JP4208846B2 - Uncooled infrared detector - Google Patents

Uncooled infrared detector Download PDF

Info

Publication number
JP4208846B2
JP4208846B2 JP2005034580A JP2005034580A JP4208846B2 JP 4208846 B2 JP4208846 B2 JP 4208846B2 JP 2005034580 A JP2005034580 A JP 2005034580A JP 2005034580 A JP2005034580 A JP 2005034580A JP 4208846 B2 JP4208846 B2 JP 4208846B2
Authority
JP
Japan
Prior art keywords
layer
absorption
detection cell
region
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005034580A
Other languages
Japanese (ja)
Other versions
JP2006220555A (en
Inventor
浩大 本多
郁夫 藤原
雄二郎 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005034580A priority Critical patent/JP4208846B2/en
Publication of JP2006220555A publication Critical patent/JP2006220555A/en
Application granted granted Critical
Publication of JP4208846B2 publication Critical patent/JP4208846B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、非冷却赤外線検出素子に関する。   The present invention relates to an uncooled infrared detection element.

非冷却型(熱型)赤外線検出素子は、赤外線吸収層によって赤外線を吸収して熱に変換し、熱電変換素子によって熱を電気信号に変換する素子である。非冷却型(熱型)赤外線検出素子では、赤外線吸収層および熱電変換素子を外系と熱的に隔離するように、表面微細構造またはバルク微細構造形成技術が活用される。冷却型赤外線センサが高価で大きな冷却器を必要とするのに対し、非冷却型赤外線素子は小型で安価というメリットがある。   The non-cooling type (thermal type) infrared detection element is an element that absorbs infrared rays by an infrared absorption layer and converts the infrared rays into heat, and converts the heat into an electric signal by a thermoelectric conversion element. In the non-cooling type (thermal type) infrared detection element, a surface microstructure or bulk microstructure formation technique is utilized so that the infrared absorption layer and the thermoelectric conversion element are thermally isolated from the external system. Cooled infrared sensors are expensive and require a large cooler, whereas uncooled infrared elements have the advantage of being small and inexpensive.

従来の非冷却型赤外線検出素子はたとえば特許文献1に開示されている。この非冷却型赤外線検出素子は、基板と、基板上に支持脚で支持され、検知膜が設けられた検出部と、互いに略平行に配置された第1赤外線吸収膜(第1傘構造部)および第2赤外線吸収膜(第2傘構造部)と、第1赤外線吸収膜および第2赤外線吸収膜を透過した赤外線を反射して、第1赤外線吸収膜および第2赤外線吸収膜に入射させる反射膜とを含み、第1赤外線吸収膜と反射膜との間の第1光学距離と、第2赤外線吸収膜と反射膜との間の第2光学距離とが、互いに異なっている。   A conventional uncooled infrared detecting element is disclosed in, for example, Patent Document 1. The uncooled infrared detection element includes a substrate, a detection unit supported by a support leg on the substrate and provided with a detection film, and a first infrared absorption film (first umbrella structure unit) disposed substantially parallel to each other. And the second infrared absorption film (second umbrella structure), and the reflection that reflects the infrared light that has passed through the first infrared absorption film and the second infrared absorption film and enters the first infrared absorption film and the second infrared absorption film. The first optical distance between the first infrared absorption film and the reflection film and the second optical distance between the second infrared absorption film and the reflection film are different from each other.

この非冷却型赤外線検出素子では、入射した赤外線を2段の傘構造部で熱に変換し、検知膜によって温度上昇を電気信号に変換する。このとき、傘構造部で吸収しきれなかった赤外線を反射膜(金属配線層)によって反射して再び傘構造部に入射させるようにし、かつ第1赤外線吸収膜と反射膜との光学距離および第2赤外線吸収膜と反射膜との光学距離を吸収すべき赤外線の波長のm/4倍(mは奇数)に設定することによって吸収効率を上げている。
特開2003−294523号公報
In this uncooled infrared detection element, incident infrared rays are converted into heat by a two-stage umbrella structure, and a temperature rise is converted into an electrical signal by a detection film. At this time, the infrared rays that could not be absorbed by the umbrella structure portion are reflected by the reflection film (metal wiring layer) and are incident again on the umbrella structure portion, and the optical distance between the first infrared absorption film and the reflection film and the first (2) Absorption efficiency is increased by setting the optical distance between the infrared absorbing film and the reflecting film to m / 4 times the wavelength of infrared rays to be absorbed (m is an odd number).
JP 2003-294523 A

しかし、上記特許文献1では、反射膜が検出面全体に形成されているわけではなく、たとえば支持脚の周囲には反射膜のない領域が存在し、このような領域では2段の傘構造部を透過してきた赤外線をロスすることになる。反射膜のない領域の面積は検出面全体の30〜40%にも及ぶため、赤外線の吸収効率が悪くなり、感度の低下を招く。また、赤外線吸収膜を含む傘吸収部を二重に形成しているため、赤外線検出素子の熱容量が非常に大きくなり応答速度が低下する。   However, in Patent Document 1, the reflection film is not formed on the entire detection surface. For example, there is an area without the reflection film around the support leg, and in such an area, a two-stage umbrella structure portion is provided. The infrared rays that have passed through the light will be lost. Since the area of the region without the reflection film reaches 30 to 40% of the entire detection surface, the infrared absorption efficiency is deteriorated and the sensitivity is lowered. Further, since the umbrella absorbing portion including the infrared absorbing film is formed in a double manner, the heat capacity of the infrared detecting element becomes very large and the response speed is lowered.

本発明の目的は、応答速度を極力低下させることなく、広い領域で赤外線を吸収することができる高感度の非冷却赤外線検出素子を提供することにある。   An object of the present invention is to provide a highly sensitive uncooled infrared detection element capable of absorbing infrared rays over a wide area without reducing the response speed as much as possible.

本発明の第1の実施形態に係る非冷却赤外線検出素子は、表面に空洞部が設けられた半導体基板と、前記半導体基板の前記空洞部を囲む領域に形成された配線部と、前記配線部に接続され、前記配線部より内側で前記半導体基板の空洞部上に配置された支持部と、前記支持部に接続されて前記支持部より内側で前記半導体基板の空洞部上に支持され、下部から順に配置された熱電変換部、第1反射層および第1吸収層を含む検出セルと、前記検出セル上に、前記第1反射層の領域以外の領域を覆いかつ前記支持部の上方に張り出すように形成された第2反射層と、前記検出セル上に形成された支柱により、前記検出セルおよび前記第2反射層の上方に間隙を隔てて形成された第2吸収層とを具備したことを特徴とする。   An uncooled infrared detection element according to a first embodiment of the present invention includes a semiconductor substrate having a cavity portion on a surface thereof, a wiring portion formed in a region surrounding the cavity portion of the semiconductor substrate, and the wiring portion Connected to the support portion disposed on the cavity portion of the semiconductor substrate inside the wiring portion, and supported on the cavity portion of the semiconductor substrate connected to the support portion and inside the support portion. A detection cell including a thermoelectric conversion unit, a first reflection layer, and a first absorption layer disposed in order, and covering a region other than the region of the first reflection layer on the detection cell and extending above the support unit. And a second absorption layer formed above the detection cell and the second reflection layer with a gap by a support column formed on the detection cell. It is characterized by that.

本発明の第2の実施形態に係る非冷却赤外線検出素子は、表面に空洞部が設けられた半導体基板と、前記半導体基板の前記空洞部を囲む領域に形成された配線部と、前記配線部に接続され、前記配線部より内側で前記半導体基板の空洞部上に配置された支持部と、前記支持部に接続されて前記支持部より内側で前記半導体基板の空洞部上に支持され、下部から順に配置された熱電変換部、第1反射層および第1吸収層を含む検出セルと、前記検出セル上に、前記第1反射層の領域以外の領域を覆うように形成された第3反射層と、前記配線部上に、前記支持部の上方に張り出すように形成された第4反射層と、前記検出セル上に形成された支柱により、前記検出セル、前記第3反射層および前記第4反射層の上方に間隙を隔てて形成された第2吸収層とを具備したことを特徴とする。   An uncooled infrared detection element according to a second embodiment of the present invention includes a semiconductor substrate having a cavity portion provided on a surface thereof, a wiring portion formed in a region surrounding the cavity portion of the semiconductor substrate, and the wiring portion Connected to the support portion disposed on the cavity portion of the semiconductor substrate inside the wiring portion, and supported on the cavity portion of the semiconductor substrate connected to the support portion and inside the support portion. And a third reflection formed on the detection cell so as to cover a region other than the region of the first reflection layer, the thermoelectric conversion unit, the first reflection layer, and the first absorption layer arranged in order from A detection layer, a third reflection layer, and a fourth reflection layer formed on the wiring portion so as to protrude above the support portion; and a support column formed on the detection cell. The second reflection layer is formed above the fourth reflective layer with a gap therebetween. Characterized by comprising an absorbent layer.

本発明の第3の実施形態に係る非冷却赤外線検出素子は、表面に空洞部が設けられた半導体基板と、前記半導体基板の前記空洞部を囲む領域に形成された配線部と、前記配線部に接続され、前記配線部より内側で前記半導体基板の空洞部上に配置された支持部と、前記支持部に接続されて前記支持部より内側で前記半導体基板の空洞部上に支持され、下部から順に配置された熱電変換部、第1反射層および第1吸収層を含む検出セルと、前記検出セル上に、前記第1反射層の領域以外の領域を覆いかつ前記支持部の上方に張り出すように形成された、第5反射層および第3吸収層を含む積層体と、前記検出セル上に形成された支柱により、前記検出セルおよび前記積層体の上方に間隙を隔てて形成された第2吸収層とを具備し、前記第2吸収層と前記第1吸収層との間の光学距離、前記第1吸収層と前記第1反射層との間の光学距離、前記第2吸収層と前記第3吸収層との間の光学距離、および前記第3吸収層と前記第5反射層との間の光学距離が、互いに異なっていることを特徴とする。 An uncooled infrared detection element according to a third embodiment of the present invention includes a semiconductor substrate having a cavity formed on a surface thereof, a wiring part formed in a region surrounding the cavity of the semiconductor substrate, and the wiring part Connected to the support portion disposed on the cavity portion of the semiconductor substrate inside the wiring portion, and supported on the cavity portion of the semiconductor substrate connected to the support portion and inside the support portion. A detection cell including a thermoelectric conversion unit, a first reflection layer, and a first absorption layer disposed in order, and covering a region other than the region of the first reflection layer on the detection cell and extending above the support unit. The stacked body including the fifth reflective layer and the third absorbing layer formed so as to protrude and the support column formed on the detection cell are formed with a gap above the detection cell and the stacked body. and a second absorbent layer, said second absorbent And the first absorption layer, the optical distance between the first absorption layer and the first reflection layer, the optical distance between the second absorption layer and the third absorption layer, and The optical distances between the third absorption layer and the fifth reflection layer are different from each other .

本発明の実施形態における非冷却赤外線検出素子は、従来はカバーできていなかった領域に反射層を配置したことにより、広い領域で赤外線を吸収することができ、感度を向上できる。また、本発明の実施形態における非冷却赤外線検出素子は、従来のものよりも構造が単純で熱容量が小さいため、応答速度の低下を招くこともない。   The uncooled infrared detection element in the embodiment of the present invention can absorb infrared rays in a wide area by improving the sensitivity by disposing a reflective layer in an area that could not be covered conventionally. In addition, the uncooled infrared detection element according to the embodiment of the present invention has a simpler structure and a smaller heat capacity than the conventional one, so that the response speed does not decrease.

本発明の第1の実施形態に係る非冷却赤外線検出素子では、検出セル上に第1反射層の領域以外の領域を覆いかつ支持部の上方に張り出すように第2反射層を形成し、検出セルおよび第2反射層の上方に間隙を隔てて第2吸収層を1層だけ形成している。   In the uncooled infrared detection element according to the first embodiment of the present invention, the second reflective layer is formed on the detection cell so as to cover a region other than the region of the first reflective layer and to protrude above the support portion, Only one second absorption layer is formed above the detection cell and the second reflection layer with a gap therebetween.

本発明の第2の実施形態に係る非冷却赤外線検出素子では、検出セル上に第1反射層の領域以外の領域を覆うように第3反射層を形成し、配線部上に支持部の上方に張り出すように第4反射層を形成し、検出セル、第3反射層および第4反射層の上方に間隙を隔てて第2吸収層を1層だけ形成している。   In the uncooled infrared detection element according to the second embodiment of the present invention, the third reflective layer is formed on the detection cell so as to cover the region other than the region of the first reflective layer, and above the support portion on the wiring portion. A fourth reflective layer is formed so as to overhang, and only one second absorption layer is formed above the detection cell, the third reflective layer, and the fourth reflective layer with a gap therebetween.

本発明の第3の実施形態に係る非冷却赤外線検出素子では、検出セル上に第1反射層の領域以外の領域を覆いかつ支持部の上方に張り出すように第5反射層および第3吸収層を含む積層体を形成し、検出セルおよび第3吸収層の上方に間隙を隔てて第2吸収層を1層だけ形成している。   In the non-cooled infrared detection element according to the third embodiment of the present invention, the fifth reflective layer and the third absorption are so formed as to cover the region other than the region of the first reflective layer on the detection cell and project above the support portion. A laminated body including layers is formed, and only one second absorption layer is formed above the detection cell and the third absorption layer with a gap therebetween.

このように本発明の各実施形態に係る非冷却赤外線検出素子は、従来カバーできていなかった支持部の周囲の領域の上方にも反射層または反射層および吸収層を配置したことにより、ほぼ全素子面積にわたる広い領域で赤外線を吸収することができ、感度を向上できる。また、本発明の各実施形態に係る非冷却赤外線検出素子は、傘構造をなす第2吸収層が1層だけなので従来のものよりも構造が単純で熱容量が小さいため、応答速度の低下を招くこともない。   As described above, the non-cooled infrared detecting element according to each embodiment of the present invention is almost entirely provided by disposing the reflective layer or the reflective layer and the absorbing layer above the region around the support portion that could not be covered conventionally. Infrared light can be absorbed in a wide area over the element area, and sensitivity can be improved. In addition, since the uncooled infrared detection element according to each embodiment of the present invention has only one second absorption layer having an umbrella structure, the structure is simpler and the heat capacity is smaller than that of the conventional one, leading to a decrease in response speed. There is nothing.

第1の実施形態に係る非冷却赤外線検出素子においては、前記第2吸収層と前記第1吸収層との間の光学距離、前記第1吸収層と前記第1反射層との間の光学距離、および前記第2吸収層と前記第2反射層との間の光学距離が、互いに異なっていることが好ましい。   In the uncooled infrared detection element according to the first embodiment, the optical distance between the second absorption layer and the first absorption layer, and the optical distance between the first absorption layer and the first reflection layer. It is preferable that optical distances between the second absorption layer and the second reflection layer are different from each other.

第2の実施形態に係る非冷却赤外線検出素子においては、前記第2吸収層と前記第1吸収層との間の光学距離、前記第1吸収層と前記第1反射層との間の光学距離、前記第2吸収層と前記第3反射層との間の光学距離、および前記第2吸収層と前記第4反射層との間の光学距離が、互いに異なっていることが好ましい。   In the uncooled infrared detection element according to the second embodiment, the optical distance between the second absorption layer and the first absorption layer, and the optical distance between the first absorption layer and the first reflection layer. It is preferable that the optical distance between the second absorption layer and the third reflection layer and the optical distance between the second absorption layer and the fourth reflection layer are different from each other.

これらの条件を満たしている場合には、広い波長範囲の赤外線を吸収することができるので、赤外線の吸収効率をより高めることができる。   When these conditions are satisfied, infrared rays in a wide wavelength range can be absorbed, so that infrared absorption efficiency can be further increased.

本発明の実施形態に係る非冷却赤外線検出素子を用いて複数列×複数行のマトリクスを構成すれば、非冷却赤外線撮像装置として用いることができる。   If a non-cooled infrared detection element according to an embodiment of the present invention is used to form a matrix of multiple columns and multiple rows, it can be used as an uncooled infrared imaging device.

以下、図面を参照しながら、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は本発明の第1実施形態の非冷却赤外線検出素子の断面図、図2は図1中のB−B線より下を見た平面図である。
(First embodiment)
FIG. 1 is a cross-sectional view of an uncooled infrared detection element according to the first embodiment of the present invention, and FIG. 2 is a plan view of the lower side than the line BB in FIG.

図1に示すように、シリコン基板100の表面には空洞部101が設けられている。シリコン基板100の空洞部101を囲む領域には、配線層172とその周囲を被覆する絶縁層171を含む配線部17が形成されている。この配線部17には、配線部17より内側でシリコン基板100の空洞部101上に配置されるように、支持部16が接続されている。支持部16は、配線層162とその周囲を被覆する絶縁層161を含む。この支持部16には、支持部16より内側でシリコン基板100の空洞部101上に支持されるように、検出セル11が接続されている。この検出セル11は、下部から順に配置された熱電変換部111、その周囲を被覆する絶縁層112、第1反射層113、その周囲を被覆する絶縁層191、および第1吸収層131を含む。なお、第1反射層113として検出セル11内の配線層を用いることにより検出セルの構造を簡略化している。第1反射層(配線層)113は熱電変換部111と接続されている(接続部は図示せず)。検出セル11上には、第1反射層(配線層)113の領域以外の領域を覆いかつ支持部16の上方に張り出すように第2反射層151が形成されている。さらに、検出セル11上には支柱14が形成され、支柱14に支持されて検出セル11および第2反射層151の上方に間隙を隔てて傘構造をなすように絶縁層121および第2吸収層122が形成されている。傘構造部に含まれる第2吸収層122は、支柱14を介して検出セル11と熱的に接続されている。   As shown in FIG. 1, a cavity 101 is provided on the surface of the silicon substrate 100. In a region surrounding the cavity 101 of the silicon substrate 100, a wiring portion 17 including a wiring layer 172 and an insulating layer 171 covering the periphery thereof is formed. A support portion 16 is connected to the wiring portion 17 so as to be disposed on the cavity portion 101 of the silicon substrate 100 inside the wiring portion 17. The support portion 16 includes a wiring layer 162 and an insulating layer 161 that covers the periphery thereof. The detection cell 11 is connected to the support portion 16 so as to be supported on the cavity portion 101 of the silicon substrate 100 inside the support portion 16. The detection cell 11 includes a thermoelectric conversion unit 111, an insulating layer 112 covering the periphery thereof, a first reflective layer 113, an insulating layer 191 covering the periphery thereof, and a first absorption layer 131 arranged in order from the bottom. The structure of the detection cell is simplified by using the wiring layer in the detection cell 11 as the first reflective layer 113. The first reflective layer (wiring layer) 113 is connected to the thermoelectric conversion unit 111 (the connection unit is not shown). On the detection cell 11, a second reflective layer 151 is formed so as to cover an area other than the area of the first reflective layer (wiring layer) 113 and to protrude above the support portion 16. Further, a support column 14 is formed on the detection cell 11, and the insulating layer 121 and the second absorption layer are supported by the support column 14 so as to form an umbrella structure with a gap above the detection cell 11 and the second reflection layer 151. 122 is formed. The second absorption layer 122 included in the umbrella structure is thermally connected to the detection cell 11 via the support column 14.

なお、第2反射層151を段差構造としているのは以下のような理由による。すなわち、通常のデバイスでは配線部17と検出セル11の絶縁層191の上端を同じ高さにすることが多いため、第2反射層151に段差をつけずに平坦に作ると配線部17の上端に第2反射層151が接触し、断熱性が劣化しやすくなる。ただし、配線部17を絶縁層191よりも低く形成すれば、図1のように第2反射層151に段差を設ける必要はない。   The reason why the second reflective layer 151 has a step structure is as follows. That is, in a normal device, the upper end of the wiring portion 17 and the insulating layer 191 of the detection cell 11 are often set to the same height. Therefore, if the second reflective layer 151 is made flat without a step, the upper end of the wiring portion 17 is formed. As a result, the second reflective layer 151 comes into contact with the heat insulating property. However, if the wiring portion 17 is formed lower than the insulating layer 191, there is no need to provide a step in the second reflective layer 151 as shown in FIG.

図2に示すように、熱電変換部111および第1反射層113は、たとえば4個の矩形を含むパターンに加工される。また、支持部16はそれぞれほぼカギ型の一対のパターンをなすようにパターン形成されており、支持部16の周囲はエッチングホール163となっている。支持部16の配線層162は、一端が配線部17の配線層171と接続され、他端が検出セル11の第1反射層(配線層)113と接続されている。   As shown in FIG. 2, the thermoelectric conversion unit 111 and the first reflective layer 113 are processed into a pattern including, for example, four rectangles. Further, the support portion 16 is formed in a pattern so as to form a pair of substantially key patterns, and the periphery of the support portion 16 is an etching hole 163. The wiring layer 162 of the support unit 16 has one end connected to the wiring layer 171 of the wiring unit 17 and the other end connected to the first reflective layer (wiring layer) 113 of the detection cell 11.

素子全体は真空パッケージされ、傘構造部(絶縁層121および第2吸収層122)と検出セル11との間、および空洞部101は真空層となっている。このように、基板100から分離された検出セル11を真空中に置くことにより検出セル11の断熱性を向上させ、感度を高めるようにしている。   The entire device is vacuum packaged, and the space between the umbrella structure (the insulating layer 121 and the second absorption layer 122) and the detection cell 11 and the cavity 101 is a vacuum layer. In this way, the detection cell 11 separated from the substrate 100 is placed in a vacuum to improve the heat insulation of the detection cell 11 and increase the sensitivity.

赤外線が吸収されると、検出セル11の温度が上昇し、熱電変換部111の電気特性が変化する。熱電変換部111の電気特性の変化は、第1反射層(配線層)113、支持部16の配線層162、および配線部17の配線層172を介して読み出される。   If infrared rays are absorbed, the temperature of the detection cell 11 will rise and the electrical characteristics of the thermoelectric conversion part 111 will change. Changes in the electrical characteristics of the thermoelectric conversion unit 111 are read out via the first reflective layer (wiring layer) 113, the wiring layer 162 of the support unit 16, and the wiring layer 172 of the wiring unit 17.

ここで、図1に示すように、本実施形態に係る非冷却赤外線検出素子の素子面を第1吸収領域A1と第2吸収領域A2とに分けて考える。第1吸収領域A1は、赤外線入射側(上側)から見て、第2吸収層122、第1吸収層131、第1反射層113、熱電変換部111がこの順に配置されている領域である。第2吸収領域A2は、赤外線入射側から見て、第2吸収層122、第2反射層151がこの順に配置されている領域である。   Here, as shown in FIG. 1, the element surface of the uncooled infrared detection element according to the present embodiment is divided into a first absorption region A1 and a second absorption region A2. The first absorption region A1 is a region where the second absorption layer 122, the first absorption layer 131, the first reflection layer 113, and the thermoelectric converter 111 are arranged in this order when viewed from the infrared incident side (upper side). The second absorption region A2 is a region where the second absorption layer 122 and the second reflection layer 151 are arranged in this order when viewed from the infrared incident side.

第1吸収領域A1では、入射した赤外線の一部が第2吸収層122で吸収される。第2吸収層122で吸収されずに透過した赤外線は第1吸収層131に達し、その一部が吸収される。第1吸収層131で吸収されずに透過した赤外線は第1反射層(配線層)113に達して反射され、再び第1吸収層131に達し、その一部が吸収される。さらに、反射された赤外線のうち第1吸収層131で吸収されずに上側に透過した赤外線は第2吸収層122まで戻って吸収される。この第1吸収領域A1は、従来の素子において2段の傘構造部と検出セルによって実現されていた領域に対応する。   In the first absorption region A <b> 1, a part of incident infrared rays is absorbed by the second absorption layer 122. Infrared light that has been transmitted without being absorbed by the second absorption layer 122 reaches the first absorption layer 131, and a part thereof is absorbed. Infrared light that is transmitted without being absorbed by the first absorption layer 131 reaches the first reflection layer (wiring layer) 113 and is reflected, reaches the first absorption layer 131 again, and a part thereof is absorbed. Further, the infrared rays that have been transmitted upward without being absorbed by the first absorption layer 131 among the reflected infrared rays return to the second absorption layer 122 and are absorbed. The first absorption region A1 corresponds to the region realized by the two-stage umbrella structure and the detection cell in the conventional element.

第2吸収領域A2では、入射した赤外線の一部が第2吸収層122で吸収される。第2吸収層122で吸収されずに透過した赤外線は第2反射層151に達して反射され、再び第2吸収層122まで戻って吸収される。従来の素子には、第2反射層151(第1反射層113の領域以外の領域を覆いかつ支持部16の上方に張り出すように形成されている)を含む第2吸収領域A2は存在しなかった。   In the second absorption region A2, a part of the incident infrared ray is absorbed by the second absorption layer 122. Infrared light that has been transmitted without being absorbed by the second absorption layer 122 reaches the second reflection layer 151 and is reflected, and returns to the second absorption layer 122 and is absorbed again. In the conventional element, there is a second absorption region A2 including the second reflective layer 151 (formed so as to cover a region other than the region of the first reflective layer 113 and to protrude above the support portion 16). There wasn't.

上記のように本実施形態に係る非冷却赤外線検出素子では、第1吸収領域A1だけでなく第2吸収領域A2も含むほぼ全面で赤外線が吸収されるので赤外線の吸収効率を向上させて感度を向上でき、しかも傘構造部が1段だけ設けられた単純な構造なので熱容量が小さく応答速度の低下を招くこともない。   As described above, in the uncooled infrared detection element according to the present embodiment, infrared rays are absorbed almost entirely including not only the first absorption region A1 but also the second absorption region A2, so the infrared absorption efficiency is improved and the sensitivity is improved. Further, since it is a simple structure in which only one stage of the umbrella structure is provided, the heat capacity is small and the response speed is not lowered.

次に、図3を参照して、本実施形態に係る非冷却赤外線検出素子の好適な設計について説明する。図3に示したように、第1吸収領域A1における第2吸収層122と第1吸収層131との間の物理距離をd1(光学距離をL1)、第1吸収層131と第1反射層113との間の物理距離をd2(光学距離をL2)、第2吸収領域A2における第2吸収層122と第2反射層151との間の物理距離をd3(光学距離をL3)とする。ここで、光学距離(キャビティ厚ともいう)は、各部材間の物理距離と、各部材の間に存在する絶縁層の屈折率によって決定される。たとえば第1吸収層131と第1反射層113との間に存在する絶縁層191の屈折率をnとすると、光学距離L2=nd2と表される。絶縁層としては、二酸化シリコンや、二酸化シリコンと窒化シリコンとの積層体が用いられる。したがって、積層体に含まれる二酸化シリコンおよび窒化シリコンの膜厚比を調整することによって光学距離を設定することもできる。   Next, a preferred design of the uncooled infrared detection element according to the present embodiment will be described with reference to FIG. As shown in FIG. 3, the physical distance between the second absorption layer 122 and the first absorption layer 131 in the first absorption region A1 is d1 (optical distance is L1), and the first absorption layer 131 and the first reflection layer. The physical distance between the second absorption region A2 and the second reflection layer 151 in the second absorption region A2 is d3 (the optical distance is L3). Here, the optical distance (also referred to as cavity thickness) is determined by the physical distance between the members and the refractive index of the insulating layer existing between the members. For example, when the refractive index of the insulating layer 191 existing between the first absorption layer 131 and the first reflection layer 113 is n, the optical distance L2 = nd2. As the insulating layer, silicon dioxide or a laminate of silicon dioxide and silicon nitride is used. Therefore, the optical distance can also be set by adjusting the film thickness ratio of silicon dioxide and silicon nitride contained in the laminate.

本実施形態においては、吸収しようとする赤外線の波長をλ(具体的には、8〜12μmの範囲)として、上記の光学距離をλ/4(すなわち2〜3μm)の整数倍に設定することが好ましい。吸収しようとする赤外線の波長をλ1、λ2、λ3として、たとえばL1=λ1/4、L2=λ2/4、L3=λ3/4となるように設計する。また、L1=λ1/2、L2=λ2/4、L3=λ3/4となるように設計してもよい。   In this embodiment, the wavelength of the infrared rays to be absorbed is λ (specifically, a range of 8 to 12 μm), and the optical distance is set to an integral multiple of λ / 4 (that is, 2 to 3 μm). Is preferred. The wavelengths of the infrared rays to be absorbed are set as λ1, λ2, and λ3, for example, L1 = λ1 / 4, L2 = λ2 / 4, and L3 = λ3 / 4. Further, L1 = λ1 / 2, L2 = λ2 / 4, and L3 = λ3 / 4 may be designed.

第2反射層151に段差を設けた場合でも設けない場合でも、上記のような設計により光学距離の異なる複数の吸収キャビティを平面的に分布させることにより、赤外線の吸収スペクトルをブロードにすることができる。ただし、図1に示したように、第2反射層151に段差を設けたほうが、赤外線の吸収スペクトルをブロードにするには有利になる。   Whether the second reflective layer 151 is provided with a step or not, it is possible to broaden the infrared absorption spectrum by planarly distributing a plurality of absorption cavities having different optical distances by the above-described design. it can. However, as shown in FIG. 1, it is advantageous to provide a step in the second reflective layer 151 in order to broaden the infrared absorption spectrum.

本実施形態に係る非冷却赤外線検出素子の製造方法の一例を、図4〜図8に示す(a)〜(k)の工程を参照して説明する。
(a工程)シリコン基板100を準備し、シリコン基板100上に検出セル11と、支持部16と、配線部17を形成する。検出セル11は、熱電変換部111、その周囲を被覆する絶縁層112、熱電変換部111上に絶縁層112を介して形成された第1反射層113、およびその周囲を被覆する絶縁層191を含む。熱電変換部111は、シリコンのpn接合ダイオードや、酸化バナジウム(VOx)のようなボロメータ材料などからなる。支持部16は配線層162とその周囲を被覆する絶縁層161を含む。配線部17は配線層172とその周囲を被覆する絶縁層171を含む。この際、図2に示すようなカギ型のパターンをなす一対の支持部16を形成するようにエッチングホール163を形成し、さらに支持部16の上部をエッチングする。
An example of the manufacturing method of the uncooled infrared detecting element according to the present embodiment will be described with reference to the steps (a) to (k) shown in FIGS.
(Step a) The silicon substrate 100 is prepared, and the detection cell 11, the support portion 16, and the wiring portion 17 are formed on the silicon substrate 100. The detection cell 11 includes a thermoelectric converter 111, an insulating layer 112 covering the periphery thereof, a first reflective layer 113 formed on the thermoelectric converter 111 via the insulating layer 112, and an insulating layer 191 covering the periphery thereof. Including. The thermoelectric converter 111 is made of a silicon pn junction diode, a bolometer material such as vanadium oxide (VOx), or the like. The support portion 16 includes a wiring layer 162 and an insulating layer 161 covering the periphery thereof. The wiring part 17 includes a wiring layer 172 and an insulating layer 171 covering the periphery thereof. At this time, an etching hole 163 is formed so as to form a pair of support portions 16 having a key-shaped pattern as shown in FIG. 2, and an upper portion of the support portion 16 is further etched.

(b工程)全面にたとえばアモルファスSiからなる第1犠牲層201を堆積する。
(c工程)検出セル11上面が露出するように第1犠牲層201の一部をエッチングする。
(d工程)全面に、下部の保護層211、第1吸収層131、および第2反射層151を堆積する。第1吸収層131の材料としては、たとえばTiNが用いられる。第2反射層151をエッチングして、絶縁層191上で第1反射層(配線層)113以外の領域に重なる領域および第1犠牲層201上で支持部16に重なる領域に第2反射層151を残す。配線層17の中央上部の第1吸収層131および保護層211をエッチングして、第1犠牲層201の表面の一部を露出させるとともに、検出セル11上では第1吸収層131のパターンをほぼ第1反射層113のパターンと重なるように形成する。その後、残存する第2反射層151および第1吸収層131の上に上部の保護層211を形成する。
(Step b) A first sacrificial layer 201 made of, for example, amorphous Si is deposited on the entire surface.
(Step c) A part of the first sacrificial layer 201 is etched so that the upper surface of the detection cell 11 is exposed.
(Step d) A lower protective layer 211, a first absorption layer 131, and a second reflection layer 151 are deposited on the entire surface. For example, TiN is used as the material of the first absorption layer 131. The second reflective layer 151 is etched so that the second reflective layer 151 is formed on the insulating layer 191 so as to overlap with the region other than the first reflective layer (wiring layer) 113 and on the first sacrificial layer 201 over the support portion 16. Leave. The first absorption layer 131 and the protective layer 211 at the upper center of the wiring layer 17 are etched to expose a part of the surface of the first sacrificial layer 201, and the pattern of the first absorption layer 131 is almost formed on the detection cell 11. It is formed so as to overlap with the pattern of the first reflective layer 113. Thereafter, an upper protective layer 211 is formed on the remaining second reflective layer 151 and first absorption layer 131.

(e工程)全面にたとえばアモルファスSiからなる第2犠牲層202を堆積する。
(f工程)検出セル11上の第2犠牲層202の一部を貫通するまでエッチングし、エッチングホールを形成する。このとき、エッチングホールは、検出セル11上で第1反射層(配線層)113のない領域(第2吸収領域A2)に形成する。これは、本実施形態では、第1吸収領域A1の方が第2吸収領域A2よりも吸収効率が高く、支柱14を第2吸収領域A2に形成する方が吸収効率の点で有利になるためである。
(Step e) A second sacrificial layer 202 made of, for example, amorphous Si is deposited on the entire surface.
(Step f) Etching is performed until a part of the second sacrificial layer 202 on the detection cell 11 is penetrated to form an etching hole. At this time, the etching hole is formed on the detection cell 11 in a region where the first reflective layer (wiring layer) 113 is not present (second absorption region A2). This is because in the present embodiment, the first absorption region A1 has higher absorption efficiency than the second absorption region A2, and it is advantageous in terms of absorption efficiency to form the support column 14 in the second absorption region A2. It is.

(g工程)たとえば二酸化シリコンを堆積して、支柱14および傘構造の下層となる絶縁層121を形成する。   (Step g) Silicon dioxide is deposited, for example, to form the support layer 14 and the insulating layer 121 that is the lower layer of the umbrella structure.

(h工程)必要に応じて、絶縁層121をエッチバックして薄膜化する。次に、たとえばTiNからなる第2吸収層122、およびこれを保護する絶縁層121を堆積する。   (Step h) If necessary, the insulating layer 121 is etched back to reduce the thickness. Next, a second absorption layer 122 made of, for example, TiN, and an insulating layer 121 that protects the second absorption layer 122 are deposited.

(i工程)配線部17の中央上部の絶縁層121および第2吸収層122をエッチングして第2犠牲層202の表面を露出させる。   (Step i) The insulating layer 121 and the second absorption layer 122 at the upper center of the wiring portion 17 are etched to expose the surface of the second sacrificial layer 202.

(j工程)第2犠牲層202および第1犠牲層201をエッチングして除去するとともに、シリコン基板100の一部をエッチングして空洞部101を形成する。このとき、単結晶シリコンの面方向選択比の大きいエッチャント(TMAHやKOHなど)を用いることが望ましい。   (Step j) The second sacrificial layer 202 and the first sacrificial layer 201 are removed by etching, and a part of the silicon substrate 100 is etched to form the cavity 101. At this time, it is desirable to use an etchant (TMAH, KOH, etc.) having a large plane direction selection ratio of single crystal silicon.

以上の工程により第1の実施形態に係る非冷却赤外線検出素子を製造することができる。また、必要に応じて下記の工程を追加する。   The uncooled infrared detection element according to the first embodiment can be manufactured through the above steps. In addition, the following steps are added as necessary.

(k工程)例えば弗酸を用いて、絶縁層121、支柱14、および保護層211をエッチングする。この工程により、絶縁層122の厚みや支柱14の太さを調整し、第2反射層151の反射率を向上させることができる。   (Step k) The insulating layer 121, the support column 14, and the protective layer 211 are etched using, for example, hydrofluoric acid. By this step, the thickness of the insulating layer 122 and the thickness of the support column 14 can be adjusted, and the reflectance of the second reflective layer 151 can be improved.

(第2の実施形態)
図9は本発明の第2の実施形態に係る非冷却赤外線検出素子の断面図、図10は図9中のB−B線より下を見た平面図である。
(Second Embodiment)
FIG. 9 is a cross-sectional view of an uncooled infrared detection element according to the second embodiment of the present invention, and FIG. 10 is a plan view of the area below the line BB in FIG.

図9に示すように、本実施形態に係る非冷却赤外線検出素子は、第1の実施形態における第2反射層151の代わりに、検出セル11上に第1反射層111の領域以外の領域を覆うように形成された第3反射層153および配線部17上に支持部16の上方に張り出すように形成された第4反射層154を設けた構造を有する。このような構造を実現するために、配線部17の高さを検出セル11の高さよりも高くしている。   As shown in FIG. 9, the uncooled infrared detection element according to the present embodiment has a region other than the region of the first reflective layer 111 on the detection cell 11 instead of the second reflective layer 151 in the first embodiment. It has a structure in which a third reflective layer 153 formed so as to cover and a fourth reflective layer 154 formed so as to protrude above the support portion 16 on the wiring portion 17 is provided. In order to realize such a structure, the height of the wiring portion 17 is set higher than the height of the detection cell 11.

本実施形態に係る非冷却赤外線検出素子の素子面を第1吸収領域A1と第3吸収領域A3と第4吸収領域A4とに分けて考える。第1吸収領域A1は、赤外線入射側(上側)から見て、第2吸収層122、第1吸収層131、第1反射層113、熱電変換部111がこの順に配置されている領域である。第3吸収領域A3は、赤外線入射側から見て、第2吸収層122、第3反射層153がこの順に配置されている領域である。第4吸収領域A4は、赤外線入射側から見て、第2吸収層122、第4反射層154がこの順に配置されている領域である。   The element surface of the uncooled infrared detection element according to the present embodiment will be divided into a first absorption region A1, a third absorption region A3, and a fourth absorption region A4. The first absorption region A1 is a region where the second absorption layer 122, the first absorption layer 131, the first reflection layer 113, and the thermoelectric converter 111 are arranged in this order when viewed from the infrared incident side (upper side). The third absorption region A3 is a region where the second absorption layer 122 and the third reflection layer 153 are arranged in this order when viewed from the infrared incident side. The fourth absorption region A4 is a region where the second absorption layer 122 and the fourth reflection layer 154 are arranged in this order when viewed from the infrared light incident side.

本実施形態に係る非冷却赤外線検出素子でも、第1吸収領域A1だけでなく第3吸収領域A3および第4吸収領域A4も含むほぼ全面で赤外線が吸収されるので赤外線の吸収効率を向上させて感度を向上できる。また、本実施形態においては、第1の実施形態と異なり、第4反射層154が検出セル11上に形成されていないので、第1の実施形態よりもさらに熱容量の低下が期待できる。   Even in the non-cooled infrared detecting element according to the present embodiment, infrared rays are absorbed not only in the first absorption region A1 but also in almost the entire surface including the third absorption region A3 and the fourth absorption region A4. Sensitivity can be improved. Further, in the present embodiment, unlike the first embodiment, since the fourth reflective layer 154 is not formed on the detection cell 11, a further reduction in heat capacity can be expected as compared with the first embodiment.

図11を参照して、本実施形態に係る非冷却赤外線検出素子の好適な設計について説明する。図11に示したように、第1吸収領域A1における第2吸収層122と第1吸収層131との間の物理距離をd1(光学距離をL1)、第1吸収層131と第1反射層113との間の物理距離をd2(光学距離をL2)、第3吸収領域A3における第2吸収層122と第3反射層153との間の物理距離をd4(光学距離をL4)、第4吸収領域A4における第2吸収層122と第4反射層154との間の物理距離をd5(光学距離をL5)とする。   With reference to FIG. 11, a preferred design of the uncooled infrared detection element according to the present embodiment will be described. As shown in FIG. 11, the physical distance between the second absorption layer 122 and the first absorption layer 131 in the first absorption region A1 is d1 (optical distance is L1), and the first absorption layer 131 and the first reflection layer. 113 is d2 (optical distance is L2), the physical distance between the second absorption layer 122 and the third reflective layer 153 in the third absorption region A3 is d4 (optical distance is L4), and fourth. The physical distance between the second absorption layer 122 and the fourth reflection layer 154 in the absorption region A4 is d5 (optical distance is L5).

本実施形態においては、吸収しようとする赤外線の波長をλ1、λ2、λ4、λ5として、たとえばL1=λ1/4、L2=λ2/4、L4=λ4/4、L5=λ5/4となるように設計する。また、L1=λ1/4、L2=λ2/2、L4=λ4/4、L5=λ5/4となるように設計してもよい。このように設計することにより、広帯域の赤外線を吸収することができる。   In the present embodiment, the wavelengths of infrared rays to be absorbed are λ1, λ2, λ4, and λ5 so that, for example, L1 = λ1 / 4, L2 = λ2 / 4, L4 = λ4 / 4, and L5 = λ5 / 4. To design. Further, L1 = λ1 / 4, L2 = λ2 / 2, L4 = λ4 / 4, and L5 = λ5 / 4 may be designed. By designing in this way, broadband infrared rays can be absorbed.

本実施形態に係る非冷却赤外線検出素子の製造方法のうち、第1の実施形態と異なる工程について説明する。本実施形態では、第1の実施形態における(d)工程(図5)を図12に示すように変更する。第1犠牲層201を検出セル11上面および配線部17上面が露出するようにエッチングする。次に、下部の保護膜211および第1吸収層131を堆積する。次に、金属層を堆積した後、パターニングして検出セル11縁部の第3反射層153および配線部17上の第4反射層154を形成する。その後、必要に応じて、第1吸収層131および保護膜211の一部をエッチングして第1犠牲層201の表面を露出させる。次いで、上部の保護層211を堆積する。この工程以降は、第1の実施形態に係る非冷却赤外線検出素子の製造方法と同じ工程を採用することにより、本実施形態に係る非冷却赤外線検出素子を製造することができる。   Of the method for manufacturing an uncooled infrared detection element according to this embodiment, steps different from those of the first embodiment will be described. In the present embodiment, the step (d) (FIG. 5) in the first embodiment is changed as shown in FIG. The first sacrificial layer 201 is etched so that the upper surface of the detection cell 11 and the upper surface of the wiring part 17 are exposed. Next, a lower protective film 211 and a first absorption layer 131 are deposited. Next, after depositing a metal layer, patterning is performed to form the third reflective layer 153 at the edge of the detection cell 11 and the fourth reflective layer 154 on the wiring portion 17. Thereafter, if necessary, a part of the first absorption layer 131 and the protective film 211 is etched to expose the surface of the first sacrificial layer 201. Next, an upper protective layer 211 is deposited. After this step, the same process as the method for manufacturing the uncooled infrared detection element according to the first embodiment can be adopted to manufacture the uncooled infrared detection element according to the present embodiment.

(第3の実施形態)
図13は本発明の第3の実施形態に係る非冷却赤外線検出素子の断面図、図14は図13中のB−B線より下を見た平面図である。
(Third embodiment)
FIG. 13 is a cross-sectional view of an uncooled infrared detection element according to the third embodiment of the present invention, and FIG. 14 is a plan view seen below the line BB in FIG.

図9に示すように、本実施形態に係る非冷却赤外線検出素子は、検出セル11上に第1反射層113の領域以外の領域を覆いかつ支持部16の上方に張り出すように形成された第5反射層155(第1の実施形態における第2反射層151に相当する)の上に、絶縁層192および第3吸収層133を設けた構造を有する。   As shown in FIG. 9, the uncooled infrared detection element according to the present embodiment is formed on the detection cell 11 so as to cover a region other than the region of the first reflective layer 113 and to protrude above the support portion 16. The insulating layer 192 and the third absorbing layer 133 are provided on the fifth reflective layer 155 (corresponding to the second reflective layer 151 in the first embodiment).

本実施形態に係る非冷却赤外線検出素子の素子面を第1吸収領域A1と第5吸収領域A5とに分けて考えると、第1の実施形態における第1吸収領域A1と第2吸収領域A2とほぼ同様であり、平面図は図2と同様になる。   When the element surface of the uncooled infrared detection element according to the present embodiment is divided into the first absorption area A1 and the fifth absorption area A5, the first absorption area A1 and the second absorption area A2 in the first embodiment The plan view is substantially the same as FIG.

したがって、本実施形態に係る非冷却赤外線検出素子でも、ほぼ全面で赤外線が吸収されるので赤外線の吸収効率を向上させて感度を向上でき、しかも傘構造部が1段だけ設けられた単純な構造なので熱容量が小さく応答速度の低下を招くこともない。   Therefore, even in the uncooled infrared detecting element according to the present embodiment, the infrared ray is absorbed almost on the entire surface, so that the infrared absorption efficiency can be improved and the sensitivity can be improved, and the simple structure in which only one stage of the umbrella structure is provided. Therefore, the heat capacity is small and the response speed is not lowered.

図14を参照して、本実施形態に係る非冷却赤外線検出素子の好適な設計について説明する。図14に示したように、第1吸収領域A1における第2吸収層122と第1吸収層131との間の物理距離をd1(光学距離をL1)、第1吸収層131と第1反射層113との間の物理距離をd2(光学距離をL2)、第5吸収領域A5における第2吸収層122と第3吸収層133との間の物理距離をd6(光学距離をL6)、第3吸収層133と第5反射層155との間の物理距離をd7(光学距離をL7)とする。   With reference to FIG. 14, the suitable design of the uncooled infrared rays detection element which concerns on this embodiment is demonstrated. As shown in FIG. 14, the physical distance between the second absorption layer 122 and the first absorption layer 131 in the first absorption region A1 is d1 (optical distance is L1), and the first absorption layer 131 and the first reflection layer. 113 is d2 (optical distance is L2), the physical distance between the second absorption layer 122 and the third absorption layer 133 in the fifth absorption region A5 is d6 (optical distance is L6), and third The physical distance between the absorption layer 133 and the fifth reflective layer 155 is d7 (optical distance is L7).

本実施形態においては、吸収しようとする赤外線の波長をλ1、λ2、λ6、λ7として、たとえばL1=λ1/4、L2=λ2/4、L6=λ6/4、L7=λ7/4となるように設計する。また、L1=λ1/4、L2=λ2/2、L6=λ6/4、L7=λ7/2となるように設計してもよい。このように設計することにより、広帯域の赤外線を吸収することができる。   In the present embodiment, the wavelengths of infrared rays to be absorbed are λ1, λ2, λ6, and λ7 so that, for example, L1 = λ1 / 4, L2 = λ2 / 4, L6 = λ6 / 4, and L7 = λ7 / 4. To design. Further, it may be designed such that L1 = λ1 / 4, L2 = λ2 / 2, L6 = λ6 / 4, and L7 = λ7 / 2. By designing in this way, broadband infrared rays can be absorbed.

本実施形態に係る非冷却赤外線検出素子の製造方法のうち、第1の実施形態と異なる工程について説明する。本実施形態では、第1の実施形態における(d)工程(図5)を図15に示すように変更する。第1犠牲層201を検出セル11上面が露出するようにエッチングする。次に、下部の保護膜211、第1吸収層131、第5反射層155、絶縁層192、第3吸収層132を堆積する。次に、第1反射層113の上部および配線部17中央上部の第3吸収層132、絶縁層192および第5反射層155をエッチングする。次いで、配線部17中央上部の第1吸収層131および下部の絶縁膜211をエッチングして第1犠牲層の表面を露出させる。さらに、上部の保護層211を堆積する。この工程以降は、第1の実施形態に係る非冷却赤外線検出素子の製造方法と同じ工程を採用することにより、本実施形態に係る非冷却赤外線検出素子を製造することができる。   Of the method for manufacturing an uncooled infrared detection element according to this embodiment, steps different from those of the first embodiment will be described. In the present embodiment, the step (d) (FIG. 5) in the first embodiment is changed as shown in FIG. The first sacrificial layer 201 is etched so that the upper surface of the detection cell 11 is exposed. Next, the lower protective film 211, the first absorption layer 131, the fifth reflection layer 155, the insulating layer 192, and the third absorption layer 132 are deposited. Next, the third absorbing layer 132, the insulating layer 192, and the fifth reflecting layer 155 at the upper part of the first reflecting layer 113 and at the upper center of the wiring part 17 are etched. Next, the surface of the first sacrificial layer is exposed by etching the first absorption layer 131 at the upper center of the wiring part 17 and the insulating film 211 at the lower part. Further, an upper protective layer 211 is deposited. From this step onward, the same process as the method for manufacturing the uncooled infrared detection element according to the first embodiment can be employed to manufacture the uncooled infrared detection element according to the present embodiment.

実施形態1に係る非冷却赤外線検出素子の断面図。FIG. 3 is a cross-sectional view of the uncooled infrared detection element according to the first embodiment. 実施形態1に係る非冷却赤外線検出素子の平面図。FIG. 3 is a plan view of the uncooled infrared detection element according to the first embodiment. 実施形態1に係る非冷却赤外線検出素子における光学距離を説明する図。FIG. 3 is a diagram for explaining an optical distance in the uncooled infrared detection element according to the first embodiment. 実施形態1に係る非冷却赤外線検出素子の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the uncooled infrared rays detection element which concerns on Embodiment 1. FIG. 実施形態1に係る非冷却赤外線検出素子の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the uncooled infrared rays detection element which concerns on Embodiment 1. FIG. 実施形態1に係る非冷却赤外線検出素子の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the uncooled infrared rays detection element which concerns on Embodiment 1. FIG. 実施形態1に係る非冷却赤外線検出素子の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the uncooled infrared rays detection element which concerns on Embodiment 1. FIG. 実施形態1に係る非冷却赤外線検出素子の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the uncooled infrared rays detection element which concerns on Embodiment 1. FIG. 実施形態2に係る非冷却赤外線検出素子の断面図。Sectional drawing of the uncooled infrared rays detection element which concerns on Embodiment 2. FIG. 実施形態2に係る非冷却赤外線検出素子の平面図。FIG. 6 is a plan view of an uncooled infrared detection element according to the second embodiment. 実施形態2に係る非冷却赤外線検出素子における光学距離を説明する図。The figure explaining the optical distance in the uncooled infrared rays detection element which concerns on Embodiment 2. FIG. 実施形態2に係る非冷却赤外線検出素子の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the uncooled infrared rays detection element which concerns on Embodiment 2. FIG. 実施形態3に係る非冷却赤外線検出素子の断面図。Sectional drawing of the uncooled infrared rays detection element which concerns on Embodiment 3. FIG. 実施形態3に係る非冷却赤外線検出素子における光学距離を説明する図。The figure explaining the optical distance in the uncooled infrared rays detection element which concerns on Embodiment 3. FIG. 実施形態3に係る非冷却赤外線検出素子の製造方法を示す断面図。Sectional drawing which shows the manufacturing method of the uncooled infrared rays detection element which concerns on Embodiment 3. FIG.

符号の説明Explanation of symbols

100…シリコン基板、101…空洞部、11…検出セル、111…熱電変換部、112…絶縁層、113…第1反射層、121…絶縁層、122…第2吸収層、131…第1吸収層、133…第3吸収層、14…支柱、151…第2反射層、153…第3反射層、154…第4反射層、155…第5反射層、16…支持部、161…絶縁層、162…配線層、163…エッチングホール、17…配線部、171…絶縁層、172…配線層、191、192…絶縁層、201…第1犠牲層、202…第2犠牲層、211…絶縁層。   DESCRIPTION OF SYMBOLS 100 ... Silicon substrate, 101 ... Cavity part, 11 ... Detection cell, 111 ... Thermoelectric conversion part, 112 ... Insulating layer, 113 ... 1st reflection layer, 121 ... Insulating layer, 122 ... 2nd absorption layer, 131 ... 1st absorption Layer, 133 ... third absorbing layer, 14 ... support, 151 ... second reflecting layer, 153 ... third reflecting layer, 154 ... fourth reflecting layer, 155 ... fifth reflecting layer, 16 ... supporting part, 161 ... insulating layer , 162 ... wiring layer, 163 ... etching hole, 17 ... wiring part, 171 ... insulating layer, 172 ... wiring layer, 191, 192 ... insulating layer, 201 ... first sacrificial layer, 202 ... second sacrificial layer, 211 ... insulating layer.

Claims (5)

表面に空洞部が設けられた半導体基板と、
前記半導体基板の前記空洞部を囲む領域に形成された配線部と、
前記配線部に接続され、前記配線部より内側で前記半導体基板の空洞部上に配置された支持部と、
前記支持部に接続されて前記支持部より内側で前記半導体基板の空洞部上に支持され、下部から順に配置された熱電変換部、第1反射層および第1吸収層を含む検出セルと、
前記検出セル上に、前記第1反射層の領域以外の領域を覆いかつ前記支持部の上方に張り出すように形成された第2反射層と、
前記検出セル上に形成された支柱により、前記検出セルおよび前記第2反射層の上方に間隙を隔てて形成された第2吸収層と
を具備したことを特徴とする非冷却赤外線検出素子。
A semiconductor substrate having a cavity on the surface;
A wiring portion formed in a region surrounding the cavity of the semiconductor substrate;
A support portion connected to the wiring portion and disposed on the cavity of the semiconductor substrate inside the wiring portion;
A detection cell connected to the support part and supported on the cavity of the semiconductor substrate inside the support part and arranged in order from the bottom; a detection cell including a first reflective layer and a first absorption layer;
A second reflective layer formed on the detection cell so as to cover an area other than the area of the first reflective layer and to protrude above the support;
An uncooled infrared detection element, comprising: a support formed on the detection cell; and a second absorption layer formed above the detection cell and the second reflective layer with a gap therebetween.
表面に空洞部が設けられた半導体基板と、
前記半導体基板の前記空洞部を囲む領域に形成された配線部と、
前記配線部に接続され、前記配線部より内側で前記半導体基板の空洞部上に配置された支持部と、
前記支持部に接続されて前記支持部より内側で前記半導体基板の空洞部上に支持され、下部から順に配置された熱電変換部、第1反射層および第1吸収層を含む検出セルと、
前記検出セル上に、前記第1反射層の領域以外の領域を覆うように形成された第3反射層と、
前記配線部上に、前記支持部の上方に張り出すように形成された第4反射層と、
前記検出セル上に形成された支柱により、前記検出セル、前記第3反射層および前記第4反射層の上方に間隙を隔てて形成された第2吸収層と
を具備したことを特徴とする非冷却赤外線検出素子。
A semiconductor substrate having a cavity on the surface;
A wiring portion formed in a region surrounding the cavity of the semiconductor substrate;
A support portion connected to the wiring portion and disposed on the cavity of the semiconductor substrate inside the wiring portion;
A detection cell connected to the support part and supported on the cavity of the semiconductor substrate inside the support part and arranged in order from the bottom; a detection cell including a first reflective layer and a first absorption layer;
A third reflective layer formed on the detection cell so as to cover a region other than the region of the first reflective layer;
A fourth reflective layer formed on the wiring part so as to protrude above the support part;
And a second absorption layer formed above the detection cell, the third reflective layer, and the fourth reflective layer by a support formed on the detection cell with a gap therebetween. Cooling infrared detector.
表面に空洞部が設けられた半導体基板と、
前記半導体基板の前記空洞部を囲む領域に形成された配線部と、
前記配線部に接続され、前記配線部より内側で前記半導体基板の空洞部上に配置された支持部と、
前記支持部に接続されて前記支持部より内側で前記半導体基板の空洞部上に支持され、下部から順に配置された熱電変換部、第1反射層および第1吸収層を含む検出セルと、
前記検出セル上に、前記第1反射層の領域以外の領域を覆いかつ前記支持部の上方に張り出すように形成された、第5反射層および第3吸収層を含む積層体と、
前記検出セル上に形成された支柱により、前記検出セルおよび前記積層体の上方に間隙を隔てて形成された第2吸収層と
を具備し、前記第2吸収層と前記第1吸収層との間の光学距離、前記第1吸収層と前記第1反射層との間の光学距離、前記第2吸収層と前記第3吸収層との間の光学距離、および前記第3吸収層と前記第5反射層との間の光学距離が、互いに異なっていることを特徴とする非冷却赤外線検出素子。
A semiconductor substrate having a cavity on the surface;
A wiring portion formed in a region surrounding the cavity of the semiconductor substrate;
A support portion connected to the wiring portion and disposed on the cavity of the semiconductor substrate inside the wiring portion;
A detection cell connected to the support part and supported on the cavity of the semiconductor substrate inside the support part and arranged in order from the bottom; a detection cell including a first reflective layer and a first absorption layer;
A laminate including a fifth reflective layer and a third absorption layer formed on the detection cell so as to cover a region other than the region of the first reflective layer and to protrude above the support portion;
The support column formed on the detection cell comprises a second absorption layer formed above the detection cell and the stacked body with a gap therebetween, and the second absorption layer and the first absorption layer An optical distance between the first absorption layer and the first reflection layer, an optical distance between the second absorption layer and the third absorption layer, and the third absorption layer and the first 5. An uncooled infrared detecting element , wherein optical distances between the reflecting layers are different from each other .
前記第2吸収層と前記第1吸収層との間の光学距離、前記第1吸収層と前記第1反射層との間の光学距離、および前記第2吸収層と前記第2反射層との間の光学距離が、互いに異なっていることを特徴とする請求項1に記載の非冷却赤外線検出素子。   An optical distance between the second absorbing layer and the first absorbing layer, an optical distance between the first absorbing layer and the first reflecting layer, and between the second absorbing layer and the second reflecting layer. The uncooled infrared detection element according to claim 1, wherein optical distances between them are different from each other. 前記第2吸収層と前記第1吸収層との間の光学距離、前記第1吸収層と前記第1反射層との間の光学距離、前記第2吸収層と前記第3反射層との間の光学距離、および前記第2吸収層と前記第4反射層との間の光学距離が、互いに異なっていることを特徴とする請求項2に記載の非冷却赤外線検出素子。   An optical distance between the second absorbing layer and the first absorbing layer, an optical distance between the first absorbing layer and the first reflecting layer, and between the second absorbing layer and the third reflecting layer. The optical distance between the second absorption layer and the fourth reflection layer is different from each other, and the uncooled infrared detection element according to claim 2.
JP2005034580A 2005-02-10 2005-02-10 Uncooled infrared detector Expired - Fee Related JP4208846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034580A JP4208846B2 (en) 2005-02-10 2005-02-10 Uncooled infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034580A JP4208846B2 (en) 2005-02-10 2005-02-10 Uncooled infrared detector

Publications (2)

Publication Number Publication Date
JP2006220555A JP2006220555A (en) 2006-08-24
JP4208846B2 true JP4208846B2 (en) 2009-01-14

Family

ID=36982976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034580A Expired - Fee Related JP4208846B2 (en) 2005-02-10 2005-02-10 Uncooled infrared detector

Country Status (1)

Country Link
JP (1) JP4208846B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919049B1 (en) * 2007-07-20 2009-10-02 Ulis Soc Par Actions Simplifie ELECTROMAGNETIC RADIATION DETECTOR AND METHOD FOR MANUFACTURING SUCH DETECTOR
US7825379B2 (en) 2007-11-09 2010-11-02 Mitsubishi Electric Corporation Thermal-type infrared image sensing device and method of producing the same
JP5264471B2 (en) * 2008-12-26 2013-08-14 三菱電機株式会社 Infrared detector and infrared solid-state imaging device
WO2011121706A1 (en) * 2010-03-29 2011-10-06 株式会社 東芝 Infrared ray imaging element and infrared ray imaging device
JP2012127881A (en) * 2010-12-17 2012-07-05 Mitsubishi Electric Corp Infrared sensor and infrared sensor array
CN102564601A (en) 2010-12-22 2012-07-11 精工爱普生株式会社 Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
JP5655556B2 (en) * 2010-12-27 2015-01-21 セイコーエプソン株式会社 THERMAL TYPE PHOTODETECTOR, THERMAL TYPE PHOTODETECTOR, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THERMAL TYPE OPTICAL DETECTOR
JP5708020B2 (en) * 2011-02-24 2015-04-30 セイコーエプソン株式会社 THERMAL TYPE PHOTODETECTOR, THERMAL TYPE PHOTODETECTOR, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THERMAL TYPE OPTICAL DETECTOR
US9274005B2 (en) * 2012-08-23 2016-03-01 Robert Bosch Gmbh Device and method for increasing infrared absorption in MEMS bolometers
JP6230652B2 (en) 2016-05-12 2017-11-15 三菱電機株式会社 Infrared sensor
CN112802956B (en) * 2021-04-09 2021-07-27 山东新港电子科技有限公司 MEMS thermopile infrared detector and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107224A (en) * 2000-09-29 2002-04-10 Toshiba Corp Infrared sensor and its manufacturing method
JP2003294523A (en) * 2002-04-03 2003-10-15 Mitsubishi Electric Corp Infrared detector, its manufacturing method and infrared solid imaging device
JP3944465B2 (en) * 2003-04-11 2007-07-11 三菱電機株式会社 Thermal infrared detector and infrared focal plane array

Also Published As

Publication number Publication date
JP2006220555A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4208846B2 (en) Uncooled infrared detector
JP3514681B2 (en) Infrared detector
JP4053978B2 (en) Improved high-speed, multi-level uncooled bolometer and method of manufacturing the same
US7145144B2 (en) Thermal infrared sensor device and thermal infrared sensor array
JP4228232B2 (en) Thermal infrared detector
US7667202B2 (en) Multilayer-structured bolometer and method of fabricating the same
JP2006214758A (en) Infrared detector
JP5259430B2 (en) Photodetector
CN113432725B (en) Infrared detector with multilayer structure based on CMOS (complementary Metal oxide semiconductor) process
JP5251310B2 (en) Two-wavelength thermal infrared array sensor
CN104246457A (en) Thermopile infrared sensor structure with a high filling level
EP2261617B1 (en) Photodetector
US7888762B2 (en) Infrared detector and fabricating method of infrared detector
KR100535841B1 (en) Thermal infrared image pickup device and manufacturing method thereof
JPH04158583A (en) Infrared-ray detecting element
JP5214690B2 (en) Infrared detector
US20200115225A1 (en) Process for fabricating a device for detecting electromagnetic radiation having an improved encapsulation structure
JPH09133578A (en) Infrared detection element
JP2000321125A (en) Infrared sensor element
KR102587111B1 (en) A Bolometer MEMS Device And The Manufacturing Method of the Bolometer MEMS Device
CN113432726B (en) Infrared detector with combined columnar structure
CN113432724B (en) Uncooled tuned infrared detector
JP4915898B2 (en) Infrared sensor
US20210055163A1 (en) Infrared sensor structure
JP2006208177A (en) Infrared detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees