JPS6351493B2 - - Google Patents

Info

Publication number
JPS6351493B2
JPS6351493B2 JP57143918A JP14391882A JPS6351493B2 JP S6351493 B2 JPS6351493 B2 JP S6351493B2 JP 57143918 A JP57143918 A JP 57143918A JP 14391882 A JP14391882 A JP 14391882A JP S6351493 B2 JPS6351493 B2 JP S6351493B2
Authority
JP
Japan
Prior art keywords
infrared
support
pyroelectric
infrared detector
pyroelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57143918A
Other languages
Japanese (ja)
Other versions
JPS5932828A (en
Inventor
Takeo Ishigaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57143918A priority Critical patent/JPS5932828A/en
Publication of JPS5932828A publication Critical patent/JPS5932828A/en
Publication of JPS6351493B2 publication Critical patent/JPS6351493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Description

【発明の詳細な説明】 産業上の利用分野 本発明は赤外線検出素子に関し赤外入射エネル
ギーを実効的に増加させることにより焦電形赤外
線検出器の感度を向上させることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an infrared detection element and aims to improve the sensitivity of a pyroelectric infrared detector by effectively increasing the incident infrared energy.

従来例の構成とその問題点 焦電形赤外線検出器は熱型のセンサーであるの
で、感度は素子の形状、寸法、支持構造に強く依
存する。従つてより高感度にするには熱の逃げを
極力小さくしなければならない。そのためには宙
吊り状態にした方が良く、中空の支持台で材料は
端のみで支持する。このような構造にすることに
より、高感度にすることができる。しかしさらに
高感度にするには受光電極の赤外吸収率を1に近
づけるため黒化することが行なわれているが、そ
れによる効果はそれ程大きくない。従つてもつと
感度をほしい場合は焦電形赤外線検出器に光学系
を組合せていた。従来は第1図に示すように光学
系として反射鏡12を用いて入射赤外光13を反
射鏡12で集光し赤外線検出器11に照射してい
た。しかしこの場合は赤外線検出器11に組合せ
て反射鏡12を用いるので構造が大きくなるし、
反射鏡としてマイクロミラーを用いても小さくす
るのには限度がある。しかも赤外線検出器11の
素子は片側の受光面のみを使つており効率が悪か
つた。
Conventional Structure and Problems Since a pyroelectric infrared detector is a thermal sensor, its sensitivity strongly depends on the shape, dimensions, and support structure of the element. Therefore, in order to achieve higher sensitivity, it is necessary to minimize heat escape. For this purpose, it is better to suspend the material in mid-air, using a hollow support platform to support the material only at the edges. By adopting such a structure, high sensitivity can be achieved. However, in order to further increase the sensitivity, blackening is performed to bring the infrared absorption rate of the light-receiving electrode closer to 1, but the effect of this is not so great. Therefore, if high sensitivity was desired, an optical system was combined with a pyroelectric infrared detector. Conventionally, as shown in FIG. 1, a reflecting mirror 12 is used as an optical system, and incident infrared light 13 is collected by the reflecting mirror 12 and irradiated onto an infrared detector 11. However, in this case, the structure becomes large because the reflecting mirror 12 is used in combination with the infrared detector 11.
Even if a micromirror is used as a reflecting mirror, there is a limit to how small it can be made. Furthermore, the infrared detector 11 used only one light receiving surface, resulting in poor efficiency.

発明の目的 本発明は上記の点に鑑みなされたもので、小型
で高感度の赤外線検出素子を提供するものであ
る。
OBJECTS OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to provide a small and highly sensitive infrared detection element.

発明の構成 本発明は焦電材料の端部のみを支持し中央部を
くりぬいて宙吊りにするとともに、くりぬき部に
反射体を形成して検出素子の両面に入射する赤外
エネルギーを利用するようにしたものである。
Structure of the Invention The present invention supports only the ends of a pyroelectric material and hollows out the center to suspend it in the air, and forms a reflector in the hollow to utilize infrared energy incident on both sides of the detection element. This is what I did.

実施例の説明 以下実施例について図面を参照しながら詳細に
説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments will be described in detail with reference to the drawings.

第2図に本発明の一実施例を示す。両面に赤外
吸収電極をつけた焦電材料21を図の様に支持体
22に端の部分で接着する。この支持体はSi基板
で作成する。このSi基板に穴あけするには異方性
エツチングを用いる。この製作工程を第3図に示
す。第3図aの様に(100)面44を出したSi板
41上に酸化膜42を1μ程度につける。この基
板にフオトレジストをつけ第3図bに示すように
所定のパターンのマスク43を形成する。その後
第3図cのように酸化膜42を片側のみエツチン
グでぬく。そしてこの酸化膜42をマスクにして
Siのエツチングを行なう。このエツチング液には
例えばエチレンジアミンとプロカテコール系、苛
性カリ系等が用いられる。これによればSiの
(100)面44と(111)面45ではエツチ速度が
異なるので四角錐の穴をあけることができ、途中
で止めると第3図dのような台形の穴をあけられ
る。(100)面と(111)面のなす角は54.74゜で一
定である。但しきれいな四角錐にするにはこの一
辺を(110)方向に合わせねばならない。この方
法は大きなSiウエハーにいくつもこの穴をあけ、
あとから所望の大きさの切断をダイシング等で行
なうことができるので量産が可能である。
FIG. 2 shows an embodiment of the present invention. A pyroelectric material 21 having infrared absorbing electrodes on both sides is adhered to a support 22 at its end portions as shown in the figure. This support is made of a Si substrate. Anisotropic etching is used to make holes in this Si substrate. This manufacturing process is shown in FIG. As shown in FIG. 3a, an oxide film 42 is formed to a thickness of about 1 μm on the Si plate 41 with the (100) plane 44 exposed. A photoresist is applied to this substrate and a mask 43 having a predetermined pattern is formed as shown in FIG. 3b. Thereafter, as shown in FIG. 3c, the oxide film 42 is removed by etching only on one side. Then, using this oxide film 42 as a mask,
Perform Si etching. For example, ethylene diamine, procatechol, caustic potash, etc. are used as the etching solution. According to this, since the etching speed is different between the (100) plane 44 and the (111) plane 45 of Si, it is possible to make a square pyramidal hole, and if you stop midway, you can make a trapezoidal hole as shown in Figure 3d. . The angle between the (100) and (111) planes is constant at 54.74°. However, to make a beautiful square pyramid, this side must be aligned in the (110) direction. This method involves drilling a number of holes in a large Si wafer.
Since the desired size can be cut later by dicing or the like, mass production is possible.

こうして作つた台形穴のSi板にAu、Al等の赤
外反射電極を蒸着し、台形穴の中を赤外反射板と
する。この場合第2図に示すSi表面23,24は
マスクしてもしなくても良いが、片側は金属が蒸
着されない方がより好ましい。この後、ダイシン
グされて作製された支持体22に焦電材21をお
き、片側の金属蒸着面には導電性接着剤で、他方
の側は絶縁性接着剤で固定する。このようにすれ
ば絶縁性接着剤で固定した側は焦電材21の表面
側の接続電極より結線できる。
An infrared reflective electrode made of Au, Al, etc. is deposited on the Si plate with the trapezoidal hole thus created, and the inside of the trapezoidal hole becomes an infrared reflective plate. In this case, the Si surfaces 23 and 24 shown in FIG. 2 may or may not be masked, but it is more preferable that no metal be deposited on one side. Thereafter, the pyroelectric material 21 is placed on the support 22 prepared by dicing, and fixed on one side with a conductive adhesive and on the other side with an insulating adhesive. In this way, the side fixed with the insulating adhesive can be connected to the connection electrode on the surface side of the pyroelectric material 21.

このようにして構成された赤外素子は、第4図
の断面図に示す如く、入射赤外光34は素子21
の表面電極32側に直接入射する他支持体反射面
45で反射して素子21の裏面吸収電極33に入
る。従つて表の吸収電極32から入る赤外光に裏
面から入る赤外光がつけ加わるので実効入射赤外
エネルギーが大きくなる。これは等価の面積をも
つた焦電素子に比して素子の熱容量、電気容量の
点からはるかに有利で、出力が大きくなる。なお
この支持体22は加工の容易性からSiを選んだ
が、同等の効果を生ずる様な加工ができる素材で
あればSiに限定されない。
In the infrared element constructed in this way, as shown in the cross-sectional view of FIG.
The light is directly incident on the front surface electrode 32 side, and is reflected by the support reflection surface 45 and enters the back surface absorption electrode 33 of the element 21 . Therefore, since the infrared light entering from the back surface is added to the infrared light entering from the front absorbing electrode 32, the effective incident infrared energy increases. This is much more advantageous in terms of heat capacity and electric capacity than a pyroelectric element with an equivalent area, and the output is larger. Although Si was selected for the support 22 because of its ease of processing, it is not limited to Si as long as it can be processed to produce the same effect.

なお、反射面45を球面状、楕円状、放物面状
などに形成すれば集光効率は一層上昇し更に高感
度となる。
Note that if the reflecting surface 45 is formed into a spherical, elliptical, parabolic, etc. shape, the light collection efficiency will further increase and the sensitivity will become even higher.

発明の効果 以上のように、本発明は焦電材料の支持体を中
空にして焦電材料を宙吊り状態にし、焦電材料の
両面に受光電極を形成し、支持体の中空部に反射
体を形成した赤外線検出器で、焦電材料の有効赤
外入力が大きくなり、しかも外部光学系が不要で
あり、小形で高感度の赤外線検出器を得ることが
できる。
Effects of the Invention As described above, the present invention makes the support of the pyroelectric material hollow, suspends the pyroelectric material, forms light receiving electrodes on both sides of the pyroelectric material, and places a reflector in the hollow part of the support. In the formed infrared detector, the effective infrared input of the pyroelectric material is increased, and an external optical system is not required, making it possible to obtain a compact and highly sensitive infrared detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の反射鏡を利用した赤外線検出器
の概略図、第2図は本発明による赤外線検出器の
斜視図、第3図a〜dは本発明に使用されるSi支
持体の製作工程を順に示す断面図、第4図は第2
図のA−A′線における断面図である。 21……焦電体、22……支持体、23,24
……支持体表面、32……表面赤外吸収電極、3
3……裏面赤外吸収電極、34……入射赤外光、
41……Si、42……Si絶縁膜、43……フオト
レジスト、44……Si(100)面、45……Si
(111)面。
Figure 1 is a schematic diagram of an infrared detector using a conventional reflecting mirror, Figure 2 is a perspective view of an infrared detector according to the present invention, and Figures 3 a to d are fabrication of the Si support used in the present invention. Cross-sectional views showing the steps in order, Figure 4 is the second
It is a sectional view taken along the line AA' in the figure. 21...Pyroelectric body, 22...Support, 23, 24
... Support surface, 32 ... Surface infrared absorption electrode, 3
3... Back infrared absorbing electrode, 34... Incident infrared light,
41...Si, 42...Si insulating film, 43...photoresist, 44...Si (100) plane, 45...Si
(111) face.

Claims (1)

【特許請求の範囲】[Claims] 1 焦電材料を中央部に凹部を有する支持体にと
りつけ、上記焦電材料の中央部を浮かせ、上記支
持体の凹部の底部に反射面を有することを特徴と
する赤外線検出素子。
1. An infrared detection element, characterized in that a pyroelectric material is attached to a support having a recess in the center, the center of the pyroelectric material is floated, and the support has a reflective surface at the bottom of the recess.
JP57143918A 1982-08-18 1982-08-18 Infrared ray detecting element Granted JPS5932828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143918A JPS5932828A (en) 1982-08-18 1982-08-18 Infrared ray detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143918A JPS5932828A (en) 1982-08-18 1982-08-18 Infrared ray detecting element

Publications (2)

Publication Number Publication Date
JPS5932828A JPS5932828A (en) 1984-02-22
JPS6351493B2 true JPS6351493B2 (en) 1988-10-14

Family

ID=15350121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143918A Granted JPS5932828A (en) 1982-08-18 1982-08-18 Infrared ray detecting element

Country Status (1)

Country Link
JP (1) JPS5932828A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073362B2 (en) * 1984-06-14 1995-01-18 株式会社村田製作所 One-dimensional pyroelectric sensor array
JPH01136035A (en) * 1987-11-24 1989-05-29 Hamamatsu Photonics Kk Pyroelectric detection element and manufacture thereof
GB8812957D0 (en) * 1988-06-01 1988-10-05 Thorn Emi Electronics Ltd Thermal imaging
JPH04132271A (en) * 1990-09-21 1992-05-06 Hamamatsu Photonics Kk Infrared sensor
JPH05305098A (en) * 1992-04-28 1993-11-19 Marui Ika:Kk Universal brain spatula fixing unit
US5471060A (en) * 1993-08-23 1995-11-28 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared radiation detector and method of producing the same
US5446284A (en) * 1994-01-25 1995-08-29 Loral Infrared & Imaging Systems, Inc. Monolithic detector array apparatus
JP4702200B2 (en) * 2006-06-27 2011-06-15 株式会社デンソー RECEIVER AND RADAR DEVICE PROVIDED WITH THE RECEIVER
JP5119012B2 (en) * 2008-03-11 2013-01-16 株式会社アドバンテスト Photodetector
GB201816609D0 (en) 2018-10-11 2018-11-28 Emberion Oy Multispectral photodetector array
CN113551780B (en) * 2021-09-18 2021-12-21 西安中科立德红外科技有限公司 Infrared sensor chip based on semiconductor integrated circuit process and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5932828A (en) 1984-02-22

Similar Documents

Publication Publication Date Title
US4162928A (en) Solar cell module
EP0068456B1 (en) Electromagnetic radiation detection system comprising a radiation limiting shield
JPS6351493B2 (en)
JP2892829B2 (en) X-ray phosphor imaging screen and method of manufacturing the same
JP3372180B2 (en) Pyroelectric infrared detector and pyroelectric infrared sensor
US5946135A (en) Retroreflector
US5910659A (en) Flat panel thermal infrared generator
JP2003207612A (en) Method for manufacture of electromagnetic radiation reflecting device
JPH04170077A (en) Pyroelectric infrared detector and manufacturing of the same
JPH01308927A (en) Pyroelectric type infrared detection element array, pyroelectric type infrared detector and preparation thereof
JPH11266000A (en) Image pickup device
US4016590A (en) Electromagnetic radiation detector
JPS59198770A (en) Photo receiving electronic device
JPS6142204B2 (en)
JPH07504269A (en) Laser intensity monitoring device using metal thin film mask
JPS6159884A (en) Solar battery module
US20240045123A1 (en) Lens and camera module
JPS6281777A (en) Light converging type solar battery module
JPS6123368A (en) Solar tracking sensor
JPS60200132A (en) Detecting device of infrared rays
JP3013716B2 (en) Infrared detector
JPH0219725A (en) Pyroelectric type infrared detecting element array, pyroelectric type infrared detector and their production
KR100497518B1 (en) Manufacturing method of pyroelectric infrared sensor
KR100310113B1 (en) Structure of light-absorbing electrode in infrared detection device
JPH07167708A (en) Infrared sensor