JPH07167708A - Infrared sensor - Google Patents

Infrared sensor

Info

Publication number
JPH07167708A
JPH07167708A JP34255593A JP34255593A JPH07167708A JP H07167708 A JPH07167708 A JP H07167708A JP 34255593 A JP34255593 A JP 34255593A JP 34255593 A JP34255593 A JP 34255593A JP H07167708 A JPH07167708 A JP H07167708A
Authority
JP
Japan
Prior art keywords
light receiving
infrared sensor
membrane
receiving membrane
receiving portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34255593A
Other languages
Japanese (ja)
Inventor
Takeshi Nakagawa
剛 中川
Masato Mizukoshi
正人 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP34255593A priority Critical patent/JPH07167708A/en
Publication of JPH07167708A publication Critical patent/JPH07167708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide an infrared sensor having a photodetecting membrane which does not accompany a self destruction from an internal stress, without deteriorating the sensitivity or increasing the area. CONSTITUTION:A beam 1 is formed to have a supporting point within an area of a photodetecting membrane 2. When a supporting part is within the photodetecting membrane, a residual stress is lessened and the sensor is prevented from being broken. The beam may be supported at a rear side of the photodetecting membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線センサに関し、
特に、赤外線を吸収した熱により信号を得る熱型赤外線
センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor,
In particular, it relates to a thermal infrared sensor that obtains a signal by the heat that has absorbed infrared rays.

【0002】[0002]

【従来の技術】近年、熱型赤外線センサを半導体微細加
工を利用して作成する技術が種々開発されている。この
熱型赤外線センサは、受光メンブレンを基板から浮かせ
て4点支持して断熱構成としてあり、例えばJin-Shown
Shie等の文献("Fabrication ofMicro-bolometer on Sil
icon Substrate by Anisotropic Etching Technique,"I
EEE Trans. Digest of Technical Papers, pp627-628)
などにその報告が見られ、図3に示すような、断熱構造
を有した薄膜の受光メンブレン32上の赤外線吸収膜3
3で赤外線を吸収し、その赤外線による温度上昇を、サ
ーミスタや焦電材料などの感温素子35により電気抵抗
変化または起電力に変換し、測定対象である赤外線の線
量に比例した信号を得るものである。従来受光メンブレ
ンの周囲で数カ所もしくは全体が基板に支えられている
と(図2、図3参照)、受光して蓄えられた熱が基板に
逃げていく率が大きくなって検出感度が悪くなるため
に、この4点支持の断熱構造は効率良い方法として採用
されている。
2. Description of the Related Art In recent years, various techniques have been developed for producing a thermal infrared sensor by utilizing semiconductor fine processing. This thermal infrared sensor has a heat-insulating structure in which the light-receiving membrane is floated from the substrate and supported at four points. For example, Jin-Shown
Shie et al. ("Fabrication of Micro-bolometer on Sil
icon Substrate by Anisotropic Etching Technique, "I
EEE Trans. Digest of Technical Papers, pp627-628)
As shown in FIG. 3, the infrared absorption film 3 on the thin light receiving membrane 32 having a heat insulating structure as shown in FIG.
3, which absorbs infrared rays and converts a temperature rise due to the infrared rays into electric resistance change or electromotive force by a temperature sensitive element 35 such as a thermistor or a pyroelectric material to obtain a signal proportional to the dose of infrared rays to be measured. Is. Conventionally, if the substrate is supported at several places or around the light receiving membrane (see FIGS. 2 and 3), the rate at which the heat received and stored escapes to the substrate increases and the detection sensitivity deteriorates. In addition, this four-point support heat insulating structure is adopted as an efficient method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
4点支持は4本の梁によって受光メンブレンを基板に支
えるが、この受光メンブレンは感度を良くするために薄
膜化してあり、梁も同様に薄く形成される。受光メンブ
レン及び梁を構成する膜には、内部応力が存在し、受光
メンブレンの加工時に、梁に非常に大きな応力集中が生
じて梁が破壊するという問題がある。このことは赤外線
センサ強度を低下させる要因である。これを図4に示す
ように梁を長くして、応力集中を緩和させる構成として
しまうと、受光メンブレンを小さくせざるを得ず、かえ
って受光効率を低下させてしまい、解決にならない。逆
に受光メンブレンの面積をそのままで梁を長くすると一
つのセンサの面積を拡大しなければならず、これもよい
解決とは言えない。従って本発明の目的は、感度の低下
や面積の増大をまねくことなく、内部応力により自己破
壊しない受光メンブレンを有する赤外線センサを提供す
ることである。
However, in the above-mentioned four-point support, the light-receiving membrane is supported on the substrate by four beams, but this light-receiving membrane is thinned to improve the sensitivity, and the beam is similarly thin. It is formed. There is a problem that internal stress exists in the film forming the light receiving membrane and the beam, and when the light receiving membrane is processed, very large stress concentration occurs in the beam and the beam is broken. This is a factor that reduces the strength of the infrared sensor. If the beam is lengthened as shown in FIG. 4 so as to relieve the stress concentration, the light receiving membrane has to be made smaller, and the light receiving efficiency is rather lowered, which cannot be solved. On the contrary, if the beam is lengthened while keeping the area of the light receiving membrane as it is, the area of one sensor must be increased, which is not a good solution either. Therefore, an object of the present invention is to provide an infrared sensor having a light receiving membrane that does not self-destruct by internal stress without reducing the sensitivity or increasing the area.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め本発明の構成は、薄膜に形成され感温素子を含んだ赤
外線の受光部と、該受光部を断熱的に支える梁と、該梁
を支える基板とを備えて成る赤外線センサにおいて、前
記梁の受光部側の支持部位が、該受光部の内部領域位置
に設けられたことである。また本発明の関連発明の構成
は、前記受光部が前記梁の上部にあり、前記支持部位が
前記受光部の裏面に設けられていることを特徴とする。
別の関連する構成はまた、前記受光部が矩形であり、前
記梁が該矩形の対角線上に延びる構造であることを特徴
とする。
In order to solve the above-mentioned problems, the structure of the present invention comprises an infrared ray receiving portion formed of a thin film and including a temperature sensitive element, a beam for adiabatically supporting the light receiving portion, In an infrared sensor including a substrate that supports a beam, a supporting portion of the beam on the side of the light receiving portion is provided at a position inside the light receiving portion. In addition, the configuration of the related invention of the present invention is characterized in that the light receiving portion is above the beam, and the supporting portion is provided on a back surface of the light receiving portion.
Another related configuration is also characterized in that the light receiving portion is rectangular, and the beam is a structure extending on a diagonal line of the rectangle.

【0005】[0005]

【作用および発明の効果】梁の受光部側の支持部位を受
光メンブレン領域の内部に位置させることで梁に加わる
応力は緩和され、なおかつ梁の長さが従来より長くと
れ、通常、応力が集中する支持部には大きな応力集中は
発生せず、破壊の原因が抑制される。また同様の理由で
基板側の支持部も応力集中が緩和され、梁の破壊の危険
性は抑制される。また受光メンブレンの面積を従来とほ
ぼ同等に維持できるので、感度を低下させることなく従
来と同等の赤外線センサの出力を得ることができる。
[Advantageous Effects of the Invention and Effects of the Invention] By locating the supporting portion of the beam on the light receiving portion side inside the light receiving membrane area, the stress applied to the beam is relaxed, and the beam length can be made longer than before, so that the stress is usually concentrated. A large stress concentration does not occur in the supporting portion, and the cause of the fracture is suppressed. Further, for the same reason, stress concentration is alleviated also in the support portion on the substrate side, and the risk of beam breakage is suppressed. Further, since the area of the light receiving membrane can be maintained almost the same as the conventional one, the output of the infrared sensor equivalent to the conventional one can be obtained without lowering the sensitivity.

【0006】[0006]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は、赤外線センサの赤外線受光部である受
光メンブレン2を上面から見た正面図(図1(a))と、正
面図に示した破線部A-A の断面図(図1(b))で、Si基板
に矩形に穿たれた空洞の孔周囲の表面部四方から対角状
に梁1が張り出して、受光メンブレン2の内部、中心近
くに存在する感温素子5近傍に支持部位を有するように
形成してある。従ってこの実施例では、受光メンブレン
は、対角線上の梁にスリットが沿った形状となる。いわ
ば受光メンブレンの四辺は中心近傍の支持部からウイン
グを広げた形をとって赤外線を受光する。
EXAMPLES The present invention will be described below based on specific examples. 1 is a front view (FIG. 1 (a)) of the light receiving membrane 2 which is the infrared light receiving portion of the infrared sensor, and a cross-sectional view of the broken line portion AA shown in the front view (FIG. 1 (b)). , The beam 1 is projected diagonally from the four sides of the surface around the hole of the rectangular cavity formed in the Si substrate, and the supporting portion is provided inside the light receiving membrane 2 and near the temperature sensitive element 5 near the center. It is formed on. Therefore, in this embodiment, the light receiving membrane has a shape in which the slit is along the beam on the diagonal line. In other words, the four sides of the light-receiving membrane have a shape in which wings are spread from the supporting part near the center to receive infrared rays.

【0007】この受光メンブレン2は最外表面に、NiCr
や金ブラック等のよく知られた赤外線吸収性の良い薄膜
である赤外線吸収膜3が設けられており、上方より入射
した赤外線を吸収して熱に変換させ、下部に配置された
感温素子5で、この熱による温度変化を電気的に検出す
る。そのため、僅かな赤外線量で信号が得られるよう、
つまり検出効率を上げるために受光メンブレン2は薄く
構成される。これは僅かな赤外線でも受光メンブレンの
熱容量が小さければ、受光メンブレンの温度が上昇する
ため検出効率があがるためで、しかし逆に余り薄いと強
度が低下するので、現状では1μm程度の厚さが限度と
なっている。通常、梁1は受光メンブレンを支える絶縁
性の支持層の一部として形成され(図1の7)、Si3N4
膜やSiO2膜などで形成される。
This light receiving membrane 2 has NiCr on the outermost surface.
An infrared absorbing film 3 which is a well-known thin film having a good infrared absorbing property such as gold or gold black is provided, and the infrared ray incident from above is absorbed and converted into heat, and the temperature sensitive element 5 arranged at the bottom. Then, the temperature change due to this heat is detected electrically. Therefore, to obtain a signal with a small amount of infrared rays,
That is, the light receiving membrane 2 is made thin to improve the detection efficiency. This is because if the heat capacity of the light-receiving membrane is small even with a small amount of infrared light, the temperature of the light-receiving membrane rises, which increases the detection efficiency. On the contrary, if it is too thin, the strength will decrease. Has become. Usually, the beam 1 is formed as a part of the insulating support layer that supports the light receiving membrane (7 in FIG. 1), and Si 3 N 4
It is formed of a film or a SiO 2 film.

【0008】受光メンブレンを支持する梁の太さと長さ
は、受光メンブレン等の形状が矩形とは限らず、設計す
る受光メンブレンの大きさ等によって変わり、全ての場
合に渡って具体的な数値として示すことはできない。一
例として、図1に示すような中心から放射状に延びる梁
をもつ構成では、受光メンブレンと梁との構造を設計し
た段階で、図5に示すようなコンピュータシミュレーシ
ョンによる応力計算を実施し、このシミュレーション結
果により、応力集中が破壊応力値以下となる応力限界を
越えない程度の幅および長さとすることで自己破壊しな
い構成とすることができる。即ち図5に従った適度な長
さと太さであれば良く、受光メンブレン領域内の特定の
位置に限定する必要はない。
The thickness and length of the beam that supports the light receiving membrane are not limited to the rectangular shape of the light receiving membrane or the like, but vary depending on the size of the light receiving membrane to be designed and the like. Cannot be shown. As an example, in the configuration having a beam extending radially from the center as shown in FIG. 1, stress calculation by computer simulation as shown in FIG. 5 is performed at the stage of designing the structure of the light receiving membrane and the beam, and this simulation is performed. As a result, by setting the width and length so that the stress concentration does not exceed the stress limit at which the stress concentration is equal to or lower than the fracture stress value, it is possible to obtain a structure that does not self-destruct. That is, the length and thickness may be appropriate according to FIG. 5, and it is not necessary to limit to a specific position in the light receiving membrane region.

【0009】図5は、従来構造を元にした梁の残留応力
を、梁の長さをパラメータにシミュレートした結果を示
す。なお、aは梁の幅を意味する。従来の梁の長さはお
よそ20μmであり、梁の長さが長くなるにつれて、梁の
基板側の支持部Aおよび梁の中央部B、共に残留応力値
が減少し、長い梁ほど破壊しにくいことがわかる。受光
メンブレン2の梁に係わる支持部位以外の面積部分は力
学的構造からみて、図4のシミュレーションと同等であ
るので、この図5のシミュレーション結果をそのまま図
1の梁の長さの設計に利用でき、受光メンブレンの程度
に応じた応力値をみて、梁の長さおよび太さを選択すれ
ばよい。
FIG. 5 shows the result of simulating the residual stress of a beam based on the conventional structure using the length of the beam as a parameter. In addition, a means the width of the beam. The length of the conventional beam is about 20 μm, and as the length of the beam becomes longer, the residual stress values of both the supporting portion A on the substrate side of the beam and the central portion B of the beam decrease, and the longer the beam is, the more difficult it is to break. I understand. The area of the light-receiving membrane 2 other than the supporting portion related to the beam is equivalent to the simulation shown in FIG. 4 from the viewpoint of the mechanical structure. Therefore, the simulation result shown in FIG. 5 can be directly used for designing the beam length shown in FIG. The length and thickness of the beam may be selected by looking at the stress value according to the degree of the light receiving membrane.

【0010】この図1に示す実施例の赤外線センサの構
造は、形状的に従来と異なる特徴を有するが、成膜等の
構成では従来とほぼ同様であり、従来より使用されてい
る表面マイクロマシニング技術で形成することができ
る。
The structure of the infrared sensor of the embodiment shown in FIG. 1 is different from the conventional one in terms of shape, but the structure such as film formation is almost the same as the conventional one, and the surface micromachining conventionally used. Can be formed by technology.

【0011】図6は、受光メンブレン62を梁61より
上に位置させて、支持部位を受光メンブレン62の裏側
に形成した場合の赤外線センサの実施例の正面図および
断面図で、この場合は受光メンブレン62にスリットも
なく、受光メンブレン62全面が有効になる。なお、こ
の構造の場合は受光メンブレンの形成プロセスが多少複
雑になるが、これも同様な周知の表面マイクロマシニン
グ技術で形成する。
FIG. 6 is a front view and a sectional view of an embodiment of an infrared sensor in which the light receiving membrane 62 is located above the beam 61 and the supporting portion is formed on the back side of the light receiving membrane 62. There is no slit in the membrane 62, and the entire surface of the light receiving membrane 62 becomes effective. Incidentally, in the case of this structure, the process of forming the light receiving membrane becomes somewhat complicated, but this is also formed by the same well-known surface micromachining technique.

【0012】以上のように、薄膜の受光メンブレンを支
える梁の、受光メンブレン側の梁の支持部位を受光メン
ブレン領域内部に形成することにより、内部応力による
自己破壊に対して耐久性のある、実用的な寿命の赤外線
センサが得られた。
As described above, by forming the beam supporting portion on the light receiving membrane side of the beam supporting the thin film light receiving membrane inside the light receiving membrane region, it is durable against self-destruction due to internal stress and is practically used. An infrared sensor with a long life was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した赤外線センサの模式的構成
図。
FIG. 1 is a schematic configuration diagram of an infrared sensor embodying the present invention.

【図2】従来の構成の赤外線センサの模式的構成図。FIG. 2 is a schematic configuration diagram of an infrared sensor having a conventional configuration.

【図3】従来の別の構成の赤外線センサの模式的構成
図。
FIG. 3 is a schematic configuration diagram of a conventional infrared sensor having another configuration.

【図4】梁を長くした場合の受光メンブレンの様子を示
す説明図。
FIG. 4 is an explanatory view showing a state of a light receiving membrane when a beam is lengthened.

【図5】残留応力の梁の長さによる依存性を示すシミュ
レーション結果図。
FIG. 5 is a simulation result diagram showing the dependence of residual stress on beam length.

【図6】本発明の別の実施例を示す赤外線センサの模式
的構成図。
FIG. 6 is a schematic configuration diagram of an infrared sensor showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 梁 2 受光メンブレン 3 赤外線吸収膜 4 電極配線 5 感温素子 6 絶縁層(SiO2層) 7 絶縁層(Si3N4 層) 8 絶縁層(SiO2層) 9 Si基板1 Beam 2 Light Receiving Membrane 3 Infrared Absorbing Film 4 Electrode Wiring 5 Temperature Sensing Element 6 Insulating Layer (SiO 2 Layer) 7 Insulating Layer (Si 3 N 4 Layer) 8 Insulating Layer (SiO 2 Layer) 9 Si Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 薄膜に形成され感温素子を含んだ赤外線
の受光部と、該受光部を断熱的に支える梁と、該梁を支
える基板とを備えて成る赤外線センサにおいて、 前記梁の受光部側の支持部位が、該受光部の内部領域位
置に設けられたことを特徴とする赤外線センサ。
1. An infrared sensor comprising an infrared ray receiving portion formed of a thin film and including a temperature sensitive element, a beam that adiabatically supports the light receiving portion, and a substrate that supports the beam. An infrared sensor characterized in that a support portion on the side of the unit is provided at an internal region position of the light receiving unit.
【請求項2】 前記受光部が前記梁の上部にあり、前記
支持部位が前記受光部の裏面に設けられていることを特
徴とする請求項1に記載の赤外線センサ。
2. The infrared sensor according to claim 1, wherein the light receiving portion is located above the beam, and the supporting portion is provided on a back surface of the light receiving portion.
【請求項3】 前記受光部が矩形であり、前記梁が該矩
形の対角線上に延びる構造であることを特徴とする請求
項1に記載の赤外線センサ。
3. The infrared sensor according to claim 1, wherein the light receiving portion has a rectangular shape, and the beam has a structure extending on a diagonal line of the rectangular shape.
JP34255593A 1993-12-13 1993-12-13 Infrared sensor Pending JPH07167708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34255593A JPH07167708A (en) 1993-12-13 1993-12-13 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34255593A JPH07167708A (en) 1993-12-13 1993-12-13 Infrared sensor

Publications (1)

Publication Number Publication Date
JPH07167708A true JPH07167708A (en) 1995-07-04

Family

ID=18354663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34255593A Pending JPH07167708A (en) 1993-12-13 1993-12-13 Infrared sensor

Country Status (1)

Country Link
JP (1) JPH07167708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162291A (en) * 2000-11-22 2002-06-07 Ihi Aerospace Co Ltd Infrared ray detection element
JP2004163407A (en) * 2002-10-25 2004-06-10 Denso Corp Sensor device
JP2005156255A (en) * 2003-11-21 2005-06-16 Nippon Precision Circuits Inc Infrared sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162291A (en) * 2000-11-22 2002-06-07 Ihi Aerospace Co Ltd Infrared ray detection element
JP2004163407A (en) * 2002-10-25 2004-06-10 Denso Corp Sensor device
JP2005156255A (en) * 2003-11-21 2005-06-16 Nippon Precision Circuits Inc Infrared sensor

Similar Documents

Publication Publication Date Title
JP3514681B2 (en) Infrared detector
JP3097591B2 (en) Thermal infrared detector
JP3374498B2 (en) Infrared sensor
JP2004151054A (en) Thermal infrared detector having small thermal time constant, and manufacturing method therefor
JPH06317475A (en) Infrared sensor and fabrication thereof
JP2006514787A (en) Pixel structure and method for manufacturing the pixel structure
US7423270B2 (en) Electronic detection device and detector comprising such a device
JPH07190854A (en) Infrared sensor
JPH11148861A (en) Microbidge structure
JPH07167708A (en) Infrared sensor
JPH11211558A (en) Sensor and sensor array
JP3175662B2 (en) Manufacturing method of thermal infrared detecting element
JP2000321125A (en) Infrared sensor element
JPH10122950A (en) Thermal type infrared radiation detector and its manufacture
KR100509443B1 (en) Bolometric infrared sensor having two-layer structure and method for manufacturing the same
JP3115669B2 (en) Sensor
JP3094943B2 (en) Infrared detector
JP2910699B2 (en) Thermal infrared sensor
JPH08261832A (en) Infrared sensor and its manufacture
JP3644411B2 (en) Thermal infrared detector
JPH09113353A (en) Infrared detection element
JP3269199B2 (en) Pyroelectric infrared detector
JP3052329B2 (en) Infrared sensor
JP3013716B2 (en) Infrared detector
JP3269200B2 (en) Pyroelectric infrared detecting element and method of manufacturing the same