On the other hand, polyvinylidene fluoride (hereinafter referred to as PVF2)
Fluorine-containing polymers such as polyvinylidene fluoride-ethylene trifluoride copolymer (hereinafter abbreviated as PVF2 and TrFE) or other organic synthetic polymers are polarized under high humidity and high electric field. It is known that by doing so, it exhibits piezoelectricity and pyroelectricity. Further, in recent years, development of ultrasonic probes using the thickness vibration of the piezoelectric polymer has been actively conducted. These polymer piezoelectric materials have a specific acoustic impedance close to that of a living body and a small elastic modulus, so when applying a polymer piezoelectric material to a linear array type ultrasound probe, it is best to use ceramic piezoelectric materials as an example. In contrast, it is said that it is not necessarily necessary to cut and separate the polymer piezoelectric material itself into strips.

しかしながら、高分子圧電体の誘電率は一般に10オ一
ダ程度とセラミック圧電体に比較して著しく小さく、し
かもリニア・アレイ型超音波探触子の駆動素子面積が小
さいために、電気インピーダンスが著しく高くなり、通
常、50Ω系の電源(発・受信回路)との電気的な整合
性が悪く、超音波探触子の損失低下が著しくなる。
However, the dielectric constant of polymer piezoelectric materials is generally about 10 orders of magnitude, which is significantly lower than that of ceramic piezoelectric materials, and furthermore, because the drive element area of linear array ultrasonic probes is small, the electrical impedance is significantly lower. Usually, electrical matching with a 50Ω power supply (emitting/receiving circuit) is poor, and the loss of the ultrasonic probe is significantly reduced.

このようなことから、高分子圧電体を適宜複数枚積層し
、実質的に膜厚が厚いものと同等にし、かつ電気インピ
ーダンスの低下を図ることが提案されている。その−例
として、第4図に示すように両面に短冊状電極1と共通
電極2とが形成された高分子圧電体3複数枚を用意し、
これら圧電体3を同一電極が互いに対向するようにfa
層し、対向する同一電極(例えば一層目と二層目とは短
冊状電極1が互いにする)を半田もしくは導電性接着剤
4を介して接続することにより、電気インピーダンスを
低下させた積層高分子圧電型超音波探触子が知られてい
る。例えば、単層で共振周波数fを有する膜厚の電気イ
ンピータンスをZo とすると、第4図図示の積層構造
では、 Z=Zo /n2    (但し、n 1.を積層数)
で表わされ、二層積層では1/4、三層積層では1/9
の電気インピーダンスどなり、電源との電気的整合が改
善される。しかしながら、第4図に示11*造では、高
分子圧電体3の電極1.2部分からリードIi+5a、
5bを取出し結線する場合、実用上大きな困難を伴う。
For this reason, it has been proposed to appropriately laminate a plurality of polymeric piezoelectric materials to make the thickness substantially equivalent to that of a thick film and to lower the electrical impedance. As an example, as shown in FIG. 4, a plurality of polymer piezoelectric materials 3 each having a strip-shaped electrode 1 and a common electrode 2 formed on both sides are prepared.
Fa
A laminated polymer whose electrical impedance is lowered by connecting identical electrodes that are layered and facing each other (for example, the first layer and the second layer are strip-shaped electrodes 1 to each other) via solder or conductive adhesive 4. Piezoelectric ultrasonic probes are known. For example, if the electrical impedance of a single layer with a thickness having a resonant frequency f is Zo, then in the laminated structure shown in Figure 4, Z=Zo/n2 (where n1. is the number of laminated layers).
It is expressed as 1/4 for two-layer laminate and 1/9 for three-layer laminate.
This improves the electrical impedance and electrical matching with the power supply. However, in the 11* structure shown in FIG. 4, the leads Ii+5a,
When taking out the wire 5b and connecting it, it is very difficult in practical terms.

そこで、第5図に示すように、一枚の連続した高分子圧
電体3−を適宜折り重ね、所望厚さの積層体とし、電気
インピーダンスの低下とリード線取出しを容易にした超
音波探触子が提案されている。かかる超音波探触子は簡
便で、実用上において大きな効果が期待てきるが、次の
ような問題を有する。
Therefore, as shown in Fig. 5, a single continuous polymeric piezoelectric material 3- is appropriately folded to form a laminate with a desired thickness, thereby reducing electrical impedance and making it easier to take out lead wires. A child is proposed. Although such an ultrasonic probe is simple and expected to have great practical effects, it has the following problems.

即ち、一枚の連続した高分子圧電体3′を折り重ねる際
に、短冊状電極1を互いに正確に合せることが難しく、
その電極1が上下にずれを生じる。
That is, when folding one continuous polymeric piezoelectric material 3', it is difficult to align the strip-shaped electrodes 1 with each other accurately;
The electrode 1 shifts vertically.

このようなずれを生じると、駆動素子の電気インピータ
ンスの差異が生じたり、駆動素子間の短絡が発生したり
する。この問題は、高分子圧電体3−の折り重ね数(積
層数)の増加に伴って顕著となる。
If such a shift occurs, a difference in electrical impedance of the driving elements may occur or a short circuit between the driving elements may occur. This problem becomes more noticeable as the number of folds (the number of stacked layers) of the polymer piezoelectric material 3- increases.

〔発明の目的〕[Purpose of the invention]

本発明は高分子圧電体を折り重ね易くでき、しかも高分
子圧電体の折り重ねに際して、その両面に形成した電極
形状パターンの合せを容易にかつ正確に行なうことが可
能な積層高分子圧電型超音波探触子を提供しようとする
ものである。
The present invention provides a laminated polymer piezoelectric superstructure that allows a polymer piezoelectric material to be easily folded, and furthermore, when the polymer piezoelectric material is folded, electrode shape patterns formed on both sides of the polymer piezoelectric material can be easily and accurately aligned. The aim is to provide a sonic probe.

〔発明の概要] 本発明は、両面に電極が形成された高分子圧電体を折り
重ねて少なくとも2層以上にW4層してなる積層高分子
圧電型超音波探触子において、前記高分子圧電体折り目
に沿うの一方の面に溝部を設けたことを特徴とするもの
である。かかる本発明によれば、既述の如く、高分子圧
電体を折り重ね易くでき、しかも高分子圧電体の折り重
ねに際して、その両面に形成した電極形状パターンの台
Uを容易にかつ正確に行なうことが可能な積層高分子圧
電型超音波探触子を得ることができる。
[Summary of the Invention] The present invention provides a laminated polymer piezoelectric ultrasonic probe formed by folding a polymer piezoelectric material having electrodes formed on both sides to form at least two or more W4 layers. It is characterized by providing a groove on one side along the body fold. According to the present invention, as described above, it is possible to easily fold the polymeric piezoelectric material, and when folding the polymeric piezoelectric material, it is possible to easily and accurately shape the electrode shape pattern U formed on both surfaces of the polymeric piezoelectric material. It is possible to obtain a laminated polymer piezoelectric ultrasonic probe that can perform

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図及び第2図を参照して詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 and 2.

図中の11は、例えばアクリル樹脂からなる支持体であ
り、該支持体11上には例えば厚さ2゜0μmの音響反
射板と共通電極の電極部とを兼ねる銅板12が固定され
ている。この銅板12上には、1回折り重ねた積層圧電
体13が配設されている。この積層圧電体ユはPVF2
圧電体14を備えている。この圧電体14の一方の面に
は、銀製の短冊状電極15が、他方の面には銀製の共通
電極16が、夫々形成されている。前記PVF2圧電体
14の共通1ff116側には、前記短冊状電極15の
長さ方向と直交するようにV字型溝部17が設けられて
いる。そして、前記圧電体14はそのV字型溝部17に
治って該溝部17が外側になると共に、短冊状N極15
が互いに対向するように1回折り重ねて積層することに
より前記積層圧電体13が構成されている。なお、かが
る積層圧電体LLを前記銅板12上に載置することによ
り該積層圧電体13の共通電極16が該銅板12に接触
するようになる。また、前記溝部17には、例えば導電
性ペースト18が被覆され、V字型溝部17の形成によ
り分離された共通電極16間を相互に接続している。
Reference numeral 11 in the figure is a support made of, for example, acrylic resin, and on the support 11 is fixed a copper plate 12 having a thickness of, for example, 2.0 μm and serving both as an acoustic reflection plate and an electrode portion of the common electrode. On this copper plate 12, a laminated piezoelectric body 13 which is folded once is arranged. This laminated piezoelectric unit is PVF2
A piezoelectric body 14 is provided. A silver strip-shaped electrode 15 is formed on one surface of the piezoelectric body 14, and a silver common electrode 16 is formed on the other surface. A V-shaped groove 17 is provided on the common 1ff 116 side of the PVF2 piezoelectric body 14 so as to be orthogonal to the length direction of the strip-shaped electrode 15. Then, the piezoelectric body 14 is fixed in the V-shaped groove 17 so that the groove 17 becomes the outer side, and the strip-shaped N pole 15
The laminated piezoelectric body 13 is constructed by folding and stacking the piezoelectric elements once so that they face each other. By placing the laminated piezoelectric body LL on the copper plate 12, the common electrode 16 of the laminated piezoelectric body 13 comes into contact with the copper plate 12. Further, the groove portion 17 is coated with, for example, a conductive paste 18, and the common electrodes 16 separated by the formation of the V-shaped groove portion 17 are interconnected.

前記積層圧電体ユは次のような方法により製作される。The laminated piezoelectric body unit is manufactured by the following method.

まず、厚さ50μmの一軸延伸したPVF2フィルムの
両面に例えば真空蒸着法により厚さ1μm程度の銀層を
蒸着し、100℃の温度、6kVの電界下にて1時間分
極を行なった後、室温まで冷却してPVF2圧電体14
を作製する。
First, silver layers with a thickness of about 1 μm are deposited on both sides of a uniaxially stretched PVF2 film with a thickness of 50 μm, for example, by vacuum evaporation method, and after polarization is performed for 1 hour at a temperature of 100° C. under an electric field of 6 kV, the film is heated at room temperature. Cool the PVF2 piezoelectric body 14 to
Create.

このPVF2圧電体14の一方の面の銀層を第2図に示
すようにその一軸延伸方向と平行となるようにバターニ
ングして短冊状電極15を形成する。
As shown in FIG. 2, the silver layer on one side of the PVF2 piezoelectric body 14 is patterned to be parallel to its uniaxial stretching direction to form a strip-shaped electrode 15.

これら短冊状電極15は単位素子電極幅が0.9順、電
極長が35#、単位素子間隙が0.1mで、64素子を
形成している。つづいて、前記短冊状電極15と反対側
の面の銀層を必要に応じてパターニングして共通電極1
6とした後、この共通電極16の折り重ね部分に相当す
る箇所に深さ約30μm、幅約0.2rtrmのV字型
溝部17をカッタ等により形成する。次いで、前記PV
F2圧電体14をその溝部17に沿って1回折り重ねる
。この後、折り重ね部の外側に位置するV字型溝部17
に導電性ペースト(藤倉化成社製商品名;D−750)
18を塗布し、乾燥して、同第1図に示すように溝部1
7により分離した共通電極16間を相互に接続して積層
圧電体1二を製作する。
These strip-shaped electrodes 15 have a unit element electrode width of 0.9 mm, an electrode length of 35 #, and a unit element gap of 0.1 m, forming 64 elements. Next, the silver layer on the side opposite to the strip-shaped electrode 15 is patterned as necessary to form a common electrode 1.
6, a V-shaped groove 17 having a depth of about 30 μm and a width of about 0.2 rtrm is formed using a cutter or the like at a location corresponding to the folded portion of the common electrode 16. Then, the PV
The F2 piezoelectric body 14 is folded once along the groove portion 17. After this, the V-shaped groove 17 located on the outside of the folded portion
Conductive paste (product name: D-750 manufactured by Fujikura Kasei Co., Ltd.)
18 is applied, dried, and the groove 1 is formed as shown in FIG. 1.
The common electrodes 16 separated by 7 are interconnected to fabricate a laminated piezoelectric body 12.

また、前記銅板12にはリード線19aが、前配積層圧
電体二支の各短冊状電極15には夫々リード線19bが
接続されている。更に、前記積層圧電体13を含む全体
には、例えば厚さ12μmのポリエステルフィルム20
が被覆されていると共に、該フィルム20内にエボテッ
ク社製商品名301−2のエポキシ樹脂層21を注入、
充填して前記積層圧電体長をその圧電体14を折り重ね
た状態で支持体11に固定している。
A lead wire 19a is connected to the copper plate 12, and a lead wire 19b is connected to each strip-shaped electrode 15 of the two front laminated piezoelectric bodies. Further, a polyester film 20 having a thickness of 12 μm is applied to the entire body including the laminated piezoelectric body 13.
is coated, and an epoxy resin layer 21 manufactured by Evotech Co., Ltd. under the trade name 301-2 is injected into the film 20,
The length of the laminated piezoelectric body is fixed to the support body 11 with the piezoelectric body 14 folded over.

しかして、本発明よれば折り重ねすべきPVF2圧電体
14の片面側、例えば共通電極16側にV字型溝部17
を設けているため、該圧電体14の折り重ね作業を容易
に行なうことができると共に、折り重ねにより対向する
短冊状電極15を上下正確に位置合せできる。その結果
、短冊状電極15の合せずれに伴う駆動素子の電気イン
ピーダンスの差異が生じたり、駆動素子間の短絡が発生
したりするのを防止でき、信頼性の高いリニア・アレイ
型超音波探触子を得ることができる。事実、本実施例の
リニア・アレイ型超音波探触子は単位素子間の電気イン
ピーダンスの差異が認められず、しかも該探触子の単位
素子部分の8素子と共通電極16との間にパルス電圧を
印加したところ、5MHzという低い周波数で動作する
ことが確認された。
According to the present invention, the V-shaped groove 17 is formed on one side of the PVF2 piezoelectric body 14 to be folded, for example, on the common electrode 16 side.
, the piezoelectric body 14 can be easily folded, and the opposing strip-shaped electrodes 15 can be vertically aligned accurately by folding. As a result, it is possible to prevent differences in the electrical impedance of the driving elements due to misalignment of the strip electrodes 15 and short circuits between the driving elements, resulting in a highly reliable linear array type ultrasonic probe. can have a child. In fact, in the linear array type ultrasonic probe of this embodiment, there is no difference in electrical impedance between the unit elements, and moreover, there is no pulse between the 8 elements of the unit element part of the probe and the common electrode 16. When a voltage was applied, it was confirmed that the device operated at a low frequency of 5 MHz.

また、PVF2圧電体14を幾重にも折り重ねて電気イ
ンピーダンスの低いリニア・アレイ型超音波探触子を得
る場合にも、その折り重ね作業を極めて簡便に行なうこ
とができる。
Further, even when the PVF2 piezoelectric body 14 is folded many times to obtain a linear array type ultrasonic probe with low electrical impedance, the folding operation can be performed extremely easily.

更に、圧電体14にV字型溝部17を設け、その溝部1
7に沿って圧電体14を折り重ねることにより、折り重
ね部分が極端に膨出するのを抑制できる。その結果、該
超音波探触子を動作させた場合、短冊状電極15の8素
子に隣接する非電圧印加部分の短冊状電極15部分での
音響カップリングや電気的ス1〜ロークの影響を極めて
少なくできる。従って、性能の優れた探触子を得ること
ができる。
Furthermore, a V-shaped groove 17 is provided in the piezoelectric body 14, and the groove 1
By folding the piezoelectric body 14 along the lines 7, it is possible to prevent the folded portion from bulging out excessively. As a result, when the ultrasonic probe is operated, the effects of acoustic coupling and electrical strokes in the non-voltage applied portion of the strip electrode 15 adjacent to the eight elements of the strip electrode 15 are reduced. It can be done very little. Therefore, a probe with excellent performance can be obtained.

更に、圧電体14の一方の面、例えば共通電極16側に
溝部17を設けることに伴って、該共通電極16が電気
的に分離されるが、実施例の如くその溝部17の箇所に
導電性ペースト18を被覆することによって、該共通電
極の電気的な分離を解消できる。
Further, by providing a groove 17 on one surface of the piezoelectric body 14, for example, on the side of the common electrode 16, the common electrode 16 is electrically isolated. By coating the paste 18, electrical isolation of the common electrode can be eliminated.

なお、上記実施例ではV字型溝部により分離されたPV
F2圧電体の片面の共通電極を導電性ペーストを該溝部
に塗布することにより、分離された共通電極を接続した
が、該ペーストによる接続に限定されない。例えば、第
3図(a)に示すように折り市ね後の溝部17部分に蒸
着法やスパッタリング法により接続用金属膜22を設け
た構造してもよい。一方、第5図(b)に示すように超
音波探触子の構成上、圧電体14の共通電極16側に設
けられた溝部17に沿ってその短冊状電極15が外側に
配置するように折り重ねた場合には、圧電体14の折り
重ね部の内側の前記溝部17に導電性ペースト18を挿
入して分離された共通電極を接続するようにすればよい
。また、かかる場合は、第3図(C)に示すように対向
する共通電極16の間に金属薄膜等の導電性基板23を
介在してもよい。
In addition, in the above embodiment, the PV separated by the V-shaped groove
Although the separated common electrodes were connected by applying a conductive paste to the groove portion of the common electrode on one side of the F2 piezoelectric body, the present invention is not limited to connection using the paste. For example, as shown in FIG. 3(a), a connection metal film 22 may be provided in the groove portion 17 after folding by vapor deposition or sputtering. On the other hand, as shown in FIG. 5(b), due to the structure of the ultrasonic probe, the strip-shaped electrode 15 is disposed outside along the groove 17 provided on the common electrode 16 side of the piezoelectric body 14. When folded, conductive paste 18 may be inserted into the groove 17 inside the folded portion of the piezoelectric body 14 to connect the separated common electrodes. Further, in such a case, a conductive substrate 23 such as a metal thin film may be interposed between the opposing common electrodes 16 as shown in FIG. 3(C).

上記実施例では、高分子圧電体としてPVF2の圧電体
を使用したが、PVF2 ・TrFEなどの含フツ素系
合成高分子、或いは圧電性を示す他の有機高分子、又は
チタン酸鉛、チタン・ジルコン酸鉛などのセラミック圧
電体粉末を高分子樹脂に混入した、いわゆる複合圧電体
も同様に用いることができる。
In the above example, a PVF2 piezoelectric material was used as the polymer piezoelectric material, but fluorine-containing synthetic polymers such as PVF2 and TrFE, other organic polymers exhibiting piezoelectricity, or lead titanate, titanium, etc. A so-called composite piezoelectric material in which a ceramic piezoelectric material powder such as lead zirconate is mixed into a polymer resin can also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば高分子圧電体を折り
重ね易くでき、しかも高分子圧電体の折り重ねに際して
、その両面に形成した電極形状パターンの合せを容易に
かつ正確に行なうことができ、ひいては製作性の向上、
電気インピーダンスのばらつき、、音響的、電気的なカ
ップリングやクロストークの影響を抑制して解像度の向
上等を達成した積層高分子圧電型超音波探触子を提供で
きる。
As detailed above, according to the present invention, it is possible to easily fold a polymer piezoelectric material, and when folding the polymer piezoelectric material, it is possible to easily and accurately match the electrode shape patterns formed on both sides of the polymer piezoelectric material. , which in turn improves manufacturability,
It is possible to provide a laminated polymer piezoelectric ultrasonic probe that achieves improved resolution by suppressing the effects of electrical impedance variations, acoustic and electrical coupling, and crosstalk.

【図面の簡単な説明】 第1図は本発明の一実施例を示すリニア・アレイ型超音
波探触子の断面図、第2図は前記超音波探触子の積層圧
電体の作製を説明するための斜視図、第3図(a)−(
C)は本発明の他の実施例を示す超音波探触子の要部断
面図、第4図及び第5図は夫々従来の超音波探触子の要
部断面図である。 11・・・支持体、ユ・・・積層圧電体、14・・・P
VF2圧電体、15・・・短冊状電極、16・・・共通
電極、17・・・V字型溝部、18・・・導電性ペース
ト、20・・・フィルム、22・・・金属膜、23・・
・導電性基板。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 1L 第3図
[Brief Description of the Drawings] Fig. 1 is a sectional view of a linear array type ultrasonic probe showing an embodiment of the present invention, and Fig. 2 illustrates the production of a laminated piezoelectric material of the ultrasonic probe. Perspective view of Figure 3(a)-(
C) is a sectional view of a main part of an ultrasound probe showing another embodiment of the present invention, and FIGS. 4 and 5 are sectional views of main parts of a conventional ultrasound probe, respectively. 11...Support, Y...Laminated piezoelectric material, 14...P
VF2 piezoelectric body, 15... Strip-shaped electrode, 16... Common electrode, 17... V-shaped groove, 18... Conductive paste, 20... Film, 22... Metal film, 23・・・
・Conductive substrate. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 1L Figure 3

Claims (1)

【特許請求の範囲】[Claims] 両面に電極が形成された高分子圧電体を折り重ねて少な
くとも2層以上に積層してなる積層高分子圧電型超音波
探触子において、前記高分子圧電体の折り目に沿う一方
の面に溝部を設けたことを特徴とする積層高分子圧電型
超音波探触子。
In a laminated polymer piezoelectric ultrasonic probe formed by folding and laminating at least two layers of a polymer piezoelectric material having electrodes formed on both sides, a groove is provided on one surface along the fold line of the polymer piezoelectric material. A laminated polymer piezoelectric ultrasonic probe characterized by being provided with.
JP59122281A 1984-06-14 1984-06-14 Laminated high polymer piezo-electric type ultrasonic probe Pending JPS61754A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59122281A JPS61754A (en) 1984-06-14 1984-06-14 Laminated high polymer piezo-electric type ultrasonic probe
US06/729,734 US4725994A (en) 1984-06-14 1985-05-02 Ultrasonic transducer with a multiple-folded piezoelectric polymer film
DE8585105424T DE3570123D1 (en) 1984-06-14 1985-05-03 Ultrasonic transducer with a multiple-folded piezoelectric polymer film
EP85105424A EP0167740B1 (en) 1984-06-14 1985-05-03 Ultrasonic transducer with a multiple-folded piezoelectric polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122281A JPS61754A (en) 1984-06-14 1984-06-14 Laminated high polymer piezo-electric type ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS61754A true JPS61754A (en) 1986-01-06

Family

ID=14832075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122281A Pending JPS61754A (en) 1984-06-14 1984-06-14 Laminated high polymer piezo-electric type ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS61754A (en)

Similar Documents

Publication Publication Date Title
US7148608B2 (en) Multi-layer ceramic acoustic transducer
EP0167740B1 (en) Ultrasonic transducer with a multiple-folded piezoelectric polymer film
KR100722370B1 (en) Multilayered ultrasonic probe and fabricating method thereof
EP0176030B1 (en) Ultrasonic transducer and method of manufacturing same
JPS61144565A (en) High-polymer piezo-electric type ultrasonic probe
US7156938B2 (en) Method for making multi-layer ceramic acoustic transducer
CN113066924B (en) Thin film piezoelectric sensing element and manufacturing method thereof, sensing device and terminal
JPS61754A (en) Laminated high polymer piezo-electric type ultrasonic probe
JP3141744B2 (en) Piezoelectric transformer
US6466106B1 (en) Piezoelectric filter device with a ground electrode that is not centered in the thickness direction of the filter
JPH11307835A (en) Manufacture of sheared piezoelectric element of laminating structure
JPS61753A (en) Laminated high polymer piezo-electric type ultrasonic probe
JPH0683516B2 (en) Ultrasonic probe and method of manufacturing the same
JP3608874B2 (en) Ultrasonic probe
JP3722950B2 (en) Ultrasonic vibrator and manufacturing method thereof
WO2021049149A1 (en) Piezoelectric sensor
JPS6181000A (en) Piezo-electric type ultrasonic probe made of laminated polymer
KR101537939B1 (en) Piezo ceramic fiber multi-layer composite device and manufacturing method of the same
KR100642677B1 (en) Ultrasonic probe and preparing method thereof
JPS63175761A (en) Ultrasonic probe
JPS6054599A (en) Linear array type ultrasonic probe
JPS61752A (en) Laminated high polymer piezo-electric type ultrasonic probe
JPS5997299A (en) Ultrasonic wave probe
JPS6169299A (en) Ultrasonic probe
JPH0657080B2 (en) Ultrasonic probe and method of manufacturing the same