WO1989009756A1 - Composites ceramique-ceramique, utiles pour applications electriques - Google Patents

Composites ceramique-ceramique, utiles pour applications electriques Download PDF

Info

Publication number
WO1989009756A1
WO1989009756A1 PCT/BE1989/000013 BE8900013W WO8909756A1 WO 1989009756 A1 WO1989009756 A1 WO 1989009756A1 BE 8900013 W BE8900013 W BE 8900013W WO 8909756 A1 WO8909756 A1 WO 8909756A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
electroconductive
ceramic
carbide
component
Prior art date
Application number
PCT/BE1989/000013
Other languages
English (en)
Inventor
Francis Cambier
Guy Chavepeyer
Original Assignee
Institut National Interuniversitaire Des Silicates
Centre De Recherche De L'industrie Belge De La Cer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National Interuniversitaire Des Silicates, Centre De Recherche De L'industrie Belge De La Cer filed Critical Institut National Interuniversitaire Des Silicates
Publication of WO1989009756A1 publication Critical patent/WO1989009756A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Definitions

  • Ceramic-ceramic composites useful for electrical applications
  • the present invention relates to ceramic-ceramic composites formed from an electrically conductive component and an electrically insulating component.
  • Electrically conductor or more briefly below
  • electrically conductive and “electrical insulator” (or more briefly hereinafter “dielectric”) are used here in a purely technical sense, namely to mean that the component considered behaves as a conductor, respectively as a dielectric, in the 'particular application considered, in particular to the electrical voltages involved, without referring to a particular area of resistivity.
  • ceramic conductive-dielectric materials we know to date, on the one hand ceramics coated with a conductive layer by printing and / or metallization processes, and on the other hand cermets, ceramic-metal composites .
  • the object of the invention is therefore to provide a composite material formed of an electroconductive component and a dielectric component or substrate, of the ceramic-ceramic type and having physico-chemical characteristics - other than the electroconductive properties - also homogeneous as possible, so as to obtain a material having excellent resistance to severe conditions of use.
  • this object is achieved by a process for manufacturing ceramic materials made up of an essentially dielectric ceramic matrix, comprising at least one electrically conductive zone, which consists in - putting a zone of an oxide-based matrix, intended to form said electroconductive zone, in contact with a precursor of carbon, - subjecting the matrix to a heat treatment to cause the carbon precursor to release carbon, and reacting the latter with at least one oxide of the matrix to transform, in said zone, a layer of the material of the matrix into a layer of electroconductive carbide, stable.
  • the method consists in bringing the carbon precursor into contact with the matrix in the precooked blank state, and in carrying out the heat treatment so that the carburization step precedes, or is concurrent with, a phase for densification of the matrix material and of the carbide formed.
  • the method consists in applying the carbon precursor to at least one face of several pre-baked blanks, and superimposing these blanks and subjecting them to the carburization-densification treatment, to produce a composite ceramic material comprising several electrically conductive layers separated by layers of insulating matrix.
  • the heat treatment is designed to promote the diffusion, out of the carbide layer formed and towards the matrix, of components detrimental to the electroconductive nature of said carbide layer.
  • the matrix material consists of an essentially pure fuel component.
  • the matrix consists of said fuel component in solid solution with one or more other components.
  • the carbon precursor is carbon itself, or a hydrocarbon resin, releasing carbon by pyrolysis.
  • the precursor is brought into contact with the matrix by deposition according to a predefined pattern, so as to form the electroconductive carburetted layer according to said predefined pattern.
  • the electroconductive carbide is a chromium carbide, in particular Cr 3 C 2 , and the matrix is a solid solution of chromium oxide and alumina.
  • an impxu-ete known to make the carbide formed electroconductive is added to the carbon precursor when it is not by itself.
  • the invention also relates to a composite based on ceramic material, consisting of a ceramic-ceramic composite formed by a dielectric ceramic component serving as a substrate, locally transformed into an electrically conductive ceramic component.
  • the electroconductive ceramic component is formed from a carbide of an element whose oxide is present in the dielectric component.
  • the electroconductive component constitutes a thin layer on the surface of the dielectric component.
  • the composite is in the form of a laminated product with alternating layers of dielectric component and of conductive component.
  • the single figure is a schematic view of a block of composite material of the invention, of the monolayer type.
  • a block of ceramic-ceramic compost material of the invention consisting of a dielectric substrate 1 carrying on the surface a conductive layer 2 (hatched in the drawing).
  • a conductive layer 2 hatchched in the drawing.
  • the invention is not limited to this single application, it will be described below in conjunction with a composite formed from a dielectric substrate of chromium oxide (Cr 2 O 3 ) and alumina (Al 2 O 3 ), in which an electrically conductive layer of chromium carbide (Cr 3 C 2 ), a composite which has been particularly studied by the inventors, is formed.
  • Chromium oxide and alumina both crystallize in the hexagonal system, according to the same covering group, and thus form a continuous solid solution over the whole extent of the temperature-composition diagram; this solid refractory solution present in addition has a very good resistance to alkaline corrosion, and is dielectric, and it appeared interesting to the inventors to study the particular composite, form of a chromium-alumina oxide substrate, wherein the chromium oxide is locally transformed into chromium carbide, by carburization, to form an electrically conductive layer.
  • Such a composite can theoretically be obtained by different methods, for example
  • the substrate in the preform state optionally precooked, of a compound capable of releasing carbon under the treatment conditions, and reaction-densification treatment.
  • the inventors have particularly followed in their tests the third method, namely carburetion-densification treatment of a substrate coated or locally impregnated with a compound capable of releasing carbon under the conditions of the treatment, by imposing the additional condition that the carburetion stage precedes, or is at most concurrent with the densification stage, but is not posterior to it, to avoid problems of limitations of the kinetics of the reaction, and of thickness of the layer.
  • a composite was made and tested, usable as a heating element, consisting of a (Cr, AI) 2 O 3 substrate, designated by 1 in the drawing, on which is a Cr 3 C 2 grid ( designated by 2 in the drawing) in a thin layer.
  • the technique used is "localized reactive sintering", that is to say a chemical reaction in a determined portion of the volume of the compact, followed by densification of the whole.
  • Precooked (Cr, Al) 2 O 3 platelets were impregnated on the surface (to a thickness of ⁇ 100 ⁇ m) with a resin (furan resins FURCARB LP-340 and UP-440 from QO Chemicals). They were then baked at 1550 ° C for four hours in a non-oxidizing atmosphere. When baking, the resin pyrolyses to give a glassy carbon which in turn reacts. Under the above experimental conditions, the material densifies.
  • a resin furan resins FURCARB LP-340 and UP-440 from QO Chemicals
  • the composite samples obtained after baking have zero open porosity.
  • X-ray diffraction analysis revealed the presence of Cr 3 C 2 , the only chromium carbide formed, at the site of the initial resin grid.
  • the thickness of the carbide layer was estimated at around 100 ⁇ m by measurement under an optical microscope.
  • the resistance of the Cr 3 C 2 layer has been measured and is approximately 20 ohms.
  • Results obtained with a scanning electron microscope show a good three-dimensional oxide-carbide bond and augurs good mechanical strength when hot.
  • the electrothermal performance of the composite has been estimated, and the results are given in the table below.
  • the resistance of the conductive layer at room temperature is approximately 10 - 20 ohms which, depending on the size of the network, corresponds to a resistivity of approximately 10 -2 ohm cm.
  • the composite was able to be kept under tension and heated to more than 500 "C for several hours. Such repeated tests on the same sample showed that it resisted oxidation well. The electrical resistance was retained after returning to It can be noted that the resistance of the conductive layer of the composite decreases with temperature, so the behavior is not metallic, but is similar to that of semiconductors.
  • a composite was therefore produced by reactive covering of a (Cr, Al) 2 O 3 substrate leading to the formation of a thin conductive layer of Cr 3 C 2 with a thickness of 100 ⁇ m, while the resistivity of Cr 3 C 2 calculated on this thin layer is of the order of 10 -2 ohm cm.
  • the conductivity observed cannot be attributed to a carbon residue not consumed by the carburization of the oxide of chromium; indeed at such a temperature, the oxidation of carbon in such a thin layer should be very rapid.
  • the impregnation can be carried out for example by applying a fluid resin to the surface of the blank, according to the chosen design, followed by suction through the porous blank, to accelerate the process, and control the depth of precursor penetration.
  • the carbon precursor which directly reduces the oxide, or produced locally, by pyrolysis, the carbon which then reduces the oxide, can for example be, in addition to a layer of hydrocarbon resin, a layer of pressed graphite powder, a layer of carbon applied by vacuum metallization, or any similar compound releasing reactive carbon under the effect of heat treatment.
  • the chromium carbide currently preferred by the inventors is Cr 3 C 2 , which is the most stable, and its preferential formation compared to carbides richer in chromium (Cr 23 C 6 and Cr 7 C 3 ) can be reinforced by overstoichiometry. carbon, not detrimental to the quality of the composite.
  • Cr 3 C 2 which is the most stable, and its preferential formation compared to carbides richer in chromium (Cr 23 C 6 and Cr 7 C 3 ) can be reinforced by overstoichiometry. carbon, not detrimental to the quality of the composite.
  • the process of the invention applies to the local carburation of other oxides than the solid solution (Cr, Al) 2 O 3 .
  • the carbide formed from the oxide or an oxide of the substrate is not electrically conductive, but can be made electrically conductive by the addition of impurities (such as SiC, WC, B 4 C, etc.), the desired impurity can for example be added to the carbon precursor layer, so that the carbide layer formed is electrically conductive.
  • impurities such as SiC, WC, B 4 C, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

L'invention concerne un procédé de fabrication de matériaux céramiques constitués d'une matrice céramique essentiellement diélectrique, comportant au moins une zone électroconductrice, et les composites obtenus. Le procédé consiste essentiellement à mettre une zone d'une matrice à base d'oxydes, destinée à former ladite zone électroconductrice, en contact avec un précurseur du carbone, à soumettre la matrice à un traitement thermique pour amener le précurseur à libérer du carbone, et à faire réagir celui-ci avec au moins un oxyde de la matrice pour transformer, dans ladite zone, une couche du matériau de la matrice en une couche de carbure électrodonducteur, stable.

Description

Composites céramique-céramique, utiles pour applications électriques
La présente invention concerne des composites céramique-céramique formés d'un composant conducteur de l'électricité et d'un composant isolant électrique. "Conducteur de l'électricité" (ou plus brièvement ci-après
"électoconducteur") et "isolant électrique" (ou plus brièvement ci-après "diélectrique") sont utilisés ici dans un sens purement technique, à savoir pour signifier que le composant considéré se comporte comme un conducteur, respectivement comme un diélectrique, dans l'application particulière considérée, en particulier aux tensions électriques en jeu, sans se référer à un domaine particulier de résistivité.
Comme matériaux céramiques composites conducteur-diélectrique, on connaît à ce jour, d'une part des céramiques revêtues d'une couche conductrice par des procédés d'impression et/ou de métallisation, et d'autre part les cermets, composites céramique-métal.
Ces matériaux présentent l'inconvénient d'une forte hétérogénéité des propriétés physico-chimiques - autres que l'hétérogénéité recherchée des propriétés d'électroconduction - avec une discontinuité franche à l'interface céramique-couche conductrice ou céramique-métal, qui entraîne une fragilité dans cette zone, tandis que les propriétés globales de résistance du matériau (entre autres réfractarité et résistance aux milieux agressifs) sont bien sûr limitées à celles du composant le plus faible, en général la couche conductrice ou le métal. Le but de l'invention est donc de fournir un matériau composite formé d'une composant électroconducteur et d'un composant ou substrat diélectrique, du type céramique-céramique et présentant des caractéristiques physico-chimiques - autres que les propriétés d'électroconduction - aussi homogènes que possible, de façon à obtenir un matériau présentant une excellente résistance à des conditions d'utilisation sévères.
Selon l'invention, ce but est atteint par un procédé de fabrication de matériaux céramiques constitués d'une matrice céramique essentiellement diélectrique, comportant au moins une zone électroconductrice, qui consiste à - mettre une zone d'une matrice à base d'oxydes, destinée à former ladite zone électroconductrice, en contact avec un précurseur du carbone, - soumettre la matrice à un traitement thermique pour amener le précurseur du carbone à libérer du carbone, et faire réagir celui-ci avec au moins un oxyde de la matrice pour transformer, dans ladite zone, une couche du matériau de la matrice en une couche de carbure électroconducteur, stable.
Selon une autre caractéristique, le procédé consiste à mettre le précurseur du carbone en contact avec la matrice à l'état d'ébauche précuite, et à conduire le traitement thermique pour que l'étape de carburation précède, ou soit concurrente, à une phase de densification du matériau de la matrice et du carbure formé.
Selon une autre caractéristique, le procédé consiste à appliquer le précurseur du carbone sur au moins une face de plusieurs ébauches précuites, et superposer ces ébauches et les soumettre au traitement de carburation-densification, pour produire un matériau céramique composite comprenant plusieurs couches électroconductrices séparées par des couches de matrice isolante.
Selon une autre caractéristique, le traitement thermique eet conçu pour favoriser la diffusion hors de la couche de carbure formée et vers la matrice, des composants nuisant au caractère électroconducteur de ladite couche de carbure.
Selon une autre caractéristique, le matériau de la matrice est constitué d'un composant carburable essentiellement pur.
Selon une autre caractéristique, la matrice est constituée dudit composant carburable en solution solide avec un ou plusieurs autres composants.
Selon d'autres caractéristiques, le précurseur du carbone est le carbone lui-même, ou une résine hydrocarbonée, libérant le carbone par pyrolyse. Selon une autre caractéristique, le précurseur est mis en contact avec la matrice par dépôt suivant un dessin prédéfini, de manière à former la couche carburée électroconductrice suivant ledit dessin prédéfini.
Selon une autre caractéristique, le carbure électroconducteur est un carbure de chrome, en particulier Cr3C2, et la matrice est une solution solide d'oxyde de chrome et d'alumine. Selon une autre caractéristique, on ajoute au précurseur du carbone une impxu-eté connue pour rendre le carbure formé électroconducteur, lorsqu'il ne l'est pas par lui-même.
L'invention concerne encore un composite à base de matériau céramique, constitué d'un composite céramique-céramique formé d'un composant céramique diélectrique servant de substrat, transformé localement en composant céramique électroconducteur.
Selon une autre caractéristique du composite, le composant céramique électroconducteur est formé d'un carbure d'un élément dont l'oxyde est présent dans le composant diélectrique.
Selon une autre caractéristique du composite, le composant électroconducteur constitue un mince couche en surface du composant diélectrique.
Enfin, selon encore une autre caractéristique du composite, il se présente sous la forme d'un produit feuilleté à couches alternées de composant diélectrique et de composant électronducteur.
D'autres aspects, caractéristiques et avantages de l'invention apparaîtront de la description qui suit, et des dessins annexés, sur lesquels: La figure unique est une vue schématique d'un bloc de matériau composite de l'invention, du type monocouche.
Eu se reportant au dessin, on y voit un bloc de matériau compostte céramique-céramique de l'invention, constitué d'un substrat diélectrique1 portant en surface une couche conductrice 2 (hachurée au dessin). Bien que l'invention ne soit pas limitée à cette seule application, elle sera décrite ci-après en liaison avec un composite formé d'un substrat diélectrique d'oxyde de chrome (Cr2O3) et d'alumine (Al2O3),dans lequel est formé une couche électroconductrice de carbure de chrome (Cr3C2), composite qui a été particulièrement étudié par les inventeurs. L'oxyde de chrome et l'alumine cristallisent tous deux dans lesystème hexagonal, selon le même groupe de recouvrement, et formentainsi une solution solide continue sur toute l'étendue du diagramme température-composition; cette solution solide réfractaire présented'uitre part une très bonne résistance à la corrosion alcaline, et estdielectriqure, et il est apparu intéressant aux inventeurs d'étudier le composite particulier, forme d'un substrat d'oxyde de chrome-alumine, dans lequel l'oxyde de chrome est localement transformé en carbure de chrome, par carburation, pour former une couche électroconductrice.
Selon ce mode de réalisation préféré de l'invention, il s'agit donc de réaliser une couche électroconductrice de carbure de chrome sur un substrat diélectrique d'oxyde de chrome-alumine.
Un tel composite peut théoriquement être obtenu par différentes méthodes, par exemple
- carburation en surface du substrat fini, après densification de celui- ci; - application de poudre de carbure de chrome sur le substrat à l'état d'ébauche, éventuellement précuite;
- application sur le substrat à l'état d'ébauche, éventuellement précuite, d'un composé susceptible de libérer du carbone dans les conditions de traitement, et traitement de réaction-densification. Les inventeurs ont particulièrement suivi dans leurs essais la troisième méthode, à savoir traitement de carburation-densification d'un substrat revêtu ou imprégné localement d'un composé susceptible de libérer du carbone dans les conditions du traitement, en imposant la condition supplémentaire que l'étape de carburation précède, ou soit au plus concurrente à l'étape de densification, mais ne lui soit pas postérieure, pour éviter des problèmes de limitations de la cinétique de la réaction, et d'épaisseur de la couche. EXEMPLE Dans cet exemple on a réalisé et testé un composite, utilisable comme élément chauffant, constitué d'un substrat en (Cr, AI)2O3, désigné par 1 au dessin, sur lequel se trouve une grille de Cr3C2 (désignée par 2 au dessin) en couche mince.
La technique utilisée est le "frittage réactif localisé", c'est-à dire une réaction chimique dans une portion déterminée du volume du compact, suivie de la densification de l'ensemble.
Des plaquettes de (Cr,Al)2O3 précuites ont été imprégnées en surface (sur une épaisseur de ± 100 μm) par une résine (résines furaniques FURCARB LP-340 et UP-440 de QO Chemicals). Elles ont ensuite été cuites à 1550°C pendant quatre heures en atmosphère non oxydante. Lors de la cuisson, la résine pyrolyse pour donner un carbone vitreux qui réagit à son tour. Dans les conditions expérimentales ci-dessus, le matériau densifie.
Les échantillons composites obtenus après cuisson présentent une porosité ouverte nulle. L'analyse par diffraction RX a révélé la présence de Cr3C2, seul carbure de chrome formé, à l'emplacement de la grille initiale en résine. L'épaisseur de la couche de carbure a été estimée à environ 100 μm par mesure au microscope optique. La résistance de la couche de Cr3C2 a été mesurée et vaut environ 20 ohms.
Des résultats obtenus au microscope électronique à balayage montrent une bonne liaison tridimensionnelle oxyde-carbure et permet d'augurer une bonne tenue mécanique à chaud.
L'estimation des performances électrothermiques du composite a été effectuée, et les résultats sont repris au tableau ci-après. La résistance de la couche conductrice à température ambiante est d'environ 10 - 20 ohms ce qui, en fonction des dimensions du réseau, correspond à une résistivité d'approximativement 10-2 ohm cm.
U (V) I (A) P (W) R (Ω) TC (ºC) 4 0,33 1,2 12,1 20
10 0,68 6,8 14,7 25 15 0,90 13,5 16,7 30
20 1,14 22,8 17,5 45
25 1,40 35,0 17,9 60
33 3,25 107 10,1 200
40 4,96 198 8,0 405 45 7,20 324 6,3 500
50 9,90 495 5,0 640
Le composite a pu être maintenu sous tension et a chauffé à plus de 500 "C durant plusieurs heures. De tels essais répétés sur un même échantillon ont montré qu'il résistait bien à l'oxydation. La résistance électrique était conservée après le retour à la température ambiante. On peut remarquer que la résistance de la couche conductrice du composite diminue avec la température. Le comportement n'est donc pas métallique, mais se rapproche de celui des semi-conducteurs.
Le seul problème constaté a été l'oxydation des contacts électriques.
Dans cet exemple, on a donc réalisé un composite par recouvrement réactif d'un substrat en (Cr,Al)2O3 conduisant à la formation d'une couche mince conductrice de Cr3C2 de 100 μm d'épaisseur, tandis que la résistivité du Cr3C2 calculée sur cette couche mince est de l'ordre de 10-2 ohm cm. D'autre part, comme la température en surface a atteint et s'est maintenue à plus de 600°C dans l'air, la conductibilité observée ne peut être attribuée à un reste de carbone non consommé par la carburation de l'oxyde de chrome; en effet à une telle température, l'oxydation du carbone dans une couche aussi mince devrait être très rapide. L'imprégnation peut être réalisée par exemple par application d'une résine fluide à la surface de l'ébauche, suivant le dessin choisi, suivie d'une aspiration à travers l'ébauche poreuse, pour accélérer le processus, et contrôler la profondeur de pénétration du précurseur. Le précurseur du carbone, qui réduit directement l'oxyde, ou produit localement, par pyrolyse, le carbone qui réduit ensuite l'oxyde, peut être par exemple, outre une couche de résine hydrocarbonée, une couche de poudre de graphite pressée, une couche de carbone appliquée par métallisation sous vide, ou tout composé analogue libérant du carbone réactif sous l'effet du traitement thermique. Le carbure de chrome actuellement préféré par les inventeurs est Cr3C2, qui est le plus stable, et sa formation préférentielle par rapport aux carbures plus riches en chrome (Cr23C6 et Cr7C3) peut être renforcée par une surstoechiométrie en carbone, non préjudiciable à la qualité du composite. Bien que l'on ait décrit dans l'exemple un produit composite monocouche, l'invention s'applique bien sûr sans difficulté à un produit multicouches, constitué d'une superposition de couches de substrat alternées avec des couches électroconductrices. Ceci peut être obtenu simplement en superposant des ébauches revêtues ou imprégnées du précurseur de carbone.
De même, le procédé de l'invention s'applique à la carburation locale d'autres oxydes que la solution solide (Cr,Al)2O3. Lorsque le carbure formé à partir-de l'oxyde ou d'un oxyde du substrat n'est pas électronducteur, mais peut être rendu électroconducteur par l'addition d'impureté (comme SiC, WC, B4C, etc.), l'impureté voulue peut par exemple être ajoutée à la couche de précurseur du carbone, pour que la couche de carbure formée soit électroconductrice. D'autres variantes de produits composites apparaîtront encore à l'homme du métier, à la lecture de la description et des revendications, ainsi que d'autres applications que l'application comme élément chauffant, mentionnée à titre d'exemple.

Claims

REVENDICATIONS
1. Procédé de fabrication de matériaux céramiques constitués d'une matrice céramique essentiellement diélectrique, comportant au moins une zone électroconductrice, caractérisé en ce qu'il consiste à - mettre une zone d'une matrice à base d'oxydes, destinée à former ladite zone électroconductrice, en contact avec un précurseur du carbone,
- soumettre la matrice à un traitement thermique pour amener le précurseur du carbone à libérer du carbone, et faire réagir celui-ci avec au moins un oxyde de la matrice pour transformer, dans ladite zone, une couche du matériau de la matrice en une couche de carbure électroconducteur, stable.
2. Procédé selon la revendication 1, caractérisé en ce qu'il consiste à
- mettre le précurseur du carbone en contact avec la matrice à l'état d'ébauche précuite,
- conduire le traitement thermique pour que l'étape de carburation précède, ou soit concurrente, à une phase de densification du matériau de la matrice et du carbure formé.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste à
- appliquer le précurseur du carbone sur au moins une face de plusieurs ébauches précuites, - superposer ces ébauches et les soumettre au traitement de carburation- densification, pour produire un matériau céramique composite comprenant plusieurs couches électroconductrices séparées par des couches de matrice isolante.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le traitement thermique comprend de favoriser la diffusion hors de la couche de carbure formée et vers la matrice, des composants nuisant au caractère électroconducteur de ladite couche de carbure.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau de la matrice est constitué d'un composant carburable essentiellement pur.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la matrice est constituée dudit composant carburable en solution solide avec un ou plusieurs autres composants.
7. Procédé selon l'une quelconque des re vendications précédentes, caractérisé en ce que le précurseur du carbone est le carbone lui-même.
8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le précurseur du carbone est une résine hydrocarbonée, et la libération du carbone consiste en une pyrolise de la résine.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le précurseur est mis en contact avec la matrice par dépôt suivant un dessin prédéfini, de manière à former la couche carburée électroconductrice suivant ledit dessin prédéfini.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le carbure électroconducteur est vin carbure de chrome, en particulier Cr3C2, et la matrice est une solution solide d'oxyde de chrome et d'alumine.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste à ajouter au précurseur du carbone une impureté connue pour rendre le carbure formé électroconducteur, lorsqu'il ne l'est pas par lui-même.
12. Composite à base de matériau céramique, caractérisé en ce qu'il est constitué d'un composite céramique-céramique formé d'un composant céramique diélectrique servant de substrat, transformé localement en composant céramique électroconducteur.
13. Composite selon la revendication 12, caractérisé en ce que le composant céramique électroconducteur est formé d'un carbure d'un élément dont 1 'oxyde est présent dans le composant diélectrique.
11. Composite selon l'une quelconque des revendications 12 et 13, caractérisé en ce que le composant électroconducteur constitue un mince couche en surface du composant diélectrique.
15. Composite selon l'une cjuelconque des revendications 12 et 13, caractérisé en ce qu'il se présente sous la forme d'un produit feuilleté à couches alternées de-composant, diélectrique et de composant électronducteur.
PCT/BE1989/000013 1988-04-12 1989-04-11 Composites ceramique-ceramique, utiles pour applications electriques WO1989009756A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE8800408A BE1001563A3 (fr) 1988-04-12 1988-04-12 Composites ceramique-ceramique, utiles pour applications electriques.
BE8800408 1988-04-12

Publications (1)

Publication Number Publication Date
WO1989009756A1 true WO1989009756A1 (fr) 1989-10-19

Family

ID=3883355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1989/000013 WO1989009756A1 (fr) 1988-04-12 1989-04-11 Composites ceramique-ceramique, utiles pour applications electriques

Country Status (3)

Country Link
EP (1) EP0413703A1 (fr)
BE (1) BE1001563A3 (fr)
WO (1) WO1989009756A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3027278A (en) * 1957-04-22 1962-03-27 Diversified Technology Inc Carbon coating
FR2266930A1 (fr) * 1974-04-04 1975-10-31 Matsushita Electric Ind Co Ltd
EP0104405A1 (fr) * 1982-09-24 1984-04-04 International Business Machines Corporation Matériaux de carbure de silicium
EP0124836A2 (fr) * 1983-04-28 1984-11-14 Kabushiki Kaisha Toshiba Corps fritté en céramique non-oxydique et procédé pour la fabrication d'une couche mince conductrice à la surface d'un corps fritté en céramique non-oxydique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3027278A (en) * 1957-04-22 1962-03-27 Diversified Technology Inc Carbon coating
FR2266930A1 (fr) * 1974-04-04 1975-10-31 Matsushita Electric Ind Co Ltd
EP0104405A1 (fr) * 1982-09-24 1984-04-04 International Business Machines Corporation Matériaux de carbure de silicium
EP0124836A2 (fr) * 1983-04-28 1984-11-14 Kabushiki Kaisha Toshiba Corps fritté en céramique non-oxydique et procédé pour la fabrication d'une couche mince conductrice à la surface d'un corps fritté en céramique non-oxydique

Also Published As

Publication number Publication date
BE1001563A3 (fr) 1989-12-05
EP0413703A1 (fr) 1991-02-27

Similar Documents

Publication Publication Date Title
US4804823A (en) Ceramic heater
US5663865A (en) Ceramic electrostatic chuck with built-in heater
TWI481581B (zh) 陶瓷碳複合材及其製造方法與被覆陶瓷之陶瓷碳複合材及其製造方法
US8481902B2 (en) Heating element production
KR100634935B1 (ko) 복합 탄소질 단열재 및 그의 제조 방법
TW200541008A (en) Manufacturing method for sintered body with buried metallic member
WO2011027756A1 (fr) Procédé de production d'un matériau de base de carbone revêtu de carbure de silicium, matériau de base de carbone revêtu de carbure de silicium, complexe de carbone-(carbure de silicium) fritté, complexe de carbone-(carbure de silicium) fritté revêtu de céramique, et procédé de production d'un complexe de carbone-(carbure de silicium) fritté
WO2015173132A1 (fr) Matériaux de phase max destinés à être utilisés dans des piles à combustible à oxydes solides et cellules d'électrolyse à oxydes solides
EP0675863B1 (fr) Protection anti-oxydation d'un materiau a base de carbone
CN113800933B (zh) 一种碳纤维增强陶瓷基体复合材料及其制备方法
EP0806488B1 (fr) Alliage d'aluminium-chrome, procédé pour sa préparation et ses applications
WO1989009756A1 (fr) Composites ceramique-ceramique, utiles pour applications electriques
EP0435039B1 (fr) Matériau composite renforcé de fibres de carbone
CN108893740B (zh) 一种液气相交替沉积制备高温绝缘薄膜的方法
JP2004175605A (ja) 耐酸化性c/c複合材及びその製造方法
JPH10506677A (ja) 多層フラッシュエバポレーター
JPH06510978A (ja) カーボン性物質を接着する方法
EP0388278B1 (fr) Procédé d'élaboration de moyens de connexions électriques, en particulier de substrats d'interconnexion pour circuits hybrides
JPH0987701A (ja) 金属とセラミックとの複合材料
JP2685151B2 (ja) 被覆構造材料
JP3869160B2 (ja) 複層セラミックスヒータおよびその製造方法
JP2024078025A (ja) 断熱材
JP3519744B2 (ja) 複層セラミックスヒーター
JPH05105561A (ja) 耐酸化性炭素材料及びその製造法
CN114335312A (zh) 一种用于抑制半赫斯勒热电材料表面氧化和挥发的涂层及其制备方法和应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989904504

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989904504

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989904504

Country of ref document: EP