JP3339276B2 - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JP3339276B2
JP3339276B2 JP28970995A JP28970995A JP3339276B2 JP 3339276 B2 JP3339276 B2 JP 3339276B2 JP 28970995 A JP28970995 A JP 28970995A JP 28970995 A JP28970995 A JP 28970995A JP 3339276 B2 JP3339276 B2 JP 3339276B2
Authority
JP
Japan
Prior art keywords
infrared
layer
conductive layer
thermal
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28970995A
Other languages
Japanese (ja)
Other versions
JPH09133578A (en
Inventor
信一 森田
正樹 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP28970995A priority Critical patent/JP3339276B2/en
Publication of JPH09133578A publication Critical patent/JPH09133578A/en
Application granted granted Critical
Publication of JP3339276B2 publication Critical patent/JP3339276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤外線を検出する
センサ用の熱型赤外線検出素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal infrared detecting element for a sensor for detecting infrared light.

【0002】[0002]

【従来の技術】赤外線検出素子には、冷却を必要とする
量子型と冷却を要しない熱型の2種類がある。量子型赤
外線検出素子は応答速度が速くかつ感度が優れるが、冷
却(例えば液体窒素温度までの冷却)処理及び良質の化
合物半導体を必要とするため、コスト高になるという問
題がある。一方の熱型赤外線検出素子は、常温での利用
が可能なためコストが著しく低減される利点を有する
が、応答速度と感度の点で量子型に劣るという問題があ
る。
2. Description of the Related Art There are two types of infrared detecting elements, a quantum type that requires cooling and a thermal type that does not require cooling. The quantum infrared detection element has a high response speed and excellent sensitivity, but has a problem that the cost is high because a cooling (for example, cooling to liquid nitrogen temperature) process and a high-quality compound semiconductor are required. On the other hand, the thermal infrared detecting element has an advantage that the cost can be remarkably reduced because it can be used at room temperature, but has a problem that it is inferior to the quantum type in terms of response speed and sensitivity.

【0003】熱型赤外線検出素子には、温度変化に起因
しての容量変化を利用する焦電型や熱起電力を測定する
サーモパイル型、温度変化に対応する金属または半導体
の電気抵抗の変化を利用するボロメータ型がある。これ
らの熱型赤外線検出素子は応答速度が遅いため、高速応
答用の素子としては、専ら量子型の赤外線検出素子が利
用されている。しかし、熱型赤外線検出素子により、1
msec前後の応答速度の実現が可能であれば、高価な
量子型赤外線検出素子を使用する必要がなくなり有望で
あると考えられる。
[0003] The thermal type infrared detecting element includes a pyroelectric type utilizing a capacitance change caused by a temperature change, a thermopile type measuring a thermoelectromotive force, a change in electric resistance of a metal or a semiconductor corresponding to a temperature change. There is a bolometer type to use. Since these thermal infrared detection elements have a low response speed, quantum-type infrared detection elements are exclusively used as high-speed response elements. However, due to the thermal infrared detector,
If a response speed of about msec can be realized, it is considered promising that an expensive quantum infrared detecting element does not need to be used.

【0004】図6は熱型赤外線検出素子の中でも、比較
的応答速度が優れるサーモパイル型赤外線検出素子の従
来技術の平面図(a)とG−G’線断面図(b)であ
る。半導体基板1上に空洞部2を介して熱伝導性の低い
ダイアフラム3が形成され、ダイアフラム3上にp型半
導体4とn型半導体5からなる熱電対を金属電極6によ
り直列に複数組接続してサーモパイル素子を形成したも
のである。出力信号は温接点7と冷接点8間の温度差に
比例するため、温接点7と冷接点8の熱分離性をよくす
るように、表面マイクロマシニング技術によりエッチン
グ穴9からエッチングして、冷接点8下部以外の半導体
基板1を除去し、ダイアフラム3を半導体基板1から分
離するように、ダイアフラム3下部に熱分離用の空洞部
2が形成されている。図6では4個所の熱分離梁部10
が半導体基板1と熱的に接している冷接点8の集合部位
で半導体基板1に支持されている。さらに、温接点7上
に絶縁層11、12を挾んで赤外線吸収層13が形成さ
れている。
FIG. 6 is a plan view (a) and a cross-sectional view (b) taken along line GG 'of a conventional technique of a thermopile infrared detecting element having a relatively excellent response speed among thermal infrared detecting elements. A diaphragm 3 having low thermal conductivity is formed on a semiconductor substrate 1 via a cavity 2, and a plurality of thermocouples composed of a p-type semiconductor 4 and an n-type semiconductor 5 are connected on the diaphragm 3 in series by a metal electrode 6. Thus, a thermopile element is formed. Since the output signal is proportional to the temperature difference between the hot junction 7 and the cold junction 8, the output signal is etched from the etching hole 9 by the surface micromachining technology to improve the thermal separation between the hot junction 7 and the cold junction 8. A cavity 2 for thermal isolation is formed below the diaphragm 3 so as to remove the semiconductor substrate 1 other than below the contact 8 and separate the diaphragm 3 from the semiconductor substrate 1. In FIG. 6, four thermal separation beam portions 10 are provided.
Are supported by the semiconductor substrate 1 at an assembly site of the cold junctions 8 which are in thermal contact with the semiconductor substrate 1. Further, an infrared absorbing layer 13 is formed on the hot junction 7 with the insulating layers 11 and 12 interposed therebetween.

【0005】このように、半導体の微細化技術やマイク
ロマシニング技術の発展により、素子の微細化や熱分離
構造、すなわち、半導体基板1から空洞部2を介して熱
的に分離されたダイアフラム3の構造形成が可能になっ
ている。
As described above, with the development of semiconductor miniaturization technology and micromachining technology, element miniaturization and a thermal isolation structure, that is, the diaphragm 3 thermally separated from the semiconductor substrate 1 through the cavity 2 are formed. The structure can be formed.

【0006】ここで、図6のサーモパイル素子を例とし
て熱型赤外線検出素子の応答速度について検討する。熱
型赤外線検出素子の応答速度は、素子の熱時定数と電気
的時定数によって決まるが、熱型赤外線検出素子におい
ては一般的に熱時定数に比して電気的時定数が小さいた
め、熱時定数が応答速度に大きな影響を与える。熱時定
数τは式(1)に示すように素子の熱容量Cと熱抵抗R
thの積で記述される。
Here, the response speed of the thermal infrared detecting element will be examined by taking the thermopile element of FIG. 6 as an example. The response speed of a thermal infrared detection element is determined by the thermal time constant and the electrical time constant of the element, but the thermal infrared detection element generally has a smaller electrical time constant than the thermal time constant. The time constant has a large effect on the response speed. The thermal time constant τ is determined by the heat capacity C and the heat resistance R of the element as shown in equation (1).
Described by the product of th .

【0007】τ=Rth・C … (1) ここで、熱抵抗Rthの値は温接点7と冷接点8間の熱抵
抗値を使用するのが一般である。しかし赤外線吸収層1
3から温接点7までの熱伝導が遅延する場合、すなわち
赤外線吸収層13の面積が広いため熱伝導性が低く、赤
外線吸収層13の下部での2次元方向の熱抵抗が大きい
ときには、上記式(1)の適用範囲を、温接点7と冷接
点8間だけでなく、赤外線吸収層13から温接点7の間
までを加えて考慮する必要がある。従来の微弱な赤外線
エネルギーを検出する熱型赤外線検出素子は、出力信号
を増大させるため、受光部の面積を大きくし、かつ感度
向上のため温接点7と冷接点8間の熱抵抗を大きくする
ように設計する。しかしこの方法によると必然的に応答
速度が低下する。またサーモパイル型赤外線検出素子で
は赤外線吸収層と赤外線感知部の間が電気的絶縁性の酸
化膜や窒化膜などで分離されている。これらの電気絶縁
層は熱伝導性の低い層(以下、低熱伝導層と記す)でも
あるため、赤外線吸収層(または受光部)の面積が増加
するにしたがい赤外線吸収層下部の電気的絶縁層におけ
る2次元方向の熱伝導性が低下し、ひいては素子全体の
応答速度を遅くする。
Τ = R th · C (1) Here, the value of the thermal resistance R th generally uses the value of the thermal resistance between the hot junction 7 and the cold junction 8. But infrared absorption layer 1
In the case where the heat conduction from 3 to the hot junction 7 is delayed, that is, when the thermal conductivity is low due to the large area of the infrared absorbing layer 13 and the thermal resistance in the two-dimensional direction below the infrared absorbing layer 13 is large, the above equation is used. It is necessary to consider the application range of (1) not only between the hot junction 7 and the cold junction 8 but also between the infrared absorbing layer 13 and the hot junction 7. A conventional thermal infrared detecting element that detects weak infrared energy increases the area of the light receiving section to increase the output signal, and increases the thermal resistance between the hot junction 7 and the cold junction 8 to improve sensitivity. To be designed. However, this method necessarily reduces the response speed. In the thermopile type infrared detecting element, the infrared absorbing layer and the infrared detecting portion are separated by an electrically insulating oxide film or nitride film. Since these electric insulating layers are also layers having low thermal conductivity (hereinafter, referred to as low heat conductive layers), as the area of the infrared absorbing layer (or the light receiving portion) increases, the electric insulating layer below the infrared absorbing layer becomes The thermal conductivity in the two-dimensional direction is reduced, and the response speed of the entire device is slowed down.

【0008】[0008]

【発明が解決しようとする課題】従来の熱型赤外線検出
素子では、赤外線感知部と赤外線吸収層の間は、電気絶
縁性でかつ低熱伝導層によって分離されているため、以
下のような問題点が生ずる。 赤外線吸収層下部での2次元方向の熱伝導性が低く、
赤外線吸収層から温接点までの熱伝導速度が遅くなり、
この結果として赤外線検出素子の応答速度を低下させ
る。 赤外線吸収層下部での熱伝導速度の低下を防止するた
めに、赤外線吸収層の面積を小さくすると、赤外線吸収
エネルギーが小さくなり、出力信号を低下させる。 赤外線吸収層単層での赤外線吸収効率が必ずしも充分
でない。 上記の問題点により、出力信号を確保しながら熱型赤外
線検出素子の応答速度を向上させることは技術的に困難
であった。本発明の目的は、熱型赤外線検出素子の出力
信号を低下させず、また、赤外線検出素子の寸法を変更
することなく、赤外線検出素子の応答速度の向上を可能
にすることにある。
In the conventional thermal type infrared detecting element, the following problems arise because the infrared sensing portion and the infrared absorbing layer are electrically insulated and separated by a low thermal conductive layer. Occurs. The thermal conductivity in the two-dimensional direction below the infrared absorption layer is low,
The heat conduction speed from the infrared absorption layer to the hot junction decreases,
As a result, the response speed of the infrared detecting element is reduced. If the area of the infrared absorption layer is reduced to prevent a decrease in the heat conduction speed below the infrared absorption layer, the infrared absorption energy is reduced and the output signal is reduced. The infrared absorption efficiency of a single infrared absorption layer is not always sufficient. Due to the above problems, it has been technically difficult to improve the response speed of the thermal infrared detection element while securing an output signal. An object of the present invention is to make it possible to improve the response speed of an infrared detection element without lowering the output signal of the thermal infrared detection element and without changing the dimensions of the infrared detection element.

【0009】[0009]

【課題を解決するための手段】本発明の赤外線検出素子
は特許請求の範囲に記載された内容、すなわち、半導体
基板から空洞を介して熱伝導性の低いダイアフラムまた
はメンブレンが形成され、このダイアフラムまたはメン
ブレン上に赤外線感知部と赤外線吸収層が形成されてい
る熱型赤外線検出素子において、赤外線感知部と赤外線
吸収層の間に熱伝導性の高い層(以下、高熱伝導層と記
す)を形成し、赤外線吸収層下部における赤外線吸収層
から温接点までの熱伝導速度を速くすることにより、赤
外線吸収層の2次元寸法を変えることなく応答速度の向
上を図るものである。また、高熱伝導性層が赤外線吸収
性に優れるか、または、赤外線反射性に優れる場合にお
いては、赤外線吸収効率と出力信号の向上を実現するこ
とが可能である。さらに、本発明においては、上記高熱
伝導層が赤外線吸収層のほぼ全面にわたって設けられ、
各熱電対の組毎に分離分割された金属材料膜からなり金
属電極を兼ねる構成とすることにより、熱容量の低減に
加えて、高熱伝導層を別に形成する必要がなく工程が短
縮される。
The infrared detecting element of the present invention has the features described in the claims, that is, a diaphragm or a membrane having low thermal conductivity is formed from a semiconductor substrate via a cavity, and the diaphragm or the membrane is formed. In a thermal infrared detecting element having an infrared sensing part and an infrared absorbing layer formed on a membrane, a layer having high thermal conductivity (hereinafter referred to as a high thermal conductive layer) is formed between the infrared sensing part and the infrared absorbing layer. By increasing the heat conduction speed from the infrared absorbing layer to the hot junction below the infrared absorbing layer, the response speed can be improved without changing the two-dimensional dimensions of the infrared absorbing layer. In addition, when the high heat conductive layer is excellent in infrared absorption or infrared reflection, it is possible to improve the infrared absorption efficiency and the output signal. Further, in the present invention, the high thermal conductive layer is provided over substantially the entire surface of the infrared absorbing layer,
By using a metal material film separated and divided for each set of thermocouples and also serving as a metal electrode, it is possible to reduce the heat capacity and to shorten the process without having to separately form a high heat conductive layer.

【0010】この発明の赤外線検出素子においては、赤
外線感知部と赤外線吸収層の間に高熱伝導層を形成する
ことにより、赤外線吸収層の2次元寸法を変えることな
く、赤外線吸収層下部で赤外線吸収層から温接点までの
熱抵抗の低減、または、熱伝導性の向上により応答速度
が速くなる。
In the infrared detecting element of the present invention, by forming a high heat conductive layer between the infrared sensing portion and the infrared absorbing layer, the infrared absorbing layer can be formed under the infrared absorbing layer without changing the two-dimensional dimensions of the infrared absorbing layer. The response speed is increased by reducing the thermal resistance from the layer to the hot junction or improving the thermal conductivity.

【0011】高熱伝導層が熱吸収に優れる層である場合
には、赤外線吸収層を透過してきた一部の赤外線は高熱
伝導層において吸収され、全体的に赤外線吸収率の向上
が可能となる。また、高熱伝導層が赤外線反射に優れる
層である場合には、赤外線吸収層を透過した赤外線の一
部が高熱伝導層において反射され、再び赤外線吸収層で
吸収されるから、赤外線吸収効率が向上し感度の向上が
図られる。
When the high thermal conductive layer is a layer excellent in heat absorption, a part of the infrared light transmitted through the infrared absorbing layer is absorbed by the high thermal conductive layer, so that the infrared absorptivity can be improved as a whole. In addition, when the high thermal conductive layer is a layer excellent in infrared reflection, part of the infrared light transmitted through the infrared absorbing layer is reflected by the high thermal conductive layer and is absorbed again by the infrared absorbing layer, so that the infrared absorbing efficiency is improved. The sensitivity is improved.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。 〈第1の実施の形態〉図1は、本発明の第1の実施の形
態を示す平面図(a)とA−A’線断面図(b)であ
る。マイクロマシニングにより表面加工されたサーモパ
イル型赤外線検出素子は、半導体基板1上に空洞部2を
介して形成した熱伝導性の低いダイアフラム3と、ダイ
アフラム3上にp型半導体4とn型半導体5からなる熱
電対を金属電極6により直列に複数組接続して形成した
ものである。
Embodiments of the present invention will be described with reference to the drawings. <First Embodiment> FIGS. 1A and 1B are a plan view and a cross-sectional view taken along line AA ', respectively, showing a first embodiment of the present invention. A thermopile type infrared detecting element surface-processed by micromachining is composed of a diaphragm 3 having low thermal conductivity formed on a semiconductor substrate 1 through a cavity 2 and a p-type semiconductor 4 and an n-type semiconductor 5 on the diaphragm 3. Are formed by connecting a plurality of thermocouples in series by metal electrodes 6.

【0013】出力信号は温接点7と冷接点8間の温度差
に比例して取り出される。赤外線吸収層13から吸収さ
れた入射赤外線は熱に変換され、熱の大部分は高熱伝導
層14を伝導して温接点7に到達し、その後熱分離梁部
10を伝導して冷接点8に到達する。この結果温接点7
と冷接点8間に温度差が生じる。ここで、温接点7と冷
接点8間の構造、寸法が変化しないものとすると、赤外
線吸収層13から温接点7までの熱伝導性の良否が赤外
線検出素子の応答速度に大きな影響を与える。すなわ
ち、高熱伝導層14を有することによって応答速度が速
くなる。
The output signal is taken out in proportion to the temperature difference between the hot junction 7 and the cold junction 8. Incident infrared rays absorbed from the infrared absorbing layer 13 are converted into heat, and most of the heat reaches the hot junction 7 through the high thermal conductive layer 14, and then passes through the heat separating beam 10 to the cold junction 8. To reach. As a result, the hot junction 7
And a cold junction 8 causes a temperature difference. Here, assuming that the structure and dimensions between the hot junction 7 and the cold junction 8 do not change, the quality of the thermal conductivity from the infrared absorbing layer 13 to the hot junction 7 has a great influence on the response speed of the infrared detecting element. That is, the response speed is increased by having the high thermal conductive layer 14.

【0014】図1では、高熱伝導層14と赤外線吸収層
13の間に保護膜15が介在するものについて示してい
る。また、高熱伝導層14と電気絶縁層12とが異なる
場合を示すが、高熱伝導層14が電気絶縁性を兼ね備え
ている場合には、電気絶縁層12は省略してもよい。さ
らに、素子がパッケージングにより保護されている場合
には、保護膜15が不要となり高熱伝導層14は、直接
赤外線吸収層13に接していてもよい。
FIG. 1 shows a case where a protective film 15 is interposed between the high thermal conductive layer 14 and the infrared absorbing layer 13. Although the case where the high thermal conductive layer 14 and the electrical insulating layer 12 are different is shown, the electrical insulating layer 12 may be omitted when the high thermal conductive layer 14 also has electrical insulation. Further, when the element is protected by packaging, the protective film 15 becomes unnecessary, and the high thermal conductive layer 14 may be in direct contact with the infrared absorption layer 13.

【0015】ダイアフラム3の面積が120μm、赤
外線吸収層13の面積が60μmの素子サイズを有
し、高熱伝導層14の有無による熱時定数(飽和値の約
63%のときの時間)の値を比較すると、高熱伝導層1
4がある場合には高熱伝導層14がない場合に比べて熱
時定数が約10%強改善される。このことから明らかな
ように、高熱伝導層14を有することにより、素子の寸
法を変えることなく、応答速度が向上していることがわ
かる。ここでは、応答速度の点で比較的優れるサーモパ
イル型赤外線検出素子について例示したが、他の熱型赤
外線検出素子についても同様のことが言える。要する
に、吸収された赤外線が熱に変換され、熱が直ちに赤外
線感知部に伝導されることが必要で、このためには、熱
抵抗を小さくするか熱コンダクタンスを大きくすること
である。高熱伝導層14の材料としてはアルミニウム、
金などの金属やSiなどが考えられるが金属が特に好ま
しい。図1では、高熱伝導層14が絶縁層11、12の
間に挾まれた構造としたのは、電気的絶縁性を確保する
ためである。
[0015] the area of the diaphragm 3 is 120 [mu] m □, the area of the infrared absorption layer 13 has a device size of 60 [mu] m □, the thermal time constant due to the presence of the high thermal conductive layer 14 (time when about 63% of the saturation value) Comparing the values, the high thermal conductive layer 1
4, the thermal time constant is improved by about 10% compared to the case where the high thermal conductive layer 14 is not provided. As is apparent from this, it is understood that the provision of the high thermal conductive layer 14 improves the response speed without changing the dimensions of the element. Here, the thermopile type infrared detecting element which is relatively excellent in response speed is exemplified, but the same can be said for other thermal type infrared detecting elements. In short, it is necessary that the absorbed infrared rays be converted to heat, and the heat be immediately transmitted to the infrared ray sensing unit. For this purpose, it is necessary to reduce the thermal resistance or increase the thermal conductance. The material of the high thermal conductive layer 14 is aluminum,
Metals such as gold and Si can be considered, but metals are particularly preferable. In FIG. 1, the reason why the high thermal conductive layer 14 is sandwiched between the insulating layers 11 and 12 is to secure electrical insulation.

【0016】高熱伝導層14は、高熱伝導層14中の電
子と入射赤外線が相互干渉を引き起こす程度の厚さを有
する場合、例えば高熱伝導層14として厚さ約60nmの
NiCrの場合、高熱伝導層14そのものの熱吸収率が
高くなるため、赤外線吸収層13を透過した赤外線がN
iCr層で吸収され、全体的な赤外線吸収率を高くす
る。一方、高熱伝導層14がアルミニウム、金などの赤
外線反射性に優れる材料のときは、赤外線吸収層13を
透過した赤外線は、アルミニウムなどの層によって反射
されたのち再び赤外線吸収層13に入射吸収され、全体
的に赤外線吸収率を高める。層間膜の厚さを赤外線の波
長に適合させて制御することによって、赤外線吸収効率
を高めてもよく、赤外線吸収効率の向上は素子の感度を
向上させることが可能である。
The high thermal conductive layer 14 has a thickness such that electrons and incident infrared rays in the high thermal conductive layer 14 cause mutual interference. For example, when the high thermal conductive layer 14 is made of NiCr having a thickness of about 60 nm, Since the heat absorption rate of the infrared absorption layer 14 itself increases, the infrared light transmitted through the infrared absorption layer 13 becomes N
It is absorbed by the iCr layer and increases the overall infrared absorption. On the other hand, when the high thermal conductive layer 14 is made of a material having excellent infrared reflectivity, such as aluminum or gold, the infrared light transmitted through the infrared absorbing layer 13 is reflected by the aluminum or the like layer, and then is incident and absorbed by the infrared absorbing layer 13 again. Enhance the infrared absorption rate overall. By controlling the thickness of the interlayer film in accordance with the wavelength of the infrared light, the infrared absorption efficiency may be increased, and the improvement of the infrared absorption efficiency can improve the sensitivity of the device.

【0017】〈第2の実施の形態〉図2は、本発明の第
2の実施の形態を示す平面図(a)とB−B’線断面図
(b)である。第1の実施の形態と異なる部分について
説明する。本実施の形態は、高熱伝導層14が温接点7
の内側近傍まで接近しているが、温接点7の上部を覆っ
ていない点、及び、絶縁層12が保護膜としての機能を
兼ねている点で相違がある。こうすることによって、第
1の実施の形態における保護膜15が不要になる。結果
的には熱容量を低減し応答速度の向上に寄与することが
できる。
<Second Embodiment> FIGS. 2A and 2B are a plan view and a cross-sectional view taken along the line BB 'of a second embodiment of the present invention. The parts different from the first embodiment will be described. In the present embodiment, the high thermal conductive layer 14 is
However, there is a difference in that it does not cover the upper part of the hot junction 7 and that the insulating layer 12 also functions as a protective film. This eliminates the need for the protective film 15 in the first embodiment. As a result, the heat capacity can be reduced and the response speed can be improved.

【0018】〈第3の実施の形態〉図3は、本発明の第
3の実施の形態を示す平面図(a)とC−C’線断面図
(b)である。第2の実施の形態と異なる部分について
説明する。本実施の形態は、高熱伝導層14が直接、ダ
イアフラムまたはメンブレン3と接している場合であ
る。第2の実施の形態と同様の効果が期待される。ま
た、ダイアフラム3に接することにより素子の平坦性が
良くなる。シリコンの半導体基板1ではダイアフラム3
に窒化物、絶縁層11、12に酸化物を使用する場合が
ある。このときには窒化物の熱伝導度は酸化物の熱伝導
度より大きいため、それだけ応答速度の向上が期待でき
るが高熱伝導層14ほどには向上しない。
<Third Embodiment> FIGS. 3A and 3B are a plan view and a cross-sectional view taken along the line CC ', respectively, showing a third embodiment of the present invention. The parts different from the second embodiment will be described. This embodiment is a case where the high thermal conductive layer 14 is in direct contact with the diaphragm or the membrane 3. The same effect as in the second embodiment is expected. Further, the contact with the diaphragm 3 improves the flatness of the element. In a semiconductor substrate 1 made of silicon, a diaphragm 3
In some cases, a nitride may be used and an oxide may be used for the insulating layers 11 and 12. At this time, since the thermal conductivity of the nitride is larger than the thermal conductivity of the oxide, an improvement in the response speed can be expected, but it is not as high as that of the high thermal conductive layer 14.

【0019】〈第4の実施の形態〉図4は、本発明の第
4の実施の形態を示す平面図(a)とD−D’線断面図
(b)である。第3の実施の形態と異なる部分について
説明する。赤外線吸収層13下部の絶縁層11と12の
一部をフォトリソグラフィ技術を用いて除去し、高熱伝
導層14を直接、ダイアフラム3の上に形成する。この
とき、図4のように、高熱伝導層14が温接点7を覆う
ように形成すると、熱伝導面積が増加して熱伝導を容易
にする。本実施の形態による効果は、赤外線吸収層13
の下部に絶縁層11、12の一部を除去しているため熱
容量が低減し、それだけ応答速度の向上が図られる。
<Fourth Embodiment> FIGS. 4A and 4B are a plan view and a sectional view taken along line DD ', respectively, showing a fourth embodiment of the present invention. The parts different from the third embodiment will be described. A part of the insulating layers 11 and 12 under the infrared absorbing layer 13 is removed by using a photolithography technique, and the high heat conductive layer 14 is formed directly on the diaphragm 3. At this time, as shown in FIG. 4, when the high heat conductive layer 14 is formed so as to cover the hot junction 7, the heat conductive area is increased to facilitate heat conduction. The effect of this embodiment is that the infrared absorbing layer 13
Since a part of the insulating layers 11 and 12 is removed below the heat sink, the heat capacity is reduced, and the response speed is correspondingly improved.

【0020】〈第5の実施の形態〉図5は、本発明の第
5の実施の形態を示す平面図(a)とE−E’線断面図
(b)及び(c)である。第1の実施の形態〜第4の実
施の形態と異なる部分について説明する。本実施の形態
の特徴は、金属電極6が高熱伝導層としての役割を担
い、各熱電対の組毎に、分離分割された面積の広い金属
電極6を有するものである。例えば、金属電極6にアル
ミニウムを用いれば、熱伝導と赤外線反射に優れるため
応答速度と感度の両面の性能向上が可能となる。図5
(b)は、金属電極6が赤外線吸収層13下部の絶縁層
11、12の間に挾まれたもの、図5(c)は、絶縁層
11の下部が除去されている場合であり熱容量が低減さ
れる。
<Fifth Embodiment> FIGS. 5A and 5B are a plan view and a cross-sectional view taken along the line EE 'of FIGS. 5A and 5B, respectively, showing a fifth embodiment of the present invention. Parts different from the first to fourth embodiments will be described. The feature of the present embodiment is that the metal electrode 6 plays a role as a high thermal conductive layer, and each pair of thermocouples has a metal electrode 6 having a large area separated and divided. For example, when aluminum is used for the metal electrode 6, the heat conduction and the infrared reflection are excellent, so that both the response speed and the sensitivity can be improved. FIG.
5B shows the case where the metal electrode 6 is sandwiched between the insulating layers 11 and 12 below the infrared absorbing layer 13, and FIG. 5C shows the case where the lower part of the insulating layer 11 has been removed and the heat capacity is low. Reduced.

【0021】なお、上記各実施の形態は、単素子のみへ
の適用に限定されることなくアレイの構成にも適用する
ことが可能である。
The embodiments described above are not limited to application to a single element, but can be applied to an array configuration.

【0022】[0022]

【発明の効果】本発明の実施により、熱型赤外線検出素
子の赤外線感知部と赤外線吸収層の間に高熱伝導層を有
することにより、赤外線吸収から温接点間の熱伝導性を
高め、赤外線吸収層下部での熱時定数を小さくすること
ができる。この結果、出力信号を確保して応答速度を向
上した熱型赤外線検出素子を低価格で提供することがで
きる。ここで、高熱伝導層が電気絶縁性を有している場
合には熱容量を低減することができ、応答速度のさらな
る向上が可能である。また、高熱伝導層が赤外線吸収能
の優れた層である場合には、赤外線吸収層を透過した赤
外線を再度吸収し赤外線吸収率の向上が可能となり、赤
外線検出素子の感度が向上する。高熱伝導層が赤外線反
射に優れる層である場合には、赤外線吸収層を透過した
赤外線を反射し、赤外線吸収層で再度吸収する。この結
果、赤外線吸収効率の向上が可能となり、赤外線検出素
子の感度が向上する。
According to the present invention, by providing a high thermal conductive layer between the infrared sensing portion and the infrared absorbing layer of the thermal type infrared detecting element, the thermal conductivity from the infrared absorption to the hot junction can be increased and the infrared absorption can be improved. The thermal time constant at the bottom of the layer can be reduced. As a result, it is possible to provide an inexpensive thermal infrared detecting element having an improved response speed by securing an output signal. Here, when the high heat conductive layer has electric insulation, the heat capacity can be reduced, and the response speed can be further improved. In addition, when the high thermal conductive layer is a layer having an excellent infrared absorbing ability, the infrared ray transmitted through the infrared absorbing layer is absorbed again, so that the infrared absorptivity can be improved, and the sensitivity of the infrared detecting element is improved. When the high thermal conductive layer is a layer excellent in infrared reflection, the infrared ray transmitted through the infrared absorption layer is reflected and is absorbed again by the infrared absorption layer. As a result, the infrared absorption efficiency can be improved, and the sensitivity of the infrared detection element can be improved.

【0023】第2の実施の形態の特有の効果は、第1の
実施の形態の保護膜が省略されているため、熱容量が低
減し応答速度の向上が可能となる。また、温接点上部に
高熱伝導層が重複しないため素子の平坦性が優れる。
The unique effect of the second embodiment is that, since the protective film of the first embodiment is omitted, the heat capacity can be reduced and the response speed can be improved. Further, since the high thermal conductive layer does not overlap the upper part of the hot junction, the flatness of the element is excellent.

【0024】第3の実施の形態の特有の効果は、第2の
実施の形態における高熱伝導層が、直接ダイアフラムに
接しているため、絶縁層より熱伝導度の高い材料がダイ
アフラムに用いられる場合、例えば、シリコン基板を用
いたとき、酸化物の絶縁層に対して窒化物のダイアフラ
ムが用いられると、熱伝導性が僅かではあるがよくな
り、応答速度の向上に寄与する。
The special effect of the third embodiment is that the high heat conductive layer in the second embodiment is in direct contact with the diaphragm, and therefore, a material having higher thermal conductivity than the insulating layer is used for the diaphragm. For example, when a silicon substrate is used, when a nitride diaphragm is used for an oxide insulating layer, the thermal conductivity is improved although slightly, which contributes to an improvement in response speed.

【0025】第4の実施の形態の特有の効果は、赤外線
吸収層下部の絶縁層が除去されているため、熱容量が低
減され応答速度が向上する。
The specific effect of the fourth embodiment is that, since the insulating layer below the infrared absorbing layer is removed, the heat capacity is reduced and the response speed is improved.

【0026】第5の実施の形態の特有の効果は、第1の
実施の形態〜第4の実施の形態に比べ金属電極が高熱伝
導性を兼ね備えているため、熱容量の低減に加えて、さ
らに高熱伝導層を別に形成する必要がなく工程が短縮さ
れる。
The specific effect of the fifth embodiment is that the metal electrode has high thermal conductivity as compared with the first to fourth embodiments. There is no need to separately form a high thermal conductive layer, and the process is shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す平面図(a)
と断面図(b)である。
FIG. 1 is a plan view showing a first embodiment of the present invention (a).
And a sectional view (b).

【図2】本発明の第2の実施の形態を示す平面図(a)
と断面図(b)である。
FIG. 2A is a plan view showing a second embodiment of the present invention.
And a sectional view (b).

【図3】本発明の第3の実施の形態を示す平面図(a)
と断面図(b)である。
FIG. 3 is a plan view showing a third embodiment of the present invention (a).
And a sectional view (b).

【図4】本発明の第4の実施の形態を示す平面図(a)
と断面図(b)である。
FIG. 4 is a plan view showing a fourth embodiment of the present invention.
And a sectional view (b).

【図5】本発明の第5の実施の形態を示す平面図(a)
及び断面図(b)、(c)である。
FIG. 5 is a plan view showing a fifth embodiment of the present invention (a).
And (b) and (c) are sectional views.

【図6】従来例を示す平面図(a)と断面図(b)であ
る。
6A and 6B are a plan view and a cross-sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1…半導体基板 2…空洞部 3…ダイアフラム 4…p型半導体 5…n型半導体 6…金属電極 7…温接点 8…冷接点 9…エッチング穴 10…熱分離梁部 11…絶縁層 12絶縁層 13…赤外線吸収層 14…高熱伝導層 15…保護膜 DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... Cavity 3 ... Diaphragm 4 ... P-type semiconductor 5 ... N-type semiconductor 6 ... Metal electrode 7 ... Hot contact 8 ... Cold contact 9 ... Etching hole 10 ... Heat separation beam 11 ... Insulating layer 12 insulating layer 13: infrared absorption layer 14: high thermal conductive layer 15: protective film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−205729(JP,A) 特開 平3−276772(JP,A) 特開 平4−6424(JP,A) 特開 昭61−40523(JP,A) 実開 平3−109028(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01J 1/00 - 1/60 G01J 5/00 - 5/62 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-205729 (JP, A) JP-A-3-276772 (JP, A) JP-A-4-6424 (JP, A) JP-A-61- 40523 (JP, A) Japanese Utility Model 3-109028 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01J 1/00-1/60 G01J 5/00-5/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板の一主面に形成された空洞部
と、 前記半導体基板から前記空洞部を介して形成された熱伝
導性の低いダイアフラムまたはメンブレンと、 該ダイアフラムまたはメンブレン上に設けた赤外線感知
部と、 該赤外線感知部の上部に設けた赤外線の吸収能を有する
赤外線吸収層と、 前記赤外線感知部と前記赤外線吸収層の間に設けた高熱
伝導層と、 を有し、かつ、前記高熱伝導層は、前記赤外線吸収層の
ほぼ全面にわたって設けられ、各熱電対の組毎に分離分
割された金属材料膜からなり金属電極を兼ねることを特
徴とする赤外線検出素子。
A cavity formed on one main surface of a semiconductor substrate; a diaphragm or a membrane having low thermal conductivity formed from the semiconductor substrate via the cavity; and a diaphragm or a membrane provided on the diaphragm or the membrane. An infrared sensing unit, an infrared absorbing layer having an infrared absorbing ability provided on the infrared sensing unit, and a high thermal conductive layer provided between the infrared sensing unit and the infrared absorbing layer, and The high thermal conductive layer, the infrared absorption layer
Provided over almost the entire surface, separate for each thermocouple set
An infrared detecting element comprising a split metal material film and also serving as a metal electrode.
JP28970995A 1995-11-08 1995-11-08 Infrared detector Expired - Lifetime JP3339276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28970995A JP3339276B2 (en) 1995-11-08 1995-11-08 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28970995A JP3339276B2 (en) 1995-11-08 1995-11-08 Infrared detector

Publications (2)

Publication Number Publication Date
JPH09133578A JPH09133578A (en) 1997-05-20
JP3339276B2 true JP3339276B2 (en) 2002-10-28

Family

ID=17746741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28970995A Expired - Lifetime JP3339276B2 (en) 1995-11-08 1995-11-08 Infrared detector

Country Status (1)

Country Link
JP (1) JP3339276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564601A (en) * 2010-12-22 2012-07-11 精工爱普生株式会社 Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10225377B4 (en) 2001-06-11 2014-10-09 Denso Corporation Method of manufacturing a thermopile infrared radiation sensor
DE102004028032B4 (en) * 2004-06-09 2008-04-17 Perkinelmer Optoelectronics Gmbh & Co.Kg sensor element
JP2010261908A (en) * 2009-05-11 2010-11-18 Geomatec Co Ltd Laser power sensor
JP6225582B2 (en) * 2013-09-13 2017-11-08 株式会社リコー Thermal infrared sensor
US9219185B2 (en) 2013-12-19 2015-12-22 Excelitas Technologies Singapore Pte. Ltd CMOS integrated method for the fabrication of thermopile pixel with umbrella absorber on semiconductor substrate
US9373772B2 (en) 2014-01-15 2016-06-21 Excelitas Technologies Singapore Pte. Ltd. CMOS integrated method for the release of thermopile pixel on a substrate by using anisotropic and isotropic etching
US9324760B2 (en) 2014-01-21 2016-04-26 Excelitas Technologies Singapore Pte. Ltd CMOS integrated method for fabrication of thermopile pixel on semiconductor substrate with buried insulation regions
FR3048128B1 (en) * 2016-02-18 2018-05-18 Centre National De La Recherche Scientifique THERMOELECTRIC DEVICE
JP2022165185A (en) * 2021-04-19 2022-10-31 国立大学法人 東京大学 Sensor element and sensor device
WO2023105577A1 (en) * 2021-12-06 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 Sensor, imaging device, and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564601A (en) * 2010-12-22 2012-07-11 精工爱普生株式会社 Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
CN102589711A (en) * 2010-12-22 2012-07-18 精工爱普生株式会社 Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
US8502149B2 (en) 2010-12-22 2013-08-06 Seiko Epson Corporation Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
US8642963B2 (en) 2010-12-22 2014-02-04 Seiko Epson Corporation Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
US8648304B1 (en) 2010-12-22 2014-02-11 Seiko Epson Corporation Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
US8648302B2 (en) 2010-12-22 2014-02-11 Seiko Epson Corporation Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
US8734010B2 (en) 2010-12-22 2014-05-27 Seiko Epson Corporation Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
US8941063B2 (en) 2010-12-22 2015-01-27 Seiko Epson Corporation Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method

Also Published As

Publication number Publication date
JPH09133578A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
JP3514681B2 (en) Infrared detector
JP2834202B2 (en) Infrared detector
JP3460810B2 (en) Thermal infrared detector with thermal separation structure
US6144030A (en) Advanced small pixel high fill factor uncooled focal plane array
US8350215B2 (en) Thermopile sensor and method of manufacturing same
US7544942B2 (en) Thermal detector for electromagnetic radiation and infrared detection device using such detectors
JP3339276B2 (en) Infrared detector
JP3604130B2 (en) Thermal infrared detecting element, method of manufacturing the same, and thermal infrared detecting element array
JP3580126B2 (en) Infrared sensor
JPH07283444A (en) Manufacture of infrared detector
JPH1164111A (en) Infrared detecting element
JP2910448B2 (en) Infrared sensor
JP2000321125A (en) Infrared sensor element
JPH06137943A (en) Thermal infrared sensor
JP3775830B2 (en) Infrared detector
JP3385762B2 (en) Infrared detector
JP3136649B2 (en) Combined infrared detector
JP2000111396A (en) Infrared detecting element and its manufacture
JPH11258041A (en) Thermopile type infrared ray sensor
JP3435997B2 (en) Infrared detector
JP2772776B2 (en) Thermopile
JP3052329B2 (en) Infrared sensor
JPH07128140A (en) Infrared detector
JPH02206733A (en) Infrared ray sensor
JPH06103218B2 (en) Optical sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140816

Year of fee payment: 12

EXPY Cancellation because of completion of term