WO1990001542A1 - Luciferase, luciferase-coding gene, and process for preparing luciferase - Google Patents

Luciferase, luciferase-coding gene, and process for preparing luciferase Download PDF

Info

Publication number
WO1990001542A1
WO1990001542A1 PCT/JP1989/000811 JP8900811W WO9001542A1 WO 1990001542 A1 WO1990001542 A1 WO 1990001542A1 JP 8900811 W JP8900811 W JP 8900811W WO 9001542 A1 WO9001542 A1 WO 9001542A1
Authority
WO
WIPO (PCT)
Prior art keywords
luciferase
amino acid
gene
promoter
dna
Prior art date
Application number
PCT/JP1989/000811
Other languages
English (en)
French (fr)
Inventor
Jun Kazami
Haruji Nakamura
Toshio Goto
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to DE68927437T priority Critical patent/DE68927437T2/de
Priority to EP89909235A priority patent/EP0387355B1/en
Publication of WO1990001542A1 publication Critical patent/WO1990001542A1/ja
Priority to KR1019900700491A priority patent/KR900702010A/ko
Priority to US08/260,042 priority patent/US5604123A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/12Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of one atom of oxygen (internal monooxygenases or internal mixed function oxidases)(1.13.12)
    • C12Y113/12006Cypridina-luciferin 2-monooxygenase (1.13.12.6), i.e. cypridina-luciferase

Definitions

  • Luciferase gene encoding it, and method for producing luciferase
  • the present invention relates to a purified enzyme luciferase which is effective for an analytical method using a bioluminescence reaction, and a gene encoding the same. Further, the present invention provides a new recombinant vector DNA into which the gene has been inserted, a transformant having the vector DNA, and a method for producing luciferase using the transformant.
  • Pyrophores are marine crustaceans that live along the Japanese coast, and emit a pale luminescent liquid into seawater upon stimulation. Luminescence is generated by oxidizing the substrate luciferin with the enzyme luciferase.It is a very simple luminescence system that does not require other essential components unlike the luminescence of fireflies and luminescent bacteria. It is expected to be used for
  • luciferin can be obtained in large amounts by chemically synthesizing luciferase, which is an enzyme and cannot be chemically synthesized. : It is difficult to obtain. Similarly, in the case of the firefly luciferase, sufficient purified luciferase has not been obtained, and quantitative supply has not been assured due to the drastic decrease in the collection of firefly itself due to the progress of marine pollution. Therefore, establishment of a method for mass production of the enzyme using gene recombination technology has been expected.
  • the present invention provides a method for synthesizing highly purified luciferase by a chemical synthesis method or a gene recombination method, and obtaining a gene sequence specifying the protein in order to obtain a large amount of the protein with high purity.
  • Another object of the present invention is to make it possible to express the cloned gene sequence in animal cells, yeast, large intestine and the like, and to obtain a large amount of the enzyme with high purity by using those cells.
  • the present invention relates to a luciferase having the amino acid sequence of FIG. 1, a gene encoding the same, a novel recombinant vector DNA containing the gene, and a trait obtained by transforming a host cell with the vector DNA.
  • a transformant, and a method for producing luciferase using the transformant are known in the art.
  • FIG. 1a, FIG. 1b, FIG. 1c, and FIG. 1d show the nucleotide sequence and amino acid sequence of cDNA of luciferase derived from Firefly.
  • the upper row of each row shows the nucleotide sequence of cDNA, the lower row of each row C showing the amino acid sequence.
  • FIG. 2 shows a method for producing a recombinant plasmid pCLO7 containing cDNA encoding luciferase derived from Firefly, and its restriction enzyme map.
  • FIG. 3 shows a method for constructing an expression vector pSVLCL5 for luciferase derived from firefly in animal cells. It is a thing.
  • Fig. 4a is a restriction map of the expression vector pMFE3A, pMFE3B, pMFE3C, and pMFE3D for the expression of the firefly derived luciferase in yeast.
  • Fig. 4b is a pheromone in each expression vector.
  • FIG. 3 shows the nucleotide sequence and amino acid sequence near the connection site of gene / luciferase cDNA.
  • FIG. 5 shows a method for preparing PGL1, an expression vector for luciferase derived from firefly in yeast.
  • FIG. 6 shows a method for preparing PMT—CLP, pMT—CLS, and pMT—CLT for expressing expression of luciferase derived from Firefly in Escherichia coli.
  • the luciferase of the present invention is a protein consisting of a 555 amino acid sequence from the 1st to the 555th amino acid sequence shown in FIG. 1 or a proline which is the 29th amino acid in the amino acid sequence shown in FIG. A protein consisting of 527 amino acid sequences, a protein consisting of 526 amino acid sequences starting from the 30th amino acid serine, 31 A protein consisting of 25 amino acid sequences starting from the 1st amino acid serine, or No. 32 It is a protein consisting of 524 amino acid sequences starting from threonine of the eye. Furthermore, the luciferase of the present invention has a luciferase activity substantially equivalent to the luciferase. As long as the property is maintained, a protein composed of the amino acid sequence substitution, deletion, insertion, etc., that is, a luciferase equivalent is also included in the present invention.
  • the gene of the present invention is a gene encoding the above-mentioned luciferase, which is represented by the DNA base sequence in the lower part of FIG. 1, provided that substantially the same luciferase activity is retained.
  • the present invention also includes a nucleotide sequence composed of substitution, deletion, insertion, and the like of the nucleotide sequence.
  • RNA is extracted from a crushed liquid obtained by crushing fireflies in guanidine thiosinate, and poly A + RNA is purified by oligo (dT) cellulose column chromatography. After synthesizing cDNA using the poly A + RNA as a starting material, the cDNA is cloned into gtlO to prepare a cDNA library.
  • the amino acid sequence near the N-terminus of the luciferase protein purified from Firefly and the amino acid sequence of the oligopeptide obtained by lysyl endopeptidase degradation were determined, and several types of oligonucleotides having nucleotide sequences corresponding to them were chemically synthesized. It is synthesized and used as a probe for screening the above-mentioned cDNA library.
  • the nucleotide sequence of the transgene of the recombinant in which these probes form a hybrid was analyzed, and the luciferase protein was analyzed. If the amino acid sequence matches the amino acid sequence, it can be identified as a part of the gene encoding luciferase protein.
  • the present invention relates to a recombinant vector DNA obtained by ligating each of the above DNAs downstream of a promoter that can be expressed in a host cell represented by an animal cell, yeast, or Escherichia coli, and a host cell by using the vector DNA. It is intended to provide a transformant obtained by transformation, and a method for producing luciferase using the transformant.
  • the cDNA encoding the luciferase derived from Firefly, obtained as described above, is stably retained in animal cells, yeast, and Escherichia coli, and can be expressed in those cells.
  • the recombinant vector DNA of the present invention is obtained.
  • the promoter is a signal for initiating RNA synthesis by recognition and binding of RNA synthase, and a DNA sequence located downstream thereof is transcribed into mRNA. Therefore, in order for the gene encoding luciferase from Firefly to be transcribed into mRNA, the gene encoding Luciferase from Firefly must be located downstream of the promoter that functions in each cell. is there.
  • the vector DNA is cleaved with an appropriate restriction enzyme having its recognition sequence at an appropriate position downstream of the promoter contained in the vector DNA, and a DNA containing the above-described luciferase-encoding gene is ligated.
  • Inserted Things are used.
  • the promoter used herein may be any promoter as long as it functions in each host cell.
  • promoters of animal cell genes or animal virus genes may be used. More specifically, examples include the late promoter of SV40, the promoter of the thymidine kinase gene, the early promoter of SV40, and the promoter of the cytomegalovirus gene.
  • yeast a yeast gene promoter or the like is used.
  • promoters of the yeast inhibitory acid phosphatase gene (PHO, galactose metabolizing enzyme gene (GAL Factory), ⁇ : pheromone gene (AiF "2), etc. are used. Oral motors, etc.
  • the promoter of the E. coli lactose-degrading enzyme gene ( ⁇ ac) the promoter derived from the trp operon, the phage P-mouth motor, etc. can be used. Can also be used.
  • the vector DNA used in the present invention may be any vector as long as it is stably maintained in each cell and has a promoter that functions in the cell.
  • plasmid vectors in animal cells, plasmid vectors, viral vectors, and the like can be mentioned. More specifically, P SV2 [having an early promoter of SV40: J. Mo 1. Ap p 1. Gene net USA, 1, 32 7 (1992)], pSVL (late stage of SV40 Having a promoter: manufactured by Pharmacia).
  • luciferase By connecting cDNA encoding luciferase downstream of a nucleotide sequence encoding a signal sequence for secretion of a protein that functions in a host cell, luciferase can be produced extracellularly.
  • the signal sequence is not particularly limited, and in animal cells, for example, the signal sequence of interleukin-12 (IL-2) and the like can be mentioned. In yeast, a pheromone signal sequence and the like can be mentioned. In the case of Escherichia coli, a signal sequence of lactamase is used. For production in cells, there is no need to link the signal sequence.
  • Escherichia coli When Escherichia coli is used as a host cell and luciferase is produced in the cell, the gene to be expressed;
  • the nucleotide sequence encoding methionine, "ATG”, is added to the 5 'end of the region encoding the It must be ligated downstream of a functional promoter and SD sequence.
  • the SD sequence here is a signal that the ribosome recognizes and binds to the same sequence on mRNA and starts protein synthesis from "ATG” located downstream of it.
  • methionine is due to the fact that many eukaryotic genes encoding secreted proteins encode the native protein downstream of the signal sequence for secretion, and the signal sequence must be added first.
  • the signal sequence is alanine-X-
  • the vector of the present invention is cleaved next to the alanine sequence, and contains the sequence ara2'-glutamic acid-alanine-proline in the amino acid sequence predicted from the nucleotide sequence of D. luciferase.
  • three expression vectors are used that encode peptides starting with proline, serine, or threonine downstream of methionine.
  • the animal cells used in the present invention are not particularly limited, and include, for example, COS-11 cells (SV40 transformed cells derived from African green monkey kidney), CHO cells (derived from Chinese hamster ovary) and the like. — One cell is used.
  • yeast used in the present invention include, but are not limited to, Saccharojiiyces cerev-jsiae, ShizosaccharoMyc.es poabe, and Picia pastoris. There are no particular restrictions on the type of Escherichia coli, and examples include HB101 and JM109.
  • the method for introducing the recombinant vector DNA into host cells is not particularly limited.
  • the host cell is an animal cell
  • the DEAE-dextran method [Mo 1. Cell. B 5, 1188 (11985)], calcium monophosphate coprecipitation method [Cell, .14, 725 (1978)].
  • Electroporation method [EMB ⁇ J., 1, 841] (1 982)].
  • the DEAE-dextran method is preferably used.
  • yeast the protoplast method [Proc. Natl. Acad. Sci. USA. 75, 1929 (1998)] is preferably used.
  • the host cell is Escherichia coli
  • the calcium chloride method [J.M01.Biol..53, 154 (1970)] is preferably used.
  • the recombinant vector DNA is transferred to animal cells,
  • Each of the above transformants is cultured in a medium, and luciferase can be obtained from the culture.
  • the medium any medium can be used as long as it is used for each culture.
  • Dulbecco's modified Eagle's medium can be used.
  • yeast YEPD medium (20 trypton Z) can be used.
  • E. coli 10 g / 1 yeast extract 20 gZml glucose
  • E. coli include L medium (10 gZl tryptone yeast extract ZlO gZl sodium chloride).
  • the cultivation temperature is not limited as long as each cell can grow.For example, 15 to 45 ° C is preferable, more preferably 25 to 40 ° C for animal cells and E. coli, and more preferably 30 to 37 ° C. C. For yeast, it is 15 to 40 ° C, more preferably 20 to 30 ° C.
  • the culture time is not particularly limited, but is usually 1 to 10 days, preferably 3 to 7 days for animal cells and yeast, and 1 to 3 days for Escherichia coli.
  • the promoter requires appropriate induction for its expression, e.g., the promoter of the metamouth thionein gene in animal cells, the promoter of the repressive acid phosphatase gene in yeast, or the trp promoter in E. coli
  • an appropriate inducer e.g., induce the expression of the promoter during the culture by means corresponding to each promoter, such as changing the culture temperature, irradiating ultraviolet rays, etc. Can be applied.
  • expression of the promoter can be induced by adding AA (indoleacrylic acid), a inducer of the trp operon, to the medium.
  • promoter expression as much as possible under non-inducing conditions.
  • a promoter whose expression is completely suppressed under non-induction can be used, or a promoter can be combined with a suppressor gene.
  • a recombinant plasmid having a trp operon repressor gene on the same plasmid.
  • the gene used is the fan reblesser gene (Nu Factory PR) [Nucleic Acids Res s., 8, 1552 (1980):].
  • Nu Factory PR Nu Factory PR
  • the culture is divided into a culture supernatant and cells by an appropriate method, for example, centrifugation, and the luciferase activity in the culture supernatant or the cell extract is analyzed using a luminometer or the like. Put out.
  • This culture supernatant or cell extract can be used as a crude enzyme solution as it is. If necessary, for example, the method of 'FI TSuji [Meth 0 ds in Enzymol., 57.364 (1978)] Purified luciferase can be obtained by the method described in the above.
  • Example 1 Example 1
  • This DNA was converted to a gt10 £ coRI site using T.4 DNA ligase;
  • the phage DNA was introduced into a single cell by packaging and transformed into Escherichia coli NM514 to obtain a 1 ⁇ 10 6 PFU cDNA library.
  • oligo nucleotides corresponding to the following five amino acids of the above-mentioned 13 amino acid sequences are converted into a DNA synthesizer (Applied Biosystems) (Manufactured by Systems Inc.).
  • I in the base sequence indicates deoxyinosine.
  • GGG Probe ⁇ (corresponds to amino acid sequence 4 to 9 of fragment 47)
  • cDNA library prepared in Example 1 approximately 10,000 plaques were generated on 50 agar plates. Transfer the plaque to a nylon membrane and denature the DNA in a 0.5 M sodium hydroxide / ⁇ . 5 M sodium chloride solution, then add 0.5 M Tris-HCl (PH 7.0) 1.5 M sodium chloride Neutralized in solution. After keeping the membrane at 80 ° C for 2 hours to fix the phage DNA on the membrane, 50 mM sodium phosphate (PH 7.4) ZO. 75 M sodium chloride 5X Denhardt's solution (0.1% bovine) Serum albumin / 0.1% Ficoll Z0.1% Polyvinylpyrrolidone) / ED ⁇ / 0.1% SDS / 10 0
  • Pre-hybridization was carried out by incubating in denatured salmon sperm DNA solution at 45 ° C for 2 hours.
  • the film was developed to yield 32 positive clones. Phages were propagated from these positive clones on the agar plate, and phage DNA was purified. DNA was stored at 120 ° C.
  • Example 3 the clone containing the 1900 base pairs of the canine containing the inserted fragment, CL07, was excised from the CL07 with the restriction enzyme J5coRI, and plasmid pUC18 The recombinant plasmid PCL07 was prepared (Fig. 2).
  • the nucleotide sequence of the 1.9 kb coRI fragment was determined using the usual didoxy method.
  • Fig. 1 shows the determined nucleotide sequence.
  • Eyypyy GluAs AllnL nLelGlnLSGGs luAsuAsG-1: T ---------- ATC ACCAC TOT GTACC CC GGT GO G TGO
  • the expression vector P SVLCL 5 (10 jug) prepared in Example 5 was added to COS-1 cells using the DEAE-dextran method [Mol. Cell. Biol .. 5, 1 18]. 8 (1985)]. In addition, Similarly, PSVL (10 Mg) was similarly introduced into COS-1 cells.
  • the cells in the culture flasks 25 cm 2, 10
  • the cells were cultured at 37 ° C for 5 days. During and after the culture, 1 ml of the culture solution was collected, centrifuged at 3,000 rpm for 10 minutes at 4 ° C, and the supernatant was collected to obtain a culture supernatant.
  • the cells were detached from the culture flask by trypsin treatment, washed with 1 ml of PBS (—) (manufactured by Nissui Pharmaceutical Co., Ltd.), and 3,000 rpm for 10 minutes.
  • the luciferase activity in the cell extract shown in Example 6 was measured by the method described below, and the results are also shown in Table 2. That is, 10 1 of the cell fraction prepared in Example 6 was mixed with 2901 of the above-mentioned measurement buffer, and further mixed with 21 of 33 / M ⁇ firefly and luciferin, and luciferase was used in the same manner as in the case of the culture supernatant. Activity was measured.
  • Natural luciferase purified from firefly has the N-terminus of serine, which is the 3rd amino acid in the amino acid sequence shown in Figure 1, and threonine, which is the 3rd and 2nd amino acid.
  • Fig. 1 shows that the sequence of alanine-glutamate-aralanine-proline is also present in the firefly luciferase.
  • YP type which is the ninth amino acid in the amino acid sequence of the firefly luciferase shown above, is the 30th amino acid Producing luciferase and protein starting from phosphorus (YN type), serine (YS type) at the 3rd amino acid, and threonine (YT type) at the 3rd amino acid, and the signal sequence of yeast alpha pheromone
  • YN type phosphorus
  • YS type serine
  • YT type threonine
  • the following 10 oligonucleotides were synthesized for ligation downstream of YP— 1 5 '-CCTTCAAGTACTCCA-3'
  • Annealing of each oligonucleotide is performed as follows. I got it. For YP type, YP-1, phosphorylated ⁇ -2, U-1, and phosphorylated U-2, and for YS type, YS-1, phosphorylated YS-2, U-1, and phosphorylated U—2, ⁇ —1, phosphorylated ⁇ -2, U-1 and phosphorylated U-2 for type ⁇ , ⁇ -1, phosphorylated ⁇ —2, U— for type ⁇ 1, and phosphorylated U-2 were mixed at 50 pmo, respectively, and heated at 70 ° C for 5 minutes, and then the incubator was turned off and left at 42 ° C.
  • the luciferase cDNA is inserted into the expression vector PMF 8 containing the L-romon distant gene promoter PMF 8 ⁇
  • the restriction enzyme CI a I cleavage site present in the firefly luciferase c DNA
  • the indicated synthetic oligomer was incorporated to prepare a luciferase cDNA having a S i; t I site at the 5 'end and truncating the N-terminal 28, 29, 30, and 31 amino acids.
  • the yeast expression vector pMF ⁇ 8 [Gene. 3, 155 (11985): ATCC. 37418] contains the restriction enzyme S immediately after the region coding for the leader sequence of the phleomone gene. It was cut with tul and the luciferase cDNA described above was inserted.
  • the prepared expression vectors were named PME F3A (YP type), pMEF3B (YS type), pMEF3C (YT type), and PMEF3D (type III), respectively (FIG. 4a).
  • the nucleotide sequence in the vicinity of the sales site of the pheromone gene luciferase cDNA of each of the prepared expression vectors was determined by the usual dideoxy method using the primer of luciferase cDNA 5,5-TATA AATGGTCCAAGGA-3. Confirmed that it was inserted correctly.
  • the nucleotide sequence and amino acid sequence near the connection site of the pheromone gene Z luciferase cDNA in pMFE3A, pMFE3B, pMFE3C, and PMFE3D are shown in FIG. 4b.
  • Example 3 From CL07, two 1.3 kb and 0.6 kb EcoRI fragments were each subcloned into plasmid pUC18 to prepare plasmid pCL0712 and PCL0742.
  • pCL07 (1 ug) ⁇ and PCL0712 (1 g) were digested with Hi / 1dIII and ⁇ zaII, and the DNA fragment containing the ⁇ A DNA fragment containing the C-terminal of luciferase was purified from 712. These two fragments were subcloned into the Hindill site of plasmid PSP T18 (Boehringer Mannheim), and the obtained recombinant plasmid was named PSTCL81. ,
  • this PSTC L81 (l ⁇ g) was digested with Ba / nHI, and the entire cloned cDNA sequence was Collected as fragments.
  • the expression vector having yeast GA JLL promoter 103 [Sal cell arojnyc.es cerevisiae GAL ⁇ promoter ⁇ MoI.CelI.Biol..4, 140 (19 84) ⁇ , a polylinker containing a Sa / HHI cleavage site is provided downstream: Osaka University ⁇ Associate Professor Shun Harashima.] About 0.1 g was cut with BamHI and T4 DNA The DNA fragment was ligated to about 0.1 g of the cDNA fragment using ligase to prepare an expression vector pGL1 in which luciferase cDNA was inserted downstream of the GAL2 promoter (FIG. 5).
  • transformants were cultured in 11 culture flasks using a 100 ml YEPD medium at 30 ° C. for 3 days. During and after the culture, 5 ml of the culture solution was collected, centrifuged at 3,000 rpm at 4 ° C for 10 minutes, and the supernatant was collected to obtain a culture supernatant.
  • Cells of 1 ml of culture solution are washed with 5 ml of sterile distilled water. After purification, the suspension was suspended in 11111 501111 ⁇ sodium phosphate (pH 7.5) /0.1% Triton x-100. 1 ml of glass ⁇ beads (0.45 mm diameter) suspension was added and left at 0 ° C for 5 minutes with occasional vigorous mixing with a mixer. The glass beads were separated by gentle centrifugation, and the supernatant was transferred to a further 1.5 ml Eppendorf tube and centrifuged at 15,000 rpm for 5 minutes. This supernatant was used as a cell extract. ..
  • the expression vector pGL1 (10 g) prepared in Example 10 was purified by the yeast method Sacc / aroijyces cerevisiae YSH2676 ((a) u a3-52
  • the transformant was cultured for 2 days at 30 ° C using 1 00 ml of medium (1% yeast extract / 2% peptone / / 2% glass lactose) in 1 1 of culture flask. During and after the culture, 5 ml of the culture solution was centrifuged at 3, OOO rpm for 10 minutes at 4 eC , and the supernatant was collected to obtain a culture supernatant.
  • medium 1% yeast extract / 2% peptone / / 2% glass lactose
  • the bacterial cell extract was also prepared in the same manner as in Example 11 c.
  • Luciferase activity in the culture supernatant shown in Example 11 was measured in the same manner as in the measurement of luciferase activity of the culture supernatant of animal cells described in Example 7, and the results are shown in Table 3.
  • the number of photons generated was similarly measured for the culture supernatant of S, cerevisiae 20B-12 strain into which pMFaS was introduced.
  • the luciferase activity in the yeast cells shown in Example 11 was performed by the method described below, and the results are also shown in Table 3. That is, 10 l of the cell extract prepared in Example 11 was mixed with 2901 of the above-mentioned buffer for measurement, and further mixed with 21 of 33 M ⁇ firefly luciferin. Then, the luciferase activity was measured. Table 3 Rushiferase 'activity (X 10 5 cps / ml) Burasumido 12 hours 21 hours 38 hours 47 hours 64 hours
  • Example 12 The measurement of luciferase activity in the culture supernatant shown in Example 12 was performed in the same manner as the measurement of the luciferase activity of the animal cell culture supernatant described in Example 7, and the results are shown in Table 4. Was. As a control, the number of photons generated was similarly measured for the culture supernatant of the cerevisiae YSH2676 strain into which P103 had been introduced.
  • Example 12 The luciferase activity in the yeast cells shown in Example 12 was performed in the same manner as in Example 13 and the results are shown in Table 4.
  • Table 4 luciferase activity (X 10 5 cps / m 1 ) clone N o. 20 hours 43 hours 51 hours
  • the methionine-proline (EP type), methionine-serine (ES type), and methionine-threonine (ET type) are initiated downstream of the E. coli tryptophan synthesis gene (trp) operon promoter and SD sequence.
  • trp E. coli tryptophan synthesis gene
  • Each oligonucleotide contains £ -1, £ 1, phosphorylated EP-2, U-1, and phosphorylated U-2 in the £ form, and ES-1, phosphorylated ES-2, U— in the ES form. 1, and phosphorylated U-2, ET-1 and phosphorus Oxidized ET-2, U-1 and phosphorylated U-2 were each mixed at 50 pmol, and annealed in the same manner as in Example 8.
  • the expression vector pMT-1 [derived from p KM6 (Special Review No. 61-247378)] containing the promoter of the E. coli tryptophan operon (trp) and the SD sequence was obtained from the restriction enzymes S mal and C 2a I. And cut with PV u II.
  • the expression vector pCL07 prepared in Example 3 was cleaved with Smal (: aI, and the DNA fragment containing luciferase cDNA downstream from CiaI was separated and purified by agarose gel electrophoresis. did.
  • plasmid PMT-CL07 was prepared. This plasmid has a luciferase cDNA, downstream of the C1aI site, downstream of the t t'p promoter ZSD sequence.
  • This pMT-CLO7 was cleaved with restriction enzyme CIa, and 0.1 g thereof was ligated with 51 of the synthetic DNA prepared in Example 15 using T4 DNA ligase.
  • the prepared plasmids were named pMT-CLP, pMT-CLS, and pMT-CLT, respectively.
  • the nucleotide sequence near the site where the Z-luciferase was connected to the SD sequence of each of the expression vectors was prepared using the primers of 5, -T AT AAATGGTCC A AGGA-3 ', which is a sequence in luciferase cDNA. It was confirmed by the law that it was properly introduced.
  • FIG. 6 shows the restriction enzyme maps of pMT-CLP, pMT-CLS, and pMT-CLT and the confirmed nucleotide sequences.
  • Freeze-thaw was repeated three times using warm water at 42 ° C and dry ice-aceton solution, lysed, and centrifuged at 10, OOO rpm for 10 minutes, and the centrifuged supernatant was used as a crude enzyme solution. .
  • Luciferase derived from firefly is a luminescent system with a very strong luminescence intensity.
  • test methods such as A (enzyme-antibody assay), and DNA / RNA molecules combined with this enzyme and used in the DNA probe method.
  • the primary structure of cDNA encoding luciferase derived from Firefly was identified, and at the same time, the primary structure of the luciferase was revealed. Furthermore, a method for stably producing the luciferase is opened by mass-culturing animal cells, yeast, and Escherichia coli having the luciferase expression vector according to the present invention so that the luciferase can be obtained inexpensively and in large quantities. What is expected Is done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書
ルシフェラーゼ、 それをコードする遺伝子およびルシ フェラーゼの生産方法
技 術 分 野
本発明は、 生物発光反応を用いた分析法に有効な純化 された酵素ルシフェラーゼ及びそれをコードする遺伝子 に関する。 さらに本発明は、 前記遺伝子が挿入された新 規組換え体ベクター D N A、 該ベクター D N Aを有する 形質転換体、 及び該形質転換体を用いたルシフェラーゼ の生産方法を提供する。
背 景 技 術
ゥミホタル ( Cypr i dina h i i g en orf i i ) は、 日本沿岸 に生息する海産甲殻類で、 刺激を受けて海水中に青白い 発光液を放出する。 発光は基質であるルシフェリンを酵 素であるルシフェラーゼにより酸化することによって起 こり、 ホタルや発光バクテリアの発光のように他の必須 成分を必要としない非常に単純な発光系であり、 微量分 析法への利用が期待される。
しかしながら、 一般にルシフェリンは化学的に合成す ることによって大量に得ることができる力 ルシフェラ ーゼは酵素であるため化学合成ができず、 大!:に得るこ とは困難である。 ゥミホタルのルシフェラーゼの場合も 同様で、 充分に純化されたルシフェラーゼは得られてお らず、 海洋汚染の進行でゥミホタル自身の採集量が激減 したことと相まって、 量的な供給が保証されていない。 それ故に、 遺伝子組換え技術を利用した該酵素の大量生 産法の確立が期待されてきた。
本発明は、 高度に純化されたルシフェラーゼの化学合 成法、 もしくは遺伝子組換え法による合成を可能ならし め、 高純度の該蛋白質を大量に得るために、 該蛋白質を 特定する遺伝子配列を得、 クローニングされた遺伝子配 列を動物細胞、 酵母、 大腸 等で発現することを可能に し、 それらの細胞を用いて、 高純度の該酵素を大量に得 ることを目的とする。
発 明 の 開 示
本発明は第 1図のアミノ酸配列を有するルシフェラー ゼ、 及びそれをコードする遺伝子、 該遺伝子を含んでな る新規組換え体ベクター D N A、 及び該べクター D N A により宿主細胞を形質転換してなる形質転換体、 及び該 形質転換体を用いたルシフエラーゼの生産方法である。
図面の簡単な説明
第 l a図、 第 l b図、 第 l c図、 第 I d図は、 ゥミホ タル由来のルシフェラーゼの c DN Aの塩基配列及びァ ミノ酸配列を示す。 各列の上段は、 アミノ酸配列を示す C 各列の下段ほ c DN Aの塩基配列を示す。
第 2図は、 ゥミホタル由來のルシフェラーゼをコ一ド する c DNAを含む組換え体プラスミ ド p CLO 7の作 製法と、 その制限酵素地図を示す。
第 3図は、 動物細胞におけるゥミホタル由来のルシフ エラーゼの発現ベクター p S VL CL 5の作製法を示し たものである。
第 4 a図は、 酵母におけるゥミホタル由来のルシフエ ラーゼの発現ベクター pMF E 3 A、 pMFE 3 B、 pMFE 3 C、 pMF E 3 Dの制限酵素地図、 第 4 b図 は、 各々の発現ベクタ における フェロモン遺伝子/ ルシフェラーゼ c DN Aの接続部位近傍の塩基配列、 及 びアミノ酸配列を示したものである。
第 5図は、 酵母におけるゥミホタル由来のルシフェラ ーゼの発現べクタ一 P GL 1の作製方法を示したもので ある。
第 6図は、 大腸菌おけるゥミホタル由来のルシフェラ ーゼの発現べクタ一 P MT— C L P、 pMT— CLS、 pMT— CLTの作製方法を示したものである。
発明を実施するための最良の形態
本発明のルシフェラーゼは、 第 1図に示される 1番目 から 555番目までの 555個のアミノ酸配列からなる 蛋白質、 または、 第 1図に示されるアミノ酸配列のうち、 29番目のアミノ酸であるプロリンから始まる 527個 のアミノ酸配列からなる蛋白質、 30番目のアミノ酸で あるセリンから始まる 526個のアミノ酸配列からなる 蛋白質、 3 1番目のアミノ酸であるセリンから始まる 5 25個のアミノ酸配列からなる蛋白質、 もしくは 32番 目のスレオニンから始まる 524個のアミノ酸配列から なる蛋白質である。 さらに、 本発明のルシフェラーゼは 前記ルシフェラーゼと実質的に同等のルシブェラーゼ活 性が保持されているならば、 前記ァミノ酸配列の置換、 欠失、 揷入等から構成される蛋白質、 すなわちルシフエ ラーゼ同効物も本発明に含まれる。
本発明の遺伝子は、 上記ルシフェラーゼをコードする 遺伝子であって、 第 1図の下段に DN A塩基配列で示し たものであるが、 実質的に同等のルシフェラーゼ话性が 保持されているならば、 塩基配列の置換、 欠失、 揷入等 から構成される塩基配列も本発明に含まれる。
本発明のルシフェラーゼをコードする遺伝子を得る方 法を説明する。 まず、 ゥミホタルをグァニジンチオシァ ネート中で破砕した破砕液から全 RNAを抽出し、 オリ ゴ ( d T ) セルロースカラムクロマトグラフィ一により ポリ A+ RNAを精製する。 このポリ A+ RNAを出発 材料として c DNAを合成後、 g t l Oにクロ一ニン グして c DN Aライブラリーを作製する。
一方、 ゥミホタルより精製したルシフェラーゼ蛋白質 の N末端近傍のアミノ酸配列、 及びリジルェンドぺプチ ダーゼ分解によって得られたォリゴペプチドのァミノ酸 配列を決定し、 それらに対応するヌクレオチド配列を有 する数種類のオリゴヌクレオチドを化学合成し、 上述の c DNAライブラリーのスクリーニングのためのプロ一 ブとして用いる。
プラークハイブリダィゼーション法によりこれらのプ ローブがハイプリッ ドを形成する組換え体の有する揷入 遺伝子の塩基配列の解析を行い、 ルシフェラーゼ蛋白質 のアミノ酸配列と一致すれば、 ルシフェラーゼ · タンパ クをコードする遺伝子の一部であると同定できる。
さらに、 本発明は動物細胞、 酵母、 大腸菌に代表され る宿主細胞中で各々発現可能なプロモーターの下流に各 々上記 DNAを連結してなる組換えベクター DNA、 そ のベクター DN Aにより宿主細胞を形質転換してなる形 質転換体、 及びそれらの形質転換体を用いたルシフェラ ーゼの生産方法を提供するものである。
具体的には、 上述のようにして得られたゥミホタル由 来のルシフェラーゼをコードする c DN Aを、 動物細胞、 酵母、 大腸菌中において各々安定に保持され、 かつそれ らの細胞中において発現可能なプロモ一ターを持つべク ター DNAに連結し、 本発明の組換え体ベクター DN A が得られる。
ここで、 プロモーターとは、 RN A合成酵素が認識結 合して RN A合成を開始するための信号であり、 その下 流に位置する D N A配列が m R N Aに転写される。 した がって、 ゥミホタル由来のルシフェラーゼをコードする 遺伝子が mRN Aに転写されるためには、 各々の細胞中 で機能するプロモーターの下流に、 ゥミホタル由来のル シフヱラーゼをコードする遺伝子が位置する必要がある。
すなわち、 ベクター DNAに含まれるプロモーターの 下流の適当な位置にその認識配列の存在する適当な制限 酵素によりベクター DNAを切断し、 上記のルシフェラ ーゼをコードする遺 ί云子を含む DN Aを連結、 挿入した ものが用いられる。
ここで使用するプロモーターは、 各々の宿主細胞中で 機能するものなら何でも良く、 例えば動物細胞において は動物細胞遺伝子もしくは動物ウイルス遺伝子のプロモ 一夕一等があげられる。 より具体的には、 SV 40の後 期プロモーター、 チミジンキナーゼ遺伝子のプロモータ 一、 SV 40の初期プロモーター、 サイ トメガロウィル ス遺伝子のプロモーター等があげられる。 酵母において は、 酵母遺伝子のプロモーター等が用いられる。 例えば、 酵母の抑制性酸性フォスファターゼ遺伝子 ( P HO 、 ガラクトース代謝酵素遺伝子 ( G A L 厂)、 α:フエロモ ン遺伝子 ( AiF " 2 ) のプロモーター等が用いられる。 大腸菌においては、 大腸菌遺伝子、 ファージ遺伝子のプ 口モーター等が用いられる。 冽えば、 大腸菌ラク トース 分解酵素の遺伝子 ( ί a c ) のプロモーター、 t r p オペロンに由来するプロモーター、 えファージの Pし プ 口モーター等があげられる。 また、 合成 t a cプロモー ターなども使用できる。
本発明で用いるベクター DN Aは、 各々の細胞中で安 定に保持され、 その細胞中で機能するプロモーターを持 つものなら何でも良い。 例えば、 動物細胞では、 プラス ミ ドベクター、 ウィルスベクター等があげられるが、 よ り具体的には、 P SV 2 [S V 40の初期プロモーター を持つ: J. Mo 1. Ap p 1. Ge n e t. U S A、 1、 3 2 7 ( 1 9 82 ) ]、 p S VL ( SV40の後期 プロモーターを持つ: フアルマシア社製)、 等があげら れる。 ϋ母においては、 pMF« 8 [ フェロモン遺伝 子 ( MP" " ί ) のプロモーターを持つ: Ge n e、 3、 1 55 ( 1985 ) ].、 P AM85 [抑制性酸性フォス ファターゼ遺伝子 ( P H O 5 のプロモーターを持つ: P r o c Na t l. Ac a d. S c i. US A、 80、 1 ( 1 9 83 ) ] 等があげられる。 大腸菌においては、 pMT— 1 [ t r オペ口ンのプロモーターを持つ発 現ベクター P KM 6 (特開昭 6 1 — 247387号) 由 来]、 p UC 1 8Zp UC 1 9 [ G e n e、 3 3、 1 0 3 ( 1 9 85 ) ] 等があげられる。
宿主細胞において機能する蛋白質分泌のためのシグナ ル配列をコードする塩基配列の下流に、 ルシフェラーゼ をコードする c DN Aをつなぐことで、 ルシフェラーゼ を細胞外に生産させることができる。 このシグナル配列 に特に制限はなく、 動物細胞においては、 例えば、 イン ターロイキン一 2 ( I L - 2 ) のシグナル配列等があげ られる。 酵母においては、 フェロモンのシグナル配列 等があげられる。 大腸菌の場合は、 ーラクタマーゼの シグナル配列等があげられる。 細胞内に生産させる場合 は、 シグナル配列を連結する必要はない。
宿主細胞として大腸菌を用い、 細胞内にルシフヱラー ゼを生産させる場合には、 発現させたい遺伝;
子がコードされる領域の 5, 末端にメチォニンをコード する塩基配列である "AT G" を付加し、 大腸菌中で機 能するプロモーター及び S D配列の下流に連結する必要 がある。 ここでいう S D配列とは、 リボソームが m R N A上の同配列を認識、 結合して、 その下流にある " A T G " よりタンパク合成を開始するための信号である。 ま た、 メチォニンを付加するのは、 分泌タンパクをコード している真核生物の遺伝子の多くは、 分泌のためのシグ ナル配列の下流に本来のタンパクをコードしており、 ま ずシグナル配列を含む形でポリべプチドの前駆体を合成 し、 このタンパクが分泌される過程でシグナル配列が切 断除まされるため、 最終的に生産されるタンパクの N末 端にはタンパク合成の開始信号として必須であるメチォ ニンの信号が付いていない場合が多いためである。 また、 ゥミホタルより精製した天然型のルシフェラ一ゼがセリ ン及びスレオニンの 2種類の N末端を持つタンパクの混 合物であること、 また、 多くの真核生物ではシグナル配 列はァラニン—X—ァラニン配列の次で切断され、 ゥミ ホ夕ル ·ルシフェラーゼの塩基配列より予想されるアミ ノ酸配列中にァラ二'ンーグルタミン酸ーァラニン一プロ リンという配列が存在することから、 本発明のベクター は N末端領域に関して、 メチォニンの下流にプロリン、 セリン、 またはスレオニンから始まるぺプチドをコード する 3種類の発現べクタ一が用いられる。
前記各々の組換え体べクタ一 D N Aにより動物細胞、 酵母、 大腸菌に代表される宿主細胞を各々形質転換した 形質転換体とは、 前記組換え体べクタ一 D N Aを各々の 宿主細胞に導入することによって得られる。
本発明で使用される動物細胞としては特に制限はなく、 例えば、 COS一 1細胞 (アフリカミ ドリザル腎臓由来 S V40形質転換細胞)、 CHO細胞 (チャイニーズハ ムスター卵巣由来) 等があげられ、 好ましくは COS— 1細胞が用いられる。 本発明において使用される酵母と して【ま特【こ铕(!限まなく、 3え【ま、 Saccharojiiyces cerev- jsiae、 ShizosaccharoMyc.es poabe, Pic ia pastoris等 があげられる。 本発明において使用される大腸菌に特に 制限はなく、 例えば、 HB 1 0 1、 JM 109等があげ られる。
組換え体ベクター DN Aを宿主細胞中に導入する方'法 に特に制限はないが、 例えば、 宿主細胞が動物細胞の場 合ほ、 D E AE—デキス トラン法 [Mo 1. C e l l. B i o l. . 5、 1 1 88 ( 1 9 85 ) ]、 カルシウム 一リン酸共沈法 [C e l l、 .14、 7 25 ( 1978 ) ] . 電気穿孔法 [ EMB〇 J. 、 1、 84 1 ( 1 982 ) ] 等があげられる。 中でも、 D EAE—デキス トラン法が 好ましく用いられる。 宿主細胞が酵母の場合は、 プロ 卜 プラスト法 [P r o c. N a t l. Ac a d. S c i. USA. 75、 1 92 9 ( 1 97 8 ) ] が好ましく用い られる。 また、 宿主細胞が大腸菌の場合は、 好ましくは 塩化カルシウム法 [ J. M 0 1. B i o l. . 53、 1 54 ( 1 970 ) ] が用いられる。
このようにして組換え体べクタ一 D N Aを動物細胞、 酵母、 大腸菌に代表される宿主細胞中に各々導入するこ とにより、 ゥミホタル由来のルシフェラーゼをコードす る遺伝子を含む DN Aをベクター DN Aに揷入した新規 な組換え体ベクター: DNA、 さらにルシフェラーゼ生産 能を有する形質転換体を得ることができる。
上記形質転換体を各々培地に培養し、 培養物よりルシ フェラーゼを得ることができる。 培地としては、 各々の 培養に用いられるものであれば何でも良く、 例えば、 動 物細胞の場合はダルべッコ変法ィーグル培地等があげら れ、 酵母では YEPD培地 ( 20 トリプトン Z
10 g/1 酵母エキスノ20 gZml グルコース) 等があげられ、 大腸菌では L培地 ( 10 gZl トリプ トン 酵母エキス Zl O gZl 塩化ナトリ ゥム) 等があげられる。
培養温度は各々の細胞が生育できる温度であれば何度 でも良い力 例えば 15〜45°Cが好ましく、 さらに好 ましくは動物細胞、 大腸菌では 25〜 40 Ό、 より好ま しくは 30〜37°Cである。 酵母では 1 5〜40°C、 よ り好ましくは 20〜30°Cである。 培養時間にも特に制 限はないが、 通常 1〜 10日間、 好ましくは動物細胞、 酵母では 3〜7日間、 大腸菌では 1〜3日間である。
プロモーターがその発現に適当な誘導を必要とする場 合、 例えば、 動物細胞におけるメタ口チォネイン遺伝子 のプロモーター、 酵母における抑制性酸性フォスファタ ーゼ遺伝子のプロモーター、 大腸菌における t r p プ 口モーター等を用いる場合では適当な誘導物質を加える. 適当な物質を除く、 培養温度を変化させる、 紫外線等を 照射する等、 各々のプロモーターに応じた手段により、 培養中にプロモーターの発現に誘導をかけることができ る。 具体的には、 大腸菌において プロモーター を使用した場合、 t r p オペロンの誘導物質であるェ AA (インドールァクリル酸) を培地に添加することに より、 プロモーターの発現を誘導できる。
この際に、 非誘導条件下で産生される微量のタンパク の存在が細胞の増殖等に悪影響を与える場合には、 非誘 導下ではプロモーターの発現をできるだけ抑制しておく ことが好ましい。 例えば、 非誘導下では完全に発現の抑 制されるプロモーターを用いる、 プロモーターの抑制遺 伝子と組み合わせる等があげられる。 具体的には例えば、 t r p プロモーターの場合、 t r p オペロンの抑制 遺伝子を同一プラスミ ド上に持つ組換えプラスミ ドを用 いることが好ましい。 この抑制方法としては、 トリフ。卜 ファン リブレッサー遺伝子 ( 亡 厂 PR) [Nu c l e i c Ac i d s Re s. 、 8、 1 552 ( 198 0 ) :] が用いられる。 これらとは別に、 前述のように、 生産されるタンパクを細胞外に分泌させる方法を用いる ことも可能である。
培養物は、 適当な方法、 例えば遠心分離等により培養 上清と細胞とに分け、 その培養上清もしくは細胞抽出液 中のルシフヱラーゼ活性をルミノメーター等を用いて検 出する。.この培養上清もしくは細胞抽出液はそのままで も粗酵素液として使用可能である力 必要により、 例え ば' F. I. T s u j iの方法 [M e t h 0 d s in Enzymol. 、 57. 364 ( 1978) ]記載の 方法により精製して、 純化されたルシフェラーゼを得る ことができる。
実 施 例
以下、 実施例をあげて本発明をさらに詳細に説明する。 実施例 1
c DNAライブラリーの作製
千葉県館山湾内で採集後、 凍結保存したゥミホタル 5 gを 6M グァニジン チオシァネート ZSniM クェ ン酸ナトリウム(PH 7.0) 0. 5 % ザルコシン酸ナト リウム溶液 75 mlに懸濁し、 ポリ トロンホモジナイザ ― (キネマティ力社製) で破砕した。 塩化リチウム溶液 (アマシャム社製キッ ト) を加え、 塩化リチウム共沈法 によって約 600 gの RN Aを得た。 このうち 300 gの RNAをオリゴ (dT) セルローカラム (コラボ レイティブ リサーチ社製) クロマトグラフィーによつ て精製し、 約 15 gのポリ (A) + RNAを得た。 こ のうち 2〃gから cDNA合成キッ ト (ライフ テクノ 口ジーズ社製) を用いて 1 gの 2本鎖 DNAを得た。 このうちの 0. 15 gを JS c oRI メチラーゼで処 理して c oRェ切断部位を保護し、 T 4 DNA リ ガーゼを用いて c oRI リンカ一を結合した。 さら に、 (: ひ1¾ェで処理し、 両末端を c oR I切断部位 に変換した。 この DNAを T.4 DNA リガーゼを使 つて; g t 10の £ c oRI部位に揷入した後、 i n v i t r o ノヽ。ッケージングによりファージ ノヽ。一ティ クル中に導入した。 これを大腸菌 NM5 14に形質導入 し、 1 X 106 P FUの c DN Aライブラリーを得た。 実施例 2
オリゴヌクレオチド , プローブの作製
F. ェ. . T s u j iの方法 [Me t h 0 d s i n E n z ymo l. 、 57、 364 ( 1978 ) ] で精製 したゥミホタル · ルシフェラーゼ 100 gを凍結乾燥 した後、 100 1の 8M 尿素/ 1 M トリス塩 酸(pH 7.6)/0. 14M 2—メルカプトエタノールに 溶解して、 37 °Cで 3時間保温して一 SH基をピリジル ェチル化した。 これに 200 ^ 1の 0. I liM トリス 塩酸(PH 9.0)、 1 1の 2—メチルメルカプトエタノー ル、 1 1の 2 1 リジルエンドぺプチダーゼ (和光純薬社製) を加えて、 37 °Cで 1時間消化した。 これを VYDAC 2 18 TP 54 ( C18) ( VYD AC社製) の HP LCにかけ、 オリゴペプチドを分離し た。 得られたオリゴペプチドのうち 13個について、 ァ ミノ酸シークェンサ一 470 A (アプライ ド バイオシ ステムズ社製) を用いて N末端のアミノ酸配列を解析し たところ、 以下の 13個のアミノ酸配列を得た。
Figure imgf000016_0001
フラグメント 1 3
1 5 10
Ala-Arg-Tyr-Gln-Phe-Gln-Gly-Pro-Met-Lys
(Cys) フラグメント 1 8
1 5 9
Arg-Phe-Asn-Phe-Gln-G lu-Pro-Gly-Lys フラグメン ト 2 1
1 5 10
Arg-Asp-I le-Leu-Ser-Asp-G ly-Leu- Cys-G lull 15
Asn-Lys-Pro-Gly-Lys フラグメント 2 3
1 5 10
Gly-Gln-G ln-Gly-Phe-Cys-Asp-His-Ala-Trp-
11 13
Glu-Phe-Lys フラグメント 2 7
I 5 10 Glu-Phe-Asp-Gly-Cys-Pro-Phe-Tyr-Gly-Asn-
II 15 18
Pro-Ser-Asp-Ile-Glu-Tyr-Cys-Lys フラグメント 3 8
I 5 10 Gly-Gly-Asp- ( ) -Ser-Val-Thr-Leu-Thr-Met-
II 15 · 17
Glu-Asn-Leu-Asp-61y-Gln-Lys フラグメント 4 0
I 5 10 His-Val-Leu-Phe-Asp-Tyr-Val-Glu-Thr-Cys-
II 15 20 Ala-Ala-Pro-Glu-Thr-Arg-Gly-Thr-Cys-Val-
21 25 30
Leu-Ser-Gly-His-Thr-Phe-Tyr-Asp-Thr-Phe フラグメント 4 7
1 5 10
Glu-Leu-Leu-Met-Ala-Ala-Asp-Cys-Tyr-( ) -
11 15 16
Asn-Thr-( )-Asp-Val-Lys フラグメン卜 5 0
I 5 10
( )-Leu-Met-Glu-Pro-Tyr-Arg-Ala-Val-Cys-
II 15 20
( )-Asn-Asn-I le-Asn-Phe-Tyr-Tyr-Tyr-Thr 次に上記の 1 3種のアミノ酸配列のうち下記の 5種に 対するォリゴヌクレオチドを D N A合成装置 (アプライ ド バイオシステムズ社製) を用いて作製した。 なお塩 基配列中の Iは、 デォキシイノシンを示す。
プローブ I (フラグメント 2 7の 6番のアミノ酸 配列に対応)
Glu - Phe - Asp - Gly - Cys - Pro
GAA TTT GAT GGT TGT CCT G C C C C C A A G G
3 ' -CTT AAA CTA CCI ACA GG-5 '
C G G G
プローブ II (フラグメント 2 3の 6〜 1 0番のァミノ 酸配列に対応)
Cys-Asp-His-Ala-Trp
TGT GAT CAT GCT -TGG
C C C C A
G
3 ' -ACA CTA GTA CGI ACC-5 '
G G G プローブ ΙΠ (フラグメント 4 7の 4〜 9番のアミノ酸 配列に対応)
Met - Ala - Ala - Asp - Cys - Tyr
ATG GCT GCT GAT TGT TAT C C C C C A A G G
3, - TAC CGI CGI CTA ACA AT - 5
G G
プローブ IV (フラグメント 5 0の 3〜 7番のアミノ酸 配列に対応)
Met- -Glu- -Pro-Tyr-Arg
ATG GAA CCT TAT CGT
G C C C
A A
G G
AGA
G
3 ' -TAC CTT GGI ATA TC-5,
C G G プローブ V (フラグメント 13の 1〜 10番のァミノ 酸配列に対応)
Ala-Arg-Tyr-G ln-Phe-Gln-Gly-Pro-Met-Lys GCT CGT TAT CAA TTT CAA GGT CCT ATG AAA
C C C G C G C C G A A A A G G G G AGA
G
3, - CGI GCI ATA GTT AAA GTT CCI GGI TAC TTT-5'
T G C G C
以上の 5種のオリゴヌクレオチド各々 1 gを、 10 1の5011^'1 トリス塩酸(pH 7.6)Z 10 mM 塩化 マグネシウム/ /SmM ジチオスレィ トール Z 1 mM スペルミジン/ / 100 mM. 塩化カリウム に溶解し、 5 1の [ y— 32 P ] AT P (3000Ci/m ol;アマシャム 社製) 、 85 1の蒸留水、 2 1の丁 4 ポリヌクレ ォチド キナーゼ (宝酒造社製) を添加して、 37 で 1時間反応して32 P標識した。 実施例 3
プラークハイブリダィゼーシヨン法による c DN Aラ イブラリーのスクリーニング
実施例 1で作製した c D N Aライブラリーを用いて、 50枚の寒天プレートに 1枚当たり約 1万個のプラーク を出現させた。 このプラークをナイロン 'メンブレンに 移し取り、 0. 5M 水酸化ナトリウム/^. 5M 塩 化ナトリウム溶液中で DN Aを変性させた後、 0. 5 M トリス塩酸(PH 7.0) 1. 5 M 塩化ナトリウム溶液中 で中和した。 このメンブランを 80°Cで 2時間保温して、 ファージ DNAをメンブラン上に固定した後、 50 mM リン酸ナトリウム(PH 7.4)ZO. 7 5 M 塩化ナトリウ ム 5 Xデンハルト溶液 ( 0. 1 % 牛血清アルブミン /0. 1 % フイコール Z0. 1 % ポリビニルピロリ ドン) / ED ΊΑ/0. 1 % S D S/10 0
1 変性サケ精子 DN A溶液中で 45 °Cで 2時 間保温してプレハイブリダィゼーシヨンを行つた。
次に、 新たな同溶液中にメンブランを移し、 5 C i /mlとなるように実嗨例 2で標識したオリゴヌクレオ チドプローブ Vを添加して、 45 °Cで一夜保温してハイ ブリダィゼーシヨンを行った。 約 1 6時間後、 6 X S S C [ 9 0 mM クェン酸ナトリウム(PH 7.0)/O. 9 M 塩化ナトリウム] ノ 0. 1 % S D Sを用いて室温下で 30分間ずつ 2回、 次に 45 °Cで 30分間ずつ 2回メン ブランの洗浄を行った。 このメンブランを風乾した後、 X—〇MATTMARフィルム (コダヅク社製) を用いて、 - 70°C、 48時間オートラジオグラフィーを行った。
フィルムを現像し、 32個の陽性クローンを得た。 寒 天プレート上のこれらの陽性クローンよりファージを增 殖させ、 ファージ DN Aを精製した。 DNAは一 20°C で保存した。
実施例 4
ルシフェラーゼ蛋白質と遺伝子の 1次構造の比齩
実施例 3で得られた 32個の陽性クローンのうち、 最 犬の約 1900塩基対の揷入断片を含むクローンえ CL 07より揷入断片を制限酵素 J5 c oRIで切り出し、 プ ラスミ ド pUC 18にサブクローニングし、 組換え体プ ラスミ ド P CL 07を作製した (第 2図)。 この 1. 9 k bの c o R I断片の塩基配列の決定は、 通常のジデ ォキシ法を用いて行った。 決定された塩基配列を第 1図 に示す。
得られた遺伝子の情報と、 実施例 2で得られた蛋白質 の情報とを比較することにより、 第 1表に示すように蛋 白質と遺伝子の 1次構造を対応させることができた。 そ の結果、 第 1図に示すようにゥミホタル由来のルシフエ ラーゼの遺伝子の塩基配列が特定され、 また該蛋白質の ァミノ酸配列を規定することができた。 第 1表. アミノ酸配列と适 の 1 ¾¾造との対応(その 1 )
アミノ酸配列の^ Jfの結果 道 β? 1 ίλ¾造との対応 フラグメント 7— 1
Thr-Cys-Gly-Ile-C s-Gly-Asn-Tyr-Asn-Gln Thr-Cys-Gly-I le-Cys-Gly-Asn-Tyr-Asn-Gln
' ACA TGC GGC ATA TGT GGT AAC TAT AAT CAA フラグメント 7— 2
Glu-Gly-Glu-Cys-Ile-Asp-Thr-Arg-Cys-Ala- Glu-Gly-Glu-Cys-Ile-Asp-Thr-Arg-Cys-Ala- GAA GGA GAA TGT ATC GAT ACC AGA TGC GCA
Thr-Cys-Lys Thr-Cys-Lys
ACA TGT AAA フラク 'メン卜 1 2— 1
ひ s-Asn-Val-C s-Tyr~L s-Pro-Asp~Arg- Ile- Cys-Asn-Val-Cys-Tyr-L s-Pro-Asp-Arg-Ile- TGT AAT GTC TGC TAC AAG CCT GAC CGT ATT
Ala Ala
GCA フラグメン卜 1 2— 2
Val-Ser-His-Arg-Asp-( )-Glu Val-Ser-His-Arg-Asp-C )-Glu
GTT TCA CAT AGA GAT GTT GAG フラグメント 1 3
Ala-Arg-Tyr-Gln-Phe-Gln-Gly-Pro-Met-Lys Ala-Arg-Tyr-Gln-Phe-Gln-Gly-Pro-Met-Lys
(Cys) (ひ s)
GCC AGA TAT CAA TTC CAG GGC CCA TGC AAA
フラグメント 1 8
Arg-Phe-Asn-Phe-Gln-Glu-Pro-Gly-Lys Arg-Phe-Asn-Phe-Gln-Glu-Pro-Gl -Lys
AGA TTT AAT TTT CAG GAA CCT GGT AAA フラグメント 2 1
Arg-Asp-I le-Leu-Ser-Asp-Gly-Leu-Cys-Glu- Arg-Asf>-Ile-Leu-Ser-As -Gly-Leu-Cys-Glu- CGA GAC ATA CTA TCA GAC GGA CTG TGT GAA
Asn-Lys-Pro-Gly-Lys Asn-L s-Pro-Gly-Lys
AAT AAA CCA GGG AAG フラグメン卜 2 3
Gly-G ln-G ln-Gly-Phe-Cys-Asp-H is-Ala-Trp- Gly-Gln-Gln-Gly-Phe-C>'s-Asp-His-Ala-Trp- GGA CAG CAA GGA TTC TGT GAC CAT GCT TGG
Glu-Phe-Lys Glu-Ph -L 's
GAG TTC AAA t to
CD AAT T TT CGT AAC ATC AAC TTCACA TAC Ac.
yy (yyy丫ynAnpheTマAs .sマ TFマ AnAsnI lAnpheT TrTr:T ThsesTh ----I--l----- ¾ CTC ATGA GOT ΏΑ GA COA TAC AO TGT ;G
(yg ;g丫y )yyMlPFOTrArAlLKetTAll LeuetGalcseulprT7AavavaGuocs--- •I----------l--
:¾Vァ y( )FP AsnThrVaTL AsnThti,LASASva T:,T-l---- AC TGT TACAG on CTGTCC GC GA TG G AG G
py(PyyTTLeuLcs GlueuMetAlaAlaAScsluLeuLeuA la AlaAs GMetTr------l----------- AC AOAT TAT G TCTA TCA OOA3 TTC CAT A - PyyPyyAThTph LeuserGlHThrphTrAleTpSiseSTph ,eusepGHiThrphh7s--(----r-iI-----l A AOGGT orT GCA CCGA AC AOA OO GC GAO - EC
ggyyyy AlAlplThrcsalaaroluThrATGlThT AlPTOThTATGvGcsallaAaGluv------------II- ----- AG AOA TCTC onA TAT GTT GG G TTC GC
PyPyyy HialLTlluThTassveupheASTvlGlalLeueTraGauGsvphASv-----..-------- --.- ァ V iO. 一
Eyypyy GluAs:AllnL nLelGlnLSGGs luAsuAsG一 :T---------- ATC ACCAC TOT GTACC CC GGT GO G TGO
yyP(yp(丫yhTlGlAalThFLeuTMet Gseマ ValThrTtlGlAs selTvShrMe G---l-I--- .---l •--
Figure imgf000026_0001
T AAA TACGCAA GAT ATC G
実施例 5
S V40後期プロモーターを有する発現ベクター P S V Lへのルシフェラーゼ c D N Aの揷入
実施例 4で得られ ゥミホタル由来のルシフエラーゼ をコードする前記の 1·. 9 kbの Έ c oRェ断片 1 に各々 1. 5mMの dATP, d T TP, dCTP及び d GTPの存在下に、 5ユニッ トの大腸菌 DNA ポリ メラーゼ I ラージ フラグメント (宝酒造社製) を 作用させ、.末端を修復した。 また、 ベクターの PSVL (S V40後期プロモーターを持つ発現ベクター: ファ ルマシア社製) は、 制限酵素 aェにより分解した。
ついで末端を修復した 1. 9 k b断片 (0.
と p SVLの S m a l分解物 (0. とを T4 DNA リガーゼによって結合し、 その反応液を用いて 大腸菌 HB 10 1コンビテン卜細胞.(宝酒造社製) の形 質転換を行い、 この 1. 9 k b断片の組み込まれた組換 え体プラスミ ドを得、 P SVLC L 5と命名した (第 3 図) 。
実施例 6
COS - 1細胞によるゥミホタル由来のルシフェラー ゼの £
実施例 5において作製した発現ベクター P SVLCL 5 ( 1 0 ju g ) を、 COS— 1細胞に D E AE -デキス 卜ラン法 [M o l. C e l l. B i o l. . 5、 1 1 8 8 ( 1985 ) ] を用いて導入した。 また、 コントロー ルとして P SV L ( 1 0 M g ) を同様にして COS— 1 細胞に導入した。
これらの細胞を 25 cm2 の培養フラスコ中で、 10
% 牛胎児血清を含むダルべッコ変法ィーグル培地 (日 水製薬社製) 10 mlを用いて 5 % CO 2 の存在下、
37°Cで 5日間培養した。 培養途中及び培養終了後、 培 養液 l m lを採取し、 3, 000 r pm、 10分間、 4 °Cで遠心して、 その上清を集め、 培養上清とした。
また、 培養終了後、 細胞はトリプシン処理によって培 養フラスコからはがした後、 1 m lの P B S (—) (日 水製薬社製) で洗净し、 3, 000 r p m、 10分間、
4 °Cで遠心し上清を捨てた。 これをさらに 2回繰り返レ、 200 ^ 1の P BS (—) に懸濁した。 凍結融解を 3回 繰り返し、 細胞抽出液とした。
実施例 7
動物細胞により生産されたルシフェラーゼの活性測定 実施例 6に示した培養上清中のルシフヱラーゼ活性の 測定は、 下記の方法によって行い、 その結果を第 2表に 示した。 すなわち、 30 1の培養上清に 27ひ 1の 測定用緩衝液 [ 100 mM リン酸ナトリウム(PH 7.0) /200 mM 塩化ナトリウム] を混合した。 2 1の 33 ゥミホタル ·ルシフェリンを混合し、 発生す るフォ 卜ン数を直ちにルミノメーター ( L uma c L 20 10 ) を用いて 30秒間計測した。 発光強度は 1秒 当たりの平均フオ トン数として示した。 コン トロールと して p S VLを導入した COS— 1細胞の培養上清につ いても同様にして発生するフォ トン数を計測した。
実施例 6に示した細胞抽出液中のルシフヱラーゼ活性 は、 下記に記載した方法により行い、 その結果も第 2表 に示した。 すなわち実施例 6で作製した細胞画分の 10 1を 290 1の上記測定用緩衝液と混合し、 さらに 2 1の 33 /Mゥミホタル ·ルシフェリンを混合し、 培養上清の場合と同様にしてルシフヱラーゼ活性を測定 した。
第 2表 ルシフェラーセ' ¾tt (xi05cps/ml)
钿胞内 ブラスミド 24時間 48時間 72時間 96時間 120時間 120時間
(a) PSVLCL5 2.2 4.0 4.3 4.6 5.2 1.2 (No. 1)
(b) SVLCL5 2.3 5.8 8.3 9.0 10.5 3.0 (No. 2)
(c) PSVLCL5 2.1 3.1 3.8 4.1 5.5 0.8 (No. 3)
(d) PSVLCL5 2.3 4.0 5.5 5.7 6.7 1.4 (No. 4)
(e) pSVL 2.0 2.5 2.3 2.3 2.1 0.2 (コントロール) 実施例 8
薛母発現ベクター用オリゴヌクレオチドの合成とァニ 一リング
( 1 ) ゥミホタルより精製した天然型のルシフェラー ゼが、 第 1図に示したアミノ酸配列の第 3 1番目のァ ミノ酸であるセリンと第 3 2番目のアミノ酸であるスレ ォニンの N末端を持つ 2種類のぺプチドの混合物である こと、 ( 2 ) c D N Aより推定されるルシフェラーゼの アミノ酸配列の N末端に、 タンパクの分泌のためのシグ ナル配列の特徵を持つアミノ酸配列が存在すること、 ( 3 ) 多くの真核生物ではシグナル配列はァラニン一 X ーァラニン配列の次で切断される力 ゥミホタルのルシ フエラーゼにおいてもァラニン一グルタミン酸一ァラニ ンープロリンの配列が存在すること等の理由により、 第 1図に示したゥミホタル由来のルシフェラーゼのァミノ 酸配列中の第 2 9番目のアミノ酸であるプロリン ( Y P 型)、 第 3 0番目のアミノ酸であるセリン (Y N型)、 第 3 1番目のアミノ酸であるセリン (Y S型)、 第 3 2 番目のアミノ酸であるスレオニン (Y T型) から始まる ルシフェラーゼ · タンパクを作製し、 酵母の αフヱロモ ンのシグナル配列の下流に連結するために、 以下の 1 0 本のオリゴヌクレオチドを合成した。 YP— 1 5' -CCTTCAAGTACTCCA-3'
γρ - 2 5, -CTGTTGGAGTACTTGAAGG-3,
Y S— 1 5, -AGTACACCA - 3'
Y S— 2 5, - CTGTTGGTGTACT - 3'
Υ τ— 丄 5 -ACTCCA-3
ΥΤ - 2 5, -CTGTTGGAGT-3'
ΥΝ - 1 5' -TCGTCGACACCA-3'
ΥΝ - 2 5, -CTGTTGGTGTCGACGA-3'
U— 1 5, -ACAGTCCCAACATCTTGTGAAGCTAAAGAAGGAG
AATGTAT-3'
U- 2 5'-CGATACATTCTCCTTCTTTAGCTTCACAAGATGT
TGGGA-3'
合成才リゴヌクレオチド YP— 2、 YS— 2、 YT - 2、 YN— 2、 U— 2の 5本については、 5, 末端を T 4 DNA キナーゼによってリン酸化した。 すなわち、 各ォリゴヌクレオチド 300 p m o 1を各々 20 1の 反応液 [ 5 OmM 卜リス塩酸 (PH 7.6) / 1 OmM 塩化マグネシウム/ 1 mM スペルミジン ZS mM ジチオスレィ トール ZO. 1 mM ED TA] 中で T 4 DNA キナーゼ (宝酒造社製〉 10ユニッ トを用いて、 37 °Cで 1時間反応させ、 70 °Cで 5分間加熱した後、 一 20°Cで保存した。
各オリゴヌクレオチドのァニーリングは次のように行 つた。 YP型では YP— 1、 リン酸化した ΥΡ— 2、 U — 1、 及びリン酸化した U— 2を、 YS型には YS— 1、 リン酸化した YS— 2、 U— 1、 及びリン酸化した U— 2を、 ΥΤ型には ΥΤ— 1、 リン酸化した ΥΤ - 2、 U 一 1、 及びリン酸化した U - 2を、 ΥΝ型には ΥΝ - 1、 リン酸化した ΥΝ— 2、 U— 1、 及びリン酸化した U— 2を、 各々 50 pmo 1ずつ混合し、 70°Cで 5分間加 熱後、 インキュベーターの電源を切り 42°Cになるまで 放置した。
実施例 9
if母びフ: Lロモン遠 '伝子のプロモーター 有する発現 ベクター PMF 8へのルシフェラーゼ c DN Aの揷入 ゥミホタル ' ルシフェラーゼ c DN A中に存在する制 限酵素 C I a I切断部位に実施例 8に示した合成オリゴ マーを組み込み、 5, 末端に S i; t I部位を持ち、 N末 端 28、 29、 30、 3 1個のアミノ酸を削ったルシフ エラーゼ c DN Aを作製.した。
酵母の発現ベクター pMF α 8 [Ge n e. 3、 1 5 5 ( 1 9 85 ) : AT CC . 37 41 8 ] は、 フエ口 モン遺伝子のリーダー配列をコードする領域の直後を制 限酵素 S t u lで切断し、 上述のルシフェラーゼ c DN Aを挿入した。 作製した発現ベクターは、 各々 PME F 3 A (YP型)、 pMEF 3 B (YS型)、 pMEF 3 C (YT型) 、 PME F 3 D (ΥΝ型) と命名した (第 4 a図) 。 作製した各々の発現べクタ一の フエロモン遺伝子ノ ルシフェラーゼ c D N Aの接売部位近傍の塩基配列は、 ルシフェラーゼ c DN A内の配列である 5, - TATA AATGGTCCAAGGA— 3, をプライマーとして、 通常のジデォキシ法によって、 正しく挿入されているこ とを確認した。 pMFE3A、 pMFE3 B、 pMF E 3 C、 及び PMFE3 Dにおける フェロモン遺伝子 Z ルシフェラーゼ c DN Aの接続部位近傍の塩基配列、 及 びアミノ酸配列は第 4 b図に示した。
実施冽 10
酵母 G AL 1遺伝子のプロモーターを有する発現べク ター P 103へのルシフェラーゼ c DN Aの揷入
実施例 3で得た; CL07より、 1. 3 kb、 0. 6 k bの 2つの E c oR I断片を各々プラスミ ド pUC l 8にサブクローニングし、 プラスミ ド p CL07 12、 P C L 0742を作製した。 p C L 07 ( 1 u g) ^ 及 び P C L 07 1 2 ( 1 g ) を H i /1 d IIIと βざ IIで 切断し、 P CL 07よりルシフェラーゼの Ν末端を含む DNA断片を、 p CL O 7 1 2よりルシフェラーゼの C 末端を含む DNA断片を精製した。 この 2断片をプラス ミ ド P S PT 1 8 (ベーリンガー マンハイム社製) の H i n dill部位にサブクローニングし、 得られた組換え 体プラスミドを P S T CL 8 1と命名した。 、
次に、 この P S TC L 81 ( l〃g) を B a /nH Iで 切断し、 クローニングした全 c DNA配列を β a Hェ 断片として回収した。
一方、 酵母の G A JL ίプロモーターを持つ発現べクタ 一 Ρ 103 [ S a cell a rojnyc.es cerevisiaeの G A L ίプロ モーター {Mo l. C e l l. B i o l. . 4、 14 0 ( 1 9 84) } の下流に、 S a /HH I切断部位を含む ポリリンカーを持つ: 大阪大学 ·原島 俊 助教授より 洪与された] 約 0, 1 gを B a mH Iで切断し、 T 4 DNA リガーゼを用いて前記の c DN A断片約 0. 1 gと連結し、 GA L 2プロモーターの下流にルシフエ ラーゼ c DNAの挿入された発現ベクター p GL 1を作 製した (第 5図)。
実施例 1 1
薛母によるゥミホタル由来のルシフェラーゼの生産 実施例 9において作製した発現ベクター PMFE 3 A、 pMF E 3 B、 pMF E 3 C、 pMFE 3 D各々 10 gをプロ トプラスト法 [ P i o c . Na t l. Ac a d. S c i. USA. 7 5、 19 29 ( 19 7 8 ) ] によつ Xi#-g:S a cellar oja ces cerevisiae 20B-12株 [ G e n e 37, 1 55 ( 1 985 ) ] 株に導入した。
これらの形質転換体を 1 1の培養フラスコ中で 100 mlの YEPD培池を用いて 30°Cで 3日間培養した。 培養途中及び培養終了後、 培養液 5 mlを採取し、 4°C、 10分間、 3, 000 r pmで遠心して、 その上清を集 め培養上清とした。
また培養液 1 m 1分の菌体は 5 mlの減菌蒸留水で洗 浄後、 11111の501111^ リン酸ナトリウム(pH 7.5)/ 0. 1 % T r i t o nX— 100に懸濁した。 1 m l のガラス ♦ ビーズ (直径 0. 45 mm) 懸濁液を加え、 0 °Cで、 時々ミキサーで激しく撹拌しながら 5分間放置 した。 軽く遠心してガラス · ビーズを分離し、 上清はさ らに 1. 5 mlのエツペンドルフ チューブに移し、 5 分間、 1 5, 000 r p mで遠心した。 この上清を菌体 抽出液とした。 ..
実施例 1 2
酵母によるゥミホタル由来のルシフェラーゼの生産 実施例 10で作製した発現ベクター p GL 1 ( 10 g ) は、 実施例 1 1と同様にプロ 卜プラス 卜法によって 酵母 Sacc/aroijyces cerevisiae YSH2676株((a) u a3-52
le.ul-112 trp! ρΛο3 p/)o5 hisl-29 )株に導入し a- に、
この形質転換体を 1 1の培養フラスコ中で 1 00 m l の培地 ( 1 % 酵母エキス/ 2 % ペプトン/ /2 % ガ ラク トース) を用いて 30°Cで 2日間培養した。 培養途 中及び培養終了後、 培養液 5 mlを 3, O O O r pm、 1 0分間、 4eCで遠心して、 その上清を集め、 培養上清 とした。
また、 菌体抽出液も実施例 1 1 と同様にして調製した c 実施例 1 3
薛母により生産されたルシフェラーゼの活性測定
実施例 1 1に示した培養上清中のルシフェラーゼ活性 の測定は、 実施例 7に記載した動物細胞の培養上清のル シフェラーゼ话性の測定と同様にして行い、 その結果を 第 3表に示した。 コントロールとして、 pMFa Sを導 入した S, cerevisiae 20B-12株の培養上清についても同 様にして発生するフォ トン数を計測した。
実施例 1 1に示した酵母細胞中のルシフェラーゼ活性 は、 下記に記載した方法により行い、 その結果も第 3表 に示した。 すなわち、 実施洌 1 1で作製した細胞抽出液 10 lを 290 1の上記測定用緩衝液と混合し、 さ らに 2 1の 33 M ゥミホタル 'ルシフェリンを混 合し、 培養上清の場合と同様にしてルシフェラーゼ活性 を測定した。 第 3表 ルシフェラーセ'活性(X 105 cps/ml) ブラスミド 12時間 21時間 38時間 47時間 64時間
(a) pMFE3 A 菌体内 く 0.01 く 0.01 0.01 0.02 0.01 菌体外 0.05 0.02 4.84 13.47 2.11
(b) PMFE3B 菌体内 く 0.01 く 0.01 0.Ώ2 0.01 く 0.01 菌体外 0.06 0.20 6.22 2.73 1.02
(c) PMFE3C 菌体内 く 0.01 く 0.01 0.02 0.01 0.01 菌体外 0.10 0.21 2.76 0.79 0.89
(d) pMFE3D 菌体内 く 0.01 く 0.01 0.02 0.01 0.01 菌体外 0.06 0.21 3.97 0.76 1.02
(e) cont r o 1 菌体内 く 0.01 く 0.01 く 0.01 0.01 く 0.01 菌体外 0.06 0.04 0.05 0.06 0.11 実施例 1 4
薛母により生産されたルシフエラーゼの活性測定
実施例 12に示した培養上清中のルシフェラーゼ活性 の測定は、 実施例 7に記載した動物細胞の培養上清のル シフヱラーゼ话性の測定と同様にして行い、 その結果を 第 4表に示した。 コントロールとして、 P 103を導入 した cerevisiae YSH2676株の培養上清についても同 様にして発生するフォ トン数を計測した。
実施例 1 2に示した酵母細胞中のルシフェラーゼ活性 は、 実施例 1 3 と同様にして行い、 その結果を第 4表に 示した。 第 4表 ルシフェラーゼ活性 ( X 105 c p s /m 1 ) クローン N o. 20時間 43時間 51時間
( a ) No. 1 菌体内 0.06 0.07 0.07
菌体外 0.53 7.28 7.71
( b ) N o. 2 菌体内 0.04 0.06 0.07
菌体外 0.44 3.04 3.49
( c ) No. 3 菌体内 0.07 0.07 0.06
菌体外 0.40 3.00 4.70
( d ) N o. 4 菌体内 0.05 0.10 0.09
菌体外- 0.92 5.89 6.27
( e ) No. 5 菌体内 0.06 0.08 0.05
菌体外 0.50 2.52 2.47
( f ) c o n t r o l 菌体内 0.01 n.t. n.t.
菌体外 0.08 0.13 0.03 実施例 1 5
±腸菌発規ベクター用オリゴヌクレオチドの合成とァ ニーリング
大腸菌トリプトファン合成遺伝子 ( t r p ) オペロン のプロモーターと S D配列の下流にメチォニン一プロリ ン (EP型)、 メチォニンーセリン (E S型)、 メチォ ニンースレオニン (E— T型) で開始される該ルシフェラ ーゼの発現ベクターを作製するために、 以下の 6本のォ リゴヌクレオチドを合成した。
E P - 1 5 ' -CGATGCCGTCAAGT ACACCA-3 '
EP - 2 5' -CTGTTGGTGTACTTGACGGCAT-3 '
E S - 1 5'-CGATGAGTACACCA-3'
E S - 2 5 '-CTGTTGGTGTACTCAT-3 '
E T - 1 5'-CGATGACACCA-3'
E T— 2 5' -CTGTTGGTGTCAT-3 ' 合成オリゴヌクレオチド EP— 2、 E S— 2、 ET - 2、 及び実施例 8の ϋ一 2の各々 300 pmo 1は、 実 施例 8と同様にして N末端を T 4 DNA キナーゼを 用いてリン酸化し、 一 20°Cで保存した。
各オリゴヌクレオチドは、 £ 型では£?ー 1、 リン 酸化した EP— 2、 U— 1、 及びリン酸化した U— 2を、 E S型には ES— 1、 リン酸化した E S— 2、 U— 1、 及びリン酸化した U— 2を、 E T型には ET— 1、 リン 酸化した E T— 2、 U— 1、 及びリン酸化した U— 2を 各々 50 pm o 1ずつ混合し、.実施例 8と同様にしてァ ニーリングした。
実施例 1 6
女腸蘭 t r P プロモーター》有する発現ベクター p MT 1へのルシフェラーゼ c D N Aの揷入
大腸菌トリプトファン オペロン ( t r p ) のプロモ 一ター及び S D配列を持つ発現ベクター pMT - 1 [ p KM 6 (特閲昭 6 1 - 247 3 8 7号) 由来] は、 制限 酵素 S m a l、 C 2 a I と P V u IIで切断した。
一方、 実施例 3で作製した発現ベクター p C L 0 7を S m a lと(: a Iで切断し、 C i a Iより下流のルシ フェラーゼ c D N Aを含む DN A断片をァガロースゲル 電気泳動法により分離、 精製した。
pMT - 1の切断断片と P CL 0 7の精製断片の各々
0. を T 4 D NA リガーゼ (宝酒造社製) を 用いて連結し、 再び制限酵素 S /n aェで切断した後、 市 販の大腸菌 HB 1 0 1コンビテン卜細胞 (宝酒造社製) を形質転換し、 プラスミ ド PMT— CL 0 7を作製した。 このプラスミ ドは、 t ϊ' p プロモーター ZS D配列の 下流に C 1 a I部位より下流のルシフェラーゼ c DN A を持つ。
この pMT— C L O 7を制限薛素 C I aェで切断し、 その 0. 1 gと実施例 1 5で作製した合成 DN Aの 5 1とを T 4 DNA リガーゼで連結し、 t r p プ 口モーター/ S D配列の下流に、 メチォニン一プロリン (EP型)、 メチォニンーセリン (ES型)、 メチォ二 ンースレオニン (ET型) で開始される該ルシフェラー ゼ遺伝子を持つ発現ベクターを作製した。 作製したブラ スミ ドは各々、 pMT - CLP、 pMT - CLS、 及び pMT— CLTと命名した。
作製した各々の発現べクタ一の S D配列 Zルシフェラ ーゼの接続部位近傍の塩基配列は、 ルシフェラーゼ c D N A内の配列である 5, -T AT AAATGGTCC A AGGA- 3 ' をプライマーとして、 通常のジデ才キシ 法によって、 正しく揷入されていることを確認した。
pMT - CLP、 pMT - CLS、 pMT - CLTの 制限酵素地図と確認した塩基配列を第 6図に示す。
実施例 17
大腸菌によるゥミホタル由来のルシフェラーゼの生産 実施例 16で作製した発現ベクターを用いて大腸菌 H B 101株を形質転換し、 得られた形質転換体を 5 ml の L培地 (アンピシ-リン: 100 mgZlを含む) で 1 晚、 37°Cで静置培養した。 翌日培養液の 1mlを採取 し、 50 mlの合成培地 [ 2 XM 9—力ザミノ酸培地 ( 6 g/1 リン酸二水素カリウム Zl 2g,l リン 酸水素ニナトリウム/ OgZl カザミノ酸 Zl O g /1 塩化ナトリウム Zl gZl 塩化アンモニゥムノ) / 1 mg/1 塩酸チアミン 25 Omg/1 硫酸マ グネシゥム Zl % グルコース Zl O OmgZl アン ピシリン] に懸濁し、 25 eCで 1晚振盪培養した。 翌朝、 培養液に I AA (最終濃度 2 Omg/l ) とグルコース (最終濃度 1 %) を加え、 1 2. 5 %のアンモニア水で pHを 7. 5に調整して、 25 °Cで 3時間培養を続けた。 3時間後、 IAA、 グルコース、 アンモニア水を同様に して加え、 さらに 3時間培養を続けた。 培養終了後、 培 養液 8mlを遠心して集菌し、 菌体を 0. 5mlの TE 緩衝液 [ 1 OmM卜リス塩酸(pH 8.0)/ 1 mM ED T Α] に懸濁した。 42°Cの温水と ドライアイス · ァセ 卜 ン液を用いて凍結融解を 3回繰り返して溶菌後、 10分 間、 10, O O O rpmで遠心し、 その遠心上清を粗酵 素液とした。
実施例 1 8
大腸菌により生産されたルシフェラーゼの活性測定 実施洌 17で作製した粗酵素液中のルシフェラーゼ活 性の測定は、 下記に記載した方法によって行い、 その結 果を第 5表に示した。 すなわち、 150 ^ 1の粗酵素液 に 150 1の前記測定用緩衝液、 2 1の 33 M ゥミホタル .ルシフェリンを混合し、 発生するフオ トン 数を 30秒間計測し、 その結果を第 5表に示した。 コン トロールとして PMT— CLR (合成 DNAが逆方向に 揷入されたプラスミ ド) を導入した大腸菌 HB 10 1に ついても同様にして発生するフォ トン数を計測した。 第 5表 プラスミド ルシフェラーセ'活性
(cps)
(a) pMT-CLP 200
(b) pMT-CLS 870
(c) PMT-CLT 540
(d) pMT-CLR 200
(control)
産業上の利用可能性
ゥミホタル由来のルシフヱラーゼは非常に発光強度の 強い発光系であり、 抗体分子を本酵素と結合させて Eェ
A (酵素抗体アツセィ法) に、 また、 DNA/RNA分 子と本酵素とを結合させて DN Aプローブ法に利用する など、 各種検査法への利用が期待できる。
本発明によって、 ゥミホタル由来のルシフェラーゼを コードする c DNAの 1次構造が特定され、 同時に該ル シフェラーゼの 1次構造が明らかになった。 さらに、 本 発明にあるルシフェラーゼの発現べクターを持つ動物細 胞、 酵母、 大腸菌の大量培養により、 該ルシフェラーゼ を安定的に生産させる方法が開かれ、 該ルシフェラーゼ 安価で大量に得ることができるようになるものと期待 される。
また、 プロテイン ·エンジニアリングの手法を用いて、 該ルシフェラーゼの安定性の増加、 発光量子収率の改善、 発光条件の改善、 発光波長の変更等を行う方法が開かれ た。

Claims

請 求 の 範 囲
( 1 ) 第 1図に示す 1番目から 5 5 5番目に至るアミノ 酸配列を有する純化されたルシフェラーゼ及びその 同効物。
( 2 ) 第 1図に示す 2 9番目から 5 5 5番目に至るアミ ノ酸配列を有する純化されたルシフェラーゼ及びそ の同効物。
( 3 ) 第 1図に示す 3 0番目から 5 5 5番目に至るアミ ノ酸配列を有する純化されたルシフェラーゼ及びそ の同効物。
( 4 ) 第 1図に示す 3 1番目から 5 5 5番目に至るアミ ノ酸配列を有する純化されたルシフェラ一ゼ及びそ の同効物。
( 5 ) 第 1図に示す 3 2番目から 5 5 5番目に至るアミ ノ酸配列を有する純化されたルシフェラーゼ及びそ の同効物。
( 6 ) 請求の範囲第 1〜 5項記載のルシフェラ一ゼまた はその同効物をコードする遺伝子。
( 7 ) 第 1図に示す塩基配列である請求の範囲第 6項記 載の遺伝子。
-
( 8 ) 宿主細胞中で発現可能なプロモーターの下流に請 求の範囲第 6項記載の遺伝子を連結してなる組換え 体ベクター D N A。
( 9 ) 大腸菌中で発現可能なプロモーター及び S D配列 の下流に請求の範囲第 6項記載の遺伝子を連結して なる組換え体ベクター DN A。
( 10 ) 請求の範囲第 8または 9項記載のベクター DN Aにより宿主細胞を形質転換して得られる形質転換 体。
( 11 ) 宿主細胞が動物細胞、 酵母及び大腸菌からなる 群から選ばれた 1種である請求の範囲第 10項記載 の形質転換体。
( 12 ) 請求の範囲第 10または 1 1項記載の形質転換 体を培養することを特徴とするルシフェラ一ゼの生 産 ί¾。
PCT/JP1989/000811 1988-08-09 1989-08-09 Luciferase, luciferase-coding gene, and process for preparing luciferase WO1990001542A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE68927437T DE68927437T2 (de) 1988-08-09 1989-08-09 Verfahren zur herstellung von luciferase durch rekombinante expression eines luciferase-kodierenden gens
EP89909235A EP0387355B1 (en) 1988-08-09 1989-08-09 Process for preparing luciferase by recombinant expression of a luciferase-coding gene
KR1019900700491A KR900702010A (ko) 1988-08-09 1990-03-08 루시페라아제, 그것을 코우드 하는 유전자 및 루시페라아제의 생산방법
US08/260,042 US5604123A (en) 1988-08-09 1994-06-15 Luciferase, gene encoding the same and production process of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63/199295 1988-08-09
JP19929588 1988-08-09
JP20417388 1988-08-17
JP63/204173 1988-08-17

Publications (1)

Publication Number Publication Date
WO1990001542A1 true WO1990001542A1 (en) 1990-02-22

Family

ID=26511452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000811 WO1990001542A1 (en) 1988-08-09 1989-08-09 Luciferase, luciferase-coding gene, and process for preparing luciferase

Country Status (5)

Country Link
EP (1) EP0387355B1 (ja)
KR (1) KR900702010A (ja)
AT (1) ATE145004T1 (ja)
DE (1) DE68927437T2 (ja)
WO (1) WO1990001542A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728118B2 (en) 2004-09-17 2010-06-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
US7879540B1 (en) 2000-08-24 2011-02-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
US7989621B2 (en) 2005-09-26 2011-08-02 National Institute Of Advanced Industrial Science And Technology Method for producing substituted imidazo[1,2-A]pyrazines of (s)-1-(3-(2-sec-butyl-6-(1h-indol-3-yl)-3-oxo-3,7-dihydroimadazo[1,2-a]pyrazin-8-yl)propyl)guanidine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247995B1 (en) 1996-02-06 2001-06-19 Bruce Bryan Bioluminescent novelty items
US5876995A (en) 1996-02-06 1999-03-02 Bryan; Bruce Bioluminescent novelty items
US6416960B1 (en) 1996-08-08 2002-07-09 Prolume, Ltd. Detection and visualization of neoplastic tissues and other tissues
AU741076B2 (en) 1996-12-12 2001-11-22 Prolume, Ltd. Apparatus and method for detecting and identifying infectious agents
EP1925320A3 (en) 1998-03-27 2008-09-03 Prolume, Ltd. Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics
EP1064360B1 (en) 1998-03-27 2008-03-05 Prolume, Ltd. Luciferases, gfp fluorescent proteins, their nucleic acids and the use thereof in diagnostics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000617A1 (en) * 1986-07-22 1988-01-28 Boyce Thompson Institute For Plant Research Use of bacterial luciferase structural genes for cloning and monitoring gene expression in microorganisms and for tagging and identification of genetically engineered organisms

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088863B2 (ja) * 1987-11-30 1996-01-31 キッコーマン株式会社 ルシフェラーゼ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000617A1 (en) * 1986-07-22 1988-01-28 Boyce Thompson Institute For Plant Research Use of bacterial luciferase structural genes for cloning and monitoring gene expression in microorganisms and for tagging and identification of genetically engineered organisms

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biochemistry, Vol. 13, No. 25, (1974), F.I. TSUJI, et al (Some Properties of Luciferase from the Bioluminescent Crustacean, Cypridina Hi/Gendorfii) p. 5204 - 5209. *
Science, Vol. 234, No. 4778, (1986), D.W. OW, et al (Transient and Stable Expression of the Firefly Luciferase Gene in Plant Cells and Transgenic Plants) p. 856 - 859. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879540B1 (en) 2000-08-24 2011-02-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
US7906282B2 (en) 2000-08-24 2011-03-15 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
US7728118B2 (en) 2004-09-17 2010-06-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
US8008006B2 (en) 2004-09-17 2011-08-30 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
US7989621B2 (en) 2005-09-26 2011-08-02 National Institute Of Advanced Industrial Science And Technology Method for producing substituted imidazo[1,2-A]pyrazines of (s)-1-(3-(2-sec-butyl-6-(1h-indol-3-yl)-3-oxo-3,7-dihydroimadazo[1,2-a]pyrazin-8-yl)propyl)guanidine
US8343729B2 (en) 2005-09-26 2013-01-01 National Institute Of Advanced Industrial Science And Technology Luciferin luminescent substrate of marine ostracod crustacean and method for production thereof
EP2940020A1 (en) 2005-09-26 2015-11-04 National Institute of Advanced Industrial Science and Technology Luciferin luminescent substrate of marine ostracod crustacean and method for production thereof

Also Published As

Publication number Publication date
KR900702010A (ko) 1990-12-05
DE68927437D1 (de) 1996-12-12
EP0387355A4 (en) 1991-01-23
EP0387355A1 (en) 1990-09-19
EP0387355B1 (en) 1996-11-06
DE68927437T2 (de) 1997-03-06
ATE145004T1 (de) 1996-11-15

Similar Documents

Publication Publication Date Title
US4431740A (en) DNA Transfer vector and transformed microorganism containing human proinsulin and pre-proinsulin genes
FI91883C (fi) Menetelmä hirudiinin vaikutusta omaavan polypeptidin valmistamiseksi
CA1194432A (en) Human pregrowth hormone
CA1336329C (en) Fusion proteins, a process for their preparation and their use
US4375514A (en) Preparation and use of recombinant plasmids containing genes for alkaline phosphatases
CS250655B2 (en) Method of microorganisme's viable culture's cultivation with means content for asexual regeneration
NZ201918A (en) N-terminal methionyl analogues of bovine growth hormone
CA1180289A (en) Human proinsulin and preproinsulin genes
WO1990001542A1 (en) Luciferase, luciferase-coding gene, and process for preparing luciferase
US5260201A (en) Methods and products for facile microbial expression of DNA sequences
JPH0779783A (ja) ビブリオ フィシエリ由来のフラビン還元酵素遺伝子
AU603145B2 (en) Aminoglycoside phosphotransferase-proteinfusions
FI106720B (fi) Fuusioproteiinien valmistus in vitro
US4857470A (en) Method for the preparation of bacterial clones carrying optimal genetic information for the production of the factor for release of human growth hormone in Escherichia coli
JP2605902B2 (ja) ルシフェラーゼ、それをコードする遺伝子およびルシフェラーゼの生産方法
JPH08103278A (ja) 活性型ヒトaltの製造方法
CN115261363B (zh) Apobec3a的rna脱氨酶活性测定方法及rna高活性的apobec3a变体
JPS58501406A (ja) エシエリヒア・コリ−における蛋白合成発現の高揚
US5270180A (en) Method for the production of salmon growth hormone using a synthetic gene
JPH0759576A (ja) 発現調節dna、該dnaを含む発現ベクターおよびそれを用いたタンパク質の産生方法
JPH06335393A (ja) フラビン還元酵素遺伝子
CA1302321C (en) Preparation of polypeptides
US5489529A (en) DNA for expression of bovine growth hormone
JP2528124B2 (ja) 逆転写酵素発現プラスミドとその製造方法
JPH02501260A (ja) 合成遺伝子を使用した酵母細胞でのブタ成長ホルモンの生産方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989909235

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989909235

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989909235

Country of ref document: EP