JPS5997299A - Ultrasonic wave probe - Google Patents

Ultrasonic wave probe

Info

Publication number
JPS5997299A
JPS5997299A JP20611582A JP20611582A JPS5997299A JP S5997299 A JPS5997299 A JP S5997299A JP 20611582 A JP20611582 A JP 20611582A JP 20611582 A JP20611582 A JP 20611582A JP S5997299 A JPS5997299 A JP S5997299A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric film
film
piezoelectric
pvf2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20611582A
Other languages
Japanese (ja)
Inventor
Nagao Kaneko
金子 長雄
Kiyoko Ikeuchi
池内 潔子
Yoshinori Fujimori
藤森 良経
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20611582A priority Critical patent/JPS5997299A/en
Publication of JPS5997299A publication Critical patent/JPS5997299A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To reduce electric impedance and to attain ease of matching with a power supply by laminating at least >=2 polymer piezoelectric film stretched uniaxially and making parallel the electrode split direction and the stretched direction of the piezoelectric film. CONSTITUTION:Silver is vapor-deposited on both sides of a PVF2 (polyvinylidenefluoride) stretched uniaxially, the deposited film is polarized at a high temperature under an electric field, and the film is quenched rapidly to form a PVF2 piezoelectric film. Then, a narrow paper-tablet electrode 2 is formed by etching so as to be parallel to the uniaxial direction of the piezoelectric film. The opposite side 3 of the electrode 2 is patternized for a whole surface or partly as required. The PVF2 piezoelectric film 1 is folded and laminated. This is adhered onto a printed board 5 so that the narrow paper-tablet electrode 2 and a copper plate in common use of the sound reflecting plate and the electrode are overlapped with each other. Leads are led out from common electrode leads 3 to a common electrode section 6 of the printed board 5 by using silver-epoxyd- tight paint 7.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、高分子圧電体の両面に電極を設けた圧′祇膜
を多層積層し、かつ′d極が分割された超音波探触子に
関するものである。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to an ultrasonic probe in which a multilayer piezoelectric membrane is laminated with electrodes provided on both sides of a polymeric piezoelectric material, and the d pole is divided. It's about children.

〔従来技術とその問題点〕[Prior art and its problems]

ポリフッ化ビニリデン(以下pVF、、と略する)、P
VF2を含む共重合体、ポリアクリルニトリル、ポリ塩
化ビニリデンなどの合成高分子は、高温・高電界下で分
極処理することによって圧電性を示すことが知られてい
る。この高分子圧電体の厚み振動を利用した超音波探触
子の開発が近時著しくおこなわれている。
Polyvinylidene fluoride (hereinafter abbreviated as pVF), P
Synthetic polymers such as copolymers containing VF2, polyacrylonitrile, and polyvinylidene chloride are known to exhibit piezoelectricity when polarized at high temperatures and high electric fields. Ultrasonic probes that utilize the thickness vibration of piezoelectric polymers have recently been significantly developed.

特に電子走査方式に用いられる超音波探触子は、従来チ
タン酸鉛、チタンジルコン酸鉛などのセラミックス圧1
体を短冊状に切断して分離したアレイ型が用いられてい
る。しかしながらセラミックス圧電体は、固くもろいの
で、切断分離時に欠損や割れの発生の恐れが大きく、か
つ多′磁極イH成を精密にするには甚だ困難をきたして
いた。更に、隣接圧電体間の音響的・電気的なカップリ
ングやクロストークを防止するため、短冊状に切断9分
離した圧電体間に絶線性の弾性体を一定の幅で挿入する
必披があり、この点からも超音波探触子の均一、均質性
、歩留り、大面積化などが困難となり、必然的に超音波
探触子の製作が複雑となり、かつ高価なものとなってい
た。
In particular, ultrasonic probes used in electronic scanning methods are conventionally made of ceramics such as lead titanate and lead titanium zirconate.
An array type is used, in which the body is cut into strips and separated. However, since ceramic piezoelectric materials are hard and brittle, there is a high risk of chipping or cracking during cutting and separation, and it is extremely difficult to precisely form a multi-magnetic pole structure. Furthermore, in order to prevent acoustic and electrical coupling and crosstalk between adjacent piezoelectric bodies, it is necessary to insert an insulating elastic body with a certain width between the piezoelectric bodies that are cut into strips and separated. From this point of view as well, it has become difficult to achieve uniformity, homogeneity, yield, large area, etc. of ultrasonic probes, and the manufacture of ultrasonic probes has inevitably become complicated and expensive.

これに対して、高分子圧電体を用いた超音波探触子は、
音響インピーダンスが生体のそれと近く、かつ高分子圧
電体中における超音波の減衰がセラミックス圧電体と比
較してはるかに大きく、面方向の圧電性を相異させるこ
とができることなどの点から、必ずしも短冊状に切断分
離する必要はないと甘われている。しかしながら、超音
波探傷装置、非破壊試、験装置、超音波探傷装置などに
用いられる超音波探触子は、周波数が大体1〜10RI
IHz程度の範囲内であり、この周波数で駆動する高分
子圧電体の望ましい膜厚では、電気回路と受信回路との
電気整合性が悪くなるという問題が生じてくる。例えば
、PVF 2の膜厚150μmで約4 ME(zの超音
波を励起することができるが、面積ICIItでは電気
インピーダンスが約IKΩとなシ、通常50Ωの電源と
は整合せず、超音波探触子の損失低下が著しくなる。こ
のような難点をさけるために、比較的薄膜の高分子圧電
膜を適宜複数枚積層することによって所望の周波数でか
つ電気インピーダンスを低下させる積層型圧電膜の有用
性が検討されている。
In contrast, ultrasonic probes using polymer piezoelectric materials
The acoustic impedance is close to that of a living body, the attenuation of ultrasonic waves in a polymer piezoelectric material is much greater than that of a ceramic piezoelectric material, and the piezoelectricity in the plane direction can be made different. It is often assumed that there is no need to cut and separate them into sections. However, the frequency of ultrasonic probes used in ultrasonic flaw detection equipment, non-destructive testing, testing equipment, ultrasonic flaw detection equipment, etc. is approximately 1 to 10 RI.
This is within the range of approximately IHz, and with the desirable film thickness of the polymer piezoelectric material driven at this frequency, a problem arises in that the electrical matching between the electric circuit and the receiving circuit deteriorates. For example, a PVF 2 film with a thickness of 150 μm can excite an ultrasonic wave of about 4 ME (z), but the area ICI It has an electrical impedance of about IKΩ, which does not match the normal 50Ω power supply, and the ultrasonic detection The loss of the contactor is significantly reduced.In order to avoid such a drawback, it is useful to use a laminated piezoelectric film that can maintain the desired frequency and reduce the electrical impedance by laminating a plurality of relatively thin polymer piezoelectric films as appropriate. gender is being considered.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点に対処してなされたもので、−軸
延伸した高分子圧電膜を少なくとも二枚以上積層し、か
つ電極分割方向と圧電膜の延伸方向が平行であることを
特徴とするものであり、これにより音響的・電気的なカ
ップリングやクロストークの極めて少なくかつ電気イン
ピーダンスが低く電源との電気整合をとυやすい超音波
探触子を提供することにある。
The present invention has been made to address the above-mentioned problems, and is characterized in that at least two or more axially stretched polymer piezoelectric films are laminated, and the direction in which the electrodes are divided is parallel to the direction in which the piezoelectric films are stretched. The object of the present invention is to provide an ultrasonic probe with extremely low acoustic and electrical coupling and crosstalk, low electrical impedance, and easy electrical matching with a power source.

〔発明の概要〕[Summary of the invention]

チタン酸鉛、チタン・ジルコン酸鉛などのセラミックス
圧電体は、面方向の圧電性は各方向共にほぼ均一であり
、この結果、一点で生じた超音波は一様に伝播し、音響
カップリングや電気的クロストークを招ねく。これに対
し、−軸延伸した高分子圧電膜は、その延伸方向の圧電
定数d31が、これと直角方向の圧電定数d32に比較
して、10倍〜数10倍大きく、また厚み方向の圧電定
数d33とほぼ等しいとされている。従って、短冊状を
構成するアレイ型超音波探触子においては、アレイの分
割方向が一軸延伸高分子圧電膜の延伸方向とほぼ平行に
することにより、音響的カップリングや電気的クロスト
ークを最少にすることが可能となる。しかしながらアレ
配列された探触子の面が曲面などの場合も考えられるの
で、分割方向は、−軸延伸方向と一45°〜+45°の
 範囲内で交わってもこの効果は著しく低下することは
ない。
Ceramic piezoelectric materials such as lead titanate and titanium/lead zirconate have almost uniform piezoelectricity in all directions, and as a result, ultrasonic waves generated at one point propagate uniformly, causing acoustic coupling and Invites electrical crosstalk. On the other hand, in the -axis stretched polymer piezoelectric film, the piezoelectric constant d31 in the stretching direction is 10 to several tens of times larger than the piezoelectric constant d32 in the direction perpendicular to this, and the piezoelectric constant in the thickness direction is It is said to be approximately equal to d33. Therefore, in an array-type ultrasonic probe that has a strip shape, acoustic coupling and electrical crosstalk can be minimized by making the dividing direction of the array almost parallel to the stretching direction of the uniaxially stretched polymer piezoelectric film. It becomes possible to However, since the surface of the arrayed probes may be a curved surface, this effect will not be significantly reduced even if the dividing direction intersects with the -axis stretching direction within the range of -45° to +45°. do not have.

次に高分子の圧電膜積層方法は、例えば膜厚tの2枚の
高分子圧電膜を中間の電極を挾みかつ分極の方向が相対
する様に接着して積層する。こうして得た積層圧電膜の
いずれかの面に背面反射板を設置し、かつ分極方向の同
一方向の4極を結線に駆動すると λ/4=2t  (λ=8t) の基本モードに合致した超音波の励振が可能となる。即
ち膜厚2tの高分子圧電膜を一枚で作成した場合に比べ
て駆動電圧は半分となり、圧電膜の電気容量は4倍とな
シ、従って電気インピーダンスが1/4となシ、電源と
の電気整合が良くなる。
Next, in a method of laminating a polymer piezoelectric film, for example, two polymer piezoelectric films having a film thickness t are bonded and laminated with an intermediate electrode sandwiched therebetween so that the directions of polarization are opposite to each other. When a back reflector is installed on either side of the laminated piezoelectric film obtained in this way, and the four poles in the same polarization direction are connected, an ultraviolet light that matches the fundamental mode of λ/4 = 2t (λ = 8t) is produced. It becomes possible to excite sound waves. In other words, compared to the case where a single piece of polymer piezoelectric film with a film thickness of 2 tons is made, the driving voltage is halved, the capacitance of the piezoelectric film is four times as large, and the electrical impedance is therefore 1/4. Improves electrical matching.

高分子圧電膜の積層方法は、分極の向きを交互に逆向き
にして斤量に積層することが可能であり、この場合の圧
電膜の膜厚は全て同一のものとは限らず任意の異なった
厚さのものを積層することも可能である。
The method of laminating polymer piezoelectric films is to alternately reverse the direction of polarization and stack them in a basis weight. It is also possible to laminate different thicknesses.

〔発明の効果〕〔Effect of the invention〕

本発明は、上述の発明概袂により説明した如く、−軸延
伸した高分子圧電体の延伸方向と電極分割方向とをほぼ
平行にすることにより、短冊状の各単位数は隣接する素
子の音響的・電気的なカップリングやクロストークの影
響を受けることが極めて少ない。従ってノイズの少ない
超音波が放射、あるいは受信できるので、極めて解像度
の優れた超音波影像が得られる超音波探触子が得られる
As explained in the above-mentioned invention summary, by making the stretching direction of the -axis-stretched polymer piezoelectric material substantially parallel to the electrode dividing direction, each strip-shaped unit can be adjusted to reduce the acoustic noise of adjacent elements. It is extremely unlikely to be affected by physical/electrical coupling or crosstalk. Therefore, since ultrasonic waves with less noise can be emitted or received, an ultrasonic probe capable of obtaining ultrasonic images with extremely high resolution can be obtained.

また職分予圧電膜を&層することにより、電気容量が大
きくかつ電気インピーダンスが低くこの結果電源との電
気整合のとシやすい超音波探触子が得られる。
Further, by layering the preloaded electric film, an ultrasonic probe having a large capacitance and a low electrical impedance can be obtained, and as a result, electrical matching with a power source is easily achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について述べる。 Examples of the present invention will be described below.

厚さ55μmの一軸延伸したP■゛2フィルムの両側に
真空蒸着により銀を約700Xの厚さに蒸着し温度10
0°Cにて6KVの電界下で1時間分極し、室温まで急
冷にPVF2圧電膜を作成した。次に第1図に示す様に
とのPVF2圧電膜の一軸延伸方向に平行になるように
単位素子の幅Q、9 mm 、長さ13ηlηL1単位
紫子間隔0.1 mmになる様な短冊状の′Id極(2
)をエツチング操作によって64素子形成した。この場
合、上記短冊状電極(2)を形成した面と反射の電極面
(3)は全面もしくは必要に応じてパターン化されてい
る。この後、第2図に示す様に、上記PVF″2圧電膜
(1)を折り重ねる様にして積層(三層)した。
Silver was deposited to a thickness of about 700X by vacuum evaporation on both sides of a 55 μm thick uniaxially stretched P■゛2 film at a temperature of 10
A PVF2 piezoelectric film was produced by polarizing at 0°C for 1 hour under an electric field of 6 KV and rapidly cooling to room temperature. Next, as shown in Fig. 1, a rectangular strip was formed so that the unit element had a width Q of 9 mm, a length of 13ηlηL, and a unit element spacing of 0.1 mm, parallel to the uniaxial stretching direction of the PVF2 piezoelectric film. 'Id pole (2
) were formed into 64 elements by etching. In this case, the surface on which the strip-shaped electrode (2) is formed and the reflective electrode surface (3) are formed entirely or patterned as necessary. Thereafter, as shown in FIG. 2, the two PVF'' piezoelectric films (1) were stacked (three layers) in a folded manner.

PVF 2圧直膜の積層に関しては、短冊状−極(2)
が上下に重なる様に注意する必要がある。この積層PV
F2圧′醒膜を予め第3図に示す様なプリント基板(5
)に短冊状電極(2)と音響反射板兼電極の厚さ300
μmの銅板(短冊状)(4)とが互に重なる様にして接
着した。また図中の共通電極リード部分(3)からは釦
−エポキシド−タイトペイント(藤倉化成製])−75
3> (q)により、プリント基板(5)の共通電極部
(6)へリードを取り出した。
Regarding the lamination of PVF 2-pressure direct membrane, the strip-shaped pole (2)
Care must be taken to ensure that they overlap vertically. This laminated PV
The F2 pressure release membrane is attached to a printed circuit board (5) as shown in Figure 3 in advance.
), the thickness of the strip-shaped electrode (2) and the acoustic reflector/electrode is 300 mm.
Copper plates (rectangular shape) (4) of .mu.m were bonded together so as to overlap each other. In addition, from the common electrode lead part (3) in the figure, the button-epoxide-tight paint (manufactured by Fujikura Kasei) -75
3> According to (q), the lead was taken out to the common electrode part (6) of the printed circuit board (5).

最後に6極部分には厚さ12μmのポリエステルフィル
ムをエポキシ樹脂で接着し、 ′、ilt極間の絶縁と
耐水性付与をせしめ超音波探触子を得た。短冊状゛d極
8素子と共通゛電極との間に電圧を印加したところ、こ
の超音波探触子は3.5 ME(zで効率良く動作する
ことを確認した。
Finally, a polyester film with a thickness of 12 μm was adhered to the 6-pole portion using epoxy resin to provide insulation between the poles and to provide water resistance, thereby obtaining an ultrasonic probe. When a voltage was applied between the eight strip-shaped d-pole elements and the common electrode, it was confirmed that this ultrasonic probe operated efficiently at 3.5 ME (z).

更に超音波−探−触子の動作状態において、短冊状電極
(2)の8素子に隣接する非電圧印加部分の短冊状成極
部分での音響的カップリングや電気的クロストークが無
いことも確認した。
Furthermore, in the operating state of the ultrasonic probe, there is no acoustic coupling or electrical crosstalk in the strip-shaped polarized portion of the non-voltage applied portion adjacent to the eight elements of the strip-shaped electrode (2). confirmed.

以上例示した本発明の超音波探触子は、短冊状の各単位
素子は隣接する素子の音響的、電気的なカップリングや
クロストークの影響を受けることが極めて少ない。−従
ってノイズの少ない超音波が放射あるいは受信できるの
で、極めて解像度の優れた超音波影響が得られる。壕だ
高分子圧電膜を積層することにより、電気容量が大きく
、かつ電気インピーダンスが低くなり、この晧果駆動電
源との゛電気整合のとりやすい超音波探触子を得ること
ができる。
In the ultrasonic probe of the present invention exemplified above, each strip-shaped unit element is extremely unlikely to be affected by acoustic or electrical coupling or crosstalk between adjacent elements. -Thus, ultrasonic waves with less noise can be emitted or received, so ultrasonic effects with extremely high resolution can be obtained. By laminating the trenched polymer piezoelectric films, an ultrasonic probe having a large capacitance and a low electrical impedance can be obtained, and as a result, it is easy to electrically match the drive power source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明による超音波探触子の構造
を示す斜視図である。 1・・・市分子圧電膜 2・・・短冊状電極 3・・・共通′i極 4・・・音響反射板兼電極 5・・・プリント基板基体 6・・・共通゛シ極リード部分 7・・・ドータイトペイント 代理人 弁理士 則 近 憲 佑 (ほか1名) 第  1  図 第  2  図 第  3  図
1 to 3 are perspective views showing the structure of an ultrasound probe according to the present invention. 1... Municipal piezoelectric film 2... Strip-like electrode 3... Common i-pole 4... Acoustic reflector/electrode 5... Printed circuit board base 6... Common i-pole lead portion 7 ... Dotite Paint Agent Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 爾分子圧電体の両面に電極を設けた圧電膜を少なくとも
二枚以上積層し、該圧電膜の少なくとも一方の面の電極
が複数の短冊状電極に分割されている超音波探触子にお
いて、前記圧電膜が一軸延伸されており、かつ圧電膜の
電極分割方向が圧電膜の延伸方向と平行であることを特
徴とする超音波探触子。
In an ultrasonic probe in which at least two piezoelectric films each having electrodes provided on both sides of a molecular piezoelectric material are laminated, and the electrode on at least one surface of the piezoelectric film is divided into a plurality of strip-shaped electrodes, the above-mentioned An ultrasonic probe characterized in that the piezoelectric film is uniaxially stretched, and the electrode division direction of the piezoelectric film is parallel to the stretching direction of the piezoelectric film.
JP20611582A 1982-11-26 1982-11-26 Ultrasonic wave probe Pending JPS5997299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20611582A JPS5997299A (en) 1982-11-26 1982-11-26 Ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20611582A JPS5997299A (en) 1982-11-26 1982-11-26 Ultrasonic wave probe

Publications (1)

Publication Number Publication Date
JPS5997299A true JPS5997299A (en) 1984-06-05

Family

ID=16518043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20611582A Pending JPS5997299A (en) 1982-11-26 1982-11-26 Ultrasonic wave probe

Country Status (1)

Country Link
JP (1) JPS5997299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124198U (en) * 1985-01-23 1986-08-05
JP2014219341A (en) * 2013-05-10 2014-11-20 積水化学工業株式会社 Piezo-electric type vibration sensor
US10168243B2 (en) 2012-09-24 2019-01-01 Sekisui Chemical Co., Ltd. Leakage detector, leakage detection method, and pipe network monitoring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124198U (en) * 1985-01-23 1986-08-05
US10168243B2 (en) 2012-09-24 2019-01-01 Sekisui Chemical Co., Ltd. Leakage detector, leakage detection method, and pipe network monitoring apparatus
JP2014219341A (en) * 2013-05-10 2014-11-20 積水化学工業株式会社 Piezo-electric type vibration sensor

Similar Documents

Publication Publication Date Title
US6225728B1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
JPS61144565A (en) High-polymer piezo-electric type ultrasonic probe
US5153859A (en) Laminated piezoelectric structure and process of forming the same
US6868594B2 (en) Method for making a transducer
EP0187668B1 (en) Ultrasonic transducer and method of manufacturing same
US7156938B2 (en) Method for making multi-layer ceramic acoustic transducer
JP2011205663A (en) Multilayer ultrasonic transducer and method for manufacturing the same
US6614143B2 (en) Class V flextensional transducer with directional beam patterns
JPWO2008018278A1 (en) Ultrasonic probe and method of manufacturing ultrasonic probe
JPS60139100A (en) Transducer
Tressler et al. A comparison of the underwater acoustic performance of single crystal versus piezoelectric ceramic-based “cymbal” projectors
JP3360371B2 (en) Shear wave vibration element, surface wave piezoelectric element, and ultrasonic transducer
EP1050079B1 (en) High-sensitivity piezocomposite material and ultrasonic transducer made therefrom
JPS5997299A (en) Ultrasonic wave probe
Cheng et al. Design, fabrication, and performance of a flextensional transducer based on electrostrictive polyvinylidene fluoride-trifluoroethylene copolymer
US20040183406A1 (en) Piezoelectrical bending converter
JPS6181000A (en) Piezo-electric type ultrasonic probe made of laminated polymer
JP2001029346A (en) Ultrasonic wave probe and manufacture therefor
JPS6054599A (en) Linear array type ultrasonic probe
JPS61283180A (en) Laminated piezoelectric substance
JPS6242560B2 (en)
JPH0888419A (en) Micro-actuator and its manufacture
JPS61293100A (en) High molecular piezoelectric ultrasonic probe
JPS6015342Y2 (en) electroacoustic functional device
Siewe et al. Performance Comparison Between Single Layer and Several Configurations of Bilayer P (VDF-TrFE) Transducers in Pulse-Echo Measurements