JPH04132271A - Infrared sensor - Google Patents

Infrared sensor

Info

Publication number
JPH04132271A
JPH04132271A JP25356090A JP25356090A JPH04132271A JP H04132271 A JPH04132271 A JP H04132271A JP 25356090 A JP25356090 A JP 25356090A JP 25356090 A JP25356090 A JP 25356090A JP H04132271 A JPH04132271 A JP H04132271A
Authority
JP
Japan
Prior art keywords
infrared
film
chamber
insulation chamber
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25356090A
Other languages
Japanese (ja)
Inventor
Masayoshi Suzuki
鈴木 政好
Kenji Makino
健二 牧野
Akimasa Tanaka
章雅 田中
Susumu Sugiyama
進 杉山
Osamu Tabata
修 田畑
Ryoji Asahi
良司 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Toyota Central R&D Labs Inc
Original Assignee
Hamamatsu Photonics KK
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Toyota Central R&D Labs Inc filed Critical Hamamatsu Photonics KK
Priority to JP25356090A priority Critical patent/JPH04132271A/en
Publication of JPH04132271A publication Critical patent/JPH04132271A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve detection efficiency and make a finer element by forming an infrared reflection film on the inner face of a heat insulation chamber. CONSTITUTION:An Si substrate 1 is etched to form a heat insulation chamber 11 and an infrared reflection film 7 is formed on its inner face. When an infrared ray is applied, a part thereof is absorbed in an infrared absorption film 5 on an insulation membrane 21 and detected by a p-n diode. The rest enters the heat insulation chamber 11, is reflected by the infrared reflection film 7, and returns upward. The sidewalls of the heat insulation chamber 11 are inclined at 55 deg. by the anisotropic etching of the Si substrate 1. The infrared ray entering the heat insulation chamber 11 through the edge of an opening 12 and that entering the heat insulation chamber 11 through a little inner section of the opening 12 are reflected twice by the infrared reflection film 7 on the sidewalls and applied to the rear of the insulation membrane 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン(St )などの半導体基板に形成さ
れた赤外線センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared sensor formed on a semiconductor substrate such as silicon (St 2 ).

〔従来の技術〕[Conventional technology]

赤外線センサとして、半導体基板にエツチングにより凹
部を形成し、この入口部に絶縁性メンブレンを掛け渡し
たものが知られている。このような赤外線センサでは、
絶縁性メンブレンの中心位置にダイオードなどの温度検
出素子が設けられ、その上に赤外線吸収膜が被覆されて
いる。この場合、半導体基板の凹部は熱絶縁室として作
用し、絶縁性メンブレン上の温度検出素子の温度が、効
率よく上昇するように機能する。
A known infrared sensor is one in which a recess is formed in a semiconductor substrate by etching, and an insulating membrane is placed over the entrance of the recess. In such an infrared sensor,
A temperature detecting element such as a diode is provided at the center of the insulating membrane, and an infrared absorbing film is coated on the temperature detecting element. In this case, the recessed portion of the semiconductor substrate acts as a thermally insulating chamber, and functions to efficiently increase the temperature of the temperature detection element on the insulating membrane.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

ところが、半導体基板に熱絶縁室をエツチングで形成す
るためには、絶縁性メンブレンに比較的大きなエツチン
グ液注入用の開口を設けることが必要になる。センサ全
面に赤外線が入射した場合を考えると、そのうちこの開
口に入射した赤外線は熱絶縁室を通過して基板に達し、
そこで吸収されるか透過することになりセンサに検出さ
れない。
However, in order to form a thermally insulating chamber in a semiconductor substrate by etching, it is necessary to provide a relatively large opening in the insulating membrane for injecting an etching solution. Considering the case where infrared rays are incident on the entire surface of the sensor, the infrared rays incident on this opening will pass through the thermal insulation chamber and reach the board.
There, it is either absorbed or transmitted, and is not detected by the sensor.

すなわち、この開口は絶縁性メンブレンの熱容量を減少
させる作用は奏するものの、センサの検出効率を低下さ
せ、赤外線センサとしては全くのデッドスペースになっ
ており、素子の微細化をも妨げている。
That is, although this opening has the effect of reducing the heat capacity of the insulating membrane, it lowers the detection efficiency of the sensor, becomes a completely dead space for an infrared sensor, and also impedes miniaturization of the element.

本発明は、このような従来技術の欠点を克服することを
課題としている。
The present invention aims to overcome these drawbacks of the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る赤外線センサは、半導体基板の所定領域が
選択的に除去されて熱絶縁室が形成され、熱絶縁室の入
口部に絶縁膜を掛け渡すことで絶縁性メンブレンが形成
され、絶縁性メンブレン上に温度検出素子が設けられた
ものにおいて、熱絶縁室の内面には赤外線反射膜が形成
されていることを特徴とする。ここで、赤外線反射膜は
電解めっきされた金属膜としてもよい。
In the infrared sensor according to the present invention, a predetermined region of a semiconductor substrate is selectively removed to form a thermally insulating chamber, and an insulating membrane is formed by spanning an insulating film over the entrance of the thermally insulating chamber. A device in which a temperature detection element is provided on a membrane is characterized in that an infrared reflective film is formed on the inner surface of the thermal insulation chamber. Here, the infrared reflective film may be an electrolytically plated metal film.

〔作用〕[Effect]

本発明によれば、熱絶縁室の内面には赤外線反射膜が形
成されているので、赤外線吸収膜および絶縁性メンブレ
ンで吸収されずに熱絶縁室に入射した赤外線は、反射さ
れて絶縁性メンブレンおよび赤外線吸収膜に達する。
According to the present invention, since the infrared reflecting film is formed on the inner surface of the thermally insulating chamber, infrared rays that enter the thermally insulating chamber without being absorbed by the infrared absorbing film and the insulating membrane are reflected and transferred to the insulating membrane. and reaches the infrared absorbing film.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は第1実施例に係る赤外線センサを示し、同図(
a)は平面図、同図(b)はA−A線断面図である。図
示の通り、Si基板1の表面すなわち(100)面には
、窒化シリコンなどの絶縁膜2が形成され、これがセン
サ領域で十文字状に残されて絶縁性メンブレン21を成
している。絶縁性メンブレン21上にはn型材料層3n
とn型材料層3nが堆積され、絶縁性メンブレン21の
中央部でpn接合を形成し、これが温度検出素子をなし
ている。n型材料層3nおよびn型材料層3nは窒化シ
リコンなどの保護膜4で被覆され、センサ領域の保護膜
4上には赤外線吸収膜5が堆積されている。そして、n
型材料層3nの端部はp型電極6pに接続され、n型材
料層3nの端部はn型電極6nに接続され、これらは図
示しない信号処理回路に接続されている。なお、信号処
理回路は同一のSi基板1に集積化させることがてきる
FIG. 1 shows an infrared sensor according to a first embodiment;
Figure a) is a plan view, and figure (b) is a cross-sectional view taken along line A-A. As shown in the figure, an insulating film 2 made of silicon nitride or the like is formed on the surface of the Si substrate 1, that is, the (100) plane, and is left in a cross shape in the sensor region to form an insulating membrane 21. On the insulating membrane 21 is an n-type material layer 3n.
and an n-type material layer 3n are deposited to form a pn junction at the center of the insulating membrane 21, which serves as a temperature sensing element. The n-type material layer 3n and the n-type material layer 3n are covered with a protective film 4 such as silicon nitride, and an infrared absorbing film 5 is deposited on the protective film 4 in the sensor region. And n
An end of the type material layer 3n is connected to a p-type electrode 6p, an end of the n-type material layer 3n is connected to an n-type electrode 6n, and these are connected to a signal processing circuit (not shown). Note that the signal processing circuit can be integrated on the same Si substrate 1.

このようなセンサ部において、81基板1はエツチング
されて熱絶縁室11が形成され、その内面には赤外線反
射膜7が形成されている。熱絶縁室11の形成は、絶縁
性メンブレン21が十文字状となるように設けられた4
つの開口12からエツチング液を注入し、81基板1を
異方性エツングすることで行われる。なお、Si基板1
の異方性エツチングに先立って、横方向のエツチングを
促進するため、ポリシリコンなどの犠牲層がセンサ部の
81基板1上にあらかじめ形成される。また、赤外線反
射膜7の形成は、金(Au )や銀(Ag )などの赤
外線反射率の高い金属イオン溶液に浸し、Si基板1を
陰極として直流電流を流すことで行われる。このように
すると、熱絶縁室11の内面は導電性のシリコン単結晶
が露出した状態なので、金属が析出して赤外線反射膜7
が電解めっきされる。
In such a sensor section, the 81 substrate 1 is etched to form a thermally insulating chamber 11, and an infrared reflective film 7 is formed on the inner surface of the thermally insulating chamber 11. The heat insulating chamber 11 is formed by using four insulating membranes 21 arranged in a cross shape.
This is done by injecting an etching solution through two openings 12 and etching the substrate 1 81 anisotropically. Note that the Si substrate 1
Prior to the anisotropic etching, a sacrificial layer, such as polysilicon, is preformed on the sensor section 81 substrate 1 to facilitate lateral etching. Further, the infrared reflecting film 7 is formed by immersing the substrate in a metal ion solution having a high infrared reflectance such as gold (Au) or silver (Ag) and passing a direct current through the Si substrate 1 as a cathode. In this way, since the conductive silicon single crystal is exposed on the inner surface of the heat insulating chamber 11, metal is precipitated and the infrared reflective film 7 is exposed.
is electrolytically plated.

次に、上記実施例の作用を、第2図を参照して説明する
Next, the operation of the above embodiment will be explained with reference to FIG.

上方から赤外線が入射すると、一部は絶縁性メンブレン
21上の赤外線吸収膜5に吸収され、pnダイオードに
より検出される。他のものは、熱絶縁室11に入り赤外
線反射膜7て反射されて上方に戻ってくる。ここで、熱
絶縁室11の形状は第2図に示すように、51基板1の
異方性エツチングに起因して側壁の傾きが55″になっ
ている。
When infrared rays are incident from above, a portion is absorbed by the infrared absorbing film 5 on the insulating membrane 21 and detected by the pn diode. Others enter the heat insulating chamber 11 and are reflected by the infrared reflective film 7 and return upward. Here, as shown in FIG. 2, the shape of the heat insulating chamber 11 is such that the inclination of the side wall is 55'' due to anisotropic etching of the 51 substrate 1.

このため、開口12の端部から熱絶縁室11に入射した
赤外線R1や、開口12のもう少し内側から熱絶縁室1
1に入射した赤外線R2は、側壁の赤外線反射膜7で2
回反射され、裏面から絶縁性メンブレン21に入射する
。また、底部の(100)面上の赤外線反射膜7で反射
される赤外線R3も、裏面から絶縁性メンブレン21に
入射する。したがって、熱絶縁室11の底部(100)
面の大きさを、絶縁性メンブレン21の大きさおよび位
置に合せて適宜に調整することにより、効率よく赤外線
を検出することができる。
Therefore, the infrared rays R1 entering the thermal insulation chamber 11 from the end of the opening 12 and the thermal insulation chamber 1
The infrared ray R2 incident on 1 is reflected by the infrared ray reflecting film 7 on the side wall.
It is reflected twice and enters the insulating membrane 21 from the back surface. Furthermore, infrared rays R3 reflected by the infrared reflecting film 7 on the (100) plane at the bottom also enter the insulating membrane 21 from the back surface. Therefore, the bottom (100) of the thermal insulation chamber 11
Infrared rays can be detected efficiently by appropriately adjusting the size of the surface according to the size and position of the insulating membrane 21.

このように赤外線が絶縁性メンブレン21に入射し、赤
外線吸収膜5に吸収されると、p型材料層3pとn型材
料層3nによるpn接合部3pnの温度は上昇し、従っ
てこの変化はp型電極6pおよびn型電極6nから電気
信号として取り出すことができる。したかって、熱絶縁
室11の形状は、側壁が傾斜面となっており、底面が水
平面のまま残されていることが望ましい。なお、このよ
うな熱絶縁室11は、従来から公知の異方性エツチング
技術により容易に実現できる。
When infrared rays enter the insulating membrane 21 and are absorbed by the infrared absorbing film 5, the temperature of the pn junction 3pn between the p-type material layer 3p and the n-type material layer 3n increases, and therefore this change It can be taken out as an electrical signal from the type electrode 6p and the n-type electrode 6n. Therefore, it is desirable that the shape of the heat insulating chamber 11 is such that the side walls are sloped surfaces and the bottom surface remains horizontal. Incidentally, such a thermal insulation chamber 11 can be easily realized by a conventionally known anisotropic etching technique.

次に、本発明の第2実施例を、第3図により説明する。Next, a second embodiment of the present invention will be described with reference to FIG.

第3図はその平面図である。図示の通り、十文字状に掛
け渡された絶縁性メンブレン21には、1本の感熱抵抗
層3が配設され、この両端が配線6に接続されている。
FIG. 3 is a plan view thereof. As shown in the figure, one heat-sensitive resistance layer 3 is disposed on the insulating membrane 21 which is stretched in a criss-cross pattern, and both ends of the heat-sensitive resistance layer 3 are connected to the wiring 6.

そして、熱絶縁室11の内面には赤外線反射膜7が形成
されている。このようなボロメータ型の赤外線センサに
よっても、効率よく赤外線を検出できる。
An infrared reflective film 7 is formed on the inner surface of the thermal insulation chamber 11. Such a bolometer-type infrared sensor can also efficiently detect infrared rays.

次に、本発明の第3実施例を、第4図により説明する。Next, a third embodiment of the present invention will be described with reference to FIG.

第4図はその平面図である。これが前述の実施例と異な
る点は、熱絶縁室11の入口部の十文字状に掛け渡され
た絶縁性メンブレン21上に2種類の熱電材料層31.
32が配設され、サーモバイルが構成されている点であ
る。この場合にも、熱絶縁室11の内面に形成された赤
外線反射膜7で赤外線が反射され、裏面から絶縁性メン
ブレン21に入射されるので、ゼーベック効果により赤
外線が効率よく検出できる。
FIG. 4 is a plan view thereof. This differs from the previous embodiment in that two types of thermoelectric material layers 31.
32 is arranged to constitute a thermomobile. In this case as well, the infrared rays are reflected by the infrared reflecting film 7 formed on the inner surface of the heat insulating chamber 11 and are incident on the insulating membrane 21 from the back surface, so that the infrared rays can be efficiently detected by the Seebeck effect.

本発明については、上記の実施例に限定されず、種々の
変形が可能である。
The present invention is not limited to the above embodiments, and various modifications are possible.

例えば、信号処理回路を同一のチップ上に設けることも
可能であり、センサを多数設けてアレイ化することもで
きる。また、走査回路を組み合せてイメージセンサとす
ることもできる。センサを微細化したときには、熱絶縁
室の底面の平坦部を縮小化していくことで対応できる。
For example, it is possible to provide a signal processing circuit on the same chip, and it is also possible to provide a large number of sensors in an array. Further, it is also possible to combine the scanning circuits to form an image sensor. When the sensor is miniaturized, this can be achieved by reducing the flat part of the bottom of the thermal insulation chamber.

さらに、温度検出素子としては、焦電素子などを用いる
こともできる。
Furthermore, a pyroelectric element or the like can also be used as the temperature detection element.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り本発明では、熱絶縁室の内面
には赤外線反射膜か形成されているので、絶縁性メンブ
レンおよび赤外線吸収膜で吸収されずに熱絶縁室に入射
した赤外線は、反射されて裏面から絶縁性メンブレンお
よび赤外線吸収膜に達する。このため、効率よく赤外線
を検出できる。
As explained above in detail, in the present invention, an infrared reflective film is formed on the inner surface of the thermally insulating chamber, so that infrared rays that enter the thermally insulating chamber without being absorbed by the insulating membrane and the infrared absorbing film are reflected. The insulating membrane and infrared absorbing film are reached from the back side. Therefore, infrared rays can be detected efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の構成を示す図、第2図は
その作用の説明図、第3図は本発明の第2実施例の構成
を示す図、第4図は本発明の第3実施例の構成を示す図
である。 1・・・Si基板、2・・・絶縁膜、21・・・絶縁性
メンブレン、3p・・・n型材料層、3n・・・n型材
料層、4・・・保護膜、5・・・赤外線吸収膜、6p・
・・p型電極、6n・・・n型電極、7・・・赤外線反
射膜、11・・・熱絶縁室、12・・・開口。 代理人弁理士   良否用  芳  樹第 1 図 第1失庫イ列の作用 第 2図 第3図
FIG. 1 is a diagram showing the configuration of the first embodiment of the present invention, FIG. 2 is an explanatory diagram of its operation, FIG. 3 is a diagram showing the configuration of the second embodiment of the present invention, and FIG. 4 is a diagram showing the configuration of the second embodiment of the present invention. It is a figure which shows the structure of 3rd Example. DESCRIPTION OF SYMBOLS 1... Si substrate, 2... Insulating film, 21... Insulating membrane, 3p... N-type material layer, 3n... N-type material layer, 4... Protective film, 5...・Infrared absorption film, 6p・
...p type electrode, 6n...n type electrode, 7...infrared reflective film, 11...thermal insulation chamber, 12...opening. Agent Patent Attorney Yoshiki No. 1 Figure 1 Effects of the lost A series Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、半導体基板の所定領域が選択的に除去されて熱絶縁
室が形成され、当該熱絶縁室の入口部に絶縁膜を掛け渡
すことで絶縁性メンブレンが形成され、当該絶縁性メン
ブレン上に温度検出素子が設けられた赤外線センサにお
いて、 前記熱絶縁室の内面には赤外線反射膜が形成されている
ことを特徴とする赤外線センサ。2、前記赤外線反射膜
は電解めっきされた金属膜である請求項1記載の赤外線
センサ。
[Claims] 1. A thermally insulating chamber is formed by selectively removing a predetermined region of the semiconductor substrate, and an insulating membrane is formed by spanning an insulating film over the entrance of the thermally insulating chamber; An infrared sensor comprising a temperature detection element provided on an insulating membrane, characterized in that an infrared reflecting film is formed on an inner surface of the thermally insulating chamber. 2. The infrared sensor according to claim 1, wherein the infrared reflective film is an electrolytically plated metal film.
JP25356090A 1990-09-21 1990-09-21 Infrared sensor Pending JPH04132271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25356090A JPH04132271A (en) 1990-09-21 1990-09-21 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25356090A JPH04132271A (en) 1990-09-21 1990-09-21 Infrared sensor

Publications (1)

Publication Number Publication Date
JPH04132271A true JPH04132271A (en) 1992-05-06

Family

ID=17253068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25356090A Pending JPH04132271A (en) 1990-09-21 1990-09-21 Infrared sensor

Country Status (1)

Country Link
JP (1) JPH04132271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007115A1 (en) * 1992-09-17 1994-03-31 Mitsubishi Denki Kabushiki Kaisha Infrared detector array and production method therefor
JPH07147433A (en) * 1993-11-24 1995-06-06 Nec Corp Infrared ray image sensing element
US5477085A (en) * 1993-11-26 1995-12-19 Nec Corporation Bonding structure of dielectric substrates for impedance matching circuits on a packaging substrate involved in microwave integrated circuits

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932828A (en) * 1982-08-18 1984-02-22 Matsushita Electric Ind Co Ltd Infrared ray detecting element
JPH01136035A (en) * 1987-11-24 1989-05-29 Hamamatsu Photonics Kk Pyroelectric detection element and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932828A (en) * 1982-08-18 1984-02-22 Matsushita Electric Ind Co Ltd Infrared ray detecting element
JPH01136035A (en) * 1987-11-24 1989-05-29 Hamamatsu Photonics Kk Pyroelectric detection element and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007115A1 (en) * 1992-09-17 1994-03-31 Mitsubishi Denki Kabushiki Kaisha Infrared detector array and production method therefor
GB2282261A (en) * 1992-09-17 1995-03-29 Mitsubishi Electric Corp Infrared detector array and production method therefor
JPH07147433A (en) * 1993-11-24 1995-06-06 Nec Corp Infrared ray image sensing element
US5477085A (en) * 1993-11-26 1995-12-19 Nec Corporation Bonding structure of dielectric substrates for impedance matching circuits on a packaging substrate involved in microwave integrated circuits

Similar Documents

Publication Publication Date Title
US7282712B2 (en) Infrared sensor
US5583058A (en) Infrared detection element array and method for fabricating the same
JPH10209418A (en) Infrared ray solid-state imaging element
US20080265164A1 (en) Thermal detector for electromagnetic radiation and infrared detection device using such detectors
US4575631A (en) Infra-red detector
JP3604130B2 (en) Thermal infrared detecting element, method of manufacturing the same, and thermal infrared detecting element array
US6720559B2 (en) Infrared sensor
JPH02205729A (en) Infrared-ray sensor
EP0345047B1 (en) Thermal imaging device
JP3132197B2 (en) Thermal infrared sensor
JP2910448B2 (en) Infrared sensor
JPH04132271A (en) Infrared sensor
JP4508495B2 (en) Infrared detector
JP3809718B2 (en) Infrared detector
JP2000230857A (en) Thermal type infrared sensor and thermal type infrared array element
JPH0799346A (en) Semiconductor infrared beam sensor and manufacture thereof
JP2884679B2 (en) Thermopile type infrared sensor
US4989067A (en) Hybrid interconnection structure
JPS61195318A (en) Pyroelectric type infrared detector
CN214121427U (en) Thermopile sensor system integrated with CMOS circuit
JP2656145B2 (en) Infrared imaging device
JPH046424A (en) Infrared sensor
JP3435997B2 (en) Infrared detector
JP2772776B2 (en) Thermopile
JPH04342177A (en) Thermopile