WO1989007006A1 - Device for mixing solutions - Google Patents
Device for mixing solutions Download PDFInfo
- Publication number
- WO1989007006A1 WO1989007006A1 PCT/US1989/000346 US8900346W WO8907006A1 WO 1989007006 A1 WO1989007006 A1 WO 1989007006A1 US 8900346 W US8900346 W US 8900346W WO 8907006 A1 WO8907006 A1 WO 8907006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mixing
- chamber
- head
- mixing chamber
- area
- Prior art date
Links
- 238000002156 mixing Methods 0.000 title claims abstract description 118
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 102000004190 Enzymes Human genes 0.000 claims abstract description 8
- 108090000790 Enzymes Proteins 0.000 claims abstract description 8
- 238000004458 analytical method Methods 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000872 buffer Substances 0.000 claims description 3
- 239000012190 activator Substances 0.000 claims description 2
- 239000003112 inhibitor Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 1
- 230000004907 flux Effects 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 238000012742 biochemical analysis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000013208 measuring procedure Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/27—Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
- B01F27/272—Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
- B01F2025/911—Axial flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
Definitions
- the present invention deals with a device for the mixing of solutions with a mixing chamber having minimally two input lines and an exit line.
- deadtime re., time between mixing and start of the analysis, required is minimally 5 seconds.
- a reduction of the total analysis volume and the frequently very expensive liquids is not realizable by manual mixing.
- Known devices for the mechanical mixing of liquids consists, for example, of two syringes each filled with a liquid whose contents are simultaneously injected into a mixing chamber, mixed based on the resulting turbulence, and subsequently transfered to a cuvette.
- the deadtime can be reduced to less than 5 mill- seconds.
- the liquid must be injected into the mixing chamber under relatively high pressure. Due to the high back pressure in the mixing chamber the titration accuracy is reduced which is quite detremental when different liquids and large volume differences must be mixed. Therefore it is not possible to mix volume differences of 1 :50 with sufficient accuracy.
- the task of the present invention is to create a device for the fast mixing of small amounts of liquids with quite different viscosities. This task • has been solved by the features of the first patent claim.
- the essential advantages of this invention are that because of the active mixing principal no high injection pressures of liquids are required, which guarantees basically constant titration accuracy whereby very high mixing ratios (up to 1 :2000) are achieved. Due to the proposed cleft shear flux liquids with quite different viscosities can be mixed without problem. The location of the mixing head in the mixing chamber, as proposed in the invention, ensures moreover a small dead volume which has a desirable effect on analysis cost of expensive substances.
- FIG. 1 Schematic presentation of a preferred version of the mixing chamber of the device according to the invention
- Fig. 2a and 2b the progress of the shear flux in first mixing area
- FIG. 3 Cross sectional view through the preferred version of the device according to the invention.
- FIG. 4a and 4b axial and radial sectional views of a second cuvette
- Fig. 6 The connection of the mixing device with matching controller.
- Fig. 1 shows schematically the principal arrangements of this invention.
- a mixing head (2) built in such a way that it can be propelled around an rotational axis (R) and with the inner wall of the mixing.
- chamber (1) a
- the inside of the mixing chamber (1 ), as well as the mixing head (2), are, as shown in Fig. 1 , constructed as coaxial vertical cylinders. Other forms such as cones, partial cones or any , other rotationally symmetric configuration are also applicable.
- the mixing chamber (1 ) has at one end, for example, four feeding lines (11 , 12, 13, 14) through which different liquids (by enzyme kinetic determinations these are enzyme, substrate, buffer and activator/inhibitor) in the direction of the arrows A, B, C, D continuously inject into the first mixing area (3).
- the feed lines (11 , 12, 13, 14) enter preferably mixing chamber (1) all at the same height and evenly spaced around the circumference.
- the injection pressure creates an axial flux (arrow E) which is based on the rotation of the mixing head (2) a tangential flux is overlaid.
- the overall result is a shear flux in the cleft mixing area (3), in which, for example, one injected volume element through line 11 mainly on spiral movement (24) around the mixing head (2) proceeds and
- Fig. 2a shows an enlarged axial section through the entrance part of the mixing area (3).
- a predetermined volume element (21) through line 11 injected liquid shows approximately an axial flow cross section (22).
- Fig 2b shows a respective radial cross section through the entrance part of the mixing area (3) to illustrate a momentary tangential cross section (23) of the volume element (21 ).
- the described hollow cylinderical shear flux in the first mixing area (3) slows the flux minimally, therefor the liquids can be injected with low pressure unlike the known passive mixing devices.
- the injected liquids can be precisely controlled in volume proportions up to 1 :2000 with enough accuracy. Because the mixing procedure in the entire
- mixing area occurs evenly, mixtures of liquids of different viscosity and consistency can be produced without problems.
- the arrangement of the mixing head (2) inside mixing head (1) helps to keep the dead volume of the entire device very small.
- the axial expansion of mixing head (2) is preferably smaller than mixing chamber (1) so that a second mixing area (4) is created in which there already exists a turbulent flux caused by the rotation of mixing heads (2), in turn, causes additional mixing of the different liquids.
- the bottom of mixing head (2) has special projections, the bottom (6) of mixing chamber (1 ) has furrows.
- an exit hole (15) through which the liquid exits the mixing chamber (1). It is understood that the mixing chamber can be equipped with multiple exit holes.
- Fig. 3 shows the arrangement of the previously described mixing chamber in the system (10).
- the inner case (42) contains a motor (32) and a coupled drive magnet (31).
- the mixing head (2) is, for example, a magnet covered with an inert material which is driven on the same rotational axis (R) by another magnet (31). Through the pull of the drive magnet (31) the magnetic mixing head (2) is pulled to the top of the mixing chamber (1) thereby forming a thin liquid film between the mixing head and the cover which serves as a lubricant.
- thermostated chamber (43) Between the outer cover (41) and the insulated inner chamber (42) is a thermostated chamber (43) and the liquids for mixing are transported through a connecting piece (44) into the thermostated chamber (43) which is filled with thermostated water to mixing chamber (1) (illustration only shows a single feed line 11).
- the thermostated water acts simultaneously as cooling for the heat produced by motor 32.
- the mixture exits through exit 15 and proceeds via a connecting piece 52 to a
- cuvette 51 Different physical and chemical parameters of the mixture can be measured in cuvette (51) with usual analytical instruments (ie., by optional and electrical procedures).
- the mixture flows through the cuvette (51) and goes via another connector (53) and a line (54) through the thermostated chamber (43) to a second cuvette (62) in which an addition measurement can be made with an additional measuring element (61 ).
- the mixture exits through a tube (16) and the connector 44.
- connectors (52 and 53) many different cuvettes (51) can be inserted into the outer shells (41 ).
- Fig. 4a shows an axial cross section
- Fig 4a a radial cross section through the outer cover (41) and the connected cuvette (62).
- a hole (64) is provided for an exchangeable measuring probe (61) (compare with Fig. 3). By putting the probe (61) in place the hole (64) will be closed so that the mixture passing through feeding line (54) and a connector (63) to cuvette (61) exits the opening (64) through a lateral opening (65).
- the volume of the second mixing area (4) corresponds preferably with the one of cuvette (51). This creates a buffer zone in which a homogeneous mixture is produced even by non-continuous additions of small amounts of liquids.
- an array of mixing heads are planned that can be simply exchanged by opening the mixing chamber (1) (ie., removal of the base (6), as shown in Fig. 3, is part of the screwed together outer case 41).
- opening the mixing chamber (1) ie., removal of the base (6), as shown in Fig. 3, is part of the screwed together outer case 41.
- axial (R) is vertical manner. It does not matter which part of the device is on top.
- the chosen illustration in the figures is random because the flux of the liquids to the device is independent of gravity but is a matter of the injection pressure.
- the proposed mixing device is especially useful for the automatic analysis
- FIG. 5 shows a possible arrangement in which the proposed mixing device (10), including a cuvette (51 ), are put into a conventional analytical instrument (101 ).
- the proposed device can be designed in such a way that the use of conventional instruments is possible.
- the liquids of mixing come from a control unit (102), through the different feed lines inside of a surrounding tube (71 ), to connector piece (44) of the device (10).
- the control unit (102) has a sample chamber (105) from which the liquids are loaded by sucking syringes.
- the barrels of the syringes are equipped with, for example, stepper motors so that for each measurement the required liquid amount is exactly delivered through tube (71) into the mixing chamber (1 ) of the device (10).
- Sample chamber (105) can be additionally equipped with an autosampler so that one of the components can be automatically changed with each series of measurements.
- the analysis is controlled and results analyzed with a computer (104) equipped with the respective peripheral
- An instrument (103) provides the previously mentioned thermostated water.
- Fig. 6 shows the backside of the control unit (102) with a flexible tube (71) to mixing device (10).
- a flexible tube (71) to mixing device (10).
- the four feeding lines (11 , 12, 13, 14) the return (16) for the analyzed mixture, an electrical connecting piece (108) for temperature sensor (not shown), power line (109) for the drive motor (32), as well as a feeder line (17) for delivering thermostated water to the thermostated chamber (43).
- the return flow of the thermostated water in line (71) preferably occurs in an open manner such that the liquids in the feeding lines are already surrounded by thermostated water. This provides a very accurate temperature control of the components.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Accessories For Mixers (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH321/88-4 | 1988-01-29 | ||
CH321/88A CH674317A5 (en, 2012) | 1988-01-29 | 1988-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989007006A1 true WO1989007006A1 (en) | 1989-08-10 |
Family
ID=4184354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1989/000346 WO1989007006A1 (en) | 1988-01-29 | 1989-01-27 | Device for mixing solutions |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0397788A4 (en, 2012) |
JP (1) | JPH03503137A (en, 2012) |
CH (1) | CH674317A5 (en, 2012) |
WO (1) | WO1989007006A1 (en, 2012) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0411068A4 (en) * | 1988-11-08 | 1992-01-15 | Applied Biosystems, Inc. | Assayomate |
US5671627A (en) * | 1995-03-28 | 1997-09-30 | R. Lisciani Trafilerie E Divisione Dyn Automazione Industriale S.N.C. | Wire-drawing machine for dry-lubricated metal wire |
US7775704B2 (en) * | 2003-03-21 | 2010-08-17 | Kemira Oyj | Device and method for continuously producing emulsions or dispersions |
CN115175765A (zh) * | 2020-02-25 | 2022-10-11 | 海利克斯拜恩德股份有限公司 | 用于流体系统的试剂载体 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5176103B2 (ja) * | 2005-04-08 | 2013-04-03 | 国立大学法人 岡山大学 | 混合流発生装置および混合流の発生方法 |
JP5164790B2 (ja) * | 2008-06-24 | 2013-03-21 | キヤノン株式会社 | 分散体の製造方法および液体混合装置 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2243309A (en) * | 1938-11-25 | 1941-05-27 | Mining Process & Patent Co | Flotation apparatus |
US2513562A (en) * | 1942-06-06 | 1950-07-04 | Colgate Palmolive Peet Co | Method and apparatus for thermally regulating gravimetric flow of liquids |
US2843169A (en) * | 1954-08-04 | 1958-07-15 | Frederick W Stein | Laboratory mill for comminuting materials to fine particle size |
US3212128A (en) * | 1963-03-20 | 1965-10-19 | Air Prod & Chem | Mold filling apparatus |
US3362919A (en) * | 1965-02-04 | 1968-01-09 | Pittsburgh Plate Glass Co | Process for foaming thermoset organic materials |
US3420506A (en) * | 1967-04-03 | 1969-01-07 | Mobay Chemical Corp | Mixing apparatus |
US3433465A (en) * | 1967-05-29 | 1969-03-18 | Roman Szpur | Magnetic mixing and stirring device |
US3972614A (en) * | 1974-07-10 | 1976-08-03 | Radiometer A/S | Method and apparatus for measuring one or more constituents of a blood sample |
US4140299A (en) * | 1974-07-04 | 1979-02-20 | Imperial Chemical Industries Limited | Mixing liquids |
US4174907A (en) * | 1975-06-09 | 1979-11-20 | Massachusetts Institute Of Technology | Fluid mixing apparatus |
US4357110A (en) * | 1979-09-17 | 1982-11-02 | Hope Henry F | Mixing apparatus |
US4390283A (en) * | 1979-09-04 | 1983-06-28 | Beckman Instruments, Inc. | Magnetic strirrer for sample container |
US4403866A (en) * | 1982-05-07 | 1983-09-13 | E. I. Du Pont De Nemours And Company | Process for making paints |
US4482254A (en) * | 1982-02-09 | 1984-11-13 | Akzo N.V. | Fluid mixing apparatus and method |
US4496244A (en) * | 1983-01-17 | 1985-01-29 | General Signal Corporation | Small volume mixing and recirculating apparatus |
US4537512A (en) * | 1982-11-18 | 1985-08-27 | Laboratoires Boiron | Method and apparatus for Korsakovian dilution |
JPS62132527A (ja) * | 1985-12-04 | 1987-06-15 | Konishiroku Photo Ind Co Ltd | 粉粒体の分散装置 |
US4720998A (en) * | 1986-06-13 | 1988-01-26 | Hogue James D | Crude oil sampling system |
JPH0638028A (ja) * | 1992-07-21 | 1994-02-10 | Fuji Xerox Co Ltd | 画像読取装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2973946A (en) * | 1958-07-29 | 1961-03-07 | American Viscose Corp | Mixing apparatus |
DE1457182C3 (de) * | 1965-07-26 | 1975-04-24 | Wacker Chemie Gmbh | Vorrichtung zum kontinuierlichen Mischen |
AT271357B (de) * | 1967-05-19 | 1969-05-27 | Georg Dipl Ing Dr Tech Gorbach | Verfahren und Vorrichtung zur kontinuierlichen Vergärung |
US3752444A (en) * | 1971-08-03 | 1973-08-14 | P Foucault | Apparatus for mixing fluids |
FR2548043A1 (fr) * | 1983-06-14 | 1985-01-04 | Saint Gobain Vitrage | Procede et dispositif pour la fabrication par coulee d'une couche optiquement homogene transparente a partir d'un melange de composants |
DE3505036C2 (de) * | 1985-02-14 | 1987-02-26 | Werner & Pfleiderer, 7000 Stuttgart | Vorrichtung zur gesteuerten Zugabe von Farbkonzentraten in eine Schneckenmaschine |
-
1988
- 1988-01-29 CH CH321/88A patent/CH674317A5/de not_active IP Right Cessation
-
1989
- 1989-01-27 JP JP1502390A patent/JPH03503137A/ja active Pending
- 1989-01-27 EP EP19890902577 patent/EP0397788A4/en not_active Withdrawn
- 1989-01-27 WO PCT/US1989/000346 patent/WO1989007006A1/en not_active Application Discontinuation
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2243309A (en) * | 1938-11-25 | 1941-05-27 | Mining Process & Patent Co | Flotation apparatus |
US2513562A (en) * | 1942-06-06 | 1950-07-04 | Colgate Palmolive Peet Co | Method and apparatus for thermally regulating gravimetric flow of liquids |
US2843169A (en) * | 1954-08-04 | 1958-07-15 | Frederick W Stein | Laboratory mill for comminuting materials to fine particle size |
US3212128A (en) * | 1963-03-20 | 1965-10-19 | Air Prod & Chem | Mold filling apparatus |
US3362919A (en) * | 1965-02-04 | 1968-01-09 | Pittsburgh Plate Glass Co | Process for foaming thermoset organic materials |
US3420506A (en) * | 1967-04-03 | 1969-01-07 | Mobay Chemical Corp | Mixing apparatus |
US3433465A (en) * | 1967-05-29 | 1969-03-18 | Roman Szpur | Magnetic mixing and stirring device |
US4140299A (en) * | 1974-07-04 | 1979-02-20 | Imperial Chemical Industries Limited | Mixing liquids |
US3972614A (en) * | 1974-07-10 | 1976-08-03 | Radiometer A/S | Method and apparatus for measuring one or more constituents of a blood sample |
US4174907A (en) * | 1975-06-09 | 1979-11-20 | Massachusetts Institute Of Technology | Fluid mixing apparatus |
US4390283A (en) * | 1979-09-04 | 1983-06-28 | Beckman Instruments, Inc. | Magnetic strirrer for sample container |
US4357110A (en) * | 1979-09-17 | 1982-11-02 | Hope Henry F | Mixing apparatus |
US4482254A (en) * | 1982-02-09 | 1984-11-13 | Akzo N.V. | Fluid mixing apparatus and method |
US4403866A (en) * | 1982-05-07 | 1983-09-13 | E. I. Du Pont De Nemours And Company | Process for making paints |
US4537512A (en) * | 1982-11-18 | 1985-08-27 | Laboratoires Boiron | Method and apparatus for Korsakovian dilution |
US4496244A (en) * | 1983-01-17 | 1985-01-29 | General Signal Corporation | Small volume mixing and recirculating apparatus |
JPS62132527A (ja) * | 1985-12-04 | 1987-06-15 | Konishiroku Photo Ind Co Ltd | 粉粒体の分散装置 |
US4720998A (en) * | 1986-06-13 | 1988-01-26 | Hogue James D | Crude oil sampling system |
JPH0638028A (ja) * | 1992-07-21 | 1994-02-10 | Fuji Xerox Co Ltd | 画像読取装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP0397788A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0411068A4 (en) * | 1988-11-08 | 1992-01-15 | Applied Biosystems, Inc. | Assayomate |
US5671627A (en) * | 1995-03-28 | 1997-09-30 | R. Lisciani Trafilerie E Divisione Dyn Automazione Industriale S.N.C. | Wire-drawing machine for dry-lubricated metal wire |
US7775704B2 (en) * | 2003-03-21 | 2010-08-17 | Kemira Oyj | Device and method for continuously producing emulsions or dispersions |
CN115175765A (zh) * | 2020-02-25 | 2022-10-11 | 海利克斯拜恩德股份有限公司 | 用于流体系统的试剂载体 |
CN115175765B (zh) * | 2020-02-25 | 2024-05-07 | 海利克斯拜恩德股份有限公司 | 用于流体系统的试剂载体 |
Also Published As
Publication number | Publication date |
---|---|
CH674317A5 (en, 2012) | 1990-05-31 |
JPH03503137A (ja) | 1991-07-18 |
EP0397788A4 (en) | 1991-07-10 |
EP0397788A1 (en) | 1990-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1611946B (zh) | 化学分析装置、其注入方法及稀释杯 | |
US5679575A (en) | Particle measuring apparatus and method | |
US6887429B1 (en) | Apparatus and method for automated medical diagnostic tests | |
US6913933B2 (en) | Fluid dispensing algorithm for a variable speed pump driven metering system | |
EP0171140A2 (en) | Automatic cycling reaction apparatus and automatic analyzing apparatus using the same | |
US9423347B2 (en) | Automatic analyzing apparatus | |
JP3661076B2 (ja) | 化学分析装置 | |
US4227815A (en) | Magnetic stirrer for sample container of photometric analyzer | |
JPH07500910A (ja) | 分析ロータの試料計量口 | |
CN104854459B (zh) | 自动分析装置 | |
SE436698B (sv) | Kemisk reaktionsanordning | |
EP1959258B1 (en) | Automatic analyzer and the analyzing method using the same | |
JPH08146007A (ja) | 化学分析装置 | |
US20110104007A1 (en) | Automatic analyzing device | |
WO1989007006A1 (en) | Device for mixing solutions | |
EP3392659B1 (en) | Automatic analyzing apparatus | |
US5266268A (en) | Centrifugal analyzer rotors | |
JP2011019488A (ja) | 攪拌装置,攪拌方法、および遺伝子自動検査装置 | |
US4168294A (en) | Instrument for photometric analyses | |
EP1174183B1 (en) | Parallel reactor for parellel processing of reaction mixtures | |
JPS5830651A (ja) | 生体成分分析装置 | |
JP3162171B2 (ja) | 自動化学分析装置の撹拌装置 | |
JPH11153603A (ja) | 生化学自動分析装置 | |
JPH11230970A (ja) | 試料分注方法及び自動分析装置 | |
JP2019148572A (ja) | 自動分析装置、及び分注方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1989902577 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1989902577 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1989902577 Country of ref document: EP |