JP2000321125A - Infrared sensor element - Google Patents
Infrared sensor elementInfo
- Publication number
- JP2000321125A JP2000321125A JP11132559A JP13255999A JP2000321125A JP 2000321125 A JP2000321125 A JP 2000321125A JP 11132559 A JP11132559 A JP 11132559A JP 13255999 A JP13255999 A JP 13255999A JP 2000321125 A JP2000321125 A JP 2000321125A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- sensor element
- infrared
- infrared sensor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012212 insulator Substances 0.000 claims abstract description 41
- 238000010521 absorption reaction Methods 0.000 claims abstract description 27
- 238000012546 transfer Methods 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims description 46
- 239000004065 semiconductor Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 12
- 239000010408 film Substances 0.000 description 65
- 239000006096 absorbing agent Substances 0.000 description 42
- 238000001514 detection method Methods 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- IGELFKKMDLGCJO-UHFFFAOYSA-N xenon difluoride Chemical compound F[Xe]F IGELFKKMDLGCJO-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は赤外線センサ素子に
関する。詳細には熱型の赤外線センサ素子に関する。[0001] The present invention relates to an infrared sensor element. Specifically, the present invention relates to a thermal infrared sensor element.
【0002】[0002]
【従来の技術】現在、熱型の赤外線センサ素子の開発の
活発になされている。例えば、マイクロマシーニング技
術を用いて小型化された赤外線センサ素子が実用段階に
ある。このような赤外線センサ素子は、赤外線を検出部
で受光し温度変化を発生させ、この温度変化を電気抵
抗、自発分極又は熱起電力等の物理量に変換して、赤外
線を熱・温度として検出する。従って、検出部で受光し
た赤外線を有効に熱エネルギーに変換するために、検出
部と外界との熱遮断を図る必要がある。このため、赤外
線センサ素子に関して、検出部の周囲を真空にする構
造、対流による周囲への熱伝達を低下させる構造、検出
部と基板との間の熱伝導を低下させる構造等が提案され
ている。2. Description of the Related Art At present, active development of thermal type infrared sensor elements is being made. For example, an infrared sensor element miniaturized using a micromachining technique is in a practical stage. Such an infrared sensor element receives an infrared ray at a detection unit, generates a temperature change, converts the temperature change into a physical quantity such as electric resistance, spontaneous polarization or thermoelectromotive force, and detects the infrared ray as heat / temperature. . Therefore, in order to effectively convert the infrared light received by the detection unit into thermal energy, it is necessary to cut off the heat between the detection unit and the outside world. For this reason, with respect to the infrared sensor element, a structure for vacuuming the periphery of the detection unit, a structure for reducing heat transfer to the surroundings by convection, a structure for reducing heat conduction between the detection unit and the substrate, and the like have been proposed. .
【0003】特開平7−508095号公報で開示され
た従来の赤外線センサ素子70を図7及び図8に示す。
図中、1は半導体基板を、117は感温部を、120、
121は支持脚を、122はセンサ領域を示す。感温部
117は、感温層114、吸収層116、及び感温層1
14を支持する絶縁層112、113から構成される。
感温部117及び熱分離体120、121の下部に位置
する基板1は除去されている。このように感温層117
を半導体基板1から浮かせることにより、感温層117
から半導体基板1への熱の伝達を抑えることができる。FIG. 7 and FIG. 8 show a conventional infrared sensor element 70 disclosed in Japanese Patent Application Laid-Open No. 7-508095.
In the figure, 1 is a semiconductor substrate, 117 is a temperature sensing part, 120,
121 indicates a support leg, and 122 indicates a sensor area. The temperature sensing section 117 includes the temperature sensing layer 114, the absorption layer 116, and the temperature sensing layer 1
14 is composed of insulating layers 112 and 113.
The substrate 1 located below the temperature sensing part 117 and the heat separators 120 and 121 has been removed. Thus, the temperature-sensitive layer 117
Of the temperature-sensitive layer 117 by floating
Transfer of heat from the semiconductor substrate 1 to the semiconductor substrate 1 can be suppressed.
【0004】次に、赤外線センサ素子70の動作につい
て説明する。赤外線が感温部117に入射すると、感温
部117の温度が上昇する。この温度上昇は感熱素子で
ある感温層114によって電気信号に変換される。次
に、変換された電気信号は、支持脚120、121に形
成された配線層(図示せず)によって基板1に導かれ、
処理回路等(図示せず)で処理された後、出力され、赤
外線を検出する。Next, the operation of the infrared sensor element 70 will be described. When the infrared rays enter the temperature sensing section 117, the temperature of the temperature sensing section 117 increases. This temperature rise is converted into an electric signal by the thermosensitive layer 114 which is a thermosensitive element. Next, the converted electric signal is guided to the substrate 1 by a wiring layer (not shown) formed on the support legs 120 and 121,
After being processed by a processing circuit or the like (not shown), it is output and infrared rays are detected.
【0005】赤外線センサ素子70のセンサ領域122
には基板除去孔140、150が形成されているので、
センサ領域122に占める感温部117の比率が低いも
のとなる。従って、検知層114で検出することができ
る赤外線は、センサ領域122で受光する赤外線の一部
に過ぎないので、赤外線センサ素子70の赤外線の検出
感度は低いという課題があった。The sensor area 122 of the infrared sensor element 70
Are formed with substrate removal holes 140 and 150,
The ratio of the temperature sensing portion 117 in the sensor area 122 is low. Therefore, the infrared ray that can be detected by the detection layer 114 is only a part of the infrared ray received by the sensor region 122, and thus the infrared sensor element 70 has a problem that the infrared ray detection sensitivity is low.
【0006】上記課題を解決するため、特開平10−2
09418号公報は、図6に示す赤外線センサ素子60
を提案している。赤外線センサ素子60は、赤外線を吸
収する吸収体203と熱を検出する感温層208とを有
する構造であり、吸収体203は接続柱211によって
支えられ感温層208に接続されている。また、吸収体
203は、絶縁体膜からなり、赤外線吸収膜209と反
射層210とを備えている。さらに、検知層208は支
持脚206で基板1に支えられ、基板1に対して浮き構
造をなす。[0006] In order to solve the above-mentioned problems, Japanese Patent Laid-Open No. 10-2 is disclosed.
No. 09418 discloses an infrared sensor element 60 shown in FIG.
Has been proposed. The infrared sensor element 60 has a structure having an absorber 203 that absorbs infrared rays and a temperature-sensitive layer 208 that detects heat, and the absorber 203 is supported by connecting columns 211 and connected to the temperature-sensitive layer 208. The absorber 203 is made of an insulating film, and includes an infrared absorbing film 209 and a reflective layer 210. Further, the detection layer 208 is supported on the substrate 1 by the support legs 206 and forms a floating structure with respect to the substrate 1.
【0007】次に、赤外線センサ素子60の動作につい
て説明する。赤外線吸収膜209で受光された赤外線
は、反射膜210で反射され反射膜210と赤外線線吸
収膜209との間で光学的に共振される。光学的に共振
された赤外線は吸収体203で熱エネルギーに変換さ
れ、接続柱211を介して検知層208に伝達される。
さらに、検知層208では、熱エネルギーが電気信号に
変換される。このように、赤外線センサ素子60は、セ
ンサ領域122で受光した赤外線を検出する。Next, the operation of the infrared sensor element 60 will be described. The infrared light received by the infrared absorption film 209 is reflected by the reflection film 210 and is optically resonated between the reflection film 210 and the infrared ray absorption film 209. The optically resonated infrared light is converted into heat energy by the absorber 203 and transmitted to the detection layer 208 via the connection pillar 211.
Further, in the sensing layer 208, thermal energy is converted into an electrical signal. Thus, the infrared sensor element 60 detects the infrared light received by the sensor area 122.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、従来の
赤外線センサ素子60は、吸収体203の熱容量が大き
いので、残像が残りやすく、動きが速い被写体に対して
は、赤外線の検出感度が低いという課題があった。However, the conventional infrared sensor element 60 has a problem that since the heat capacity of the absorber 203 is large, an afterimage is apt to remain and the sensitivity of detecting infrared rays is low for a fast moving subject. was there.
【0009】本発明はこのような課題を解消するために
なされたものであり、赤外線検出感度に優れた赤外線セ
ンサ素子を提供することを目的とする。The present invention has been made to solve such a problem, and has as its object to provide an infrared sensor element having excellent infrared detection sensitivity.
【0010】[0010]
【課題を解決するための手段】本発明の赤外線センサ素
子は、半導体基板上に、支持脚を用いて半導体基板から
離れて設けられた感温層と、感温層の上に互いに所定の
間隔を隔てて対向して設けられた反射層と赤外線吸収層
とを備え、赤外線を該赤外線吸収層と該反射層との間で
光学的に共振させて、赤外線を熱として感温層で検出す
る赤外線センサ素子であって、赤外線吸収層と反射層と
の間に共振空間が形成されるように、少なくとも1つの
熱伝達柱を用いて反射層上に赤外線吸収層を支持しか
つ、反射層と上記感温層とを絶縁体膜を介して接合した
ことを特徴とする。即ち、赤外線吸収層と反射層との間
に共振空間を形成することで、赤外線が光学的に共振さ
れる領域の熱容量を低減して、赤外線センサ素子の検出
感度を向上させるものである。According to the infrared sensor element of the present invention, a temperature-sensitive layer provided on a semiconductor substrate at a distance from the semiconductor substrate by using a support leg, and a predetermined distance from each other on the temperature-sensitive layer. A reflection layer and an infrared absorption layer provided to face each other at a distance, and infrared rays are optically resonated between the infrared absorption layer and the reflection layer, and the infrared rays are detected by the thermosensitive layer as heat. An infrared sensor element, wherein at least one heat transfer column is used to support the infrared absorption layer on the reflection layer so that a resonance space is formed between the infrared absorption layer and the reflection layer, and The temperature-sensitive layer is joined to the temperature-sensitive layer via an insulator film. That is, by forming a resonance space between the infrared absorption layer and the reflection layer, the heat capacity of the region where infrared rays are optically resonated is reduced, and the detection sensitivity of the infrared sensor element is improved.
【0011】本発明の赤外線センサ素子において、熱伝
達柱を1つとしてもよい。[0011] In the infrared sensor element of the present invention, one heat transfer column may be provided.
【0012】また本発明の赤外線センサ素子において、
赤外線を効率良く光学的に共振させるために、赤外線吸
収層と対向するように反射層を露出させるのが好まし
い。Further, in the infrared sensor element of the present invention,
To efficiently resonate infrared light optically, it is preferable to expose the reflection layer so as to face the infrared absorption layer.
【0013】本発明の赤外線センサ素子において、赤外
線から熱エネルギーへの変換効率を向上させるために、
第1の絶縁体膜、第2の絶縁体膜及び該第1の絶縁体膜
と該第2の絶縁体膜とに挟まれる金属赤外線吸収膜から
赤外線吸収層を形成するのが好ましい。In the infrared sensor element of the present invention, in order to improve the conversion efficiency from infrared to thermal energy,
It is preferable to form an infrared absorption layer from a first insulator film, a second insulator film, and a metal infrared absorption film sandwiched between the first insulator film and the second insulator film.
【0014】さらに、本発明の赤外線センサ素子におい
て、第1の絶縁体膜と第2の絶縁体膜とを同じ材料から
形成して、内部応力による赤外線吸収層の変形を防止す
るのが好ましい。こうすることによって、反射層と赤外
線線吸収層との間の間隔を一定に保持することが可能に
なり、反射層と赤外線線吸収層との間で発生する赤外線
の光学的共振が安定する。Further, in the infrared sensor element of the present invention, it is preferable that the first insulator film and the second insulator film are formed of the same material to prevent deformation of the infrared absorption layer due to internal stress. This makes it possible to maintain a constant distance between the reflection layer and the infrared ray absorption layer, and stabilizes the optical resonance of infrared rays generated between the reflection layer and the infrared ray absorption layer.
【0015】本発明の赤外線センサ素子において、絶縁
体膜から赤外線吸収層を形成してもよい。In the infrared sensor element of the present invention, an infrared absorption layer may be formed from an insulator film.
【0016】本発明の赤外線センサ素子において、半導
体基板に形成された空隙によって、半導体基板と感温層
とを離してもよい。In the infrared sensor element of the present invention, the semiconductor substrate and the temperature-sensitive layer may be separated from each other by a gap formed in the semiconductor substrate.
【0017】また本発明の赤外線センサ素子において、
半導体基板上に形成された支持脚によって、該半導体基
板の上方に感温層が支持させるのが好ましい。Further, in the infrared sensor element of the present invention,
It is preferable that the temperature-sensitive layer be supported above the semiconductor substrate by supporting legs formed on the semiconductor substrate.
【0018】[0018]
【発明の実施の形態】実施の形態1.最初に図1及び図
2を参照して、本発明の実施の形態1にかかる赤外線セ
ンサ素子50について説明する。尚、図2は、赤外線セ
ンサ素子50の上面図を吸収体2、熱伝導柱4及び反射
層10を省略して示すものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 First, an infrared sensor element 50 according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 2 shows a top view of the infrared sensor element 50 omitting the absorber 2, the heat conduction column 4, and the reflection layer 10.
【0019】赤外線センサ素子50は、半導体基板1、
検知体3、吸収体2及び支持脚6a、6bを備えてい
る。吸収体2、検知体3及び支持脚6a、6bは、半導
体基板1のセンサ領域20上に形成されている。センサ
領域20の一部は除去され、空隙5を形成している。
尚、空隙5は、半導体基板1を公知技術である結晶異方
性エッチングして形成したものである。本実施の形態1
では、半導体基板1のセンサ領域20の一部を除去して
空隙5を形成したが、本発明はこれに限定されるもので
なく、空隙5を形成することなく、センサ領域20の上
方に吸収体2、検知体3及び支持脚6a、6bを形成し
てもよい(以下の実施の形態2参照)。The infrared sensor element 50 includes a semiconductor substrate 1,
It comprises a detector 3, an absorber 2, and support legs 6a, 6b. The absorber 2, the detector 3, and the support legs 6a, 6b are formed on the sensor region 20 of the semiconductor substrate 1. A part of the sensor area 20 is removed to form the gap 5.
The voids 5 are formed by etching the semiconductor substrate 1 using a known technique of crystal anisotropic etching. Embodiment 1
In the embodiment, the gap 5 is formed by removing a part of the sensor region 20 of the semiconductor substrate 1. However, the present invention is not limited to this, and the absorption 5 is formed above the sensor region 20 without forming the gap 5. The body 2, the detection body 3, and the support legs 6a and 6b may be formed (see Embodiment 2 below).
【0020】検知体3は、熱を電気信号に変換する感温
層7、電気信号を伝送する配線層8a、8b及び反射層
10を絶縁体膜14で接合して一体化したものである。
詳細に説明すると、感温層7及び配線層8a、8bの表
面は絶縁体膜14で覆われて、この絶縁体膜14を介し
て感温層7及び配線層8a、8b上に反射層10が位置
する。さらに、反射層10の表面は絶縁体膜14で覆わ
れている。つまり、検知体3の表面は絶縁体膜14で覆
われている。絶縁体膜14は、例えばシリコン酸化膜、
窒化シリコン膜等で形成される。感温層7は、ボロメー
タ薄膜からなるものであり、例えば酸化バナジウム、ポ
リシリコン、アモルファスシリコン等から形成される。
また、配線層8a、8bは、例えばアルミニウム、チタ
ン、タングステン等の金属膜で形成され、反射層10
は、例えばアルミニウム等の金属膜から形成される。The detector 3 is formed by joining a temperature-sensitive layer 7 for converting heat into an electric signal, wiring layers 8a and 8b for transmitting an electric signal, and a reflective layer 10 by an insulating film 14.
More specifically, the surfaces of the temperature-sensitive layer 7 and the wiring layers 8a and 8b are covered with an insulator film 14, and the reflective layer 10 is provided on the temperature-sensitive layer 7 and the wiring layers 8a and 8b via the insulator film 14. Is located. Further, the surface of the reflection layer 10 is covered with the insulator film 14. That is, the surface of the detector 3 is covered with the insulator film 14. The insulator film 14 is, for example, a silicon oxide film,
It is formed of a silicon nitride film or the like. The temperature-sensitive layer 7 is formed of a bolometer thin film, and is formed of, for example, vanadium oxide, polysilicon, amorphous silicon, or the like.
The wiring layers 8a and 8b are formed of, for example, a metal film of aluminum, titanium, tungsten, or the like.
Is formed from a metal film such as aluminum.
【0021】感温層7を含む検知体3は、支持脚6a、
6bによって支持される。支持脚6a、6b及び検知体
3の下方には空隙5が形成されている。つまり、空隙5
によって検知体3は浮き構造をなし、基板1から熱的に
分離されている。また支持脚6a、6bには感温層7に
導通する配線層8a、8bが形成されている。The detector 3 including the temperature-sensitive layer 7 includes support legs 6a,
6b. A gap 5 is formed below the support legs 6a and 6b and the detection body 3. That is, the gap 5
As a result, the detector 3 has a floating structure and is thermally separated from the substrate 1. In addition, wiring layers 8a and 8b that are connected to the temperature-sensitive layer 7 are formed on the support legs 6a and 6b.
【0022】吸収体2は検知体3の上方に形成されてい
て、受光した赤外線を熱エネルギーとして吸収する役割
を果たすものであり、金属赤外線吸収膜9を上絶縁体膜
12aと下絶縁体膜12bとで挟んでなる3層構造であ
る。上絶縁体膜12a及び下絶縁体膜12bは、例えば
シリコン酸化膜、窒化シリコン膜等から形成され、金属
赤外線吸収膜9は、例えば窒化チタン等から形成され
る。本実施の形態1では、上絶縁体膜12a及び下絶縁
体膜12bの厚さをそれぞれ0.1ミクロンとし、金属
赤外線吸収膜9の厚さを0.1ミクロンとする。さらに
具体的には、抵抗率が2μΩ・mである金属を金属赤外
線吸収膜9とすると、遠赤外線に対する変換効率は9割
以上であった。The absorber 2 is formed above the detector 3 and serves to absorb the received infrared light as thermal energy. The metal infrared absorbing film 9 is made of an upper insulator film 12a and a lower insulator film. 12b. The upper insulator film 12a and the lower insulator film 12b are formed of, for example, a silicon oxide film, a silicon nitride film or the like, and the metal infrared absorbing film 9 is formed of, for example, titanium nitride or the like. In the first embodiment, the thickness of each of the upper insulator film 12a and the lower insulator film 12b is set to 0.1 μm, and the thickness of the metal infrared absorbing film 9 is set to 0.1 μm. More specifically, when a metal having a resistivity of 2 μΩ · m is used as the metal infrared absorbing film 9, the conversion efficiency for far infrared rays is 90% or more.
【0023】吸収体2は、熱伝達柱4によって支えられ
て、検知体3上に支持されている。このようにして、検
知体3と吸収体2との間には、共振空間13が形成され
ている。吸収体2と検知体3とを接続する熱伝達柱4
は、熱を検知体3に導くものであり、例えばシリコン酸
化膜、窒化シリコン膜から形成される。また、熱伝達柱
4は、吸収体2と検知体3とを間隔を一定に保持する役
割も果たす。本実施の形態1では、熱伝達柱4を5本と
し、その高さを約2ミクロンとする。従って、吸収体2
と検知体3とを間隔は2ミクロンに保持される。The absorber 2 is supported by the heat transfer column 4 and is supported on the detector 3. Thus, the resonance space 13 is formed between the detector 3 and the absorber 2. Heat transfer column 4 connecting absorber 2 and detector 3
Is for guiding heat to the detector 3, and is formed of, for example, a silicon oxide film or a silicon nitride film. Further, the heat transfer column 4 also serves to maintain a constant distance between the absorber 2 and the detector 3. In the first embodiment, the number of the heat transfer columns 4 is five, and the height is about 2 microns. Therefore, absorber 2
The distance between the object and the detector 3 is maintained at 2 microns.
【0024】次に、赤外線センサ素子50の動作につい
て説明する。吸収体2に入射した赤外線は反射層10で
反射され、吸収体3と反射層10との間の共振空間13
で光学的に共振され、熱エネルギーに変換される。次
に、変換された熱エネルギーは、熱伝達柱4を介して検
知体3の感温層7に伝達される。伝達された熱エネルギ
ーは感温層7で電気信号に変換され、この電気信号が配
線層8a、8bを介して処理回路(図示せず)で処理さ
れた後、出力される。Next, the operation of the infrared sensor element 50 will be described. The infrared light that has entered the absorber 2 is reflected by the reflection layer 10, and a resonance space 13 between the absorber 3 and the reflection layer 10.
And is optically resonated at, and is converted into heat energy. Next, the converted thermal energy is transmitted to the temperature-sensitive layer 7 of the detector 3 via the heat transfer column 4. The transmitted heat energy is converted into an electric signal by the temperature-sensitive layer 7, and the electric signal is processed by a processing circuit (not shown) via the wiring layers 8a and 8b, and then output.
【0025】吸収体2及び反射層10は、センサ領域2
0の直上部を覆うように形成されているので、センサ領
域20に入射される赤外線を全て吸収し、熱エネルギー
に変換し、検出することが可能である。即ち、センサ領
域20の直上部を覆うよう吸収体2と反射層10とを形
成することで、赤外線センサ素子50の変換効率は向上
する。The absorber 2 and the reflection layer 10 correspond to the sensor area 2
Since it is formed so as to cover the area directly above the zero, it is possible to absorb all the infrared rays incident on the sensor area 20, convert it into thermal energy, and detect it. That is, the conversion efficiency of the infrared sensor element 50 is improved by forming the absorber 2 and the reflection layer 10 so as to cover the upper part of the sensor region 20.
【0026】また、赤外線センサ素子50は、吸収体2
と検知体3との間に共振空間13を設け、赤外線センサ
素子50の熱容量を低減したものである。このように熱
容量を低減させることで、赤外線センサ素子50の応答
を向上させることができる。The infrared sensor element 50 includes the absorber 2
A resonance space 13 is provided between the infrared sensor element 3 and the detector 3 to reduce the heat capacity of the infrared sensor element 50. By thus reducing the heat capacity, the response of the infrared sensor element 50 can be improved.
【0027】さらに、赤外線センサ素子50は、感温層
7を基板1から熱的に分離させる空隙5を、感温層7を
有する検知体3の下方に備えているので、センサ領域2
0で受光した熱エネルギーが基板1に伝導することを抑
制することができる。Further, since the infrared sensor element 50 has the gap 5 for thermally separating the temperature-sensitive layer 7 from the substrate 1 below the detector 3 having the temperature-sensitive layer 7, the sensor area 2 is provided.
Conduction of the thermal energy received at 0 to the substrate 1 can be suppressed.
【0028】赤外線線センサ素子50に関して詳細に検
証したところ、以下のようなことが判明した。When the infrared ray sensor element 50 was examined in detail, the following was found.
【0029】(1)最初に、吸収体2と反射層10との
距離に関して検証したところ、吸収体2と反射層10と
の間の光学的距離を、吸収体2に入射される赤外線の波
長の1/4とすると、共振空間13で減衰する赤外線が
減少し、感温層7に伝導される熱エネルギーが増大する
ので、赤外線センサ素子50の変換効率が向上すること
が判った。(1) First, when the distance between the absorber 2 and the reflection layer 10 was verified, the optical distance between the absorber 2 and the reflection layer 10 was changed to the wavelength of the infrared ray incident on the absorber 2. When it is set to 1/4, it is found that the infrared ray attenuated in the resonance space 13 decreases and the heat energy transmitted to the temperature-sensitive layer 7 increases, so that the conversion efficiency of the infrared sensor element 50 improves.
【0030】(2)次に、熱伝達柱4の熱伝導性につい
て検証した。熱伝達柱4による吸収体2から検知体3へ
の熱伝導性は、検知体3から基板1への熱伝導性よりも
2桁以上優れていることが判明した。つまり、熱伝達柱
4は、熱エネルギーに変換された赤外線を効率良く感温
層7に導くものであることが判明した。さらに、熱伝達
柱4を1つにしても、吸収体2から検知体3への熱伝導
性が衰えることがないことも判明した。つまり、熱伝達
柱4を1つにして簡素な構造の赤外線センサ素子を製造
することができることが判明した。(2) Next, the thermal conductivity of the heat transfer column 4 was verified. It has been found that the thermal conductivity from the absorber 2 to the detector 3 by the heat transfer column 4 is more than two orders of magnitude higher than the thermal conductivity from the detector 3 to the substrate 1. That is, it was found that the heat transfer column 4 efficiently guides the infrared rays converted into the heat energy to the temperature-sensitive layer 7. Further, it has been found that even with one heat transfer column 4, the thermal conductivity from the absorber 2 to the detector 3 does not decrease. That is, it has been found that an infrared sensor element having a simple structure can be manufactured by using one heat transfer column 4.
【0031】(3)さらに、吸収体をなす絶縁体層の材
料について検証した。具体的には、上絶縁体膜を酸化ケ
イ素とし、下絶縁体膜を窒化ケイ素とする吸収体を作製
し、この吸収体を備えている赤外線センサ素子の赤外線
変換特性を検証した。このような吸収体は、上絶縁体膜
と下絶縁体膜との内部応力が異なるので、吸収体に歪み
が発生し、吸収体と金属反射膜との間隔が不均一にな
る。従って、吸収体と金属反射膜との間で発生する赤外
線から熱エネルギーへの変換効率が低下し、赤外線セン
サ素子の応答効率に悪影響を与える。このような検証か
ら、吸収体をなす上絶縁体膜及び下絶縁体膜は、同じ材
料から形成するのが好ましいことが判明した。(3) Further, the material of the insulator layer forming the absorber was verified. Specifically, an absorber having an upper insulator film made of silicon oxide and a lower insulator film made of silicon nitride was produced, and the infrared conversion characteristics of an infrared sensor element provided with the absorber were verified. In such an absorber, since the internal stresses of the upper insulator film and the lower insulator film are different, distortion occurs in the absorber, and the distance between the absorber and the metal reflection film becomes uneven. Therefore, the conversion efficiency from infrared rays generated between the absorber and the metal reflection film to heat energy is reduced, which adversely affects the response efficiency of the infrared sensor element. From such verification, it has been found that the upper insulator film and the lower insulator film that form the absorber are preferably formed from the same material.
【0032】実施の形態2.本発明の実施の形態2にか
かる赤外線センサ素子51は、図3に示すように感温層
7を備えている検知体3を基板1の上方に形成したもの
である。検知体3は半導体基板1に形成された支持脚6
a、6bに支えられ浮き構造をなす。検知体3は基板1
の上方に形成されているから、検知体3の浮き構造を形
成するために、基板1の一部を除去する必要はない。感
温層7を備えている検知体3を基板1の上方に形成した
ことを除いて、赤外線センサ素子51の構造は、実施の
形態1の赤外線センサ50と同様である。Embodiment 2 FIG. The infrared sensor element 51 according to the second embodiment of the present invention is one in which the detector 3 having the temperature-sensitive layer 7 is formed above the substrate 1 as shown in FIG. The detection body 3 is a support leg 6 formed on the semiconductor substrate 1.
a, 6b to form a floating structure. Detector 3 is substrate 1
, It is not necessary to remove a part of the substrate 1 in order to form the floating structure of the detector 3. The structure of the infrared sensor element 51 is the same as that of the infrared sensor 50 of the first embodiment, except that the detector 3 having the temperature-sensitive layer 7 is formed above the substrate 1.
【0033】赤外線センサ素子51は、実施の形態1の
赤外線センサ素子50と同様の作用・効果を有する。さ
らに、赤外線センサ素子51に用いられる基板1には除
去される領域がないので、各種の電気回路等を形成する
ことができる半導体基板1の表面の面積が広くなり、赤
外線センサ素子51の集積度を向上させることができ
る。The infrared sensor element 51 has the same operation and effect as the infrared sensor element 50 of the first embodiment. Further, since there is no area to be removed on the substrate 1 used for the infrared sensor element 51, the surface area of the semiconductor substrate 1 on which various electric circuits and the like can be formed is increased, and the integration degree of the infrared sensor element 51 is increased. Can be improved.
【0034】実施の形態3.図4に示す本発明の実施の
形態3にかかる赤外線センサ素子52は、基板1の空隙
5を乾式エッチングで形成したものである。詳細には、
基板1の除去しようとする領域5を囲むような溝を異方
性エッチングによって形成し、さらにこの溝を埋めるよ
うに、例えば酸化ケイ素の耐除去膜11を形成する。つ
まり、基板1の除去しようとする領域5を耐除去膜11
で囲い込む。さらに、基板1を例えば弗化イオウガスや
弗化キセノンガスによる乾式エッチングで除去し、空隙
5を形成する。Embodiment 3 In the infrared sensor element 52 according to the third embodiment of the present invention shown in FIG. 4, the gap 5 of the substrate 1 is formed by dry etching. For details,
A groove surrounding the region 5 of the substrate 1 to be removed is formed by anisotropic etching, and an anti-removal film 11 of, for example, silicon oxide is formed to fill the groove. That is, the region 5 of the substrate 1 to be removed is replaced with the removal resistant film 11.
Surround with Further, the substrate 1 is removed by dry etching using, for example, a sulfur fluoride gas or a xenon fluoride gas to form a void 5.
【0035】乾式エッチングによって空隙5を形成した
ことを除いて、赤外線センサ素子52の構造は、実施の
形態1の赤外線センサ素子を同様である。空隙部5の形
成に乾式エッチングを採用することによって、赤外線セ
ンサ素子52を再現性よく容易に製造することができ
る。The structure of the infrared sensor element 52 is the same as that of the infrared sensor element of the first embodiment except that the gap 5 is formed by dry etching. By employing dry etching for forming the gap 5, the infrared sensor element 52 can be easily manufactured with good reproducibility.
【0036】実施の形態4.本発明の実施の形態4にか
かる赤外線センサ素子53は、図5に示すように絶縁体
膜12のみから形成された吸収体2a及び表面に反射層
10を備えている検知体3aを備えている。つまり、反
射層10は露出され、吸収体2aに対向している。Embodiment 4 FIG. The infrared sensor element 53 according to the fourth embodiment of the present invention includes, as shown in FIG. 5, an absorber 2a formed only of the insulator film 12, and a detector 3a having a reflective layer 10 on the surface. . That is, the reflection layer 10 is exposed and faces the absorber 2a.
【0037】赤外線センサ素子53のように、金属反射
層10を検知体3aの表面に露出させることで、吸収体
2aから受光した赤外線は、反射層10で直接反射さ
れ、吸収体2aと反射層10との間で光学的共振が発生
しやすくなるので、赤外線センサ素子53の検出感度が
向上する。By exposing the metal reflective layer 10 to the surface of the detector 3a as in the case of the infrared sensor element 53, infrared rays received from the absorber 2a are directly reflected by the reflective layer 10, and the absorber 2a and the reflective layer Since optical resonance easily occurs between the infrared sensor element 10 and the optical sensor element 10, the detection sensitivity of the infrared sensor element 53 is improved.
【0038】また、赤外線センサ素子53の吸収体2a
は、金属赤外線吸収層を用いることなく、絶縁体層のみ
で形成されたものである。このように、絶縁体膜のみで
吸収体2aを形成することによって、赤外線センサ素子
53の製造コストを低減することができる。The absorber 2a of the infrared sensor element 53
Is formed only with an insulator layer without using a metal infrared absorption layer. By forming the absorber 2a using only the insulator film, the manufacturing cost of the infrared sensor element 53 can be reduced.
【0039】[0039]
【発明の効果】本発明の赤外線センサ素子は、熱伝達柱
によって、赤外線吸収層が反射層を含む検知体に支えら
れ、赤外線吸収層と検知体との間に共振空間が形成され
たものである。このように、赤外線吸収層と反射層との
間に共振空間を設けることで、赤外線センサ素子の熱容
量が低減されるので、赤外線センサ素子の検出感度を向
上させることができる。According to the infrared sensor element of the present invention, the infrared absorption layer is supported by the detection body including the reflection layer by the heat transfer column, and a resonance space is formed between the infrared absorption layer and the detection body. is there. By providing the resonance space between the infrared absorption layer and the reflection layer as described above, the heat capacity of the infrared sensor element is reduced, so that the detection sensitivity of the infrared sensor element can be improved.
【0040】本発明の赤外線センサ素子において、熱伝
達柱を1つとすることで、赤外線センサ素子の構造を簡
素にすることができる。In the infrared sensor element of the present invention, by using one heat transfer column, the structure of the infrared sensor element can be simplified.
【0041】本発明の赤外線センサ素子において、赤外
線吸収層と対向するように反射膜を露出させることで、
共振空間で光学的共振を効率よく発生させ、赤外線セン
サ素子の検出感度を向上させることができる。In the infrared sensor element of the present invention, by exposing the reflection film so as to face the infrared absorption layer,
Optical resonance can be efficiently generated in the resonance space, and the detection sensitivity of the infrared sensor element can be improved.
【0042】本発明の赤外線センサ素子において、赤外
線吸収層を、第1の絶縁体膜、第2の絶縁体膜及び第1
の絶縁体膜と第2の絶縁体膜とに挟まれた赤外線吸収用
金属膜とすることで、赤外線センサ素子の検出感度をよ
り向上させることができる。In the infrared sensor element according to the present invention, the infrared absorbing layer is formed of the first insulating film, the second insulating film, and the first insulating film.
By using the infrared absorbing metal film sandwiched between the insulator film and the second insulator film, the detection sensitivity of the infrared sensor element can be further improved.
【0043】本発明の赤外線センサ素子において、第1
の絶縁体膜と第2の絶縁体膜とを、同じ材料で形成する
ことで、吸収体の歪みを防止し、反射層と吸収体との間
隔を安定させ、赤外線センサ素子の検出感度を向上させ
ることができる。In the infrared sensor element of the present invention, the first
By forming the insulator film and the second insulator film of the same material, the distortion of the absorber is prevented, the distance between the reflective layer and the absorber is stabilized, and the detection sensitivity of the infrared sensor element is improved. Can be done.
【0044】本発明の赤外線センサ素子において、赤外
線吸収層を絶縁体膜から形成することで、赤外線センサ
素子の検出感度を向上させることができる。In the infrared sensor element of the present invention, the detection sensitivity of the infrared sensor element can be improved by forming the infrared absorbing layer from an insulating film.
【0045】本発明の赤外線センサ素子において、半導
体基板に形成された空隙によって、半導体基板と感温層
とを離すことにより、感温層を熱的に分離し、赤外線セ
ンサ素子の検出感度を向上させることができる。In the infrared sensor element of the present invention, the temperature sensitive layer is thermally separated by separating the semiconductor substrate and the temperature sensitive layer by the gap formed in the semiconductor substrate, thereby improving the detection sensitivity of the infrared sensor element. Can be done.
【0046】また本発明の赤外線センサ素子において、
半導体基板上に形成された支持脚によって、半導体基板
の上方に感温層が支持させることで、各種の電気回路等
を形成することができる半導体基板の表面の面積を広
げ、赤外線センサ素子の集積度を向上させることができ
る。Further, in the infrared sensor element of the present invention,
By supporting the temperature-sensitive layer above the semiconductor substrate with the support legs formed on the semiconductor substrate, the area of the surface of the semiconductor substrate on which various electric circuits can be formed is increased, and the integration of the infrared sensor element is performed. The degree can be improved.
【図1】 本発明の実施の形態1にかかる赤外線センサ
素子の断面図を示す。FIG. 1 is a sectional view of an infrared sensor element according to a first embodiment of the present invention.
【図2】 本発明の実施の形態1にかかる赤外線センサ
素子の上面図を示す。FIG. 2 shows a top view of the infrared sensor element according to the first embodiment of the present invention.
【図3】 本発明の実施の形態2にかかる赤外線センサ
素子の断面図を示す。FIG. 3 is a sectional view of an infrared sensor element according to a second embodiment of the present invention.
【図4】 本発明の実施の形態3にかかる赤外線センサ
素子の断面図を示す。FIG. 4 is a sectional view of an infrared sensor element according to a third embodiment of the present invention.
【図5】 本発明の実施の形態4にかかる赤外線センサ
素子の断面図を示す。FIG. 5 is a sectional view of an infrared sensor element according to a fourth embodiment of the present invention.
【図6】 従来の赤外線センサ素子の断面図を示す。FIG. 6 shows a cross-sectional view of a conventional infrared sensor element.
【図7】 従来の赤外線センサ素子の上面図を示す。FIG. 7 shows a top view of a conventional infrared sensor element.
【図8】 従来の赤外線センサ素子の断面図を示す。FIG. 8 shows a cross-sectional view of a conventional infrared sensor element.
1 半導体基板、 2 吸収体、 2a 吸収体、 3
検知体、 3a 検知体、 4 熱伝達柱、 5 空
隙、 6a 支持脚、 6b 支持脚、7 感温層、9
金属赤外線吸収膜、 10 反射層、 12a 上絶
縁体膜、 12b 下絶縁体膜、 13 共振空間、
14 絶縁体膜。Reference Signs List 1 semiconductor substrate, 2 absorber, 2a absorber, 3
Detector, 3a Detector, 4 heat transfer column, 5 air gap, 6a support leg, 6b support leg, 7 thermosensitive layer, 9
Metal infrared absorbing film, 10 reflecting layer, 12a upper insulating film, 12b lower insulating film, 13 resonance space,
14 Insulator film.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽根 孝典 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 2G065 AA04 AB02 AB03 BA12 BA32 CA13 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takanori Sone 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Electric Corporation (reference) 2G065 AA04 AB02 AB03 BA12 BA32 CA13
Claims (8)
体基板から離れて設けられた感温層と、該感温層の上に
互いに所定の間隔を隔てて対向して設けられた反射層と
赤外線吸収層とを備え、赤外線を該赤外線吸収層と該反
射層との間で光学的に共振させて、上記赤外線を熱とし
て上記感温層で検出する赤外線センサ素子であって、 上記赤外線吸収層と上記反射層との間に共振空間が形成
されるように、少なくとも1つの熱伝達柱を用いて上記
反射層上に上記赤外線吸収層を支持しかつ、上記反射層
と上記感温層とを絶縁体膜を介して接合したことを特徴
とする赤外線センサ素子。1. A temperature-sensitive layer provided on a semiconductor substrate at a distance from the semiconductor substrate by using supporting legs, and a reflection layer provided on the temperature-sensitive layer at a predetermined distance from each other and facing each other. An infrared sensor element comprising a layer and an infrared absorbing layer, wherein the infrared sensor optically resonates infrared light between the infrared absorbing layer and the reflective layer, and detects the infrared light as heat in the temperature-sensitive layer, At least one heat transfer column is used to support the infrared absorption layer on the reflection layer so that a resonance space is formed between the infrared absorption layer and the reflection layer, and the reflection layer and the temperature-sensitive layer An infrared sensor element wherein the layers are joined via an insulating film.
する請求項1記載の赤外線センサ素子。2. The infrared sensor element according to claim 1, wherein the number of the heat transfer columns is one.
反射層が露出されていることを特徴する請求項1又は2
記載の赤外線センサ素子。3. The method according to claim 1, wherein the reflection layer is exposed so as to face the infrared absorption layer.
The infrared sensor element as described in the above.
第2の絶縁体膜及び該第1の絶縁体膜と該第2の絶縁体
膜とに挟まれる金属赤外線吸収膜からなることを特徴と
する請求項1ないし3のいずれか1つに記載の赤外線セ
ンサ素子。4. The infrared absorbing layer comprises: a first insulator film;
4. The method according to claim 1, further comprising a second insulator film and a metal infrared absorbing film sandwiched between the first insulator film and the second insulator film. Infrared sensor element.
膜とは、同じ材料からなることを特徴とする請求項4記
載の赤外線センサ素子。5. The infrared sensor element according to claim 4, wherein said first insulator film and said second insulator film are made of the same material.
ことを特徴とする請求項1ないし3のいずれか1つに記
載の赤外線センサ素子。6. The infrared sensor element according to claim 1, wherein the infrared absorption layer is made of an insulating film.
て、上記半導体基板と上記感温層が離されていることを
特徴とする請求項1ないし6のいずれか1つに記載の赤
外線センサ素子。7. The infrared sensor element according to claim 1, wherein the semiconductor substrate and the temperature-sensitive layer are separated from each other by a gap formed in the semiconductor substrate.
脚によって、該半導体基板の上方に上記感温層が支持さ
れていることを特徴とする請求項1ないし6のいずれか
1つに記載の赤外線センサ素子。8. The semiconductor device according to claim 1, wherein the temperature-sensitive layer is supported above the semiconductor substrate by the support legs formed on the semiconductor substrate. Infrared sensor element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11132559A JP2000321125A (en) | 1999-05-13 | 1999-05-13 | Infrared sensor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11132559A JP2000321125A (en) | 1999-05-13 | 1999-05-13 | Infrared sensor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000321125A true JP2000321125A (en) | 2000-11-24 |
Family
ID=15084136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11132559A Pending JP2000321125A (en) | 1999-05-13 | 1999-05-13 | Infrared sensor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000321125A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002340684A (en) * | 2001-05-17 | 2002-11-27 | Mitsubishi Electric Corp | Manufacturing method of thermal infrared solid-state image sensor, and thermal infrared solid-state image sensor |
JP2004522162A (en) * | 2001-06-01 | 2004-07-22 | レイセオン・カンパニー | Improved high-speed, multi-level uncooled bolometer and method of manufacturing the same |
US7005644B2 (en) | 2003-04-11 | 2006-02-28 | Mitsubishi Denki Kabushiki Kaisha | Thermal infrared detector and infrared focal plane array |
JP2006300816A (en) * | 2005-04-22 | 2006-11-02 | Mitsubishi Electric Corp | Infrared detector, and infrared solid imaging device |
US7145144B2 (en) | 2004-02-17 | 2006-12-05 | Mitsubishi Denki Kabushiki Kaisha | Thermal infrared sensor device and thermal infrared sensor array |
WO2007086424A1 (en) * | 2006-01-25 | 2007-08-02 | Hamamatsu Photonics K.K. | Infrared absorber and thermal infrared detector |
JP2010151736A (en) * | 2008-12-26 | 2010-07-08 | Mitsubishi Electric Corp | Infrared detector and manufacturing method of the same, infrared solid imager |
JP2012123018A (en) * | 2012-03-13 | 2012-06-28 | Hamamatsu Photonics Kk | Thermal infrared detector |
CN102659068A (en) * | 2012-06-05 | 2012-09-12 | 上海集成电路研发中心有限公司 | MEMS (micro-electro-mechanical system) resonant cavity structure |
KR101804564B1 (en) * | 2015-11-30 | 2017-12-05 | 한국과학기술원 | MEMS device and method of fabricating the same |
-
1999
- 1999-05-13 JP JP11132559A patent/JP2000321125A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002340684A (en) * | 2001-05-17 | 2002-11-27 | Mitsubishi Electric Corp | Manufacturing method of thermal infrared solid-state image sensor, and thermal infrared solid-state image sensor |
JP2004522162A (en) * | 2001-06-01 | 2004-07-22 | レイセオン・カンパニー | Improved high-speed, multi-level uncooled bolometer and method of manufacturing the same |
US7005644B2 (en) | 2003-04-11 | 2006-02-28 | Mitsubishi Denki Kabushiki Kaisha | Thermal infrared detector and infrared focal plane array |
US7145144B2 (en) | 2004-02-17 | 2006-12-05 | Mitsubishi Denki Kabushiki Kaisha | Thermal infrared sensor device and thermal infrared sensor array |
JP2006300816A (en) * | 2005-04-22 | 2006-11-02 | Mitsubishi Electric Corp | Infrared detector, and infrared solid imaging device |
JP2007198852A (en) * | 2006-01-25 | 2007-08-09 | Hamamatsu Photonics Kk | Infrared absorber and thermal type infrared detector |
WO2007086424A1 (en) * | 2006-01-25 | 2007-08-02 | Hamamatsu Photonics K.K. | Infrared absorber and thermal infrared detector |
EP1978339A1 (en) * | 2006-01-25 | 2008-10-08 | Hamamatsu Photonics K.K. | Infrared absorber and thermal infrared detector |
EP1978339A4 (en) * | 2006-01-25 | 2012-05-09 | Hamamatsu Photonics Kk | Infrared absorber and thermal infrared detector |
US8664510B2 (en) | 2006-01-25 | 2014-03-04 | Hamamatsu Photonics K.K. | Infrared absorber and thermal infrared detector |
KR101427431B1 (en) * | 2006-01-25 | 2014-08-08 | 하마마츠 포토닉스 가부시키가이샤 | Infrared absorber and thermal infrared detector |
JP2010151736A (en) * | 2008-12-26 | 2010-07-08 | Mitsubishi Electric Corp | Infrared detector and manufacturing method of the same, infrared solid imager |
JP2012123018A (en) * | 2012-03-13 | 2012-06-28 | Hamamatsu Photonics Kk | Thermal infrared detector |
CN102659068A (en) * | 2012-06-05 | 2012-09-12 | 上海集成电路研发中心有限公司 | MEMS (micro-electro-mechanical system) resonant cavity structure |
KR101804564B1 (en) * | 2015-11-30 | 2017-12-05 | 한국과학기술원 | MEMS device and method of fabricating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3514681B2 (en) | Infrared detector | |
JP3040356B2 (en) | Infrared solid-state imaging device | |
JP3921320B2 (en) | Thermal infrared detector and method for manufacturing the same | |
TWI336394B (en) | Infrared ray sensor and manufacturing method for the same therefore | |
US6690014B1 (en) | Microbolometer and method for forming | |
JP3529596B2 (en) | Infrared solid-state imaging device and method of manufacturing the same | |
CA2417924C (en) | Advanced high speed, multi-level uncooled bolometer and method for fabricating same | |
US8895924B2 (en) | Infrared detector based on suspended bolometric micro-plates | |
US8350350B2 (en) | Optical sensor | |
US7544942B2 (en) | Thermal detector for electromagnetic radiation and infrared detection device using such detectors | |
JP4208846B2 (en) | Uncooled infrared detector | |
JP2012026934A (en) | Thermal type photodetector, thermal type photodetection device and electronic equipment | |
JP2000321125A (en) | Infrared sensor element | |
JP2006300623A (en) | Infrared sensor | |
JP2005043381A (en) | Thermal type infrared detector and its manufacturing method | |
JP3339276B2 (en) | Infrared detector | |
JP2008039570A (en) | Thermal-type infrared solid-state imaging device and infrared camera | |
JP2910448B2 (en) | Infrared sensor | |
JP2005116856A (en) | Thermal infrared solid-state imaging device and its manufacturing method | |
JP2000186958A (en) | Thermal infrared ray detecting element | |
JP5264471B2 (en) | Infrared detector and infrared solid-state imaging device | |
JP2000111396A (en) | Infrared detecting element and its manufacture | |
JP3775830B2 (en) | Infrared detector | |
JPH08261832A (en) | Infrared sensor and its manufacture | |
JP2000346704A (en) | Bolometer type infrared detection element |