WO1990005116A1 - Verwendung von aminoaldehydpolymeren zur reinigung von abwässern - Google Patents

Verwendung von aminoaldehydpolymeren zur reinigung von abwässern Download PDF

Info

Publication number
WO1990005116A1
WO1990005116A1 PCT/AT1989/000097 AT8900097W WO9005116A1 WO 1990005116 A1 WO1990005116 A1 WO 1990005116A1 AT 8900097 W AT8900097 W AT 8900097W WO 9005116 A1 WO9005116 A1 WO 9005116A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste water
polymers
diamine
aminoaldehyde
amino aldehyde
Prior art date
Application number
PCT/AT1989/000097
Other languages
English (en)
French (fr)
Inventor
Fritz Pittner
Peter Turecek
Friedrich Birkner
Thomas Schalkhammer
Original Assignee
Magindag Steirische Magnesit-Industrie Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magindag Steirische Magnesit-Industrie Aktiengesellschaft filed Critical Magindag Steirische Magnesit-Industrie Aktiengesellschaft
Publication of WO1990005116A1 publication Critical patent/WO1990005116A1/de
Priority to NO902971A priority Critical patent/NO902971D0/no
Priority to FI903350A priority patent/FI903350A0/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the use of a by reaction of glutaraldehyde with a diarain of the general formula NH 2 - (CH_) -NH 2 , in which n is 2 to 12, and / or an aromatic diamine, such as phenylenediamine, diaminodiphenyl ether or Diamine diphenylmethane, amino aldehyde polymers obtained as a gel for the purification of municipal or industrial waste water, in particular for the immobilization of microorganisms contained in biological sewage treatment plants or reactors with simultaneous adsorption of phenolic components of the waste water.
  • a diarain of the general formula NH 2 - (CH_) -NH 2 in which n is 2 to 12, and / or an aromatic diamine, such as phenylenediamine, diaminodiphenyl ether or Diamine diphenylmethane, amino aldehyde polymers obtained as a gel for the purification of municipal or industrial waste water, in particular
  • an amino aldehyde polymer is prepared from a diamine or polyamine with glutardialdehyde, preference being given to using diaminohexane as the diamine.
  • diamines or polyamines for the clarification and decolorization of liquid foods or luxury foods, such as of fruit juices, beer or the like are used.
  • aminoaldehyde polymers are suitable for the separation of phenolic components from such liquids.
  • amino aldehyde polymer for the purification of municipal or industrial wastewater makes use of the surprising finding that not only phenolic components can be separated off by using such amino aldehyde polymers, but also the addition of bacteria in biological sewage treatment plants can be reduced.
  • Aminoaldehyde polymers of the type mentioned at the outset are outstandingly suitable for growing microorganisms, primarily bacteria, under aerobic and anaerobic conditions, so that microorganisms of this type, as corresponds to a preferred use in the context of the invention, can be used in fixed bed reactors or as trickling filters.
  • the immobilization of microorganisms surprisingly has the consequence that the growth of the microorganisms can be inhibited without the biological implementation suffering as a result.
  • the bacteria mentioned below which could be identified in activated sludge from sewage treatment plants, grow excellently on amino aldehyde polymers of the type mentioned at the beginning. Pseudomonas sp.
  • Pseudomonads primarily contribute to the breakdown of phenolic components (e.g. thymol, cresol, chlorophenols, nitrophenols, lignins, tannins, ).
  • yeasts such as Candida tropicalis, were also found on the polymer surface are cultivable, used for the biological degradation of phenols.
  • gels containing microorganisms of this type means that industrial wastewater, such as wastewater from bleaching factories, can also be cleaned in an excellent manner, with due regard to the sometimes very selective accumulation of the microorganisms on the amino aldehyde polymers, the bacteria directly present in the wastewater without additional Dosing of biological material can be used for cleaning.
  • the electropositive gel surface obviously leads to a selective attachment of the electronegative membrane walls, whereby despite an increasing covering of the surface of the amino aldehyde polymers, the phenol adsorption continues undisturbed, since such substances diffuse into the surface.
  • a proportion of aromatic aminoaldepolymer is advantageously used, the use according to the invention being used hiebei is preferably carried out so that the proportion of aromatic amino aldehyde polymers with increasing proportion of hydrophobic phenolic components in the wastewater, in particular with increasing concentrations of chlorinated phenols such as chlorophenol, phenylphenol, phenol, cresol or thymol, is increased.
  • aromatic amino aldehyde polymers For the adsorption of hydrophilic phenols, such as nitrophenol, aminophenol, the proportion of aromatic amino aldehyde polymers can be chosen to be correspondingly lower. Surprisingly, it has now been found that benzopyrenes and aromatic hydrocarbons are also adsorbed to a high degree with amino aldehyde polymers of the type mentioned can be and with a suitable microzoenosis can also be implemented by the bacteria grown on the gel.
  • the aminoaldehyde polymers can also be added to a wastewater treatment plant, or introduced as rotating disks, in order to reduce peak loads on the wastewater, such as, for example, after the bleach liquor from the cellulose industry has been fed in could occur as a buffer substance to intercept.
  • the gel used in the present case is preferably a thixotropic gel. Such a thixotropic gel can be used in its sol state as a trickling filter and in its gel state as a solid with a specific shape.
  • Fig. 1 is the decrease in the residual phenols, etc. in particular the FeCl_-complexing phenols when increasing amounts of amino aldehyde polymers are added.
  • Curve 1 in FIG. 1 clearly shows that when 4 kg of an aminoaldehyde polymer according to the invention are added per hectoliter / wastewater, starting from a solution containing 0.4% phenols, the phenols in this solution decrease relatively to 25 % of the original value is made possible.
  • Curve 2 shows in Fig. 1 the analogous conditions for a solution containing 4% phenols.
  • the FeCl 3 -complexing phenols behave in the same way as the total phenols.
  • the curve points shown in each case were obtained by batchwise addition of the respective amount of aminodialdehyde polymer.
  • the limit capacity is an adsorption of about 35% by weight of phenols, based on the weight of the aminoaldehyde polymer.
  • a particularly favorable procedure with a rapid decrease in the concentration of phenolic components in the wastewater can be achieved when working at about 20 to 30% of the limit capacity, for example by adding 4 kg of aminoaldehyde polymer per hectoliter of wastewater, starting from one Solution containing 0.4% phenol, a decrease in the concentration to 30% could be observed. If the same amount of aminoaldepolymer is used in multiple, smaller amounts, the efficiency can be increased significantly, and it has been shown that a decrease in concentration to 18% of the original value of phenolic components can be achieved by using 2 kg of aminoildehyde polymer twice could.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

Verwendung eines durch Umsetzung von Glutardialdehyd mit einem Diamin der allgemeinen Formel NH2-(CH2)n-NH2, worin n 2 bis 12 bedeutet, und/oder einem aromatischen Diamin, wie z.B. Phenylendiamin, Diaminodiphenylether oder Diamindiphenylmethan, erhaltenen Aminoaldehydpolymeren als Gel zur Reinigung von kommunalen oder industriellen Abwässern, insbesondere zur Immobilisierung von in biologischen Kläranlagen oder Reaktoren enthaltenen Mikroorganismen unter gleichzeitiger Adsorption von phenolischen Komponenten des Abwassers.

Description

Verwendung von Aminoaldehydpolymeren zur Reinigung von Abwässern
Die Erfindung bezieht sich auf die Verwendung eines durch Umsetzung von Glutardialdehyd mit einem Diarain der allge¬ meinen Formel NH2-(CH_) -NH2, worin n 2 bis 12 bedeutet, und/oder einem aromatischen Diamin, wie z.B. Phenylendiamin, Diaminodiphenylether oder Diamindiphenylmethan, erhaltenen Aminoaldehydpolymeren als Gel zur Reinigung von kommunalen oder industriellen Abwässern, insbesondere zur Immobilisie¬ rung von in biologischen Kläranlagen oder Reaktoren enthal¬ tenen Mikroorganismen unter gleichzeitiger Adsorption von phenolischen Komponenten des Abwassers.
Gemäß einem älteren, noch nicht verδffentlichtsn Vorschlag (A 2827/86) wird ein Aminoaldehydpolymer aus einem Di- oder Polyamin mit Glutardialdehyd hergestellt, wobei bevorzugt Di- aminohexan als Diamin eingesetzt wurde. Prinzipiell konnten gemäß diesem bekannten Vorschlag eine Reihe derartiger Diamine oder auch Polyamine für die Klärung und Entfärbung von flüssigen Nahrungs- oder Genußmitteln, wie z.B. von Fruchtsäften, Bier od. dgl. eingesetzt werden. Aus dem älteren Vorschlag ist es weiters bereits bekannt, daß der¬ artige Aminoaldehydpolymere sich für die Abtrennung von phenolischen Komponenten aus derartigen Flüssigkeiten eignen.
Die nunmehr vorgeschlagene Verwendung eines derartigen Aminoaldehydpoly ers für die Reinigung kommunaler oder industrieller Abwässer macht sich die überraschende Erkennt- nis zu nutze, daß durch Einsatz derartiger Aminoaldehydpoly¬ mere nicht nur phenolische Komponenten abgetrennt werden können, sondern auch der Zusatz von Bakterien in biologischen Kläranlagen wesentlich herabgesetzt werden kann. Aminoalde¬ hydpolymere der eingangs genannten Art eignen sich hervor- ragend dazu, Mikroorganismen, vornehmlich Bakterien, unter aeroben und anaeroben Bedingungen anwachsen zu lassen, so daß derartige Mikroorganismen, wie es einer bevorzugten Verwen¬ dung im Rahmen der Erfindung entspricht, in Festbettreaktoren oder als Tropfkörper eingesetzt werden können. Die Immobili¬ sierung von Mikroorganismen hat nun überraschenderweise zur Folge, daß das Wachstum der Mikroorganismen gehemmt werden kann, ohne daß die biologische Umsetzung darunter leidet. Die Begrenzung des Wachstums im Rahmen von Belebtschlammver¬ fahren, insbesondere im Rahmen von Kläranlagen, führt hiebei zu einer deutlichen Verringerung des ÜberschußSchlammes, ohne daß hiebei die biologische Wirksamkeit gehemmt würde. Im einzelnen hat sich gezeigt, daß die nachfolgend genannten Bakterien, welche in Belebtschlämmen von Kläranlagen identi¬ fiziert werden konnten, ausgezeichnet an Aminoaldehydpoly¬ meren der eingangs genannten Art anwachsen. Pseudomonas sp.
Alcaligenes sp.
Comomonas sp.
Lyphomonas sp.
Nitrosomomas sp. Zooglea sp.
Sphaerotilus sp.
Azotobacter sp.
Flavobacterium sp.
Coli und Verwandte Chromobacterium sp.
Achromobacter sp.
Micrococcus sp.
Bacillus sp.
Arthrobacter sp. Nocardia sp.
Mycobacterium sp.
Zum Abbau von phenolischen Komponenten (z.B. Thymol, Kresol, Chlorphenole, Nitrophenole, Lignine, Gerbstoffe, ...) tragen primär Pseudomonaden bei. Daneben wurden auch Hefen, z.B. Candida tropicalis, die ebenso an der Polymeroberfläche kultivierbar sind, zum biologischen Abbau von Phenolen eingesetzt.
Durch den Einsatz derartiger Mikroorganismen tragender Gele lassen sich insbesondere auch industrielle Abwässer, wie beispielsweise Abwasser aus Bleichereien, hervorragend reinigen, wobei mit Rücksicht auf die teilweise sehr selek¬ tive Anlagerung der Mikroorganismen an den Aminoaldehydpoly¬ meren die unmittelbar in den Abwässern enthaltenen Bakterien ohne zusätzliche Zudosierung von biologischem Material zur Reinigung herangezogen werden können. Die elektropositive Geloberfläche führt hiebei offensichtlich zu einer selektiven Anlagerung der elektronegativen Membranwände, wobei trotz einer zunehmenden Belegung der Oberfläche der Aminoaldehyd- polymere die Phenoladsorption weiterhin ungestört vor sich geht, da derartige Substanzen in die Oberfläche hinein¬ diffundieren.
Um nun die Wirkungsweise insbesondere für hydrophobe pheno- lische Komponenten, welche in ein etwa 90% Wassergehalt auf¬ weisendes Gel nur erschwert hineindiffundieren, zu begünsti¬ gen, wird mit Vorteil ein Anteil von aromatischen Aminoalde¬ hydpolymeren eingesetzt, wobei die erfindungsgemäße Verwen¬ dung hiebei bevorzugt so vorgenommen wird, daß der Anteil von aromatischen Aminoaldehydpolymeren bei wachsendem Anteil hydrophober phenolischer Komponenten im Abwasser, insbeson¬ dere bei zunehmenden Konzentrationen von chlorierten Pheno¬ len, wie Chlorphenol, Phenylphenol, Phenol, Kresol oder Thymol, erhöht wird.
Für die Adsorption hydrophiler Phenole, wie beispielsweise Nitrophenol, Aminophenol, kann der Anteil aromatischer Amino- aldehydpolymere entsprechend geringer gewählt werden, über¬ raschenderweise hat sich nun gezeigt, daß mit Aminoaldehyd- polymeren der eingangs genannten Art auch Benzpyrene und aromatische Kohlenwasserstoffe in hohem Maße adsorbiert werden können und bei geeigneter Mikrozönose auch von den am Gel angewachsenen Bakterien umgesetzt werden können. Die Aminoaldehydpolymere können neben der bevorzugten Verwendung in Festbettreaktoren in der Art eines Tropfkörpers im Fall von Spitzenbelastungen einer Abwasserkläranlage auch bateil¬ weise zugesetzt oder als rotierende Scheiben eingebracht werden, um Spitzenbelastungen des Abwassers, wie sie bei¬ spielsweise nach der Einspeisung von Bleichlaugen aus der Zelluloseindustrie auftreten könnte, als PufferSubstanz abzufangen. Um die bevorzugt nach Art eines Tropfkörpers eingebrachten Aminoaldehydpolymere auch batchweise oder als Scheiben einbringen zu können, ist das im vorliegenden Fall eingesetzte Gel vorzugsweise ein thixotropes Gel. Ein der¬ artiges thixotropes Gel kann in seinem Sol-Zustand als Tropfkörper und in seinem Gel-Zustand als Festkörper mit einer bestimmten Form eingesetzt werden.
Die Wirkungsweise der erfindungsgemäß verwendeten Amino¬ aldehydpolymere wird an Hand von in der Zeichnung darge- stellten Ausführungsbeispielen näher erläutert. In Fig. 1 ist hiebei die Abnahme der Restphenole, u.zw. im besonderen der FeCl_-komplexierenden Phenole bei Zusatz von steigenden Mengen von Aminoaldehydpolymeren ersichtlich. Die Kurve 1 in Fig. 1 macht hiebei deutlich, daß bei Zusatz von 4 kg eines Aminoaldehydpolymers gemäß der Erfindung je Hektoliter/Ab¬ wasser, ausgehend von einer 0,4% Phenole enthaltenden Lösung, eine relative Abnahme der Phenole in dieser Lösung auf 25% des Ursprungswertes ermöglicht wird. Die Kurve 2 zeigt hiebei in Fig. 1 die analogen Verhältnisse für eine 4% Phenole enthaltende Lösung. Im besonderen konnte in Vergleichsver¬ suchen gezeigt werden, daß die FeCl3-komplexierenden Phenole sich gleich verhalten wie die Gesamtphenole. Für die Versuche in Fig. 1 wurden die jeweils dargestellten Kurvenpunkte durch batchweises Zusetzen der jeweiligen Menge an Aminodialdehyd- polymer gewonnen. Solange die Grenzkapazität des Aminoalde¬ hydpolymers für die Adsorption nicht erreicht wird, läßt sich eine besonders rasche Abnahme phenolischer Komponenten erzielen. Die Grenzkapazität liegt hiebei bei einer Adsorp¬ tion von ca. 35 Gew.-% Phenolen, bezogen auf das Gewicht des Aminoaldehydpolymers. Eine besonders günstige Verfahrensweise unter rascher Abnahme der Konzentration phenolischer Kompo¬ nenten im Abwasser läßt sich dann erzielen, wenn bei etwa 20 bis 30% der Grenzkapazität gearbeitet wird, wobei beispiels¬ weise durch einmaligen Zusatz von 4 kg Aminoaldehydpolymer je Hektoliter Abwasser, ausgehend von einer 0,4% Phenol enthal- tenden Lösung, eine Abnahme der Konzentration auf 30% beobachtet werden konnte. Wenn die gleiche Menge Aminoalde¬ hydpolymer in mehrfachen, kleineren Mengen eingesetzt wird, kann der Wirkungsgrad wesentlich erhöht werden, und es hat sich gezeigt, daß durch zweimaligen Einsatz von je 2 kg Aminoildehydpolymer eine Konzentrationsabnahme auf 18% des ursprünglichen Wertes an phenolischen Komponenten erzielt werden konnte. Bei viermaliger Anwendung eines Viertels der Menge, welche eine Abnahme auf 30% ergeben hat, ließ sich die Konzentration an phenolischen Komponenten auf 12% des ur- sprünglichen Wertes senken und bei achtmaligem Einsatz von 1/2 kg Aminoaldehydpolymer je Hektoliter wurden Werte von 7% des ursprünglichen Phenolgehaltes gemessen. Die Verhältnisse für Gesamtphenol sind hiebei in der Fig. 2 dargestellt, wobei die Kurve 3 wiederum eine 0,4% Phenol enthaltende Abwasser- lösung, die Kurve 4 eine 4% Phenol enthaltende Abwasserlösung betrifft.

Claims

Patentansprüche:
1. Verwendung eines durch Umsetzung von Glutardialdehyd mit einem Diamin der allgemeinen Formel NH2-(CH2) -NH2, worin n 2 bis 12 bedeutet, und/oder einem aromatischen Diamin, wie z.B. Phenylendiamin, Diaminodiphenylether oder Diamindiphenyl- methan, erhaltenen Aminoaldehydpolymeren als Gel zur Reini¬ gung von kommunalen oder industriellen Abwässern, insbeson¬ dere zur Immobilisierung von in biologischen Kläranlagen oder Reaktoren enthaltenen Mikroorganismen unter gleichzeitiger Adsorption von phenolischen Komponenten des Abwassers.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß die Aminoaldehydpolymere in Festbettreaktoren oder als Tropf- körper eingesetzt werden.
3. Verwendung nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß daß der Anteil von aromatischen Aminoaldehyd¬ polymeren bei wachsendem Anteil hydrophober phenolischer Komponenten im Abwasser, insbesondere bei zunehmenden Kon¬ zentrationen von Chlorphenol, Phenylphenol, Phenol, Kresol oder Thymol, erhöht wird.
PCT/AT1989/000097 1988-11-04 1989-11-03 Verwendung von aminoaldehydpolymeren zur reinigung von abwässern WO1990005116A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO902971A NO902971D0 (no) 1988-11-04 1990-07-03 Anvendelse av aminoaldehydpolymerer ved rensing av spillvann.
FI903350A FI903350A0 (fi) 1988-11-04 1990-07-03 Anvaendning av aminoaldehydpolymerer till behandling av avfallsvatten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0271888A AT394543B (de) 1988-11-04 1988-11-04 Verwendung von aminoaldehydpolymeren zur reinigung von abwaessern
ATA2718/88 1988-11-04

Publications (1)

Publication Number Publication Date
WO1990005116A1 true WO1990005116A1 (de) 1990-05-17

Family

ID=3539207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1989/000097 WO1990005116A1 (de) 1988-11-04 1989-11-03 Verwendung von aminoaldehydpolymeren zur reinigung von abwässern

Country Status (4)

Country Link
EP (1) EP0397824A1 (de)
AT (1) AT394543B (de)
FI (1) FI903350A0 (de)
WO (1) WO1990005116A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2019410A (en) * 1978-04-19 1979-10-31 Novo Industri As Immobilized enzyme products
US4355105A (en) * 1981-03-30 1982-10-19 Miles Laboratories, Inc. Glutaraldehyde/polyethylenimine immobilization of whole microbial cells
US4434229A (en) * 1979-05-21 1984-02-28 Matsushita Electric Industrial Co., Ltd. Enzyme immobilization with an immobilizing reagent in vapor phase

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH579109A5 (de) * 1973-02-22 1976-08-31 Givaudan & Cie Sa
DE3506687A1 (de) * 1985-02-26 1986-08-28 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur biologischen reinigung von abwasser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2019410A (en) * 1978-04-19 1979-10-31 Novo Industri As Immobilized enzyme products
US4434229A (en) * 1979-05-21 1984-02-28 Matsushita Electric Industrial Co., Ltd. Enzyme immobilization with an immobilizing reagent in vapor phase
US4355105A (en) * 1981-03-30 1982-10-19 Miles Laboratories, Inc. Glutaraldehyde/polyethylenimine immobilization of whole microbial cells

Also Published As

Publication number Publication date
AT394543B (de) 1992-04-27
FI903350A0 (fi) 1990-07-03
ATA271888A (de) 1991-10-15
EP0397824A1 (de) 1990-11-22

Similar Documents

Publication Publication Date Title
DE69009353T2 (de) Verfahren zur Behandlung von organischen Abwässern durch Methangärung.
DE69514871T2 (de) Corynebacterium sp. J1, Verfahren zum biologischen Abbau von aromatischen Verbindungen und/oder chlorierten organischen Verbindungen, und Verfahren zur Entgiftung der Umwelt damit
DE2642252A1 (de) Verfahren zur behandlung nicht biologisch abbaubarer industrieller abwaesser
EP0046901A1 (de) Verfahren und Vorrichtung zur anaeroben biologischen Reinigung von Abwasser
DE3436453A1 (de) Verfahren zur reinigung von abwasser
DE69108328T2 (de) Immobilisierte enzymkatalysierte Beseitigung von aromatischen Verbindungen aus wässrigen Lösungen.
DE68914645T2 (de) Verfahren zur mikrobiologischen reinigung von wasser.
DE3046686A1 (de) Verfahren zum reinigen von abwasser in einem schwebeschichtreaktor
AT394543B (de) Verwendung von aminoaldehydpolymeren zur reinigung von abwaessern
KR102213071B1 (ko) 미세섬유에 바이오매스를 담지한 수처리 필터
EP1551774A2 (de) Wasserreinigung mit katalytischen oberflächen und mikroorganismen
DE4114694C2 (de) Biologische Kläranlage mit einem getrennten Regenerationskreislauf für Belebtschlamm und ihr Betriebsverfahren
DE3105172A1 (de) Verfahren zur reinigung von niedrig belastetem abwasser
DE4027223A1 (de) Verfahren zum biologischen abbau persistenter organischer stoffe
DE2436535C2 (de) Entfernung von gelösten organischen Stoffen aus Flüssigkeiten
WO1988007976A1 (en) Process for decomposing effluents containing lignin and/or chlorinated organic compounds using white rot fungi
DE3687558T2 (de) Verfahren fuer die abwasserreinigung.
DE1642424A1 (de) Anwendung von Stoffen aus Mono- und Polysacchariden und ihren Abkoemmlingen und Schwefelsaeure zur Abscheidung von organischen Verunreinigungen aus industriellen Abwaessern
DD152528A1 (de) Verfahren zur nitratentfernung aus abwaessern
DE19505436A1 (de) Kombiniertes Verfahren zur chemischen und biologischen Behandlung von Wasser
DE3713103A1 (de) Verfahren zur entfernung von phenolen bzw. chloraromaten aus abwaessern der zellstoffindustrie
DE2055860A1 (en) Waste water purification - from organic contaminants using granulated carbon catalysts esp active carbon
DD294685A5 (de) Verfahren zur reinigung von trinkwasser
KR19990050101A (ko) 제올라이트 함유 연속 회분식 반응기
SU1255585A1 (ru) Способ биохимической очистки сточных вод от органических соединений

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 903350

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1989912371

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989912371

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1989912371

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989912371

Country of ref document: EP