WO1990000110A1 - Procede de microperforation de pellicules thermoplastiques par ultrasons - Google Patents

Procede de microperforation de pellicules thermoplastiques par ultrasons Download PDF

Info

Publication number
WO1990000110A1
WO1990000110A1 PCT/FR1989/000318 FR8900318W WO9000110A1 WO 1990000110 A1 WO1990000110 A1 WO 1990000110A1 FR 8900318 W FR8900318 W FR 8900318W WO 9000110 A1 WO9000110 A1 WO 9000110A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
anvil
sonotrode
films
microperforation
Prior art date
Application number
PCT/FR1989/000318
Other languages
English (en)
Inventor
Jean-Pierre De Leiris
Original Assignee
Rhone-Poulenc Films
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone-Poulenc Films filed Critical Rhone-Poulenc Films
Publication of WO1990000110A1 publication Critical patent/WO1990000110A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/086Means for treating work or cutting member to facilitate cutting by vibrating, e.g. ultrasonically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/24Perforating by needles or pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • B29C65/083Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations using a rotary sonotrode or a rotary anvil
    • B29C65/086Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations using a rotary sonotrode or a rotary anvil using a rotary anvil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83415Roller, cylinder or drum types the contact angle between said rollers, cylinders or drums and said parts to be joined being a non-zero angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93451Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed by controlling or regulating the rotational speed, i.e. the speed of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0054Shaping techniques involving a cutting or machining operation partially cutting through the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives
    • B29K2001/12Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives
    • B29K2001/14Cellulose acetate-butyrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/12Paper, e.g. cardboard
    • B29K2711/123Coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Definitions

  • the present invention relates to a method for carrying out microperforations in thermoplastic films.
  • thermoplastic films provided with microperforations, that is to say holes with a diameter less than or equal to 1 mm and preferably 0.5 mm, find many applications whenever it is necessary to favor more or less selective gas exchanges between media between which these films constitute a separation.
  • thermoplastic films are very particularly used for the manufacture of packaging for products of various natures; in many cases, these packages must ensure gas exchange between the atmosphere of the package and the environment. This is particularly the case for materials intended for the packaging of food products which give rise to gas exchanges with the ambient atmosphere such as fruits, vegetables and in particular, those subjected to chlorophyll synthesis (leafy plants for example).
  • thermosplastic films are not always sufficient to adequately ensure the gas exchanges necessary for the good preservation of the packaged product.
  • polyester films such as polyethylene terephthalate
  • films having a brick property such as films of polyethylene, of polyp ropy lene, of polyvinyl alcohol or of vinylidene fluoride, or even to support layers of paper. or in cardboard.
  • thermoplastic film materials it may turn out it is necessary to modify the intrinsic permeability of the film material or of one of the constituents of a complex material in order to increase their permeability to gases and to water vapor. This is the reason why it has been proposed to carry out microperforation of thermoplastic film materials.
  • thermoplastic films Various techniques have been proposed for making micro-holes in thermoplastic films, among which we can distinguish in particular mechanical and thermal processes.
  • the perforation means are constituted by sources of quasi-punctual infrared rays distributed in particular on a rotating drum.
  • the perforations are produced by melting the thermoplastic material under the action of the heat emitted by the sources of infrared rays.
  • the latter are constituted by loops of metal conducting the electric current arranged in a plurality of housings distributed in an insulating surface.
  • the methods and devices of the prior art are complicated, difficult to implement and do not allow to adjust at will the size of the perforations and their distribution on the surface of the film in a simple manner. They also do not allow selective microperforation of one of the outer layers of a complex film material comprising two or more of two layers.
  • the present invention aims precisely to solve the various problems posed by the prior methods and devices.
  • a first objective of the present invention lies in the development of a simple process of microperforation of thermoplastic films
  • Another objective of the present invention is to develop a method for modifying the size of the perforations at will;
  • Another object of the present invention is to develop a method for varying as desired the distribution of perforations on the surface of the thermoplastic film.
  • Another objective of the present invention relates to the development of a method and a device allowing the selective perforation of at least one of the outer layers of a complex film material.
  • the subject of the present invention is a method of selective microperforation of at least one of the thermoplastic layers of thermoplastic films comprising a plurality of thermoplastic layers while respecting the entirety of at least one of the remaining layers, according to which said subject is subjected.
  • films brought in the vicinity of their melting point by the perforating action of a tool carrying a plurality of points characterized in that said films are pinched between two organs, one of which, the sonotrode, is in ultrasonic vibration, the one of these members carrying a plurality of piercing tips.
  • the non-vibrating member will be designated by the term “anvil” and the vibrating member by the term “sonotrode” in accordance with the terminology in force in the field of ultrasonic devices.
  • the polymer constituting the film heats locally at the points of contact with the perforating points where a brief pinching of the film occurs between two surfaces. one of which does not vibrate.
  • the perforation of the film results from both its heating and the mechanical action of the tips which are forced through the film under the action of vibrations and a pressing force exerted on one of the two organs.
  • the apparatus used for implementing the method according to the invention essentially consists of a sonotrode connected in a known manner to a source of ultrasonic vibrations and by an anvil, one of these two members being provided with points ensuring perforation thermoplastic film.
  • the arrangement of the sonotrode and the anvil can take various forms.
  • the perforation of the film is carried out batchwise by the intervention of one or more sonotrodes.
  • a device comprising an anvil constituted by a metal cylinder rotating around its longitudinal axis and by a sonotrode in permanent contact with the film to be perforated which is in turn supported on said cylinder during perforation.
  • the points can be carried indifferently by the sonotrode or the anvil.
  • the sonotrode When the sonotrode carries spikes, it is preferable that it be of cylindrical shape and animated with a rotational movement in order to avoid any tearing of the film.
  • the perforation elements are carried by the anvil.
  • Such a system is particularly advantageous in that it makes it possible to ensure the continuous perforation of a film traveling between the two members from a feed roller to a take-up roller. The invention will be described more precisely below with reference to this latter embodiment and to the figure which illustrates it without implied limitation.
  • the attached figure schematically represents a device allowing the implementation of the method according to the invention and which comprises a sonotrode operating at half wavelength and a cylindrical anvil provided with points.
  • the apparatus shown diagrammatically in the figure comprises a sonotrode (1) connected via a vibration amplifier (2) to an ultrasonic generator (3) and a cylindrical anvil (4) driven by a motor not shown the speed of which is controlled by the running speed of a film (5).
  • the latter is delivered by a supply coil (6) under the action of a coil receiver (7) driven by a not shown motor-variator, connected to a drive shaft (8).
  • the thermoplastic film (5) Before passing through the microperforation device, the thermoplastic film (5) successively encounters a deflection roller (9) and a tension roller (10) making it possible to avoid the formation of folds, then a tension roller (10 ') and a second deflection roller (9 ') or exit the anvil.
  • the drum consists of a metal cylinder rotating around its longitudinal axis and provided with a plurality of perforation means distributed regularly circularly and radially.
  • the diameter and length of the roller are not critical. It is however preferable to avoid any entry into vibration of the cylinder that its diameter is chosen to provide it with sufficient rigidity taking into account the frequency of the sonotrode.
  • the diameter of the anvil is preferably greater than approximately 120 mm and for a frequency of 30 kHz to approximately 80 mm.
  • the length of the cylinder can be as short as about 5 cm and has no critical upper value. In general, this length depends on the width of the film to be perforated.
  • any type of drum provided with perforation means of the prior art (cf. in particular French patents No. 2,460,776, 2,378,623 and 2,360,400).
  • a cylinder can be replaced by a plurality of cylinders of shorter length, which may or may not be integral with the same drive means.
  • L or the drive means of the anvil (or anvils) are generally controlled by the linear movement of the film to be perforated by any appropriate system.
  • tips may be points of cylindrical section, terminated by a conical point, conical points: thrones of cones; pyramidal points of triangular section with flat or concave sides such as those described in French Patent No. 2,360,400 or pyramidal points with square section; of pyramid trunks.
  • the dimensions of the tips depend to a large extent on the vibration frequency of the sonotrode. These dimensions are calculated to avoid their entry into vibration and their breakage.
  • the number of spikes per unit length on each generator of the cylindrical anvil depends on the density of the perforations (number of perforations per unit area) desired for the thermoplastic film and on the diameter of the spikes.
  • the tips can occupy the entire surface of the cylinder or only certain areas; for example, the cylinder may comprise, over its entire circumference, 2 or more than 2 strips of identical width or not separated by strips devoid of perforating elements.
  • the anvil and its perforation means are made of a metal sufficiently resistant to wear.
  • the rotational speed of the anvil depends on the linear running speed of the film which can be between 5 m / min and 200 m / min
  • the sonotrode which causes local heating of the film upon contact with a tip of the anvil and its perforation can be of the type used in the field of ultrasonic welding and vibrating at half wavelength under the effect of a suitable ultrasonic transmitter (for example electrostrictive, magnetostrictive, piezo-magnetic or piezo-electric). It is generally a piezoelectric system.
  • the sonotrodes are arranged parallel next to each other, along the longitudinal axis of the anvil; such a device makes it possible to vary at will the surface of film subjected to the perforation. It proves to be particularly advantageous for avoiding the perforation of predetermined areas of the film surface. It suffices for this to interrupt the operation of one or more of the horns by any suitable means.
  • compound sonotrodes constituted by a carrier block tuned in half-wavelength, at the frequency of an ultrasonic transmitter and by a plurality of sonotrodes (or concentrators) cut in half wavelength at the same frequency as the block carrier, fixed to the latter by various fixing means.
  • sonotrodes composed of the type described in French patent n ° 83.02915 published under n ° 2.541.159. The use of such sonotrodes makes it possible to perforate large widths of films while limiting the number of ultrasonic emitters used.
  • the geometry of the sonotrode (or of the concentrator in the case of compound sonotrodes) is not critical for the implementation of the method according to the invention and that one can use sonotrodes with a circular square or rectangular section , it is preferable to use blade-shaped sonotrodes.
  • the width of the blade can be relatively small since the contact area between the sonotrode and the anvil is reduced to a row of points arranged along a generatice of the cylinder. Under these conditions, the width of the sonotrode can be at least about 1 mm.
  • the maximum width and the maximum length of the sonotrode depend essentially on the operating conditions and, in particular, on the frequency as well as on the amplitude which it is desired to give to the vibrations.
  • the width of the sonotrode can be between 5 and 20 mm approximately and its length between 50 and 200 mm approximately.
  • the anvil may consist of a rotating cylinder coming into tangential contact with the thermoplastic film when the latter passes during the perforation process.
  • the spiked sonotrode which is then cylindrical and rotary, can take various embodiments.
  • the anvil can have a flat surface and the sonotrode can be of the blade type provided with a plurality of rows of points. In the latter case, the perforation is carried out step by step discontinuously.
  • the amplitude of the vibrations imparted to the sonotrode depends on the thickness of the film material to be perforated.
  • the method according to the invention is suitable for perforating thermoplastic films or films with a thickness of between 5 ⁇ m and 300 ⁇ m. It is particularly well suited for partial perforation of complex film materials. Indeed, in such a case, it may prove advantageous to cause the selective perforation of one or more layers of a complex film and to preserve the integrity of one or more of the other layers.
  • Such an objective can be easily achieved by adjusting the amplitude of the vibrations of the sonotrode as well as the pressing force as a function of the thickness of the layer (s) to be perforated.
  • the amplitude of the vibrations can be between 20 ⁇ m and 40 ⁇ m and preferably between 30 ⁇ m and 38 ⁇ m from peak to peak.
  • the frequency of the vibrations transmitted to the sonotrode is included within the limits of the industrial frequencies of use of ultrasound. More particularly, it is in the range from 15 to 80 KHz.
  • Maintaining the sonotrode in abutment against the anvil is achieved by any means communicating to any of the system components the necessary downforce. Preferably, this bearing force is communicated to the sonotrode.
  • support means mention may be made of the placement of weights on the sonotrode, the use of a pneumatic cylinder, etc.
  • the intensity of the pressing force depends on the desired perforation rate. Indeed, in the case where the points equipping the drum or the sonotrode are of conical or pyramidal shape, the size of the holes depends on the pressing force, for a given frequency and amplitude of vibration and a determined running speed.
  • the choice of the support force can be easily carried out by means of simple tests in depending on other process parameters and the desired perforation rate.
  • the method according to the invention is very flexible to implement since the perforation rate can be adjusted at will by playing on three parameters: the speed of movement of the material film, the amplitude of vibration of the sonotrode and the pressing force exerted on one or the other of the tools (sonotrode or anvil).
  • the film material to be perforated travels from a feed roller and is wound up after perforation on a rewinding roller secured to the axis of an appropriate rotation system.
  • the method according to the invention can be applied to any flexible thermoplastic film material.
  • films made of cellulose esters acetate, propionate, butyrate, cellulose aceto-butyrate), cellulose ethers; polyamides (polyethyleniamine polyadipate; polycaprolactam); polyesters (polyethylene glycol terephthalate; ethylene glycol polynaplitalenedicarboxylate; copoiyesters derived from terephthalic acid and one or more other aliphatic and / or aromatic diacids); polyvinyl etal; polyvinyl alcohol; polyvinyl esters (polyvinyl acetate); polyvinyl chloride; polyvinylidene chloride; copolymers of vinyl or vinylidene halides; polyolefins (polyethylene; polypropylene); polycarbonates; polystyrene.
  • These films can be microperforated alone or in combinations with one another or with non-thermoplastic materials such as, for example, cardboard, paper or kraft paper.
  • the method according to the invention is very particularly suitable for microperforation of complex films obtained by rolling or coating extrusion of several films of different polymers. It is possible, for example, to carry out selective microperforation of one of the components of a complex polyethylene terephthalate film (PET) polyethylene film; FET / polyvinylidene chloride film; FET film / polyvinyl alcohol film; PET film / paper kraft. In such a case, it suffices to adapt the amplitude of the vibrations of the sonotrode and the pressing force to the thickness of the layer to be perforated and to put it in contact with that of the two tools (sonotrode or anvil). which carries the means of perforation.
  • PET polyethylene terephthalate film
  • microperforated film materials obtained by the process according to the invention find numerous applications, for example for the packaging of foodstuffs giving rise to gas exchanges, or as reflective thermal screens, permeable to water vapor in the greenhouses used. in agriculture.
  • the anvil is formed by a hardened steel cylinder 150 mm in length having a series of 8 knurled areas 10 mm wide separated by non-knurled areas of the same width.
  • the cylinder diameter is 90 mm in the knurled areas and 86 mm in the non-knurled areas.
  • Each knurled range has perforation elements in the form of a square base pyramid trunk 2 ⁇ 2 mm in side and 1.2 mm in height; the top of each element is a square with a side of 0.2 mm. These elements are distributed according to a cross knurling at 45 ° in a step of 2 mm.
  • the anvil is driven by a gear motor which can provide it with a linear running speed of 5 to 150 m / min.
  • the ultrasonic vibration generator system comprises a blade-type sonotrode connected by means of a mechanical amplifier to a piezoelectric source of ultrasonic vibrations.
  • the blade type titanium sonotrode has a useful carbide surface 8 mm wide and 150 mm long tungsten.
  • the source emits vibrations at a frequency of 20 KHz.
  • the amplitude of the vibrations of the sonotrode is 38 ⁇ m peak to peak.
  • the weight of the ultrasonic head is 10.5 kg; it can be loaded by weights placed on a metal rod. In the examples below, the head load was varied between 7.5 and 15 kg.
  • Air, oxygen and water vapor permeability measurements were made according to the following tests:
  • a sample of film with a defined surface is placed in a cylindrical measuring cell equipped with a sintered glass, an air inlet pipe and an air outlet pipe connected to a flow meter.
  • the circular sample is placed on the sintered glass and. an O-ring is placed on the sample to seal the cell after closing.
  • the useful surface of the sample is 12.6 cm2.
  • a determined air pressure is then applied to the sample and the air flow rate passing through the film is measured.
  • the permeability is expressed in liters of air per hour, per ⁇ u2 of film reduced to a pressure of 1 bar (1 / h / m2 / bar).
  • microperforation is carried out of a complex film sold under the trademark TERTHENE by the company RHONE-POULENC-FILM and consisting of a layer of a polyterephthalate film.
  • PET bi-stretched ethylene glycol
  • FE polyethylene film
  • this composite is completely air-impermeable and has a permeability to oxygen (PO 2) 3 to 4 cm 3 / m 2/24 h and a permeability to water vapor (PVE) 3 to 4 g / m 2/24 h.
  • the composite film is microperforated without additional load from the ultrasonic head, that is to say by using the weight of the head as a bearing force, putting the PET face in contact with the sonotrode then, on a new sample of composite film , the PE side in contact with the sonotrode.
  • the air permeability was increased to 20,000 l / h / m 2 / bar, which shows that under the conditions chosen, the film was completely perforated. PVO 2 and PVE are too important to be measured.
  • the microperforated composite can be used, for example, for the short-term packaging of fresh food products.
  • Example 2 The procedure is as in Example 1, but replacing the composite film with a composite constituted by a layer of PET of 6 ⁇ m carrying on each of its faces a layer of polyethylene of 20 ⁇ m.
  • This laminated film is impermeable to air and has a PO 2 of 220 cm 3 / m 2 / 24h / bar and a POI of 4/5 g / cm 2/24 h.
  • the air permeability (PA) is 50,000 1 / m 2 / h / bar.
  • the PO 2 and PVE of the microperforated film are too large to be measured.
  • Example 1 The operation is carried out under the conditions of Example 1 with a metallized PET composite film of 12 ⁇ m / PE of 38 ⁇ m. Whatever the face in contact with the anvil, the PA rises after perforation to 50,000 1 / h / m 2 / bar (before microperforation, the composite was airtight and had a PO 2 of 1 cm 3 / m 2 / 24h / bar and
  • a composite film consisting of a PET film of 12 ⁇ m and a PE film of 100 ⁇ m is subjected to microperforation under the conditions of Example 1, first by bringing the PET face into contact with the sonotrode and then the PE face.
  • the PO 2 of the composite is
  • the PVE is that of the 100 ⁇ m PE film and the PO 2 is intermediate between that of the PET film alone and that of the 100 ⁇ m PE film alone (600-700 em 3 / h / m 2 / bar).
  • the method according to the invention therefore made it possible, by selective microperforation of the PET layer, to modify the properties of the composite.
  • a complex film consisting of a 330 g / m 2 cardboard layer and a 12 ⁇ m PET film, the PET layer being in contact with the sonotrode, was subjected to microperforation under the conditions of Example 1. .
  • the PA of the microperforated film was brought to 1,500 l / h / m 2 / bar, which indicates a slight microperforation of the PET film.
  • a complex film consisting of a 330 g / m 2 cardboard layer and a 12 ⁇ m metallized PET film was applied to the microperforation under the conditions of Example 1, the PET layer being in contact with the sonotrode.
  • the PA of the microperforated film was brought to 500 1 / h / m 2 / bar, which reflects a slight microperforation of the metallized PET film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

Procédé de microperforation de pellicules thermoplastiques selon lequel, on met en contact ledit film (5) avec des éléments de perforation et un outil (1) animé de vibrations créées par un générateur d'ultrasons (3). Le procédé selon l'invention permet de modifier les propriétés de perméabilité aux gaz et à la vapeur d'eau des films thermoplastiques et de leurs complexes entre eux ou avec des matériaux non thermoplastiques.

Description

PROCEDE DE MICROPERFORATION
DE PELLICULES THERMOFLASTIQUES PAR ULTRA-SONS.
La présente invention concerne un procèdé pour Ia réalisation de microperforations dans des pellicules thermoplastiques.
Les pellicules en matières thermoplastiques pourvues de microperforations, c'est-à-dire de trous de diamètre inférieur ou égal à 1 mm et de préférenoe à 0,5 mm, trouvent de nombreuses, applications chaque fois qu'il y a lieu de favoriser des échanges gazeux plus ou moins Sélectifs entre des milieux entre lesquels ces pellicules constituent une séparation. Ainsi, les pellicules thermoplastiques sont tout particulièrement utilisées pour la fabrication d'emballages pour des produits de natures diverses ; dans de nombreux cas, ces emballages doivent assurer des échanges gazeux entre l'atmosphère de l'emballage et le milieu ambiant. Il en est tout particulièrement ainsi des matériaux destinés à l'emballage de produits alimentaires qui donnent lieu à des échanges gazeux avec l'atmosphère ambiante tels que les fruits, les légumes et notamment, ceux soumis a la synthèse chlυrophylienne (végétaux feuillus par exemple) ou le fromage ; le pain fait également l'objet d'un emballage dans des matériaux de ce type par mesure d'hygiène et on doit assurer l'élimination de la vapeur d'eau qu'il dégage pour lui éviter tout ramolissement. Les perméabilités intrinsèques aux gaz et a la vapeur d'eau des pellicules thermosplastiques ne sont pas toujours suffisantes pour assurer de manière convenable les échanges gazeux nécessaires à la bonne conservation du produit emballé. Par ailleurs, il est fréquent d'associer plusieurs matériaux pelliculaires sous forme de complexes dans lesquels chaque constituant joue un rôle en fonction de ses propriétés propres. Ainsi, on peut associer des films polyester tels que le polytéréphtalate d'ethylèneylycol à des films à propriété bàrrieère tels que les films de polyethylène, de polyp ropy lène, d'alcool pυlyvmylique ou de pυlyfluorure de Vinylidène, voire à des couches support eu papier ou en carton. Dans tous les Cas, il peut s'avère nécessaire de modifier la perméabilité intrinsèque du matériau pelliculaire ou d'un des constituants d'un matériau complexe afin d'augmenter leur perméabilité aux gaz et à la vapeur d'eau. C'est la raison pour laquelle il a été proposé de procéder à la microperforation des matériaux pelliculaires thermoplastiques.
On a proposé diverses techniques de réalisation de micro-trous dans les pellicules thermoplastiques parmi lesquelles on peut distinguer notamment des procédés mécaniques et des procédés thermiques.
Les procédés mécaniques réalisent la microperforation des pellicules au moyen d'aiguilles ou de poiçons qui travaillent à l'emporte-pièce. Divers dispositifs permettant la mise en oeuvre de cette technique ont été proposés. Ainsi, dans le brevet français publié sous le n° 2 215 300, on a décrit un dispositif s ' inspirant du principe de la machine à coudre et dans lequel une aiguille est animée d'un mouvement alternatif sous l'action d'un moteur et la pellicule à perforer est maintenue sur un support percé au moyen d'un pied de biche. Ce dispositif est d'un intérêt limité en raison de sa faible productivité ; il implique la multiplication des têtes de perforation sur la largeur de la pellicule. Enfin, il ne permet pas de réaliser une microperforation de la totalité de la surface pelliculaire. Pour pallier à cet inconvénient, on a suggéré de faire défiler le film entre un tambour tournant pourvu d'une pluralité d'organes de perforation répartis radialement et circulairement sur toute sa surface et un rouleau de contre-appui tournant en sens inverse et provoquant le poinçonnage de la pellicule (cf. brevets français publiés sous les n° 2.360.400 et 2.460.776). En dépit de l'avantage qu'il présente au plan de la productivité, ce dispositif souffre encore de divers inconvénients. En premier lieu, comme tous les système de perforation mécanique, il conduit à des trous qui présentent, sur la face opposée à celle de pénétration de l'organe de perforation, des bords irréguliers où le matériau thermoplastique déchiré fait saillie et confère une rugosité indésirée à cette face. Par ailleurs, il est d'un emploi difficile lorsqu'il s'agit de ménager dans la surface de la pellicule des zones exemptes de perforations ; il y a lieu alors de prévoir des dispositifs compliqués permettant de rendre inactifs les moyens de perforation. Enfin, il est difficile avec les dispositifs mécaniques de ce type de régler le diamètre des perforations.
Afin de résoudre le problème posé par le refoulement de la pellicule déchirée sur le bord des microperforations réalisées mécaniquement, on a proposé de procéder à une perforation thermique par fusion du matériau thermoplastique. Ainsi, dans le brevet français publié sous le n° 2.378.623, on a proposé de mettre en contact des moyens de perforation chauffés (par exemple, au moyen d'une rampe infra-rouge) répartis sur un tambour tournant, avec la. pellicule glissant en continu contre la paroi d'un berceau entourant partiellement le tambour et pourvu de rainures permettant le passage des moyens de perforation (par exemple des goujons). Un tel dispositif se révèle compliqué et mal adapté à un réglage souple de la dimension des perforations et de leur répartition sur la surface de la pellicule. Dans les brevets français publiés sous les n° 2.244.611 et 2.413.961 les moyens de perforations sont constitués par des sources de rayons infra-rouges quasi-ponctuelles réparties notamment sur un tambour tournant. Dans un tel dispositif, les perforations sont réalisées par la fusion de la matière thermoplastique sous l'action de la chaleur émise par les sources de rayons infra-rouges. Ces dernières sont constituées par des boucles de métal conducteur du courant électrique disposées dans une pluralité de logements répartis dans une surface isolante. Ce type d'appareillage est extrêmement complexe au regard de la réalisation et manque de souplesse a l'emploi : il est difficile de régler la dimension des perforations et leur répartition à la surface de la pellicule.
En définitive, les procédés et dispositifs de l'art antérieur sont compliqués, difficiles à mettre en oeuvre et ne permettent pas de régler a volonté la dimension des perforations et leur répartition à la surface de la pellicule de façon simple. Ils ne permettent pas non plus de réaliser la microperforation sélective d'une des couches extérieures d'un matériau pelliculaire complexe comportant deux ou plus de deux couches. La présente invention se propose précisément de résoudre les divers problèmes posés par les procédés et dispositifs antérieurs.
Plus précisément : - un premier objectif de la présente invention réside dans la mise au point d'un procédé simple de microperforation de pellicules thermoplastiques ;
- un autre objectif de la présente invention vise la mise au point d'un procédé permettant de modifier à volonté la dimension des perforations ;
- un autre objectif de la présente invention vise à la mise au point d'un procédé permettant de faire varier à souhait la répartition des perforations à la surface de la pellicule thermoplastique.
- un autre objectif de la présente invention concerne la mise au point d'un procédé et d'un dispositif permettant la perforation sélective d'au-moins une des couches extérieures d'un matériau pelliculaire complexe.
D'autres avantages de l'invention ressortiront de la description qui va suivre.
Plus spécifiquement, la présente invention a pour objet un procédé de microperforation sélective d'au moins une des couches thermoplastiques de pellicules thermoplastiques comportant une pluralité de couches thermoplastiques en respectant l'intégralité d'au moins une des couches restantes, selon lequel on soumet lesdites pellicules portées au voisinage de leur point de fusion à l'action perforante d'un outil portant une pluralité de pointes, caractérisé en ce que lesdites peliicules sont pincées entre deux organes dont l'un, la sonotrode, est en vibration ultrasonique, l'un de ces organes portant une pluralité de pointes perforantes.
Par la suite et pour des raisons de commodité, l'organe non vibrant sera désigné par le terme "enclume" et l'organe vibrant par le terme "sonotrode" conformément à la terminologie en vigueur dans le domaine des appareils à ultra-sons. Dans le procédé selon l'invention sous l'effet de l'énergie vibratoire transmise par là sonotrode, le polymère constituant la pellicule s'échauffe localement aux points de contact avec les pointes perforantes où se produit un pincement bref de la pellicule entre deux surfaces dont l'une ne vibre pas. La perforation de la pellicule résulte à la fois de son échauffement et de l'action mécanique des pointes qui sont forcées à travers la pellicule sous l'action des vibrations et d'une force d'appui exercée sur l'un des deux organes. L'appareil utilisé pour la mise en oeuvre du procédé selon l'invention est essentiellement constitué par une sonotrode reliée de façon connue à une source de vibrations ultrasoniques et par une enclume, l'un de ces deux organes étant pourvu de pointes assurant la perforation de la pellicule thermoplastique.
L'agencement de la sonotrode et de l'enclume peut revêtir diverses formes. Ainsi, on peut faire appel à un dispositif dans lequel l'enclume est constituée par une surface plane et fixe ; les pointes sont disposées soit sur l'enclume, soit sur la sonotrode. Dans un tel système, la perforation de la pellicule est réalisée en discontinu par l'intervention d'une ou plusieurs sonotrodes. Plus avantageusement, on met en oeuvre un dispositif comportant une enclume constituée par un cylindre en métal tournant autour de son axe longitudinal et par un sonotrode en contact permanent avec le film à perforer qui est à so tour en appui sur ledit cylindre pendant la perforation. Les pointes peuvent être portées indifféremment par la sonotrode ou l'enclume. Lorsque la sonotrode porte des pointes, il est préférable qu'elle soit de forme cylindrique et animée d'un mouvement de rotation afin d'éviter tout arrachement du film. De préférence, les éléments de perforation sont portés par l'enclume. Un tel système est particulièrement avantageux par ce qu'il permet d'assurer la perforation continue d'un film défilant entre les deux organes depuis un rouleau d'alimentation jusqu'à un rouleau récepteur. L'invention sera décrite plus précisément ci-après par référence à cette dernière forme de réalisation et à la figure qui l'illustre à titre non limitatif.
La figure jointe représente schématiquement un dispositif permettant la mise en oeuvre du procédé selon 1 ' invention et qui comprend une sonotrode fonctionnant en demi-longueur d'onde et une enclume cylindrique pourvue de pointes.
L'appareillage schématisé par' la figure comporte une sonotrode (1) reliée par l'intermédiaire d'un amplificateur de vibration (2) à un générateur d'ultrasons (3) et une enclume (4) cylindrique entraînée par un moteur non représenté dont la vitesse est asservie à la vitesse de défilement d'un film (5). Ce dernier est délivré par une bobine d'alimentation (6) sous l'action d'une bobine réceptrice (7) entraînée par un moto-variateur non représenté, relié à un arbre d'entraînement (8). Avant son passage dans le dispositif de microperforation, le film thermoplastique (5) rencontre successivement un rouleau de renvoi (9) et un rouleau tendeur (10) permettant d'éviter la formation de plis puis un rouleau tendeur (10') et un second rouleau de renvoi (9') ou sortir de l'enclume.
Le tambour est constitué par un cylindre métallique tournant autour de son axe longitudinal et pourvu d'une pluralité de moyens de perforation répartis régulièrement circulairement et radialement. Le diamètre et la longueur du rouleau ne sont pas critiques. Il est toutefois préférable pour éviter toute entrée en vibration du cylindre que son diamètre soit choisi pour lui assurer une rigidité suffisante compte tenu de la fréquence de la sonotrode. Ainsi, pour une fréquence de 20 KHz, le diamètre de l'enclume est de préférence supérieur à environ 120 mm et pour une fréquence de 30 KHz à environ 80 mm. La longueur du cylindre peut être aussi faible qu'environ 5 cm et ne présente pas de valeur supérieure critique. En général, cette longueur dépend de la largeur du film à perforer. Pour la mise en oeuvre du procédé selon l'invention, on peut faire appel à tout type de tambour muni de moyens de perforation de l'état antérieur de la technique (cf. notamment brevets français n° 2.460.776, 2.378.623 et 2.360.400). Le cas échéant, on peut remplacer un cylindre par une pluralité de cylindres de longueur inférieure, solidaires ou non du même moyen d'entraînement. L ou les moyens d'entraînement de l'enclume (ou des enclumes) sont en général asservis au défilement linéaire du film à perforer par tou système approprié. Par moyen de perforation, on désigne au sens de la présente invention des pointes de formes et de dimensions variées. Il peut s'agir de pointes de section cylindrique, terminées par une pointe conique, de pointes coniques : de trônes de cônes ; de pointes pyramidales de section triangulaire à côtés plats ou concaves telles que celles décrites dans le brevet français nº 2.360.400 ou de pointes pyramidales à section carrée ; de troncs de pyramide. Les dimensions des pointes dépendent dans une large mesure de la fréquence de vibration de la sonotrode. Ces dimensions sont calculées pour éviter leur entrée en vibration et leur casse. Le nombre de pointes par unité de longueur sur chaque génératrice de l'enclume cylindrique, dépend de la densité des perforations (nombre de perforations par unité de surface) désirées pour le film thermoplastique et du diamètre des pointes. Les pointes peuvent occuper la totalité de la surface du cylindre ou seulement certaines zones ; par exemple, le cylindre peut comporter sur toute sa circonférence 2 ou plus de 2 bandes de largeur identique ou non séparées par des bandes dépourvues d'éléments de perforation.
L'enclume et ses moyens de perforation sont réalisés dans un métal suffisamment résistant a l'usure.
La vitesse de rotation de l'enclume dépend de la vitesse de défilement linéaire du film qui peut être comprise entre 5 m/mn et 200 m/mn
La sonotrode qui provoque le réchauffement local de la pellicule lors de son contact avec une pointe de l'enclume et sa perforation peut être du type de celles mise en oeuvre dans le domaine de la soudure par ultrasons et vibrant en demi longueur d'onde sous l'effet d'un émetteur d'ultrasons convenable (par exemple electrostrictif, magnétostrictif, piezo-magnétique ou piezo-électrique). Il s'agit en général d'un système piezo-électrique.
Pour la mise en oeuvre du procédé selon l'invention, on peut, selon la largeur de pellicule a perforer, faire appel à une ou plusieurs sonotrodes. Dans ce dernier cas, les sonotrodes sont disposées parallèlement les unes à côté des autres, le long de l'axe longitudinal de l'enclume ; un tel dispositif permet de faire varier a volonté la surface de pellicule soumise à la perforation. Il se révèle tout particulièrement avantageux pour éviter la perforation de zones prédéterminées de la surface pelliculaire. Il suffit pour celà d'interrompre le fonctionnement d'une ou plusieurs des sonotrodes par tout moyen appproprié.
On peut encore, sans sortir du cadre de la présente invention, faire appel à des sonotrodes composées, constituées par un bloc porteur accordé en demi-longueur d'onde, à la fréquence d'un émetteur ultrasonique et par une pluralité de sonotrodes (ou concentrateurs) taillées en demi-longueur d'onde à là même fréquence que le bloc porteur, fixées à ce dernier par des moyens de fixation variés. On peut en particulier faire appel à des sonotrodes composées du type de celles décrites dans le brevet français n° 83.02915 publié sous le n° 2.541.159. Le recours à de telles sonotrodes permet de perforer de grandes largeurs de films tout en limitant le nombre des émetteurs ultrasoniques mis en oeuvre.
Bien que la géométrie de la sonotrode (ou du concentrateur dans le cas des sonotrodes composées) ne soit pas critique pour la mise en oeuvre du procédé selon l'invention et que l'on puisse faire appel à des sonotrodes à section circulaire carrée ou rectangulaire, il est préférable d'utiliser des sonotrodes en forme de lame. Dans ce cas, la largeur de la lame peut être relativement faible puisque la zone de contact entre la sonotrode et l'enclume est réduite à une rangée de pointes disposées le long d'une génératice du cylindre. Dans ces conditions, la largeur de la sonotrode peut être d'au moins environ 1 mm. En pratique, la largeur maximale et la longueur maximale de la sonotrode dépendent essentiellement des conditions de fonctionnement et, en particulier, de la fréquence ainsi que de l'amplitude que l'on désire donner aux vibrations. On sait, en effet, que pour une fréquence donnée, des fréquences parasites viennent perturber le fonctionnement du dispositif ultrasonique avec une intensité qui dépend des dimensions de la sonotrode ; ainsi, il est difficile de faire appel a des sonotrodes lames de plus de 200 mm de longueur. Pour une fréquence de 20 KHz et de plus de 150 mm pour une fréquence de 30 KHz. Compte-tenu de ces facteurs, la largeur de la sonotrode (ou d'un élément concentrateur) peut être comprise entre 5 et 20 mm environ et sa longueur entre 50 et 200 mm environ.
On peut, sans sortir du cadre de la présente invention, faire appel à un dispositif comportant une enclume dépourvue de pointe et à une sonotrode portant des pointes telles que celles décrites ci-avant. En pareil cas, l'enclume peut être constituée par un cylindre tournant venant en contact tangentiel avec la pellicule thermoplastique lors du défilement de cette dernière au cours du processus de perforation. La sonotrode à pointes qui est alors cylindrique et rotative, peut revêtir diverses formes de réalisations. Selon une autre variante, l'enclume peut présenter une surface plane et la sonotrode peut être du type lame pourvue d'une pluralité de rangées de pointes. Dans ce dernier cas, la perforation est réalisée pas à pas en discontinu.
L'amplitude des vibrations conférées a la sonotrode dépend de l'épaisseur du matériau pelliculaire à perforer. Le procédé selon l'invention convient a la perforation de pellicules ou films thermoplastiques d'épaisseur comprise entre 5 μm et 300 μm . Il est tout particulièrement bien adapté a là perforation partielle de matériaux pelliculaires complexes. En effet, en pareil cas, il peut s'avérer avantageux de provoquer la perforation sélective d'une ou de plusieurs couches d'un film complexe et de préserver l'intégrité d'une ou plusieurs des autres couches. Un tel objectif peut être aisément atteint en réglant l'amplitude des vibrations de la sonotrode ainsi que la force d'appui en fonction de l'épaisseur de la (ou des) couche(s) à perforer. D'une manière générale, l'amplitude des vibrations peut être comprise entre 20 μm et 40 μm et de préférence entre 30 μm et 38 μm de crête à crête.
Là fréquence des vibrations transmises à la sonotrode est comprise dans les limites des fréquences industrielles d'utilisation des ultra-sons. Plus particulièrement, elle est comprise dans un intervalle de 15 à 80 KHz.
Le maintien de la sonotrode en appui contre l'enclume est réalisé par l'intermédiaire de tout moyen communiquant à l'un quelconque des composants du système la force d'appui nécessaire. De préférence, cette force d'appui est communiquée à la sonotrode. Comme exemples non limitatifs de moyens d'appui, on peut citer la mise en place de poids sur la sonotrode, l'utilisation d'un vérin pneumatique...
L'intensité de la force d'appui dépend du taux de perforation désiré. En effet, dans le cas où les pointes équipant le tambour ou la sonotrode sont de forme conique ou pyramidale, la dimension des trous dépend de la force d'appui, pour une fréquence et une amplitude de vibration données et une vitesse de défilement déterminée. Le choix de la force d'appui peut être aisément réalisé au moyen d'essais simples en fonction de autres paramètres du procédé et du taux de perforation désiré.
On constate, â la lecture de ce qui précède, que le procédé selon l'invention est d'une grande souplesse de mise en oeuvre puisque le taux de perforation peut être réglé à volonté en jouant sur trois paramètres : la vitesse de défilement du matériau pelliculaire, l'amplitude de vibrations de la sonotrode et la force d'appui exercée sur l'un ou l'autre des outils (sonotrode ou enclume).
Le matériau pelliculaire à perforer défile à partir d'un rouleau d'alimentation et s'enroule après perforation sur un rouleau d'embobinage solidaire de l'axe d'un système de mise en rotation approprié.
Le procédé selon l'invention peut être appliqué à tout matériau pelliculaire souple thermoplastique. On peut citer à titre non limitatif les films en esters cellulosiques (acétate, propionate, butyrate, acéto-butyrate de cellulose), éthers cellulosiques ; polyamides (polyadipate d'examéthylènediamine ; polycaprolactame) ; polyesters (polytéréphtalate d'éthylèneglycol ; polynaplîtalènedicarboxylate de déthylèneglycol ; copoiyesters dérivés de l'acide téréphtalique et d'un ou plusieurs autres diacides aliphatiques et/ou aromatiques) ; aeétal polyvinylique ; l'acool polyvinylique ; esters de polyvinyle (acétate de polyvinyle) ; polychlorure de vinyle ; polyehlorure de vinylidène ; copolymeres des halogènures de vinyle ou de vinylidène ; polyoléfines (polyéthylène ; polypropylène) ; polycarbonates ; polystyrène.
Ces films peuvent être microperforés seuls ou en combinaisons entre eux ou avec des matériaux non thermoplastiques tels que, par exemple, le carton, le papier ou le papier kraft.
Ainsi, le procédé selon l'invention convient tout particulièrement bien à la microperforâtion de films complexes obtenue par laminage ou extrusion couchage de plusieurs films de polymères différents. On peut, par exemple, procéder à la microperforation sélective d'un des composants d'un complexe film de polytéréphtalate d'éthylèneglycol (PET) film de polyéthylène ; film FET/polychlorure de vinylidène ; film FET/film d'alcool polyvinylique ; film PET/papier kraft. En pareil cas, il suffit d'adapter l'amplitude des vibrations de la sonotrode et la force d'appui à l'épaisseur de la couche à perforer et de mettre celle-ci en contact avec celui des deux outils (sonotrode ou enclume) qui porte les moyens de perforation. Ainsi, dans le cas d'un complexe PET/polyéthylène, il est possible en choisissant convenablement l'épaisseur de la couche de polyéthylène, la charge d'appui et l'amplitude des vibrations de la sonotrode, de microperforer la couche de PET pour en améliorer la perméabilité a l'air sans modifier l'excellente imperméabilité à la vapeur d'eau du polyéthylène.
Les matériaux pelliculaires microperforés obtenus par le procédé selon l'invention trouvent de nombreuses applications, par exemple pour l'emballage de denrées alimentaires donnant lieu à des échanges gazeux, ou comme écrans thermiques réfléchissants, perméables à la vapeur d'eau dans les serres utilisées en agriculture.
Les exemples suivants donnés à titre non limitatif illustrent l'invention et montrent comment elle peut être mise en pratique.
Pour la réalisation de ces exemples, on a fait appel à un appareil tel que celui illustré schématiquement par la figure. Il comporte une enclume rotative pourvue d'éléments de perforation et un système générateur d'ultrasons commercialisé par la société MECASONIC.
L'enclume est constituée par un cylindre en acier trempé de 150 mm de longueur présentant une série de 8 plages moletées de 10 mm de largeur séparée par des plages non moletées de même largeur. Le diamètre du cylindre est de 90 mm dans les zones moletées et de 86 mm dans les zones non moletées. Chaque plage moletee comporte des éléments de perforation en forme de tronc de pyramide de base carrée de 2 x 2 mm de côté et de 1,2 mm de hauteur ; le sommet de chaque élément est un carré de 0,2 mm de côté. Ces éléments sont répartis suivant un moletage croisé à 45° suivant un pas de 2 mm. L'enclume est entraînée par un moto-vàriàteur pouvant lui assurer une vitesse de défilement linéaire de 5 à 150 m/mn.
Le système générateur de vibration d'ultrasons comprend une sonotrode du type lame reliée par l'intermédiaire d'un amplificateur mécanique a une source piezo-électrique de vibrations ultrasoniques. La sonotrode en titane du type lame présente une surface utile en carbure de tungstène de 8 mm de largeur et de 150 mm de longueur. La source émet des vibrations sous une fréquence de 20 KHz. L'amplitude des vibrations de la sonotrode est de 38 μm crête à crête. Le poids de la tête ultrasonique est de 10,5 kg ; elle peut être chargée par des poids mis en place sur une tige métallique. Dans les exemples ci-après, on a fait varier la charge de la tête entre 7,5 et 15 kg.
On a procédé à la mesure des perméabilités à l'air, à l'oxygène et à la vapeur d'eau selon les tests suivants :
1. Perméabilité à l'air
On dispose un échantillon de film de surface déterminée dans une cellule cylindrique de mesure équipée d'un verre fritte, d'une tubulure d'arrivée d'air et d'une tubulure de départ d'air reliée à un débimètre. L'échantillon circulaire est mis en place sur le verre fritte et. un joint torique est mis en place sur l'échantillon pour assurer l'étanchéité de la cellule après fermeture. La surface utile de l'échantillon est de 12,6 cm2. On applique ensuite une pression déterminée d'air sur l'échantillon et on mesure le débit d'air passant à travers le film. La perméabilité est exprimée en litres d'air par heure, par ιu2 de film ramené à une pression de 1 bar (1/h/m2/bar).
2. Perméabilité à l'oxygène
Elle est déterminée suivant la norme ASTM D 39 8581 et exprimée en cm3/m2/24 h/bar.
3. Perméabilité à la vapeur d'eau
Elle est déterminée suivant la norme ASTM E 96 et exprimée en g/m2/24 h.
EXEMPLE 1
A l'aide de l'appareil décrit ci-avant, on procède à la microperforation d'un film complexe vendu sous la marque commerciale TERTHENE par la société RHONE-POULENC-FILM et constitué par une couche d'un film de polytéréphtalate d'éthylèneglycol (PET) biétiré de 12 μm d' épaisseur enduit de PVDC à raison de 4 g/m de matière sèche et par une couche d'un film polyéthylène (FE) de 50 μm d'épaisseur ; avant mieroperforation ce composite est totalement imperméable à l'air et il présente une perméabilité à l'oxygène (PO2) de 3 à 4 Cm3/m2/24 h et une perméabilité à la vapeur d'eau (PVE) de 3 à 4 g/m2/24 h .
Le film composite est microperforé sans charge additionnelle de la tête d'ultra-sons, c'est-à-dire en utilisant comme force d'appui le poids de latête, enmettant encontact laface PET avec la sonotrode puis, sur unnouvel échantillonde film composite, la face PE en contact avec la sonotrode. Dans les deux cas, la perméabilité à l'air a été portée à 20 000 1/h/m2/bar, ce qui montre que dans les conditions choisies, le film a été totalement perforé. Les PVO2 et PVE sont trop importantes pour être mesurées. Le composite microperforé peut être utilisé par exemple pour l'emballage de courte durée de produits alimentaires frais.
EXEMPLE 2
On opère comme à l'exemple 1 mais en remplaçant le film composite par un composite constitué par une couche de PET de 6 μm portant sur chacune de ses faces une couche de polyéthylène de 20 μm. Ce film complexe est imperméable à l'air et présente une PO2 de 220 cm3/m2/24 h/bar et une PVE de 4/5 g/cm2/24 h. Après microperforation, la perméabilité à l'air (PA) s'élève à 50 000 1/m2/h/bar. Les PO2 et PVE du film microperforé sont trop importantes pour être mesurées.
EXEMFLE 3
On opère dans les conditions de l'exemple 1 avec un film composite PET métallisé de 12 μm/PE de 38 μm. Quelle que soit la face en contact avec l'enclume, la PA s'élève après perforation à 50000 1/h/m2/bar (avant microperforation, le composite était imperméable a l'air et présentait une PO2 de 1 cm3/m2/24 h/bar et une
PVE de 1 g/m2/24 h. Après microperforation, la PO2 et la PVE sont trop élevées pour être mesurées.
EXEMPLE 4
On soumet à la microperforation dans les conditions de l'exemple 1 un film composite constitué par un film PET de 12 μm et un film PE de 100 μm, d'abord en mettant la face PET en contact avec la sonotrode puis la face PE. La PO2 du composite est de
120 cm3/m2/24 h/bar, c'est-à-dire celle d'un film FET de 12 μm seul et la PVE de 1-2 g/m2/24 h c'est-à-dire celle du film PE de 100 μm seul.
Après microperforation, on a obtenu les résultats suivants : a) face PET en contact avec la sonotrode :
- PA : non mesurable (aucun débit d'air)
- PO2 : 120 cm3/m2/24 h/bar
- PVE : 1,3 g/m2/24 h Ces résultats montrent que dans les conditions utilisées, la couche PE n'a pas été perforée de sorte que l'intégrité de la couche PET a été conservée.
b) face PE en contact avec la sonotrode :
- PA : aucun débit d'air
- PO2 : 300 cm3/m2/24 h/bar
- PVE : 1,8 g/m2/24 h
Dans les conditions utilisées, seule la couche PET a été microperforée. La PVE est celle du film PE 100 μm et la PO2 est intermédiaire entre celle du film PET seul et celle du film PE 100 μm seul (600-700 em3/h/m2/bar).
Le procédé selon l'invention a donc permis, par une microperforation sélective de la couche PET de modifier les propriétés du composite.
EXEMPLE 5
On a soumis à la microperforation dans les conditions de l'exemple 1 un film complexe constitué d'une couche de carton de grammage 330 g/m2 et d'un film PET de 12 μm, la couche PET étant en contact avec la sonotrode. La PA du film microperforé a été portée à 1 500 1/h/m2/bar ce qui traduit une faible microperforation du film PET.
EXEMPLE 6
On a soumis à la microperforation dans les conditions de l'exemple 1 un film complexe constitué d'une couche de carton de grammage 330 g/m2 et d'un film PET métallisé de 12 μm, la couche PET étant en contact avec la sonotrode. La PA du film microperforé a été portée à 500 1/h/m2/bar ce qui traduit une faible microperforation du film PET métallisé.
EXEMFLE 7
On a opéré comme à l'exemple 4 mais en faisant intervenir une charge de 7,5 kg sur la tête ultrasonique. Quelle que soit la face en contact avec la sonotrode, la FA atteint 100 000 1/h/m2/bar et la PVE
630 g/m2/24 h, ce qui traduit une microperforation des deux couches. EXEMPLE 8
Après avoir mis en place une charge de 15 kg sur la tête ultrasonique, on procède à la microperforation d'un composite constitué :
a) par une couche de carton de grammage 330 g/m2
b) par un film composite comportant :
b1) une couche de FET métallisé de 12 μm
b2) une couche de polypropylène (PP) de 50 μm la face métal étant contiguë du carton.
On a obtenu les résultats suivants :
a) carton en contact avec la sonotrode
- PA : 100 000 1/h/m2/bar
- PO2 et PVE : trop élevées pour être mesurées.
Ces résultats montrent que la couche composite b2) a été totalement perforée.
b) couche PP en contact avec la sonotrode
On a obtenu les résultats suivants :
- PA : non mesurable (pas de débit d'air)
- PVE : 4 g/m2/24 h (c'est-à-dire celle du film PP seul)
- PO2 : 420 cm3/h/m2/bar.
Dans ce cas, il n'y a pas eu perforation d'une des couches de b2) à travers le carton.

Claims

REVENDICATIONS
1 - Procédé de microperforation sélective d'au moins une des couches thermoplastiques de pellicules thermoplastiques comportant une pluralité de couches thermoplastiques en respectant l'intégralité d'au moins une des couches restantes, selon lequel on soumet lesdites pellicules portées au voisinage de leur point de fusion à l'action perforante d'un outil portant une pluralité de pointes, caractérisé en ce que lesdites pellicules sont pincées entre deux organes dont l'un, la sonotrode, est en vibration ultrasonique, l'un de ces organes portant une pluralité de pointes perforantes.
2 - Procédé selon la revendication 1 caractérisé en ce que les pointes perforantes sont portées par l'enclume.
3 - Procédé selon l'une quelconque des revendications 1 à 2 caractérisé en ce que l'enclume est cylindrique.
4 - Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que la soriotrode est du type à lame.
5 - Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que les éléments de perforations sont répartis sur l'ensemble de la surface de l'enclume.
6 - Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que l'enclume comporte une pluralité de zones pourvues d'éléments de perforation séparées par des zones dépourvues desdits éléments.
7 - Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que le dispositif comporte une pluralité de sonotrodes disposées de façon à couvrir toute la largeur du film, lesdites sonotrodes pouvant fonctionner simultanément ou non. 8 - Procédé selon l'une quelconque des revendications 3 à 7 caractérisé en ce que la vitesse de rotation de l'enclume est asservie à la vitesse de défilement de la pellicule.
9 - Procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce que les éléments de perforations sont des pointes prises dans le groupe formé par les cônes, les troncs de cônes, les pyramides à base triangulaire ou carrée ou les troncs de pyramides.
10 - Procédé selon l'une quelconque des revendications 1 à 9 caractérisé en ce que le dispositif mis en oeuvre comporte un moyen d 'appui de la sonotrode contre l ' enclume .
11 - Procédé selon l'une quelconque des revendications 1 à 10 caractérisé en ce que la pellicule thermoplastique est prise dans le groupe des films de polyesters, de polyamides, de polyoléfines, d'esters et d'éthers cellulosiques, de polyhalogénures de vinyle, d'esters de polyvinyle, d'alcool polyvinylique, d'acétals polyvinyliques, de polystyrène, de polyhalogénure de vinylidène.
12 - Procédé selon l'une quelconque des revendications 1 à 11 caractérisé en ce que le matériau soumis à la microperforation est un film composite FET/polyéthylène.
PCT/FR1989/000318 1988-06-30 1989-06-21 Procede de microperforation de pellicules thermoplastiques par ultrasons WO1990000110A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR88/09112 1988-06-30
FR8809112A FR2633547A1 (fr) 1988-06-30 1988-06-30 Procede de microperforation de pellicules thermoplastiques par ultrasons

Publications (1)

Publication Number Publication Date
WO1990000110A1 true WO1990000110A1 (fr) 1990-01-11

Family

ID=9368111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1989/000318 WO1990000110A1 (fr) 1988-06-30 1989-06-21 Procede de microperforation de pellicules thermoplastiques par ultrasons

Country Status (3)

Country Link
BR (1) BR8903348A (fr)
FR (1) FR2633547A1 (fr)
WO (1) WO1990000110A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014191A1 (fr) * 1994-11-08 1996-05-17 Minnesota Mining And Manufacturing Company Procede permettant de faire des ouvertures dans des materiaux en feuille mince
US5879494A (en) * 1996-09-23 1999-03-09 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
US5907086A (en) * 1991-05-01 1999-05-25 Pioneer Hi-Bred International, Inc. Plant promoter sequences
CN102248775A (zh) * 2011-06-01 2011-11-23 江苏万乐复合材料有限公司 低熔点聚乙烯薄膜在线印刷打孔机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0888237A4 (fr) * 1996-02-20 1999-05-06 Ben Tzur Israel Materiau plastique d'emballage
FR2783738B1 (fr) * 1998-09-28 2000-11-24 Saint Andre Plastique Procede de fabrication d'un element d'emballage pour produits, dispositifs de fabrication, element d'emballage et emballage correspondants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756880A (en) * 1971-03-19 1973-09-04 Eastman Kodak Co Moval ultrasonic perforating a sheet of film paper or the like with chip re
US3844869A (en) * 1972-12-20 1974-10-29 Crompton & Knowles Corp Apparatus for ultrasonic welding of sheet materials
US4394208A (en) * 1981-08-06 1983-07-19 Burlington Industries, Inc. Ultrasonic bonding
DE8631525U1 (fr) * 1986-08-20 1987-06-25 American White Cross Laboratories, Inc., New Rochelle, N.Y., Us

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756880A (en) * 1971-03-19 1973-09-04 Eastman Kodak Co Moval ultrasonic perforating a sheet of film paper or the like with chip re
US3844869A (en) * 1972-12-20 1974-10-29 Crompton & Knowles Corp Apparatus for ultrasonic welding of sheet materials
US4394208A (en) * 1981-08-06 1983-07-19 Burlington Industries, Inc. Ultrasonic bonding
DE8631525U1 (fr) * 1986-08-20 1987-06-25 American White Cross Laboratories, Inc., New Rochelle, N.Y., Us

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907086A (en) * 1991-05-01 1999-05-25 Pioneer Hi-Bred International, Inc. Plant promoter sequences
WO1996014191A1 (fr) * 1994-11-08 1996-05-17 Minnesota Mining And Manufacturing Company Procede permettant de faire des ouvertures dans des materiaux en feuille mince
US5735984A (en) * 1994-11-08 1998-04-07 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
AU696075B2 (en) * 1994-11-08 1998-09-03 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
US5879494A (en) * 1996-09-23 1999-03-09 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
CN102248775A (zh) * 2011-06-01 2011-11-23 江苏万乐复合材料有限公司 低熔点聚乙烯薄膜在线印刷打孔机

Also Published As

Publication number Publication date
BR8903348A (pt) 1990-03-06
FR2633547A1 (fr) 1990-01-05

Similar Documents

Publication Publication Date Title
FR2602992A1 (fr) Dispositif de perforation en continu par ultra-sons
EP1125065B1 (fr) Pompe moleculaire
EP1647489B1 (fr) Procédé d'emballage de produits végétaux frais
CH528989A (fr) Procédé destiné à augmenter la propriété d'adhésion de surfaces
CA2241332C (fr) Pack d'objets emballes avec un film plastique, film plastique pour l'emballage d'un pack, et procede de fabrication du film plastique
FR2778363A1 (fr) Machine et procede de fabrication de sachets a grande vitesse
EP1375113A1 (fr) Procédé de fabrication d'emballage prédécoupé
LU83239A1 (fr) Appareil de thermoformage sous vide de feuilles thermoplastiques
WO1990000110A1 (fr) Procede de microperforation de pellicules thermoplastiques par ultrasons
EP3003703A1 (fr) Unite de transformation d'un support en bande continue et machine de production d'emballages ainsi equipee
EP1272332B1 (fr) Procedes de soudage par ultrasons et emballages associes
EP0620087A1 (fr) Procédé pour la perforation de films et dispositif de mise en oeuvre de ce procédé
US20120238430A1 (en) Method and apparatus for making curled decorative grass
EP0507653B1 (fr) Crêpeuse
US6436324B1 (en) Method for making curled decorative grass
EP0428457B1 (fr) Procédé et dispositif d'empâtage d'une structure alvéolaire en forme de plaque
FR2510460A1 (fr) Dispositif pour perforer ou decouper des feuilles minces
WO1998002299A1 (fr) Materiau d'approvisionnement de machine de fabrication de produit de rembourrage
WO2003084724A1 (fr) Procede de fabrication de plaques de platre a 4 bords amincis
FR2955086A1 (fr) Prodede et dispositif pour l'emballage d'un produit et produit emballe.
FR2507531A1 (fr) Procede et dispositif de soudage de films en matiere plastique par ultrasons
FR2829961A1 (fr) Procede et machine de soudage de deux films par ultrasons
FR2983838A1 (fr) Procede de realisation d'emballages thermoformes a film d'operculage multicouche, et machine de thermoformage pour la mise en oeuvre dudit procede
BE832468Q (fr) Matieres alyeulees
FR2701464A1 (fr) Appareil et procédé pour détecter des perforations.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE