WO1989011080A1 - Capteur angulaire a position codee - Google Patents

Capteur angulaire a position codee Download PDF

Info

Publication number
WO1989011080A1
WO1989011080A1 PCT/EP1989/000357 EP8900357W WO8911080A1 WO 1989011080 A1 WO1989011080 A1 WO 1989011080A1 EP 8900357 W EP8900357 W EP 8900357W WO 8911080 A1 WO8911080 A1 WO 8911080A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
signal
relative distance
signals
function
Prior art date
Application number
PCT/EP1989/000357
Other languages
German (de)
English (en)
Inventor
Günter Schwesig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1989011080A1 publication Critical patent/WO1989011080A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks

Definitions

  • the invention relates to a method for determining the relative distance between two mutually movable parts with the features specified in the preamble of claim 1 and a device suitable therefor (DE-OS 34 16 090).
  • Measuring systems with an optically or inductively operating
  • a signal each time a corresponding mark is moved past it.
  • the signal is often shaped into a pulse with sharp pulse edges by electronic means.
  • a pulse sequence then arises which breaks down the path covered into path increments and the path covered can be determined by counting the pulses.
  • the senor delivers an approximately triangular or sinusoidal output signal.
  • this signal is ambiguous within a path increment, i.e. every signal value lying between the extreme values is assumed with two relative positions between detector and mark.
  • EP-AO 059 244 discloses a possibility of obtaining a signal of 4 times the frequency from two such phase-shifted signals of the same period length, which signal is practically sawtooth-shaped.
  • the sinusoidal, triangular or sawtooth-shaped signal is further processed as a strictly continuous analog signal or as a quasi-constant digital signal, this is - in contrast to the discontinuous signal formed by binary counts - a continuous function of the current relative distance, since there is a signal value belonging to the instantaneous distance at all times, which changes when the instantaneous distance changes and thus has a defined phase position, while the mentioned counting pulses only occur when the mark and sensor are opposed to each other and thus conditions always occur which a change in the instantaneous distance does not cause a change in the binary pulse. From the instantaneous value of a binary signal, the instantaneous phase position of the sensor signal cannot be concluded.
  • the mentioned, known sawtooth signal already represents a reversible-unique function ("one-two-one-function") of the relative distance within a path increment and thus a signal with a clear phase position.
  • a measuring range composed of many path increments in the case of a rotating one Machine, for example, an entire revolution, but this continuous signal is also ambiguous according to the number of path increments. Therefore, in the known arrangement, the electronic formation of counting pulses for the travel increments traveled is additionally required.
  • the measuring range which is initially given by the path increment or the period of the sensor signal, can be expanded as desired. Another extension of the measuring range is shown in the aforementioned DE-OS 34 16 090 and shown in Fig. 1 for a rotary machine.
  • a code disk G1 is coupled to its shaft 1 with a code mark R1, which is thus movable relative to a stationary sensor S1 and generates a periodic code signal in the detector, which is a function of the relative angular distance, ie the angle of rotation of shaft 1.
  • a second measuring system which contains a reference disk G2 with the reference mark R2 which is coupled to the shaft 1 via a gearbox G and which is therefore movable relative to the sensor S2 (containing a corresponding code detector). It generates a reference signal r2, which is also a function of the relative distance between the shaft 1 and the sensors S1 and S2, but has a different period length compared to the code signal r1 due to the transmission ratio in the gearbox G.
  • the corresponding incremental path signals w1 and w2 are shaped into pulse sequences in an electronic evaluation unit, just like the code signal r1 and the reference signal r2, and initially allow, in the manner described at the beginning, the path increments covered within a complete shaft rotation, which have a length of 2 ⁇ / n, to count.
  • this means that the axis has a starting position in which the marks R1 and R2 face the sensors S1 and S2, about the angle of rotation q. 2 ⁇ is turned further.
  • Another application relates to converter-controlled induction machines in which, for example, the position of the rotor must be known from the start with sufficient accuracy so that when the inverter starts, the current flow through the machine is at the correct angle to the axis of the rotating field and the machine starts up in the desired direction of rotation with the desired torque can.
  • the field distribution of such machines is ambiguous, so that the spatial assignment of the field axis and current flow required for starting the machine is possible with several different positions of the rotor.
  • the measuring range for the position of the rotor in this case is not 2 ⁇ , but in accordance with this ambiguity only 2 ⁇ / p, however, the encoder should also record the rotor position as precisely as possible in a snapshot or in any case within short evaluation times.
  • position-coded encoders have mostly been used so far, which, in addition to a measuring system that breaks down the angle of rotation into small path increments in accordance with the desired resolution and is correspondingly ambiguous, contains further measuring systems that each break down into larger path increments to gradually eliminate ambiguity.
  • These can be sensors with binary output signals or with signals that are a continuous function of the current relative distance.
  • the invention is therefore based on the object of determining the relative position between two parts which are movable relative to one another as simply as possible in the manner of a position-coded snapshot. This object is achieved by a method having the features of claim 1 and an apparatus having the features of claim 2. Advantageous developments of the invention are characterized in the subclaims.
  • FIG. 1 shows the prior art already explained
  • FIG. 2 and 3 show the application of the invention in a linear displacement, carried out with optical measuring systems
  • FIG. 4 and FIG. 5 show an application of the invention for rotary displacement, carried out with electromagnetic measuring systems and signals occurring in the process.
  • Figure 6 and Figure 7 shows a particularly advantageous embodiment in plan and cross-section.
  • Figures 2 and 3 show schematically two sections through the measuring part of a machine, not shown, with linear movement.
  • a measuring slide 3 is movable along rails 1, which are fastened to a stationary holder 2, and carries the detectors of two optical measuring systems.
  • the beam path of these measuring systems consists of a miniaturized light source 4, 5, a system of lenses 6, 7 and diaphragms 8, 9, which can also carry grids (not shown) for better beam guidance, and leads to corresponding sensors 10, 11.
  • An The holder 2 is also attached to a carrier 12 which carries two tracks 13 and 14 with corresponding optical marks 15, 16 (eg line grids).
  • Each detector is designed to provide a pair of signals 90 ° out of phase with each other.
  • the code detector 10 scanning the code track 15 of FIG. 2 contains a pair of code sensors 10 'and 10''which are a quarter or three quarters of a code increment apart in the direction of movement.
  • Appropriate design of the code marks 15 and the elements 4, 8 and 10 scanning these marks ensures that the sensor signals u 'and u''have an approximately sinusoidal course depending on the relative distance x.
  • the sinusoidal shape can also be forced by electronic means.
  • the signals u 'and u'' can be analog signals or correspondingly finely resolved digital signals.
  • signals can be understood as orthogonal components of a length which is standardized in a plane and a length which can be described by the angle ⁇ .
  • Corresponding standardization elements are known as "vector analyzers" VA standard elements for the control of induction machines.
  • the reference detector also determines the relative distance x as a correspondingly ambiguous function of the “reference angle” ⁇ contained in the reference signal v.
  • VD- vector rotator
  • VD- vector rotator
  • phase positions of the code signal and reference signal are detected with an (m / 2) times lower accuracy.
  • simple electromagnetic measuring systems can be used.
  • FIGS. 4 and 5 This is shown in FIGS. 4 and 5 for the preferred application that a three-phase machine (for example a synchronous machine SM) is fed by a converter SR.
  • the converter SR must be controlled by the control set CT in such a way that the feed current is only fed into certain windings of the stator reference system, so that the machine starts with a desired torque in the correct direction of movement.
  • the control therefore usually contains a vector rotator VD +, in which an angular addition is ultimately carried out so that the control of the headset CT and the converter SR can search for the windings from the stator windings arranged on the circumference of the stator, the winding axes of which compared to those given by the rotor position Axes of symmetry of the field to the desired starting angle point.
  • Teeth of the electromagnetic measuring systems are advantageously equidistantly distributed on the circumference of circular disks 20, 21 which are rigidly coupled to one another and are scanned by corresponding sensors.
  • the teeth on the code disk 20 or the reference disk 21 are shown with alternating magnetization (one pair of teeth 22 or 23 is therefore a magnetic mark).
  • the corresponding sensors 24 ', 24' 'of the code detector scanning the code marks are intended to emit a signal pair of approximately sinusoidal signals which are 90 ° out of phase with respect to one another, which is why the sensor 24' 'faces the space between two teeth when the sensor 24' faces a tooth directly .
  • FIG. 5 shows the sensor signals u 'and v' as well as the signals e 'and e' 'of the distance signal e and the phase angle ⁇ . of the distance signal e shown.
  • the angle of rotation ⁇ of the rotor axis is equal to ⁇ / p or ( ⁇ / p - 2 ⁇ / 3).
  • Figures 6 and 7 show in top view and cross section a position-coded angle encoder according to a first variant of the invention.
  • a disk S rotatable about an axis of rotation W
  • two tracks are arranged along the circumference, which are formed from a homogeneous magnetically conductive material and have a profile with teeth that extend in the radial direction and in the axial direction on opposite sensors are directed.
  • the code track CS is scanned electromagnetically by two code sensors U1 'and U1'', which respond to the variable distance between the sensor and the tooth surface in accordance with the profile being moved past.
  • the two code sensors U1 'and U1'' are adjacent, but offset from one another in such a way that they deliver a pair u1 of approximately sinusoidal sensor signals u1', U1 '', which are 90 ° out of phase with each other.
  • the reference track RS is correspondingly scanned by a pair V, of reference sensors, which are covered in FIG. 1 by the pair U 1 of the code sensors U1 ', U2', since they are opposite one another, while in FIG. 2 the two sensors lying next to one another of the two sensor pairs U1 and V1 appear like a single sensor.
  • the amplitude of the sensor signal pairs u1 and v1 (ie the individual ignale u1 ', u1 ", v1', v1 '') is now falsified by a radial play, which can be caused, for example, by an inaccurate centering on the axis of rotation W. Because the If both sensor pairs are subject to these falsifications at virtually the same time at the same location, this radial play affects all signals equally, and it can also be largely suppressed if the sensors are smaller than the width of the track. In addition, axial play can also occur if, for example, the disk is not exactly perpendicular to the rotating shaft W and therefore "wobbles". Although this affects the two sensors of a pair of sensors practically in the same way, it amplifies the amplitude of a pair of sensor signals while simultaneously reducing the amplitude of the other pair of sensor signals.
  • a pair of compensation sensors is arranged on each broad side diametrically opposite to a pair of sensors, which also scan the track and provide the same sinusoidal output signals as their associated sensors.
  • the output signals u2 ', u2' 'of the compensation sensors U2', U2'1 are disturbed in the opposite sense to the signals u1 ', u1' 'of the sensors U1', U1 ''.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Afin de générer dans un capteur un signal à position codée à pratiquement n'importe quel moment, deux pistes sont balayées par deux détecteurs qui génèrent chacun une paire de signaux sinusoïdaux (cos alpha, sin alpha; cos beta, sin beta) ou un signal périodique similaire avec une relation des phases définie à tout moment et dont les longueurs de période se comportent comme m/m-1. L'écart relatif recherché résulte de la différence entre les deux relations de phases.
PCT/EP1989/000357 1988-05-10 1989-04-03 Capteur angulaire a position codee WO1989011080A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3816011.0 1988-05-10
DE3816011 1988-05-10

Publications (1)

Publication Number Publication Date
WO1989011080A1 true WO1989011080A1 (fr) 1989-11-16

Family

ID=6354107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/000357 WO1989011080A1 (fr) 1988-05-10 1989-04-03 Capteur angulaire a position codee

Country Status (1)

Country Link
WO (1) WO1989011080A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4114419A1 (de) * 1991-05-03 1992-11-05 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung
DE4125865A1 (de) * 1991-08-03 1993-02-04 Heidenhain Gmbh Dr Johannes Laengen- oder winkelmesseinrichtung
DE4229575C1 (de) * 1992-09-04 1993-11-25 Heidenhain Gmbh Dr Johannes Verfahren bei Längen- oder Winkelmeßeinrichtungen
DE4217498A1 (de) * 1992-05-27 1993-12-02 Bodenseewerk Geraetetech Winkelgeber
DE4212952A1 (de) * 1991-08-03 1994-01-05 Heidenhain Gmbh Dr Johannes Längen- oder Winkelmeßeinrichtung
EP0833130A2 (fr) * 1996-09-25 1998-04-01 Dr. Johannes Heidenhain GmbH Système de mesure de position et procédé
DE19732713A1 (de) * 1997-07-30 1999-02-04 Elgo Electric Gmbh Vorrichtung und Verfahren zur Positionsbestimmung
DE19818799A1 (de) * 1997-12-20 1999-06-24 Daimler Chrysler Ag Verfahren und Vorrichtung zum Messen von Winkeln
DE19911820C1 (de) * 1999-03-17 2000-08-10 Leistritz Ag Extruder, insbesondere Doppelschneckenextruder
DE102004010948A1 (de) * 2004-03-03 2005-10-13 Carl Freudenberg Kg Winkelmesseinrichtung
EP1610096A2 (fr) 1997-04-16 2005-12-28 Dr. Johannes Heidenhain GmbH Dispositif de mesure de position et procédé de fonctionnement d'un dispositif de mesure de position
EP2116814A1 (fr) 2008-05-09 2009-11-11 Siemens Aktiengesellschaft Dispositif de mesure destiné à la détermination d'une position et/ou d'une vitesse
DE19861259C5 (de) * 1997-04-16 2010-09-02 Dr. Johannes Heidenhain Gmbh Positionsmeßeinrichtung und Verfahren zum Betrieb einer Positionsmeßeinrichtung
US8020310B2 (en) 2006-10-13 2011-09-20 Siemens Aktiengesellshaft Measuring element comprising a track used as a material measure and corresponding measurement method carried out by means of such a measuring element
EP2020591A3 (fr) * 2007-08-01 2013-10-09 Magnescale Co., Ltd. Appareil de mesure de déplacement
EP2480475B1 (fr) 2009-09-25 2018-03-21 Kone Corporation Machine de levage et système élévateur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2811807A1 (de) * 1978-03-16 1979-09-20 Joachim Dr Ing Wernicke Digital-absoluter winkelkodierer nach dem nonius-prinzip
EP0013799A2 (fr) * 1978-12-19 1980-08-06 Kabushiki Kaisha Toshiba Equipement de codage pour dispositifs très précis de mesure de longueurs ou d'angles
GB2141235A (en) * 1983-06-09 1984-12-12 Evershed Power Optics Position measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2811807A1 (de) * 1978-03-16 1979-09-20 Joachim Dr Ing Wernicke Digital-absoluter winkelkodierer nach dem nonius-prinzip
EP0013799A2 (fr) * 1978-12-19 1980-08-06 Kabushiki Kaisha Toshiba Equipement de codage pour dispositifs très précis de mesure de longueurs ou d'angles
GB2141235A (en) * 1983-06-09 1984-12-12 Evershed Power Optics Position measurement

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512327A1 (fr) * 1991-05-03 1992-11-11 Dr. Johannes Heidenhain GmbH Dispositif de mesure de position
DE4114419A1 (de) * 1991-05-03 1992-11-05 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung
DE4212952A1 (de) * 1991-08-03 1994-01-05 Heidenhain Gmbh Dr Johannes Längen- oder Winkelmeßeinrichtung
DE4125865A1 (de) * 1991-08-03 1993-02-04 Heidenhain Gmbh Dr Johannes Laengen- oder winkelmesseinrichtung
DE4217498A1 (de) * 1992-05-27 1993-12-02 Bodenseewerk Geraetetech Winkelgeber
EP0585622A2 (fr) * 1992-09-04 1994-03-09 Dr. Johannes Heidenhain GmbH Procédé pour appareil de mesure de longueur ou d'angle
US5456021A (en) * 1992-09-04 1995-10-10 Johannes Heidenhain Gmbh Apparatus and method for measuring linear and angular displacements
EP0585622B1 (fr) * 1992-09-04 1996-10-30 Dr. Johannes Heidenhain GmbH Procédé pour appareil de mesure de longueur ou d'angle
DE4229575C1 (de) * 1992-09-04 1993-11-25 Heidenhain Gmbh Dr Johannes Verfahren bei Längen- oder Winkelmeßeinrichtungen
EP0833130A2 (fr) * 1996-09-25 1998-04-01 Dr. Johannes Heidenhain GmbH Système de mesure de position et procédé
US5905350A (en) * 1996-09-25 1999-05-18 Dr. Johannes Heidenhain Gmbh Position measuring system and measuring process
EP0833130A3 (fr) * 1996-09-25 2000-04-12 Dr. Johannes Heidenhain GmbH Système de mesure de position et procédé
EP1610096A2 (fr) 1997-04-16 2005-12-28 Dr. Johannes Heidenhain GmbH Dispositif de mesure de position et procédé de fonctionnement d'un dispositif de mesure de position
EP1610096B2 (fr) 1997-04-16 2012-09-05 Dr. Johannes Heidenhain GmbH Dispositif de mesure de position et procédé de fonctionnement d'un dispositif de mesure de position
DE19861259C5 (de) * 1997-04-16 2010-09-02 Dr. Johannes Heidenhain Gmbh Positionsmeßeinrichtung und Verfahren zum Betrieb einer Positionsmeßeinrichtung
DE19732713A1 (de) * 1997-07-30 1999-02-04 Elgo Electric Gmbh Vorrichtung und Verfahren zur Positionsbestimmung
DE19818799A1 (de) * 1997-12-20 1999-06-24 Daimler Chrysler Ag Verfahren und Vorrichtung zum Messen von Winkeln
DE19818799C2 (de) * 1997-12-20 1999-12-23 Daimler Chrysler Ag Verfahren und Vorrichtung zum Messen von Winkeln
DE19911820C1 (de) * 1999-03-17 2000-08-10 Leistritz Ag Extruder, insbesondere Doppelschneckenextruder
DE102004010948A1 (de) * 2004-03-03 2005-10-13 Carl Freudenberg Kg Winkelmesseinrichtung
DE102004010948B4 (de) * 2004-03-03 2008-01-10 Carl Freudenberg Kg Winkelmesseinrichtung
US8020310B2 (en) 2006-10-13 2011-09-20 Siemens Aktiengesellshaft Measuring element comprising a track used as a material measure and corresponding measurement method carried out by means of such a measuring element
EP2020591A3 (fr) * 2007-08-01 2013-10-09 Magnescale Co., Ltd. Appareil de mesure de déplacement
EP2116814A1 (fr) 2008-05-09 2009-11-11 Siemens Aktiengesellschaft Dispositif de mesure destiné à la détermination d'une position et/ou d'une vitesse
US8069580B2 (en) 2008-05-09 2011-12-06 Siemens Aktiengesellschaft Measuring device for determining a position and/or a speed
EP2480475B1 (fr) 2009-09-25 2018-03-21 Kone Corporation Machine de levage et système élévateur

Similar Documents

Publication Publication Date Title
EP0575843B1 (fr) Système de mesure angulaire
EP0501963B1 (fr) Procede et systeme de saisie et d'evaluation de donnees de mesure
WO1989011080A1 (fr) Capteur angulaire a position codee
EP0848804B1 (fr) Capteur d'angle absolu de braquage
EP0268558B1 (fr) Appareil pour la mesure de longueurs ou d'angles
EP0850398B1 (fr) Procede de determination de position et systeme de mesure pour la mise en oeuvre de ce procede
CH635423A5 (de) Messvorrichtung zur kapazitiven bestimmung der relativen lagen zweier zueinander beweglicher teile.
DE3913983A1 (de) Vorrichtung zum nachweis von verschiebungen
DE2416113A1 (de) Istwertgeber fuer drehzahlgeregelte antriebe
DE10324906A1 (de) Verfahren zum Initialisieren einer Position mit einem Kodierer
EP0137099A1 (fr) Appareil de mesure
DE3640413C2 (de) Meßanordnung
EP0895063A1 (fr) Dispositif de mesure de position
DE2312244B2 (de) Vorrichtung zur Registerkontrolle in einer Maschine zur Bearbeitung von Material in Band- oder Bogenform
DE3412063C2 (fr)
DE2237032C3 (de) Winkelmesser
DE3417016C1 (de) Verfahren zur Ermittlung der Lage und Geschwindigkeit von Objekten
WO1989011079A1 (fr) Capteur angulaire a position codee
EP0203275A2 (fr) Capteur incrémentiel
EP1006342B1 (fr) Procédé de marquage des pistes de mesure
DE19632656A1 (de) Verfahren und Vorrichtung zum berührungslosen Erfassen der Lage oder der Drehstellung eines Gegenstandes
DE3200204A1 (de) Optisches messgeraet
EP1321743A1 (fr) Système pour mesurer une longueur comprenant une barre de mesure qui se déplace relativement par rapport à des sondes de longueurs mutuellement espacées
DE4309881C1 (de) Anordnung zur Bestimmung der Absolutposition
EP1399715B1 (fr) Procede et dispositif permettant de preparer un signal d'un capteur de position en vue de sa transmission a une unite d'evaluation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE