JPH04170077A - Pyroelectric infrared detector and manufacturing of the same - Google Patents

Pyroelectric infrared detector and manufacturing of the same

Info

Publication number
JPH04170077A
JPH04170077A JP2298002A JP29800290A JPH04170077A JP H04170077 A JPH04170077 A JP H04170077A JP 2298002 A JP2298002 A JP 2298002A JP 29800290 A JP29800290 A JP 29800290A JP H04170077 A JPH04170077 A JP H04170077A
Authority
JP
Japan
Prior art keywords
substrate
pyroelectric
thin film
organic thin
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2298002A
Other languages
Japanese (ja)
Other versions
JP2584124B2 (en
Inventor
Yoshihiro Tomita
佳宏 冨田
Ryoichi Takayama
良一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2298002A priority Critical patent/JP2584124B2/en
Publication of JPH04170077A publication Critical patent/JPH04170077A/en
Application granted granted Critical
Publication of JP2584124B2 publication Critical patent/JP2584124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain a small size pyroelectric infrared detector having a high yield by bonding an organic thin film on a substrate and then providing a pyroelectric element thereon. CONSTITUTION:A pyroelectric element 12 is produced on a first substrate 11 and the entire surface is covered with an organic thin film 14. A second bustrate 16 having holes is bonded thereon and the first substrate 11 is removed by the etching. Thereby, the pyroelectric element 18 is supported within the holes of the second substrate 15. Various substrate materials can be obtained by bonding the substrate 16 having the holes and the pyroelectric element 12 coated with the organic thin film 14. For instance, a device as a whole can be formed in small size by using a material such as glass epoxy used for circuit board and manufacturing a detector and peripheral circuits on the same substrate. Thereby, a small size pyroelectric infrared detector having high yield can be obtained. Moreover, manufacturing process can be simplified and manufacturing period can also be shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電薄膜を用いて赤外線を検出する焦電型赤外
線検出器およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pyroelectric infrared detector that detects infrared rays using a pyroelectric thin film and a method for manufacturing the same.

従来の技術 従来、焦電型の赤外線検出器には、チタン酸鉛系のセラ
ミックやタンタル酸リチウムの単結晶などのバルク材料
が用いられてきた。近年、焦電材料を薄膜化し、フォト
リソなどの微細加工技術を応用して、素子の小型化や高
密度アレイ化に適応できる焦電型赤外線検出器が開発さ
れつつある。
BACKGROUND OF THE INVENTION Conventionally, bulk materials such as lead titanate-based ceramics and lithium tantalate single crystals have been used in pyroelectric infrared detectors. In recent years, pyroelectric infrared detectors that can be adapted to smaller elements and higher-density arrays have been developed by thinning pyroelectric materials and applying microfabrication techniques such as photolithography.

特に、薄膜焦電材料のうち、ペロプスカイト型の結晶構
造を有するチタン酸鉛系の焦電薄膜は、スパッタリング
法によって成膜することによ)、基板に対してC軸配向
し、分極処理を施さなくても分極の方向が一方向にそろ
った薄膜が得られる。
In particular, among thin-film pyroelectric materials, lead titanate-based pyroelectric thin films with a perovskite-type crystal structure are formed by sputtering), and are C-axis oriented with respect to the substrate and subjected to polarization treatment. Even without this, a thin film with polarization aligned in one direction can be obtained.

この現象はM90単結晶基板上やM(JO単結晶上に(
100)配向したpt薄膜上などの限られた基板材料上
への成膜においてのみ確認されている。
This phenomenon is observed on M90 single crystal substrate and M(JO single crystal).
100) It has been confirmed only in film formation on limited substrate materials such as oriented PT thin films.

特に、PbxLa、Ti、21w03 で表わされ、(
a)  0.7≦X≦1.0.9≦” 十y < ’ 
eα95≦z≦1゜W=O (b)   x=1.7=O,α46≦z(1、z 十
w=1(c+)  0.83≦X≦1 、X+7=1.
0.6≦z(10,96≦z+w≦1 のいずれかの組成を有する焦電薄膜において顕著な現象
である。これらのC軸配向したチタン酸鉛系の焦電KM
は、赤外線の検出能力も高いことから、焦電型赤外線検
出器の小型化や高密度アレイ化に最も適した材料である
In particular, it is expressed as PbxLa, Ti, 21w03, (
a) 0.7≦X≦1.0.9≦" y <'
eα95≦z≦1゜W=O (b) x=1.7=O, α46≦z(1, z 10w=1(c+) 0.83≦X≦1, X+7=1.
This is a remarkable phenomenon in pyroelectric thin films having a composition of 0.6≦z (10,96≦z+w≦1).These C-axis oriented lead titanate-based pyroelectric KMs
Because it has a high ability to detect infrared rays, it is the most suitable material for miniaturizing pyroelectric infrared detectors and creating high-density arrays.

具体的な焦電薄膜材料を用いた赤外線検出器の構成を第
3図に示す。焦電素子は、焦電薄膜−1と両面のt極2
,3とによって構成され、との焦電素子が穴の開いた基
板4の穴の中心に、有機薄膜6によって支持されている
。電極2の引出し部分は有機薄膜6の中に埋め込まれ、
裏面全面に作製されたwL電極との間での絶縁を保って
おシ、焦電素子の出力は[極2の引呂し部分と電極3の
間の起電力として得られる。焦電型の赤外線検出器は、
吸収した赤外線による素子の温度上昇を電気信号に変換
しているため、焦電素子の裏面の基板4に穴を開け、焦
電素子から基板への熱伝導をできるだけ少なくして効率
よ〈熱上昇が行なえる構成としている。また、赤外線の
入射は裏面の電極3側から行ない、焦電薄膜1に直接赤
外線を吸収させ、効率のよい赤外線の検出を行なってい
る。通常、受光側電極には赤外線反射率の小さい薄いニ
クロムが使われている。
FIG. 3 shows the configuration of an infrared detector using a specific pyroelectric thin film material. The pyroelectric element consists of a pyroelectric thin film-1 and t-poles 2 on both sides.
, 3, and a pyroelectric element is supported by an organic thin film 6 at the center of a hole in a substrate 4 having a hole. The lead-out portion of the electrode 2 is embedded in the organic thin film 6,
The output of the pyroelectric element is obtained as an electromotive force between the closed portion of the pole 2 and the electrode 3 while maintaining insulation from the wL electrode fabricated on the entire back surface. The pyroelectric infrared detector is
Since the temperature rise of the element due to absorbed infrared rays is converted into an electrical signal, a hole is made in the substrate 4 on the back side of the pyroelectric element to minimize heat conduction from the pyroelectric element to the substrate to improve efficiency. The structure is such that this can be done. Further, the infrared rays are incident from the electrode 3 side on the back surface, and the pyroelectric thin film 1 directly absorbs the infrared rays, thereby achieving efficient infrared detection. Normally, thin nichrome, which has low infrared reflectivity, is used for the light-receiving electrode.

この作製プロセスを第4図を用いて説明する。This manufacturing process will be explained using FIG. 4.

まず、基板4上の一部に焦電薄膜1を成膜する。First, the pyroelectric thin film 1 is formed on a part of the substrate 4.

この全面に感光性の有機薄膜5を塗布し、乾燥した後、
紫外線による露光と現像によって、有機薄膜6のうちの
焦電薄膜1と電極2との導通をとる部分を取シ除き、有
機薄膜6を熱硬化させる。この上に電極2の成膜とパタ
ーニングを行ない、さらに感光性の有機薄膜5′を塗布
し、乾燥した後、紫外線による鱈光と現像によって、有
機薄膜6′のうちの電極2の出力を埴シ出す部分を取シ
除く。
After coating the entire surface with a photosensitive organic thin film 5 and drying it,
By exposure to ultraviolet light and development, a portion of the organic thin film 6 that establishes conduction between the pyroelectric thin film 1 and the electrode 2 is removed, and the organic thin film 6 is thermally cured. On top of this, the electrode 2 is formed and patterned, and then a photosensitive organic thin film 5' is applied. After drying, the output of the electrode 2 of the organic thin film 6' is reduced by UV light and development. Remove the exposed part.

基板4の裏面に7オトレジヌト6を塗布し、基板を残す
部分を保護した後、基板4の一部をエツチング除去する
。フォトレジスト6を除去した後、裏面全面にt極3を
形成している。
After coating the back surface of the substrate 4 with 7-to-resinut 6 to protect the portion where the substrate remains, a part of the substrate 4 is removed by etching. After removing the photoresist 6, a t-pole 3 is formed on the entire back surface.

発明が解決しようとする課題 従来例の赤外線検出器に用いる基板は、容易にエツチン
グできる材料でなくてはならず、さらに″t5+極軸方
向に配向した焦電薄膜を用いる場合、使用可能な基板が
極端に限定される。
Problems to be Solved by the Invention The substrate used in the conventional infrared detector must be made of a material that can be easily etched, and furthermore, when a pyroelectric thin film oriented in the t5+ polar axis direction is used, there are no usable substrates. is extremely limited.

また、従来の焦電薄膜を用いた赤外線検出器では、焦電
薄膜の寸法と基板の穴の寸法の間にかなシマージンを取
らなくてはならず、焦電素子自体を小さくすることがで
きても検出器全体はあg小さくすることができない。
In addition, in conventional infrared detectors using pyroelectric thin films, a small margin must be maintained between the dimensions of the pyroelectric thin film and the dimensions of the hole in the substrate, making it possible to reduce the size of the pyroelectric element itself. However, the entire detector cannot be made smaller.

まず第1K、エツチングされた基板の側面がどうしても
斜めになるため、この寸法を考慮しなくてはならない。
First, the side surface of the etched substrate is inevitably oblique, so this dimension must be taken into consideration.

また、この斜め部分が急峻であると電極3の導通が取れ
なくなり、歩留1シが低下することから、この部分の寸
法は基板の厚さ以上であることが望ましい。
Furthermore, if this diagonal portion is steep, the electrode 3 will not be electrically conductive and the yield will be reduced, so it is desirable that the dimension of this portion be equal to or greater than the thickness of the substrate.

次に、実際にエツチングされる基板の寸法のばらつきを
考慮しなくてはならない。基板エツチングには長時間か
かるため、レジストと基板との間へのエツチング液の浸
透が無視できなくなシ、実際にエツチング除去された部
分の寸法は、設計値から大きくばらつく。
Next, it is necessary to take into account variations in the dimensions of the substrate to be actually etched. Since substrate etching takes a long time, penetration of the etching solution into the space between the resist and the substrate cannot be ignored, and the dimensions of the portion actually etched away vary widely from the designed values.

さらに、マージンとして基板エツチングのパターンずれ
を考慮しなくてはならない。基板の表と裏のパターン合
わせが必要で、合わせるパターン間が離れているためパ
ターンずれが生じ易い。
Furthermore, the pattern shift of substrate etching must be considered as a margin. It is necessary to match the patterns on the front and back sides of the substrate, and because the patterns to be matched are far apart, pattern misalignment is likely to occur.

従って、マージンどして、基板の斜め部分の寸法、エツ
チング寸法のばらつき、パターンずれの3点を見越した
以上の寸法が必要となる。
Therefore, the margin needs to be larger than the dimensions of the diagonal portion of the substrate, variations in etching dimensions, and pattern misalignment.

本発明は、上記問題点を解決するもので、小型で歩留ま
シの高い焦電型赤外線検出器を提供することを目的とす
るものである。
The present invention solves the above problems, and aims to provide a pyroelectric infrared detector that is small and has a high yield.

課題を解決するための手段 第1基板上に焦電素子を作製し、全面を有機薄膜で後っ
た上に、穴を設けた第2基板を貼シ合わせ、第1基板を
エツチング除去することによシ、前記有機薄膜によって
前記焦電素子が前記第2基板の穴の内部に支持された構
成を実現する。
Means to Solve the Problem: Fabricate a pyroelectric element on a first substrate, cover the entire surface with an organic thin film, bond a second substrate with holes, and remove the first substrate by etching. Alternatively, the organic thin film realizes a structure in which the pyroelectric element is supported inside the hole of the second substrate.

作  用 上記手段のように、あらかじめ穴を設けた基板と有機薄
膜を塗布した焦電素子とを貼シ合わせることによって、
色々な基板材料を用いることができる。例えば、ガラス
エポキシなどの回路基板に用いられる材料を用い、検出
器と周辺回路を同一基板上に作製することによって、装
置全体を小型化することができる。
Effect As in the above method, by bonding together a substrate with holes in it and a pyroelectric element coated with an organic thin film,
A variety of substrate materials can be used. For example, by fabricating the detector and peripheral circuitry on the same substrate using a material used for circuit boards, such as glass epoxy, the entire device can be miniaturized.

従来例では基板の穴の側面が斜めであることが問題であ
ったが、本発明では穴の側面が垂直に切シ立った基板を
用いることができる。穴の側面を垂直にしたとしても、
二つの電極のどちらの引き回し部分も、連続かつ平坦な
面上に作製されるため、従来例のように電極の断線によ
る不良は起こらない。また、本発明では第1基板を全面
エツチングし除去しているため、従来例のようなエツチ
ング寸法のばらつきやパターンずれなどの問題は起こら
ない。
In the conventional example, there was a problem that the side surfaces of the hole in the substrate were oblique, but in the present invention, a substrate in which the side surface of the hole is vertically cut can be used. Even if the sides of the hole are vertical,
Since both of the lead-out portions of the two electrodes are fabricated on a continuous and flat surface, defects due to disconnection of the electrodes do not occur as in the conventional example. Further, in the present invention, since the entire first substrate is etched and removed, problems such as variations in etching dimensions and pattern deviations that occur in the conventional example do not occur.

従って、本発明における焦電素子と基板の穴の間のマー
ジンは極めて少なくて済み、小型の赤外線検出器を実現
できる。
Therefore, the margin between the pyroelectric element and the hole in the substrate in the present invention can be extremely small, making it possible to realize a compact infrared detector.

また、第1基板を全面エツチングするため、エツチング
される面に段差がなく、全面が均一にエツチングされ、
エツチングの終点における焦電薄膜のダメージを最小限
に抑えることができる。
In addition, since the entire surface of the first substrate is etched, there are no steps on the etched surface, and the entire surface is uniformly etched.
Damage to the pyroelectric thin film at the end point of etching can be minimized.

実施例 本発明における焦電型赤外線検出器の一実施例の構成を
第1図に、その作製プロセスを第2図に示す。第1基板
11としてMgo単結晶を用い、この上に焦電薄膜12
としてP b o 、sL ao 、 1”0.975
03の組成でペロブヌカイト型の結晶構造を有し、基板
11に対してC軸配向した焦電薄膜を、スパッタリング
法によシ成膜した。この組成の焦電薄膜は、チタン酸鉛
系の焦電薄膜の中でも特に赤外線検出器の材料として優
れている。この焦電薄膜12と基板11上に1100n
のNiCr薄膜を成膜し、電極13とその引き回し部分
を形成した。この全面に有機薄膜14としてポリイミド
樹脂を塗布・仮硬化し、さらに全面に接着層15として
同じポリイミド樹脂を塗布し、第2基板16と貼シ合わ
せた後、有機薄膜14と接着層16を完全に硬化した。
Embodiment FIG. 1 shows the structure of an embodiment of the pyroelectric infrared detector according to the present invention, and FIG. 2 shows the manufacturing process thereof. A Mgo single crystal is used as the first substrate 11, and a pyroelectric thin film 12 is placed on it.
As P b o , sL ao , 1”0.975
A pyroelectric thin film having a composition of No. 03, having a perovnukite crystal structure, and C-axis oriented with respect to the substrate 11 was formed by a sputtering method. A pyroelectric thin film with this composition is particularly excellent as a material for an infrared detector among lead titanate-based pyroelectric thin films. 1100n on this pyroelectric thin film 12 and substrate 11
A NiCr thin film was formed to form the electrode 13 and its routing portion. A polyimide resin is applied and temporarily cured as an organic thin film 14 on this entire surface, and the same polyimide resin is further applied on the entire surface as an adhesive layer 15, and after bonding with the second substrate 16, the organic thin film 14 and adhesive layer 16 are completely bonded. hardened to.

最後に、第1基板11をリン酸によってエツチング除去
し、基板11を除去した面に10nmのN i Crを
成膜し、電極17とその引き回し部分を形成した。基板
11をエツチング除去した面が平坦であるため、従来例
では行えない、裏面電極のパターニングを容易に行なう
ことができた。第1図に示した構成は、第2図のプロセ
スが終了したものの上下を反転しておシ、電極17側か
ら赤外線の入射を行なう。
Finally, the first substrate 11 was removed by etching with phosphoric acid, and a 10 nm thick NiCr film was formed on the surface from which the substrate 11 was removed, thereby forming the electrode 17 and its routing portion. Since the etched surface of the substrate 11 is flat, it was possible to easily pattern the back electrode, which could not be done in the conventional example. In the configuration shown in FIG. 1, the process shown in FIG. 2 is completed, but the structure is turned upside down and infrared rays are incident from the electrode 17 side.

第2基板16にはポリイミドのフィルムを用いておシ、
型抜きで簡単に断面が垂直な穴を開けることができ、−
枚の基板に複数の赤外線検出器を作シ込んだ場合、それ
ぞれの素子分離も容易に行なうことができた。ポリイミ
ドフィルムには、銅箔の配線パターンを設けたものを用
い、検出器と同じ基板上に周辺回路も実装し、装置の小
型化を図ることができた。また、ポリイミドは柔軟性が
あシ赤外線検出器を曲面状に設置することも可能である
A polyimide film is used for the second substrate 16,
You can easily make a hole with a vertical cross section by cutting a die, and -
When multiple infrared detectors were fabricated on a single substrate, each element could be easily separated. A polyimide film with a copper foil wiring pattern was used, and peripheral circuits were mounted on the same board as the detector, making the device more compact. Furthermore, since polyimide is flexible, it is also possible to install an infrared detector in a curved shape.

また、従来例の有機薄膜5とσには、電極2の導通を取
る穴を設けるために、感光性のポリイミド樹脂を用いて
2回のパターニングを行なっておシ、樹脂の硬化も2回
行なわなくてはならず、プロセスが複雑で時間がかかる
。実際、エツチング液への耐性を確保するためには1回
につき4時間和度熱処理が必要であった。一方、本発明
の場合、有機薄膜14と接着層16ともパターニングの
必要がなく有機薄膜14を10分程度仮硬化するだけ÷
連続して塗布できる。よって、通常のポリイミド樹脂が
使用でき、実質1回の硬化で済むため、プロセスが単純
で時間の短縮ができる。
In addition, in order to provide a hole for electrical conduction of the electrode 2 in the organic thin film 5 and σ of the conventional example, patterning was performed twice using a photosensitive polyimide resin, and the resin was also hardened twice. The process is complex and time-consuming. In fact, in order to ensure resistance to the etching solution, it was necessary to perform a gentle heat treatment for 4 hours each time. On the other hand, in the case of the present invention, there is no need for patterning of the organic thin film 14 and the adhesive layer 16, and the organic thin film 14 only needs to be temporarily cured for about 10 minutes.
Can be applied continuously. Therefore, a normal polyimide resin can be used and only one curing process is required, so the process is simple and time can be shortened.

さらに本発明の赤外線検出器は、その実装においても有
利である。従来例の検出器のように裏面から赤外線を受
光する場合、検出器を固定するノくッケージのペースに
も赤外線を通す窓を設けなくてはならない。ペースに穴
を設けることは、ノくツケージのコスト増大を招くだけ
でなく、ペース側に出ているビンやパッケージを固定す
る配線基板が邪魔をして、光学系の設計を制限する恐れ
がある。本発明では、基板に対して表から受光するだめ
、このような問題は生じない。
Furthermore, the infrared detector of the present invention is advantageous in its implementation. When receiving infrared rays from the back side like the conventional detector, it is necessary to provide a window through which infrared rays can pass through the cage that fixes the detector. Providing a hole in the pace not only increases the cost of the screw cage, but it also interferes with the wiring board that fixes the bottle and package protruding from the pace, potentially limiting the design of the optical system. . In the present invention, such a problem does not occur because the light is received from the front side of the substrate.

本実施例には、1個の焦電型赤外線検出器について示し
ているが、焦電素子を複数個ならべたアレイセンサの作
製においても全く同様の効果が得られる。
In this embodiment, one pyroelectric infrared detector is shown, but the same effect can be obtained by manufacturing an array sensor in which a plurality of pyroelectric elements are arranged.

発明の効果 本発明によれば、小型で歩留まりの高い焦電型赤外線検
出器を実現でき、さらにその作製プロセスの簡略北本時
間の短縮を行なうことができる。
Effects of the Invention According to the present invention, it is possible to realize a pyroelectric infrared detector that is small and has a high yield, and furthermore, it is possible to simplify the manufacturing process and shorten the Kitamoto time.

における焦電型赤外線検出器およびその作製プロセスを
示す断面図である。
FIG. 2 is a cross-sectional view showing a pyroelectric infrared detector and its manufacturing process.

11・・・・・・第1基板、12・・・・・・焦電薄膜
、13・・・・・・電極、14・・・・・・有機薄膜、
16・・・・・・接着層、16・・・・・・第2基板、
17・・・・・・電極。
11...First substrate, 12...Pyroelectric thin film, 13...Electrode, 14...Organic thin film,
16... Adhesive layer, 16... Second substrate,
17... Electrode.

代理人の氏名 弁理士 小鍜治  明 I/1か2名、
、−、!!儒ヒiq罠
Name of agent: Patent attorney Akira Okaji I/1 or 2;
,-,! ! Confucian Hiq Trap

Claims (10)

【特許請求の範囲】[Claims] (1)基板と、有機薄膜と、前記有機薄膜よりも小さい
焦電素子とを備え、前記基板上に前記有機薄膜が接着支
持され、前記有機薄膜上に前記焦電素子が設けられてい
る焦電型赤外線検出器。
(1) A pyroelectric element comprising a substrate, an organic thin film, and a pyroelectric element smaller than the organic thin film, wherein the organic thin film is adhesively supported on the substrate, and the pyroelectric element is provided on the organic thin film. Electric type infrared detector.
(2)基板と、有機薄膜と、前記有機薄膜よりも小さい
焦電素子とを備え、前記基板の周囲に前記焦電素子の信
号を処理する回路が実装され前記基板上に前記有機薄膜
が接着支持され、前記有機薄膜上に前記焦電素子が設け
られている焦電型赤外線検出器。
(2) A substrate, an organic thin film, and a pyroelectric element smaller than the organic thin film, a circuit for processing a signal of the pyroelectric element is mounted around the substrate, and the organic thin film is adhered to the substrate. A pyroelectric infrared detector is supported, and the pyroelectric element is provided on the organic thin film.
(3)焦電素子が、基板に設けた穴よりも小さく、前記
焦電素子が前記基板の穴の概ね中央に設置された請求項
1記載の焦電型赤外線検出器。
(3) The pyroelectric infrared detector according to claim 1, wherein the pyroelectric element is smaller than the hole provided in the substrate, and the pyroelectric element is installed approximately in the center of the hole in the substrate.
(4)有機薄膜の上面と、焦電薄膜の有機薄膜に覆われ
ていない上面が、略連続で平坦である請求項1記載の焦
電型赤外線検出器。
(4) The pyroelectric infrared detector according to claim 1, wherein the upper surface of the organic thin film and the upper surface of the pyroelectric thin film that is not covered with the organic thin film are substantially continuous and flat.
(5)有機薄膜と基板とを接着する接着層が、前記有機
薄膜と同種の樹脂からなる請求項1記載の焦電型赤外線
検出器。
(5) The pyroelectric infrared detector according to claim 1, wherein the adhesive layer that adheres the organic thin film and the substrate is made of the same type of resin as the organic thin film.
(6)焦電素子が、Pb_xLa_yTi_zZr_w
O_3で表わされ、 (a)0.7≦x≦1、0.9≦x+y<1、0.95
≦z≦1、w=0 (b)x=1、y=0、0.45≦z<1、z+w=1 (c)0.83≦x≦1、x+y=1、0.5≦z<1
、0.96≦z+w≦1 のいずれかの組成を有する焦電薄膜材料によって構成さ
れる請求項1記載の焦電型赤外線検出器。
(6) The pyroelectric element is Pb_xLa_yTi_zZr_w
Represented by O_3, (a) 0.7≦x≦1, 0.9≦x+y<1, 0.95
≦z≦1, w=0 (b) x=1, y=0, 0.45≦z<1, z+w=1 (c) 0.83≦x≦1, x+y=1, 0.5≦z <1
2. The pyroelectric infrared detector according to claim 1, which is made of a pyroelectric thin film material having a composition of 0.96≦z+w≦1.
(7)焦電素子を構成する焦電薄膜の結晶軸が、分極軸
方向に配向している請求項1記載の焦電型赤外線検出器
(7) The pyroelectric infrared detector according to claim 1, wherein the crystal axis of the pyroelectric thin film constituting the pyroelectric element is oriented in the direction of the polarization axis.
(8)基板上に直接焦電薄膜を成膜しても、前記焦電薄
膜を配向させることのできないセラミクス、ガラス、樹
脂、あるいはその複合材料を前記基板に用いた請求項7
記載の焦電型赤外線検出器。
(8) The substrate is made of ceramics, glass, resin, or a composite material thereof, in which the pyroelectric thin film cannot be oriented even if the pyroelectric thin film is directly formed on the substrate.
The described pyroelectric infrared detector.
(9)第1基板に所望の大きさの焦電素子を作製し、基
板全体を覆うように有機薄膜を作製し、この上に第2基
板を接着した後、第1の基板を裏面からエッチング除去
しうる焦電型赤外線検出器の製造方法。
(9) Fabricate a pyroelectric element of a desired size on the first substrate, fabricate an organic thin film to cover the entire substrate, adhere the second substrate on top of this, and then etch the first substrate from the back side. A method for manufacturing a removable pyroelectric infrared detector.
(10)第1の基板が、焦電薄膜の分極軸方向への結晶
配向を可能とする材料からなる請求項9記載の焦電型赤
外線検出器の製造方法。
(10) The method for manufacturing a pyroelectric infrared detector according to claim 9, wherein the first substrate is made of a material that enables crystal orientation in the direction of the polarization axis of the pyroelectric thin film.
JP2298002A 1990-11-01 1990-11-01 Pyroelectric infrared detector and method of manufacturing the same Expired - Fee Related JP2584124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2298002A JP2584124B2 (en) 1990-11-01 1990-11-01 Pyroelectric infrared detector and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298002A JP2584124B2 (en) 1990-11-01 1990-11-01 Pyroelectric infrared detector and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04170077A true JPH04170077A (en) 1992-06-17
JP2584124B2 JP2584124B2 (en) 1997-02-19

Family

ID=17853857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298002A Expired - Fee Related JP2584124B2 (en) 1990-11-01 1990-11-01 Pyroelectric infrared detector and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2584124B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413667A (en) * 1992-11-04 1995-05-09 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector fabricating method
EP0667532A2 (en) * 1994-02-07 1995-08-16 Matsushita Electric Industrial Co., Ltd. Thin film sensor element and method of manufacturing the same
EP1089360A1 (en) * 1999-04-06 2001-04-04 Matsushita Electric Industrial Co., Ltd. Piezoelectric thin film device, inkjet recording head using the device and manufacturing methods of the device and the head
JP2003520447A (en) * 2000-01-17 2003-07-02 エドヴァード・ケルヴェステン How to connect components
US6931700B2 (en) 2001-10-02 2005-08-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing thin film piezoelectric elements
WO2010090188A1 (en) * 2009-02-04 2010-08-12 セイコーインスツル株式会社 Radiation sensor and method for manufacturing same
JP2010249676A (en) * 2009-04-16 2010-11-04 Hioki Ee Corp Method for producing pyroelectric infrared image sensor and pyroelectric infrared image sensor
JP2011071467A (en) * 2009-08-28 2011-04-07 Panasonic Electric Works Co Ltd Method of manufacturing ferroelectric device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104380A (en) * 1980-12-19 1982-06-29 New Japan Radio Co Ltd Infrared ray solid-state image pickup device
JPS63313023A (en) * 1987-06-16 1988-12-21 Matsushita Electric Ind Co Ltd Pyroelectric type infrared array sensor and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104380A (en) * 1980-12-19 1982-06-29 New Japan Radio Co Ltd Infrared ray solid-state image pickup device
JPS63313023A (en) * 1987-06-16 1988-12-21 Matsushita Electric Ind Co Ltd Pyroelectric type infrared array sensor and its production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483067A (en) * 1992-11-04 1996-01-09 Matsuhita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
EP0764990A1 (en) 1992-11-04 1997-03-26 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
US5413667A (en) * 1992-11-04 1995-05-09 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector fabricating method
EP0667532A2 (en) * 1994-02-07 1995-08-16 Matsushita Electric Industrial Co., Ltd. Thin film sensor element and method of manufacturing the same
EP0667532B1 (en) * 1994-02-07 2003-11-26 Matsushita Electric Industrial Co., Ltd. Thin film sensor element and method of manufacturing the same
US6688731B1 (en) 1999-04-06 2004-02-10 Matsushita Electric Industrial Co., Ltd. Piezoelectric thin film element, ink jet recording head using such a piezoelectric thin film element, and their manufacture methods
EP1089360A1 (en) * 1999-04-06 2001-04-04 Matsushita Electric Industrial Co., Ltd. Piezoelectric thin film device, inkjet recording head using the device and manufacturing methods of the device and the head
EP1089360A4 (en) * 1999-04-06 2002-05-29 Matsushita Electric Ind Co Ltd Piezoelectric thin film device, inkjet recording head using the device and manufacturing methods of the device and the head
JP2003520447A (en) * 2000-01-17 2003-07-02 エドヴァード・ケルヴェステン How to connect components
US6931700B2 (en) 2001-10-02 2005-08-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing thin film piezoelectric elements
WO2010090188A1 (en) * 2009-02-04 2010-08-12 セイコーインスツル株式会社 Radiation sensor and method for manufacturing same
JP2010249676A (en) * 2009-04-16 2010-11-04 Hioki Ee Corp Method for producing pyroelectric infrared image sensor and pyroelectric infrared image sensor
JP2011071467A (en) * 2009-08-28 2011-04-07 Panasonic Electric Works Co Ltd Method of manufacturing ferroelectric device

Also Published As

Publication number Publication date
JP2584124B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
JP3135930B2 (en) Thin film electrical equipment
JP3494948B2 (en) Solid-state imaging device and method of manufacturing the same
US6770971B2 (en) Semiconductor device and method of fabricating the same
US4815199A (en) Method of manufacutring a thermal imaging device with thermally insulated sensor elements
JP3605487B2 (en) Method for manufacturing a floating microstructure and a floating microstructure processing assembly
KR100704249B1 (en) Dual wafer attachment process
US20080185039A1 (en) Conductor fabrication for optical element
JPS63258055A (en) Manufacture of electronic circuit device
JPH04170077A (en) Pyroelectric infrared detector and manufacturing of the same
US5485010A (en) Thermal isolation structure for hybrid thermal imaging system
JPS6212454B2 (en)
JPH06268183A (en) Manufacture of semiconductor device
JPH10135528A (en) Dielectric film sheet for electronic part, its manufacture and dielectric element
JPS6351493B2 (en)
WO2008097805A2 (en) Conductor fabrication for optical element
JP2002022993A (en) Method for manufacturing optical waveguide device
KR100273124B1 (en) Method of fabricating thermal detection device for infrared camera
KR100279501B1 (en) Manufacturing method of pyroelectric element for thermal image detection
JPS59104523A (en) Production of infrared-ray detector
JP2000101162A (en) Small-sized magnetoelectric transducer and manufacture thereof
JP4457399B2 (en) Manufacturing method of optical waveguide device and optical waveguide device
JPH0370184A (en) Photovoltaic device
JPH08288335A (en) Connection method for substrate
JP2003043282A (en) Optical waveguide device including electrode, optical element, electrode layer, and method for manufacturing optical element
JPH09139394A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees