WO1990009674A1 - Dispositif generateur d'ondes hyperfrequences a cathode virtuelle - Google Patents

Dispositif generateur d'ondes hyperfrequences a cathode virtuelle Download PDF

Info

Publication number
WO1990009674A1
WO1990009674A1 PCT/FR1990/000112 FR9000112W WO9009674A1 WO 1990009674 A1 WO1990009674 A1 WO 1990009674A1 FR 9000112 W FR9000112 W FR 9000112W WO 9009674 A1 WO9009674 A1 WO 9009674A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrons
virtual cathode
energy
output circuit
cathode
Prior art date
Application number
PCT/FR1990/000112
Other languages
English (en)
Inventor
Guy Convert
Jean-Pierre Brasile
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Csf filed Critical Thomson-Csf
Priority to DE69016712T priority Critical patent/DE69016712T2/de
Priority to EP90903856A priority patent/EP0413018B1/fr
Publication of WO1990009674A1 publication Critical patent/WO1990009674A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/74Tubes specially designed to act as transit-time diode oscillators, e.g. monotrons

Definitions

  • the present invention has for object a device generating microwave waves using the phe omene of virtual cathode. " I
  • vircators which take advantage of the space charge effects existing in electron beams produced by the barrel of an electron tube. Indeed, as is known, it is these effects which fix, for given voltages, a maximum '-value to the current which can be produced by an electron gun, or which can be transported in a given space for a set of electrodes of given geometry '.
  • a current of electrons is injected into a defined space, most often several times the maximum current that could actually cross this space, n
  • n is then accumulation of electrons which form a potential well, called a virtual cathode, and which causes the reflection of a more or less large fraction of the electrons in the beam.
  • This virtual cathode is unstable, that is to say that the amplitude of its potential trough and its position oscillate, causing a periodic variation in the number of electrons reflected or transmitted.
  • Such a device makes it possible to create electromagnetic fields with high microwave powers and under a reduced volume.
  • the signal transmitted is of poor quality, that is to say that the power is transmitted on "" many * mbaldes in a series of simultaneous or successive frequencies; the applications of this type of signal are thus quite reduced.
  • the conversion efficiency is poor (of the order of 2 to 3% at best) compared to the efficiency which it is possible to obtain with other generators, such as conventional speed modulation electronic tubes. .
  • the present invention relates to a microwave generator which uses the phenomenon of an oscillating virtual cathode but which makes it possible to obtain microwave energy of better spectral quality and with a better conversion efficiency than conventional vircators.
  • the subject of the invention is a
  • - microwave generator device comprising:
  • an electronic gun capable of producing an electron beam in an injection region, the transported current being sufficient to cause the formation of a virtual cathode
  • 25 d electrons are reflected by the virtual cathode, or even that it uses both the energy of the electrons transmitted and reflected that of the electrons, but suitably phase-shifted.
  • FIG. 3 another embodiment of the device according to the invention, in which the output hyper ⁇ frequency circuit uses on the one hand the electrons transmitted by the virtual cathode and, on the other hand, the electrons reflected by this virtual cathode but suitably out of phase;
  • FIG. 1 therefore represents a first embodiment of the device according to the invention, seen in longitudinal schematic section.
  • the generator according to the invention is a structure of revolution around a longitudinal axis ZZ.
  • the cathode 11 is in the form of a conductive cylinder of axis ZZ the circumference of which protrudes 10 so that the electrons emitted by this cathode form an annular beam, represented by a dotted feone 8 in the figure.
  • the frame 20 of the anode is constituted by a
  • the generator according to the invention also comprises an output microwave circuit 4 which is, in this embodiment, of the coaxial type; it is formed by an inner conductive cylinder 5 and an outer conductor formed by the extension of the armature 20, between which an annular space 44 is defined.
  • the output circuit is substantially symmetrical of the electron gun 1 with respect to a normal plane in the plane of the figure, that is to say that the external conductor has an annular shoulder 43 and a screen 41 bearing for example by legs on the shoulder 43 and defining with this shoulder a circular slot 42 for passage electrons from the beam 8. The latter is received by an annular projection 50 of the inner conductor 5. More generally, the drawings of the output circuit 4 and of the barrel 1 are such that the two impedances are close.
  • This zone is laterally limited by the wall 20.
  • the application to the cathode 11 of a negative voltage with respect to that of the anode causes the emission of the annular electron beam 8.
  • the armature 20, the screen 21 and the elements of the output circuit 4 are at ground potential and a voltage is applied to the cathode 11
  • a virtual cathode 80 is formed in the injection region 3.
  • the electrons transmitted by the virtual cathode 80 are represented by an arrow 82 and the electrons reflected by this cathode by arrows 81 Virtual.
  • a longitudinal magnetic field (along the ZZ axis) is preferably applied to the structure, using means not shown, to focus the beam 8 thus produced.
  • the mechanism for forming a virtual cathode is recalled below. Inside an electron beam there is a charge of space: on the axis of the beam, the potential and the speed of the electrons are lower than at the periphery of this beam. If the electron density * and, "per surf, the transported current increase, the potential and the speed of the electrons decrease until reaching zero: the electrons then form a negatively charged cluster, forming a well of •
  • injection current it is commonly measured in Gégajjertz.
  • the maximum current intensity beyond which the electrons form a virtual cathode is a function of the potential of the electron beam *, as well as of the dimensions of the beam and of the injection region 3; the maximum current for a given electron beam is' _ç ⁇ ⁇ low when the injection zone is of larger diameter.
  • the dimensions of the device are chosen (electron gun and injection zone) and the cost of the electron beam so that it is greater than the maximum current likely to flow through region 3, thus causing formation. of a virtual cathode.
  • the electrons transmitted represent a current modulated at the frequency of oscillation of the virtual cathode.
  • the energy is transmitted paro ⁇ the coaxial output circuit 4 to the outside.
  • the dimensions of the barrel and of the injection region are preferably chosen so that the beam current is greater than, but close to the maximum current, so that the transmitted current is on average a fraction. significant of the total current injected into the injection region.
  • FIG. 2 shows another embodiment of the device according to the invention, which includes means for post-acceleration of the electrons used, also seen in longitudinal schematic section.
  • the generator represented in FIG. 2 takes up the structure of that of FIG. 1, except that the output circuit 4 is electrically isolated from the electron gun 1. More precisely, the armature 20 forming the anode of the electron gun is without electrical contact with the external conductor, now marked 40, of the output circuit 4.
  • the conductor 40 extends around the armature 20 in the form of a hollow cylinder with the same axis ZZ as this frame.
  • This embodiment further comprises means 7 for applying between the cathode 11 and the output circuit 4 a voltage V., greater than the cathode / anode voltage V effet.
  • the means 7 are constituted by a transformer whose primary 71 receives the supply voltage and the secondary 72 is connected:
  • FIG. 3 represents another embodiment of the generator according to the invention, in which both the transmitted electrons and the electrons reflected by the virtual cathode are used.
  • the electron gun 1 formed by the cathode 11 and the anode 20, 21.
  • the gun 1 produces, here too, an electron beam 8 under conditions such that there is formation of a virtual cathode 80 with reflection (arrows 81) of a part of the electrons and transmission (arrow 82) of another part of the electrons towards, for example, a metal wall 50 delimiting the injection region 3.
  • the output microwave circuit 4 has two channels: one leads into a region marked 4A, between the anode 20 and the virtual cathode 80 and intended to recover the energy of the reflected electrons 81; the other leads into a region marked 4B, between the virtual cathode 80 and the wall 50 and it is intended to recover the energy of transmitted electrons 82.
  • phase shifter 45 which can be produced by any known means and connected on one of the channels, 4A or 4B, before the energies existing in the two channels combine to form the output energy.
  • the wall 46 between the channels 4A and 4B, must be of sufficient thickness to prevent the fields present in the two channels from coupling before the virtual cathode 80, this thickness being of the order of magnitude of the distance from wall 46 to the virtual cathode.
  • FIG. 3 shows a particular embodiment of the circuit 4.
  • Other variants are of course possible, which consist, for example, of producing, for each of the channels 4A and 4B, a structure of coaxial type as described Figure 1 for circuit 4.
  • FIG. 4 represents another embodiment of the device according to the invention, in which the beam produced by the electron gun is a solid cylinder, always seen in schematic longitudinal section.
  • the diameter of the cat-Hjfide 12 must be substantially less than the wavelength of the microwave energy obtained at the output, for example of
  • FIG. 5 shows another embodiment of the generator according to the invention, in which the beam
  • the electronics used are a full cylindrical beam and where the generator further comprises post-acceleration means ".
  • Figure 6 shows an embodiment similar to that of Figure 3, but in which the

Landscapes

  • Microwave Tubes (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

L'invention a pour objet un générateur d'ondes hyperfréquences qui utilise un faisceau d'électrons et le phénomène de cathode virtuelle oscillante, mais qui permet d'obtenir une énergie de qualité spectrale et un rendement de conversion améliorés par rapport aux générateurs vircators classiques. Cela est réalisé en utilisant séparément les électrons issus de la cathode virtuelle (80), c'est-à-dire transmis (82) ou réfléchis (81), pour transformer leur énergie cinétique en énergie hyperfréquence (4).

Description

DISPOSITIF GENERATEUR D'ONDES HYPERFREQUENCES A CATHODE VIRTUELLE
La présente invention a po tr objet un dispositif générateur d'ondes hyperfréquences utilisant le phé omène de cathode virtuelle. " I
Pour engendrer des ondes hyperfréquences, .11 est connu notamment d'utiliser des dispositifs appelés vircators, qui mettent à profit les effets de charge d'espace existant dans des faisceaux d'électrons produits par le canon d'un tube électronique. En effet, ainsi qu'il est connu, ce sont ces effets qui fixent, pour des tensions données, une ' -valeur maximale au courant qui peut être produit par un canon à électrons, ou encore qui peut être transporté dans un espace donné pour un ensemble d'électrodes de géométrie donnée'." Dans un vircator, on injecte dans un espace défini un courant d'électrons égal, le plus souvent, à plusieurs fois le courant maximum qui pourrait effectivement franchir cet espace, n" y a alors accumulation des électrons qui forment un puits de potentiel, appelé cathode virtuelle, et qui provoque , la réflexion d une fraction plus ou moins importante des électrons du faisceau. Cette cathode virtuelle est instable, c'est-à-dire que l'amplitude de son creux de potentiel et sa position oscillent, entraînant une variation périodique du nombre des électrons réfléchis ou transmis. Un tel dispositif permet de créer des champs électromagnétiques avec des puissances hyperfréquences élevées et sous un volume réduit. Toutefois, on constate que le signal émis est de qualité médiocre, c'est-à-dire que la puissance est émise sur ""de nombreux *mθdes en une suite de fréquences simultanées ou successives ; les applications de ce type de signaux s'en trouvent assez réduites. Par ailleurs, le rendement de conversion est mauvais (de l'ordre de 2 à 3% au mieux) par rapport au rendement qu'il est possible d'obtenir avec d'autres générateurs, tels que les tubes électroniques à modulation de vitesse conventionnels .
La présente invention a pour objet un générateur d'ondes hyperfréquences qui utilise le phénomène de cathode virtuelle oscillante mais qui permette d'obtenir une énergie hyperfréquence de meilleure qualité spectrale et avec un meilleur rendement de conversion que les vircators classiques.
10 Cela est réalisé en utilisant séparément les électrons d'une phase donnée (c'est-à-dire électrons transmis ou électrons réfléchis) pour transformer leur énergie cinétique en une énergie hyperfréquence .
Plus précisément, l'invention a pour objet un
- dispositif générateur d'ondes hyperfréquences comportant :
- un canon électronique, susceptible de produire un faisceau d'électrons dans une région d'injection, le courant transporté étant suffisant pour provoquer la formation d'une cathode virtuelle ;
-- - un circuit hyperfréquence de sortie, réalisant la transformation de l'énergie cinétique des électrons en une énergie hyperfréquence, tel que l'énergie des électrons qu'il prélève soit en phase, soit qu'il utilise uniquement l'énergie des électrons transmis, soit qu'il utilise uniquement l'énergie
25 des électrons réfléchis par la cathode virtuelle, soit encore qu'il utilise à la fois l'énergie des électrons transmis et celle des électrons réfléchis, mais convenablement déphasée.
D'autres objets, particularités et résultats de
30 l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les figures annexées, qui représentent :
- la figure 1, un premier mode de réalisation du dispositif générateur selon l'invention, dans lequel le circuit hyperfréquence de sortie utilise les électrons transmis par la cathode virtuelle ;
- la figure 2, un deuxième mode de réalisation du dispositif selon l'invention, dans lequel le circuit hyper- fréquence de sortie assure en outre une post-accélération des électrons utilisés ;
- la figure 3, un autre mode de réalisation du dispositif selon l'invention, dans lequel le circuit hyper¬ fréquence de sortie utilise d'une part les électrons transmis par la cathode virtuelle et, d'autre part, les électrons réfléchis par cette cathode virtuelle mais convenablement déphasés ;
- les figures 4, 5 et 6 représentent des variantes des modes de réalisation précédents dans lesquelles le faisceau élec- tronique présente une section différente.
Sur ces différentes figures, les mêmes références se rapportent aux mêmes éléments.
La figure 1 représente donc un premier mode de réalisation du dispositif selon l'invention, vu en coupe schématique longitudinale .
Le générateur selon l'invention est une structure de révolution autour d'un axe longitudinal ZZ.
Il comporte un canon à électrons 1/ formé d'une cathode 11 et d'une anode, composée d'une armature 20 et d'un écran 21. La cathode 11 se présente sous la forme d'un cylindre conducteur d'axe ZZ dont la circonférence fait une saillie 10, de façon à ce que les électrons émis par cette cathode forment un faisceau annulaire, représenté par une feone pointillée 8 sur la figure. L'armature 20 de l'anode est constituée par un
& *? cylindre creux, de même axe ZZ que la cathode ; eEe êst**fermée par un épaulement annulaire 23 et un écran 21 en forme de disque, laissant subsister une fente annulaire 22 pour le passage du faisceau d'électrons 8. L'écran 21 est par exemple fixé par trois pattes (non représentées) sur l'épaulement 23'. Le générateur selon l'invention comporte encore un circuit hyperfréquence de sortie 4 qui est, dans ce mode de réalisation, de type coaxial ; il est formé par un cylindre conducteur intérieur 5 et un conducteur extérieur constitué par le prolongement de l'armature 20, entre lesquels est défini un espace annulaire 44. Le circuit de sortie est sensiblement symétrique du canon à électrons 1 par rapport à un plan normal au plan de la figure, c'est-à-dire que le conducteur extérieur comporte un épaulement 43 annulaire et un écran 41 prenant appui par exemple par des pattes sur l'épaulement 43 et définissant avec cet épaulement une fente circulaire 42 pour le passage des électrons du faisceau 8. Ce dernier est reçu par une saillie annulaire 50 du conducteur intérieur 5. Plus généralement, les dessins du circuit de sortie 4 et du canon 1 sont tels que les deux impédances soient voisines .
Entre les éléments 21, 23 d'une part et 41, 43 d'autre part, se situe une zone 3 dite région d'injection. Cette zone est limitée latéralement par la paroi 20.
Le fonctionnement de ce dispositif est le suivant.
L'application à la cathode 11 d'une tension négative par rapport à celle de l'anode provoque l'émission du faisceau d'électrons annulaire 8. A titre d'exemple, l'armature 20, l'écran 21 et les éléments du circuit de sortie 4 sont au potentiel de la masse et on applique à la cathode 11 une tension
-V0. Les paramètres sont choisis de sorte que se forme, dans la région d'injection 3, une cathode virtuelle 80. On a représenté par une flèche 82 les électrons transmis par la cathode virtuelle 80 et par des flèches 81, les électrons réfléchis par cette cathode virtuelle. En outre, on applique de préférence à la structure, à l'aide de moyens non représentés, un champ magnétique longitudinal (selon l'axe ZZ) pour focaliser le faisceau 8 ainsi produit.
On rappelle ci-après le mécanisme de formation d'une cathode virtuelle. A l'intérieur d'un faisceau électronique existe une charge d'espace : sur l'axe du faisceau, le potentiel et la vitesse des électrons sont plus faibles qu'à la périphérie de ce faisceau. Si la densité d'électrons* et, " par surfe, le courant transporté augmentent, le potentiel et la vitesse des électrons diminuent jusqu'à atteindre zéro : les électrons forment alors un amas chargé négativement, formant un puits de •
Figure imgf000007_0001
courant d'injection ; elle se mesure couramment en Gègajjertz . Par ailleurs, l'intensité de courant maximale au-delà de laquelle les électrons forment une cathode virtuelle estf fonction du potentiel du faisceau d'électrons*, ainsi' que des dimensions du faisceau et de la région d'injection 3 ; le courant maximum pour un faisceau d'électrons donné est ' _çï~ faible lorsque la zone d'injection est de plus grand diamètre .
Selon l'invention, on choisit les dimensions du dispositif (canon à électrons et zone d'injectipn) et le coûtant du faisceau d'électrons de sorte qu'il soit supérieur au courant maximum susceptible de parcourir la région 3, entraînant ainsi la formation d'une cathode virtuelle. De la sorte, les électrons transmis représentent un courant modulé à la fréquence d'oscillation de la cathode virtuelle. Les électrons transmis, et eux seuls, voient leur énergie cinétique convertie
Figure imgf000007_0002
champ électromagnétique par le circuit de ' sortie 4 et, plus précisément, dans 1 espace de freinage compris " entra le conducteur 5 et 1 écran 41. L énergie produite est transmise paro¬ le circuit coaxial de sortie 4 vers l'extérieur.
Il apparaît que l'énergie ainsi produite l'est avec un rendement très supérieur à celui des vircators classiques!"' En effet, les recherches de la Déposante ont montré qu'une " des raisons du faible rendement des vircators Classiques était, lç fait d'utiliser un circuit de couplage qui impose urf enârnp électromagnétique de phase sensiblement égale à tόustJ les électrons, aussi bien transmis que réfléchis par la
Figure imgf000007_0003
virtuelle : or ces deux sortes d'électrons sont sensiblement en opposition de phase et les énergies qu'ils créent s'annulent en grande partie . Selon l'invention, on utilise donc séparément l'énergie des électrons transmis ou réfléchis. Dans le présent mode de réalisation, on n'utilise que les électrons transmis . En outre, le fait d'utiliser, selon l'invention, séparément les électrons de même phase a pour effet de permettre la réalisation d'un couplage plus étroit entre électrons, et circuit de sortie et, par suite, l'obtention d'une énergie électromagnétique de meilleure qualité spectrale. Une variante de réalisation (non représentée) consiste à disposer le circuit de sortie 4 de sorte que ne soient utili¬ sés que les électrons réfléchis par la cathode virtuelle .
Il est à noter par ailleurs qu'on choisit de préférence les dimensions du canon et de la région d'injection pour que le courant du faisceau soit supérieur au, mais voisin du courant maximum, de sorte que le courant transmis soit en moyenne une fraction importante du courant total injecté dans la région d'injection.
La figure 2 représente un autre mode de réalisation du dispositif selon l'invention, qui comporte des moyens de post- accélération des électrons utilisés, vu également en coupe schématique longitudinale .
A titre d'exemple, le générateur représenté figure 2 reprend la structure de celui de la figure 1, à ceci près que le circuit de sortie 4 est électriquement isolé du canon à électrons 1. Plus précisément, l'armature 20 formant l'anode du canon à électrons est sans contact électrique avec le conducteur extérieur, maintenant repéré 40, du circuit de sortie 4. A titre d'exemple, le conducteur 40 se prolonge autour de l'armature 20 en forme de cylindre creux de même axe ZZ que cette armature. Ce mode de réalisation comporte en outre des moyens 7 pour appliquer entre la cathode 11 et le circuit de sortie 4 une tension V. , supérieure à la tension cathode /anode V„ . A titre . d'exemple, les moyens 7 sont constitués par un transformateur dont le primaire 71 reçoit là- tension d'alimentation et le secondaire 72 est relié :
- à l'une de ses extrémités à la paroi 40 (potentiel de masse) ; - à son autre extrémité à la cathode 11 (potentiel
- j) ;
- en un point intermédiaire à l'anode 20, point tel que le potentiel y soit égal à -V- + V-.
Il est à noter que, ainsi qu'il est connu, pour que la formation d'une cathode virtuelle reste possible lorsque la tension V"1 utilisée est supérieure à la tension Vπ du mode de réalisation précédent, il est nécessaire d'augmenter la longueur de la région d'injection 3 et ceci d'autant plus que le rapport ../Vn choisi est plus élevé.
La figure 3 représente un autre mode de réalisation du générateur selon l'invention, dans lequel on utilise à la fois les électrons transmis et les électrons réfléchis par la cathode virtuelle . Sur cette figure, on retrouve le canon à électrons 1 formé de la cathode 11 et de l'anode 20, 21. Le canon 1 produit, ici aussi, un faisceau d'électrons 8 dans des conditions telles qu'il y a formation d'une cathode virtueEe 80 avec réflexion (flèches 81) d'une partie des électrons et transmission (flèche 82) d'une autre partie des électrons vers, à titre d'exemple, une paroi métallique 50 délimitant la région d'injection 3.
Dans ce mode de réalisation, le circuit hyperfréquence de sortie 4 comporte deux voies : l'une débouche dans une région repérée 4A, comprise entre l'anode 20 et la cathode virtuelle 80 et destinée à récupérer l'énergie des électrons réfléchis 81 ; l'autre débouche dans une région repérée 4B, comprise entre la cathode virtuelle 80 et la paroi 50 et elle est destinée à récupérer l'énergie de électrons transmis 82. Les électrons 81 réfléchis par la cathode virtuelle l'étant avec un décalage moyen dans le temps de l'ordre d'une demi- période d'oscillations de cette cathode virtuelle par rapport aux électrons 82 transmis, il est nécessaire, afin de cumuler leurs effets, de dephaser l'énergie produite par les uns d'une valeur sensiblement égale à 180° par rapport aux autres ; cela est schématisé par un déphaseur 45, réalisable par tout moyen connu et connecté sur l'une des voies, 4A ou 4B, avant que les énergies existant dans les deux voies ne se combinent pour former l'énergie de sortie.
Il est à noter que la paroi 46, entre les voies 4A et 4B, doit être d'une épaisseur suffisante pour éviter que les champs présents dans les deux voies ne se couplent avant la cathode virtuelle 80, cette épaisseur étant de l'ordre de grandeur de la distance de la paroi 46 à la cathode virtuelle.
On a représenté, sur la figure 3, un mode particulier de réalisation du circuit 4. D'autres variantes sont bien entendu possibles, qui consistent par exemple à réaliser, pour chacune des voies 4A et 4B, une structure de type coaxial telle que décrite figure 1 pour le circuit 4.
La figure 4 représente un autre mode de réalisation du dispositif selon l'invention, dans lequel le faisceau produit par le canon à électrons est un cylindre plein, toujours vu en coupe schématique longitudinale.
Sur cette figure, à titre d'exemple, on retrouve une structure voisine de celle de la figure 1, à ceci près que la surface émissive de la cathode, maintenant repérée 12, du canon 1 est en forme de disque, de sorte à émettre un faisceau électronique 88 cylindrique plein. De la même manière, le conducteur intérieur du circuit de sortie 4, maintenant repéré 51, est constitué par une surface plane en forme de disque. Les écrans 21 et 41 de la figure 1 ont été remplacés ici par des éléments, repérés 26 et 46, constitués par des grilles ou des feuilles métalliques suffisamment minces pour que leur absorption d'électrons soit très faible. Le fonctionnement de ce dispositif est analogue à ce
* qui a été décrit pour la figure 1, avec formation d'une cathode virtuelle 83, électrons réfléchis 84 et électrons transjjαi 85 dont l'énergie cinétique est convertie en énergie hyperfréquence par le circuit de sortie 4.
Il est à noter que, pour qu'un fonctionnement satisfaisant puisse être obtenu, le diamètre de la cat-Hjfide 12 doit être sensiblement inférieur à la -longueur d'onde de l'énergie hyperfréquence obtenue en sortie, par exemple de
10 l'ordre de la demi-longueur d'onde. En pratique, toàrtçfois, d*~β cathodes de plus grand diamètre sont utilisables, du! fâït que les électrons ont tendance à se grouper à la périphérie de la cathode virtuelle . '*>
- La figure 5 représente un autre mode de réalisâϋon du générateur selon l'invention, dans lequel le faisceau
* l£ électronique utilisé est un faisceau cylindrique plein et o;ù lé générateur comporte en outre des moyens de post-accéléçaβ».
> '*? ' Sur cette figure, on retrouvé une structure analog e à
-- celle de la figure 2, sauf en ce qui concerne la • cathode " 11 du canon 1, le conducteur central 5 du circuit de sortie 4 et les écrans 21 et 41, remplacés respectivement par les éléments 12, 51, 26 et 46 tels que décrits figure 4. *
Les mêmes remarques que celles faites à propos* de la
2*5 figure 4 peuvent être faites ici.
De la même manière, la figure 6 représente un mode de réalisation analogue à celui de la figure 3, mais dans' lequel le
** faisceau électronique annulaire est remplacé par un faisceau
30 électronique cylindrique plein.
On retrouve donc une structure analogue à celle de la figure 3, sauf en ce qui concerne la structuré, de la cathode 11, maintenant repérée 12, et le faisceau électronique 8 qui devient un cylindre plein repéré 88, comme dans le cas des figures 4 et

Claims

R E V E N D I C A T I O N S
1. Dispositif générateur d'ondes hyperfréquences, caractérisé par le fait qu'il comporte :
- un canon électronique (1) , susceptible de produire un faisceau d'électrons (8 ; 88) dans une région d'injection (3) , le courant transporté étant suffisant pour provoquer la formation d'une cathode virtuelle (80 ; 83) ;
- un circuit hyperfréquence de sortie (4) , réalisant la transformation de l'énergie cinétique des électrons en une énergie hyperfréquence, le circuit étant tel que l'énergie des électrons qu'il prélève soit sensiblement en phase.
2. Dispositif selon la revendication 1, caractérisé par le fait que le circuit de sortie (4) est disposé de sorte à ne recevoir que les électrons transmis (82 ; 85) par la cathode virtuelle (80 ; 83) .
3. Dispositif selon la revendication 1, caractérisé par le fait que le circuit de sortie (4) est disposé de sorte à ne recevoir que les électrons réfléchis (81 ; 84) par la cathode virtuelle (80 ; 83) .
4. Dispositif selon la revendication 1, caractérisé par le fait que le circuit de sortie (4) comporte une première voie (4A) , recevant les électrons transmis (81 ; 84) et une deuxième voie (4B) , recevant les électrons réfléchis (82 ; 85) , et un déphaseur (45) déphasant l'énergie produite par l'une des voies de sensiblement 180° .
5. Dispositif selon la revendication 1, caractérisé par le fait que le circuit de sortie (4) est du type coaxial.
6. Dispositif selon l'une des revendications 1 ou 2, caractérisé par le fait que le circuit de sortie (4) est isolé électriquement du canon électronique (1) et qu'une tension d'accélération (V.. ) des électrons est appliquée entre canon et circuit de sortie.
7. Dispositif selon l'une des revendications précé¬ dentes, caractérisé par le fait que le faisceau d'électrons (8) est en forme de cylindre creux.
8. Dispositif selon l'une des revendications précé- dentés, caractérisé par le fait que le faisceau d'électrons (8ξ) est en forme de cylindre plein.
9. Dispositif selon l'une des revendications précé¬ dentes, caractérisé par le fait qu'il comporte en outre des moyens d'application d'un champ magnétique de focalisation du faisceau d'électrons.
PCT/FR1990/000112 1989-02-17 1990-02-16 Dispositif generateur d'ondes hyperfrequences a cathode virtuelle WO1990009674A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69016712T DE69016712T2 (de) 1989-02-17 1990-02-16 Mikrowellengenerator mit einer virtuellen kathode.
EP90903856A EP0413018B1 (fr) 1989-02-17 1990-02-16 Dispositif generateur d'ondes hyperfrequences a cathode virtuelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8902081A FR2643506B1 (fr) 1989-02-17 1989-02-17 Dispositif generateur d'ondes hyperfrequences a cathode virtuelle
FR89/02081 1989-02-17

Publications (1)

Publication Number Publication Date
WO1990009674A1 true WO1990009674A1 (fr) 1990-08-23

Family

ID=9378877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1990/000112 WO1990009674A1 (fr) 1989-02-17 1990-02-16 Dispositif generateur d'ondes hyperfrequences a cathode virtuelle

Country Status (7)

Country Link
US (1) US5113154A (fr)
EP (1) EP0413018B1 (fr)
JP (1) JP2863310B2 (fr)
CA (1) CA2027558C (fr)
DE (1) DE69016712T2 (fr)
FR (1) FR2643506B1 (fr)
WO (1) WO1990009674A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830371B1 (fr) * 2001-09-28 2005-08-26 Thales Sa Generateur d'ondes hyperfrequences a cathode virtuelle
FR2876218B1 (fr) * 2004-10-05 2006-11-24 Commissariat Energie Atomique Dispositif generateur d'ondes hyperfrequences a cathode virtuelle oscillante.
RU2444081C1 (ru) * 2010-07-05 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" Управляемый генератор на виртуальном катоде
RU2444805C1 (ru) * 2010-08-04 2012-03-10 Алексей Иванович Арбузов Сверхвысокочастотный генератор на основе виртуального катода

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB914307A (en) * 1958-03-20 1963-01-02 Emi Ltd Improvements in or relating to electron discharge devices for generating high frequency oscillations
US3084293A (en) * 1959-04-01 1963-04-02 Hughes Aircraft Co Microwave amplifier
US4730170A (en) * 1987-03-31 1988-03-08 The United States Of America As Represented By The Department Of Energy Virtual cathode microwave generator having annular anode slit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150340A (en) * 1978-03-22 1979-04-17 The United States Of America As Represented By The Secretary Of The Navy High-power microwaves from a non-isochronous reflecting electron system (NIRES)
US4345220A (en) * 1980-02-12 1982-08-17 The United States Of America As Represented By The Secretary Of The Air Force High power microwave generator using relativistic electron beam in waveguide drift tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB914307A (en) * 1958-03-20 1963-01-02 Emi Ltd Improvements in or relating to electron discharge devices for generating high frequency oscillations
US3084293A (en) * 1959-04-01 1963-04-02 Hughes Aircraft Co Microwave amplifier
US4730170A (en) * 1987-03-31 1988-03-08 The United States Of America As Represented By The Department Of Energy Virtual cathode microwave generator having annular anode slit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1983 IEEE International Conference on Plasma Science, 23-25 Mai 1983, San Diego, California, IEEE Conference Record - Abstracts, IEEE, (New York, US), T.J.T. KWAN et al.: "Microwave Generation by Virtual Cathodes and Reflexing Systems", page 40 *

Also Published As

Publication number Publication date
FR2643506B1 (fr) 1996-04-19
CA2027558C (fr) 1997-09-30
US5113154A (en) 1992-05-12
JPH03504181A (ja) 1991-09-12
JP2863310B2 (ja) 1999-03-03
DE69016712T2 (de) 1995-06-01
EP0413018B1 (fr) 1995-02-08
CA2027558A1 (fr) 1990-08-18
DE69016712D1 (de) 1995-03-23
EP0413018A1 (fr) 1991-02-20
FR2643506A1 (fr) 1990-08-24

Similar Documents

Publication Publication Date Title
EP0013242B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquence
EP0389326A1 (fr) Tube à rayons x à balayage avec plaques de déflexion
EP0248689A1 (fr) Klystron à faisceaux multiples
FR2760127A1 (fr) Canon a electrons et klystron le comportant
FR2737340A1 (fr) Tube electronique multifaisceau a couplage cavite/faisceau ameliore
EP0413018B1 (fr) Dispositif generateur d'ondes hyperfrequences a cathode virtuelle
EP2472555B1 (fr) Dispositif de génération d'ondes hyperfréquence comprenant une pluralité de magnétrons
EP0285524A1 (fr) dispositif comportant un combineur radial pour ondes électromagnétiques
EP0407558B1 (fr) Dispositif amplificateur ou oscillateur fonctionnant en hyperfrequence
FR2492158A1 (fr) Tube a electrons pour gyrotron
FR2830371A1 (fr) Generateur d'ondes hyperfrequences a cathode virtuelle
EP0124396B1 (fr) Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences
EP0082769A1 (fr) Multiplicateur de fréquence
EP1579469B1 (fr) Tube a micro-ondes a accord mecanique de frequence
FR2694447A1 (fr) Canon à électrons pour fournir des électrons groupés en impulsions courtes.
EP0452192B1 (fr) Etage amplificateur à tube hyperfréquence à large bande et faible dispersivité en fréquence
EP1982347B1 (fr) Dispositif de couplage entre une antenne a plasma et un generateur de signal de puissance
FR2644286A1 (fr) Generateur de faisceau d'electrons et dispositifs electroniques utilisant un tel generateur
EP0122186B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquences
EP3360151B1 (fr) Equilibrage d'un tube a sortie inductive multifaisceau
FR2486305A1 (fr) Tube amplificateur a champs croises a grand gain et ensemble d'emission radioelectrique muni d'un tel tube
BE382255A (fr)
FR2476908A1 (fr) Tube a ondes progressives pour tres hautes frequences et dispositif amplificateur utilisant un tel tube
BE442357A (fr)
FR2612726A1 (fr) Dispositif accelerateur de particules comportant une cavite subharmonique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990903856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2027558

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1990903856

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990903856

Country of ref document: EP