WO1989005463A1 - Concentrator arrangement - Google Patents

Concentrator arrangement Download PDF

Info

Publication number
WO1989005463A1
WO1989005463A1 PCT/DE1988/000688 DE8800688W WO8905463A1 WO 1989005463 A1 WO1989005463 A1 WO 1989005463A1 DE 8800688 W DE8800688 W DE 8800688W WO 8905463 A1 WO8905463 A1 WO 8905463A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrator
stages
arrangement according
refractive index
elements
Prior art date
Application number
PCT/DE1988/000688
Other languages
English (en)
French (fr)
Inventor
Adolf Goetzberger
Original Assignee
Fraunhofer-Gesellschaft Zur Förderung Der Angewand
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft Zur Förderung Der Angewand filed Critical Fraunhofer-Gesellschaft Zur Förderung Der Angewand
Publication of WO1989005463A1 publication Critical patent/WO1989005463A1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a concentrator arrangement with a multiplicity of solar cells and with a plate made of a transparent material with a refractive index of more than 1.45, which has a flat upper side and a lower side, with a concentrator structure made of trough-shaped non-imaging concentrator elements with parabolically curved side walls connected is.
  • the object of the invention is to create a concentrator arrangement of the type mentioned at the outset, which is distinguished by a higher concentration factor.
  • the concentrator elements have parabolic curved mirror surfaces pointing in all four directions.
  • FIG. 2 shows a concentrator arrangement according to the invention with a two-stage concentration in a perspective view
  • FIG. 6 shows a concentrator arrangement with several concentrator elements according to FIG. 5, which are connected to one another by a plate,
  • a static concentrator 1 of known type is shown, which has the shape of a trough and allows a one-dimensional concentration.
  • the static concentrator 1 has a parabolic curved left side wall 2 and a likewise parabolic curved right side wall 3.
  • the side walls 2, 3 have a distance d ⁇ at their upper edges and approach at their lower edges a distance d 2 .
  • the side walls 2, 3 are mirrored.
  • the static concentrator shown in FIG. 1 is oriented in the east-west direction, so that the end faces 4, 5 face east or west and the side walls 2, 3 face north or south.
  • the concentrator 1 is rotated about its longitudinal axis running parallel to the side walls 2, 3 in order to achieve an orientation of the concentrator to the south with an optimal inclination. This inclination corresponds to the latitude of the installation site.
  • the bottom of the static concentrator 1 shown in FIG. 1 is covered with a plurality of solar cells 6, which utilize the direct and diffuse solar light captured by the static concentrator 1 by means of photovoltaic energy conversion.
  • n the refractive index of the medium in front of the concentrator
  • n 2 the refractive index of the medium inside the concentrator
  • ⁇ - is the opening angle of the rays at the entrance aperture and ⁇ «the opening angle of the radiation at the exit aperture.
  • a static concentrator In order to receive as much direct solar radiation as possible, a static concentrator must have a large opening angle, which may be smaller in the north-south direction than in the east-west direction. In the north-south direction, the reception area must extend on the one hand to the upper culmination point of the sun, and on the other hand close to the southern horizon. In the case of staggered collectors or concentrators, the limitation can be at the lower culmination point of the sun. In the east-west direction, however, the opening angle must be 180 °.
  • d- and d- mean the above-mentioned distances between the side walls 2, 3 and the widths of the concentrator 1 at the entrance aperture and the exit aperture surface.
  • FIG. 2 shows a two-stage concentrator arrangement 1.0 according to the invention, which makes it possible to achieve a substantially higher static concentration while maintaining the aperture angle distribution.
  • a two-stage concentration is carried out in a refractive medium.
  • the two-stage concentrator arrangement 10 has a plate 11 made of transparent material with a Refractive index n that is greater than 1.45.
  • the plate 11 is flat on the top 12 facing the incident radiation and optically and mechanically connected to a structure 13 for the non-imaging concentration of light on the side opposite the top 12.
  • the structure 13 brings about a two-stage concentration of the light in linear-one-dimensional first stages 14 and two-dimensional second stages 15.
  • the first stages 14 have the shape shown in FIG. 1 of a trough formed from glass or plastic.
  • a plurality of second stages 15 are optically and mechanically coupled to the exit aperture surface of the first stages, which also have parabolic curved side walls 16 and 17 shown in FIG. 3 and parabolic front walls 18 and rear walls 19 which can be seen in FIG.
  • the lower edges of the side walls 16, 17 and the front walls 18 and the rear walls 19 each end on a floor surface 20 which is optically coupled to a solar cell 21.
  • the first steps 14 have rectangular entry apertures and rectangular exit apertures, while the touching second steps 15 have square entry and exit apertures.
  • the second stages 15 are therefore not exactly radially symmetrical, which leads to a slight loss of concentration.
  • this is expedient since on the one hand the aperture area can only be filled with square or rectangular structures, and on the other hand the solar cells 21 are square.
  • This divergence can be increased to 90 ° by a two-dimensional concentration.
  • this is achieved in that in the linear first stages 14 the north-south rays are brought to the same divergence as the east-west rays (by decomposition into vertical components) this consideration also for all obliquely incident rays).
  • A. and A 2 are the entrance and exit aperture surfaces assigned to the second stages 15.
  • the second stages 15 can consist of a transparent material with a refractive index n 2 that is greater than the refractive index n- of the transparent material of the first stages 14. This is important because little material is used and materials with a higher refractive index are usually expensive. In this case, the condition for the second stages is 15
  • the opening angle ⁇ - of the first stages 14 is selected such that when the concentrator arrangement 10 is oriented to the south with an optimal inclination, the position of the sun at the highest point of the sun still falls within the acceptance range and the other limitation of the opening angle contains at least the minimum culmination point of the sun.
  • the concentration factor C the second, two-dimensional stage 15 is selected such that C 2 - n 2 applies.
  • first stages 14 are made of a material with a refractive index n and the second stages 15 are made of another material with a
  • Refractive index n 2 are produced, which is larger than that
  • the plate 11 is rectangular and has a flat front side. On the back there are many linear structures of the first stage 14 arranged next to one another, at the outlet openings of which there are contacting elements of the second stages 15.
  • the plate 11, the first steps 14 and the second steps 15 can, in particular if they are made of a material with the same refractive index, can be made in one piece. If different materials are used, the individual stages 14, 15 are connected to one another in such a way that the best possible optical coupling is produced. A gradual change in the refractive index can also be provided in a transition region in order to avoid reflections.
  • FIG. 5 shows a single concentrator for a one-stage version, the end faces 4 and 5 of which are like that Front walls 18 and 19 of the second stages 15 are curved parabolically.
  • these structures can be connected to a continuous plate 11, which is illustrated in FIG. 6 and does not change the optical conditions.
  • Steps 15 rectangular concentrators 22 can, as in
  • Fig. 7 illustrates, can be realized with two materials 23, 24, whose refractive indices n 1 and ⁇ x ? are.
  • FIG. 8a, 8b and 8c show contact geometries for the solar cells 21 in connection with the outlet apertures of the concentrator arrangement 10. Since the metal contacts of the solar cells 21 shield the radiation, they cause losses. For this reason, the contact grid areas are kept as small as possible. Static concentrators of the type described above offer the possibility of minimizing the shielding by the discharge grid 25 of the solar cells 21 by arranging the current contacts 26 (busbars) outside the illuminated areas of the solar cells 21, as illustrated in FIG. 8.
  • 8a shows the course of the current busbar 26 outside the circumference of the lower end of a second stage 15.
  • FIG. 8b shows a plan view of the solar cell 21 before being attached to the second stage 15.
  • FIG. 8c shows a design option for one rectangular solar cell 21, which is used together with a concentrator 22.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Description

Konzentratoranordnung
Die Erfindung betrifft eine Konzentratoranordnung mit einer Vielzahl von Solarzellen und mit einer aus einem transparenten Material mit einem Brechungsindex von mehr als 1,45 hergestellten Platte, die eine ebene Oberseite und eine Unterseite aufweist, die mit einer Konzentratorstruktur aus trogförmigen nichtabbildenden Konzentratorelementen mit parabelförmig gekrümmten Seitenwänden verbunden ist.
Derartige Konzentratoranordnungen sind aus W.T. Wel- ford, R. Winston "The optics of non-imaging concen- trators", Academic Press, New York (1978) bekannt und dienen als statische nichtabbildende Konzentratoren im Gegensatz zu nachgeführten Konzentratoren mit optisch abbildenden Systemen, die wegen ihres kleinen Akzep¬ tanzwinkels relativ genau auf die Sonne ausgerichtet sein müssen, dazu, eine photovoltaische Energieumwand- lung ohne komplizierte mechanische Nachführeinrich¬ tungen durchzuführen.
Der Erfindung liegt die Aufgabe zugrunde, eine Konzen¬ tratoranordnung der eingangs genannten Art zu schaffen, die sich durch einen höheren Konzentrationsfaktor auszeichnet.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Konzentratorelemente nach allen vier Himmelsrich- tungen weisende parabelförmig gekrümmte Spiegelflächen aufweise .
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher beschrieben. Es zeigen: Fig. 1 einen Konzentrator vom Typ CPC bekannter Bauart,
Fig. 2 eine Konzentratoranordnung gemäß der Erfin- düng mit einer zweistufigen Konzentration in perspektivischer Ansicht,
Fig. 3 eine Ansicht auf die Konzentratoranordnung in östlicher oder westlicher Richtung,
Fig. 4 eine Seitenansicht auf die Konzentratoranord¬ nung in nördlicher oder südlicher Richtung,
Fig. 5 ein Konzentratorelement für rechteckförmige Solarzellen,
Fig. 6 eine Konzentratoranordnung mit mehreren Konzentratorelementen gemäß Fig. 5, die durch eine Platte miteinander verbunden sind,
Fig. 7 ein Konzentratorelement für rechteckförmige Solarzellen mit zwei aufeinanderfolgenden Medien unterschiedlicher Brechungsindizes und
Fig. 8 verschiedene Kontaktgeometrien zur Anordnung der Stromsammeikontakte außerhalb der be¬ leuchteten Fläche der Solarzellen.
In Fig. 1 ist ein statischer Konzentrator 1 bekannter Bauart dargestellt, der die Form eines Troges hat und eine eindimensionale Konzentration gestattet. Der statische Konzentrator 1 verfügt über eine parabelför- mig gekrümmte linke Seitenwand 2 und eine ebenfalls parabelförmig gekrümmte rechte Seitenwand 3. Die Sei- tenwände 2, 3 haben an ihren oberen Rändern einen Abstand d^ und nähern sich an ihren unteren Rändern auf einen Abstand d2. Im allgemeinen sind die Seitenwände 2, 3 verspiegelt. Der Raum zwischen den Seitenwänden 2, 3 kann mit Glas oder Plastik mit einem Brechungsindex n2 = 1,5 gefüllt sein, wobei sich Konzentrationsfak- toren von 2 bis 2,2 erreichen lassen oder auch ohne brechendes Medium (n2 = 1) zwischen den Seitenwänden 2, 3 ausgebildet sein, wobei sich nur Konzentrationsfak¬ toren von 1,4 bis 1,5 erreichen lassen.
Der in Fig. 1 dargestellte statische Konzentrator ist in Ost-West-Richtung ausgerichtet, so daß die Stirn¬ seiten 4, 5 nach Osten bzw. Westen und die Seitenwände 2, 3 nach Norden bzw. Süden weisen. Dabei ist der Konzentrator 1 um seine parallel zu den Seitenwänden 2, 3 verlaufende Längsachse verdreht, um eine Ausrichtung des Konzentrators nach Süden mit optimaler Neigung zu erreichen. Diese Neigung entspricht dem Breitengrad des Aufstellungsortes .
Der Boden des in Fig. 1 dargestellten statischen Kon¬ zentrators 1 ist mit mehreren Solarzellen 6 belegt, die das vom statischen Konzentrator 1 eingefangene direkte und diffuse Solarlicht durch photovoltaische Energieum¬ wandlung ausnutzen. Der Konzentrator 1 bildet einen statischen, nichtabbildenden Konzentrator vom Typ CPC (Compound Parabolic Concentrator) . Ein solcher Konzen¬ trator ist im Konzentrationsfaktor C = a-i/a« begrenzt durch die Liouville 'sehe Bedingung
θ.. θ2 a . n., sin —-— = a2 n^ sin ——
wobei a- die Eintrittsaperturfläche, a2 die Austritts¬ aperturfläche, n* der Brechungsindex des Mediums vor dem Konzentrator, n2 der Brechungsindex des Mediums innerhalb des Konzentrators , θ- der Öffnungswinkel der Strahlen an der Eintrittsapertur und θ« der Öffnungs¬ winkel der Strahlung an der Austrittsapertur ist.
Um möglichst viel direkte Sonnenstrahlung zu empfangen, muß ein statischer Konzentrator einen großen Öffnungs¬ winkel besitzen, der in Nord-Süd-Richtung kleiner sein darf als in Ost-West-Richtung. In Nord-Süd-Richtung muß der Empfangsbereich einerseits bis zum oberen Kulmina- tionspunkt der Sonne, andererseits bis in die Nähe des südlichen Horizonts reichen. Bei gestaffelt hinter¬ einander stehenden Kollektoren oder Konzentratoren kann die Begrenzung beim unteren Kulminationspunkt der Sonne liegen. In Ost-West-Richtung hingegen muß der öffnungs- winkel 180° betragen. Diese Bedingungen führten zu der Trogform des in Fig. 1 dargestellten statischen Kon¬ zentrators mit eindimensionaler Konzentration, für den die Liouville'sehe Bedingung lautet:
d- n, sin ——θ1 = d2 2 sin —-θ—2
wobei d- und d- die oben erwähnten Abstände der Seiten¬ wände 2, 3 bzw. die Breiten des Konzentrators 1 an der Eintrittsapertur läche und der Austrittsaperturfläche bedeuten.
Fig. 2 zeigt eine zweistufige Konzentratoranordnung 1.0 gemäß der Erfindung, die es erlaubt, unter Beibehaltung der Öffnungswinkelverteilung eine wesentlich höhere statische Konzentration zu erzielen. Dabei wird eine zweistufige Konzentration in einem brechenden Medium vorgenommen.
Die zweistufige Konzentratoranordnung 10 verfügt über eine Platte 11 aus transparentem Material mit einem Brechungsindex n, der größer als 1,45 ist. Die Platte 11 ist auf der der einfallenden Strahlung zugewandten Oberseite 12 eben und auf der der Oberseite 12 gegen¬ überliegenden Seite optisch und mechanisch mit einer Struktur 13 zur nichtabbildenden Konzentration von Licht verbunden. Die Struktur 13 bewirkt eine zwei¬ stufige Konzentration des Lichtes in linear-eindimen¬ sionalen ersten Stufen 14 und zweidimensionalen zweiten Stufen 15.
Die ersten Stufen 14 haben die in Fig. 1 dargestellte Gestalt eines aus Glas oder Plastik geformten Troges. An der Austrittsaperturfläche der ersten Stufen sind jeweils eine Vielzahl von zweiten Stufen 15 optisch und mechanisch gekoppelt, die auch in Fig. 3 dargestellte parabelförmig gebogene Seitenwände .16 und 17 sowie in Fig. 4 erkennbare parabelförmige Vorderwände 18 und Hinterwände 19 aufweisen. Die unteren Ränder der Sei¬ tenwände 16, 17 und der Vorderwände 18 sowie der Hin- terwande 19 enden jeweils an einer Bodenfläche 20, die mit einer Solarzelle 21 optisch gekoppelt ist.
Wie sich aus den Fig. 2 bis 4 ergibt, haben die ersten Stufen 14 rechteckförmige Eintrittsaperturen und recht- eckförmige Austrittsaperturen, während die sich be¬ rührenden zweiten Stufen 15 quadratische Eintritts- und Austrittsaperturen aufweisen. Die zweiten Stufen 15 sind somit nicht genau radialsymmetrisch, was zu einer geringen Einbuße an Konzentration führt. Dies ist aber zweckmäßig, da einerseits die Aperturfläche nur mit quadratischen bzw. rechteckigen Strukturen ausgefüllt werden kann, andererseits die Solarzellen 21 quadra¬ tisch sind. Die Liouville'sche Bedingung wird dann optimal ausge¬ schöpft, wenn θ2 = 180° gilt. Dies wird beim linearen Trogkonzentrator mit einem brechenden Medium, dessen Brechungsindex größer als 1 ist, nur in der Nord-Süd- Richung, nicht aber in der Ost-West-Richtung erreicht. Nach dem Brechungsgesetz haben in Luft horizontale Strahlen nach Eintritt ins Medium eine Divergenz θ*, die gegeben ist durch
sin θ'/2 = i/n
Durch eine zweidimensionale Konzentration kann diese Divergenz auf 90° erhöht werden. Bei der erfindungs¬ gemäßen zweistufigen Konzentratoranordnung 10 wird dies dadurch erreicht, daß in den linearen ersten Stufen 14 die Nord-Süd-Strahlen auf die gleiche Divergenz ge¬ bracht werden wie die Ost-West-Strahlen (durch Zerle¬ gung in senkrechte Komponenten gilt diese Betrachtung auch für alle schräg einfallenden Strahlen).
Somit sind die Abmessungen d- und d2 der ersten linear¬ parabolischen Stufe 14 gegeben durch
d 1 sin θ/2 ■ d2 n sin θ'/2,
wobei θ der durch die oben angegebenen Bedingungen bestimmte Nord-Süd-Eintrittswinkel ist. Somit ergibt sich
d1/d2 = C1 = 1/sin θ/2-
Da nunmehr die Strahlung axialsymmetrisch ist, kann sie in den zweiten Stufen 15 zweidimensional weiter kon¬ zentriert werden bis θ2 = 180°. Es gilt
A- n sin' θ'/2 = A2 sin^TT /2
Figure imgf000009_0001
A. und A2 sind die den zweiten Stufen 15 zugeordneten Eintritts- und Austrittsaperturflächen.
2
Die Gesamtkonzentration ist C. x C =
'1 2 sin θ/2
Vergleicht man dies mit der konventionellen einstufigen Konzentration von
d, n d2 sin Θ-/2
so erkennt man, daß man einen Faktor n gewinnt.
Die zweiten Stufen 15 können aus einem transparenten Material mit einem Brechungsindex n2 bestehen, der größer als der Brechungsindex n- des transparenten Materials der ersten Stufen 14 ist. Dies ist deshalb von Bedeutung, weil dafür wenig Material verbraucht wird und Materialien mit höherem Brechungsindex meist teuer sind. In diesem Fall ist die Bedingung für die zweiten Stufen 15
A1 n2 sin2 θ2/2 = A2 n2 ;
A1 2 ~~~ ~ ~ A2 2 2 Die volle Konzentration ist dann n2 / (sin θ/2), also als ob die ganze Konzentratoranordnung 10 aus dem
Material mit dem Brechungsindex n2 bestehen würde.
Bei der beschriebenen Konzentratoranordnung 10 gehen nur die relativen Dimensionen in die Konzentration ein. Daher können sehr flache Strukturen mit relativ gerin¬ gem Materialverbrauch realisiert werden. Dies erfordert kleine Solarzellen 21 , die entsprechend genau positio- niert sein müssen. Dies ist mit Hilfe der in der Halb¬ leitertechnik entwickelten Verfahren möglich.
In der nachfolgenden Tabelle sind quantitative Bei¬ spiele für θ/2 = 23,5° aufgeführt.
Linearer Trogkonzentrator Zweistufiger Konzentrator Zweistufiger Konzentrator Zweistufiger Konzentrator
Figure imgf000010_0001
Gegenüber der Ausführung gemäß Fig. 1 mit einem Kon¬ zentrationsfaktor von 3,76 werden mit der Konzentrator¬ anordnung 10 je nach den Brechungsindizes der ersten Stufen 14 und zweiten Stufen 15 deutlich höhere Kon- zentrationsfaktoren zwischen 5,64 und 10,03 erreicht.
Der Öffnungswinkel θ- der ersten Stufen 14 ist so gewählt, daß bei Ausrichtung der Konzentratoranordnung 10 nach Süden mit optimaler Neigung der Ort der Sonne bei Sonnenhöchststand noch in den Akzeptanzbereich fällt und die andere Begrenzung des Öffnungswinkels mindestens den minimalen Kulminationspunkt der Sonne enthält. Der lineare Konzentrationsfaktor C. der ersten Stufen 14 ist so' gewählt, daß der auf die Nord-Süd- Richtung projizierte Öffnungswinkel der Strahlen an der Austritts läche die Bedingung C.. = 1/(sin Θ./2) er¬ füllt.
Bei einer Konzentratoranordnung 10, die aus einem einheitlichen Medium mit dem Brechungsindex n besteht, wird der Konzentrationsfaktor C, der zweiten, zwei- dimensionalen Stufe 15 so gewählt, daß C2 - n 2 gilt.
Besonders vorteilhaft ist es, wenn die ersten Stufen 14 aus einem Material mit einem Brechungsindex n- und die zweiten Stufen 15 aus einem anderen Material mit einem
Brechungsindex n2 hergestellt sind, der größer als der
Brechungsindex n- ist. In einem solchen Fall läßt sich erreichen, daß die Konzentration der zweiten Stufen 2 C2 = n2 ist.
Bei einem Ausführungsbeispiel der Erfindung ist die Platte 11 rechteckig und verfügt über eine ebene Front¬ seite. Auf der Rückseite befinden sich viele neben- einander angeordnete lineare Strukturen der ersten Stufe 14, an deren Austrittsöffnungen sich berührende Elemente der zweiten Stufen 15 befinden.
Die Platte 11, die ersten Stufen 14 und die zweiten Stufen 15 können, insbesondere wenn sie aus einem Material mit gleichem Brechungsindex hergestellt sind, können einstückig hergestellt werden. Wenn verschiedene Materialien benutzt werden, werden die einzelnen Stufen 14, 15 so miteinander verbunden, daß eine möglichst gute optische Kopplung entsteht. Dabei kann in einem Übergangsbereich auch eine allmähliche Änderung des Brechungsindexes vorgesehen sein, um Reflexionen zu vermeiden.
Die oben beschriebene Struktur mit zweistufiger Kon¬ zentration stellt die optisch beste Lösung dar. Sie hat jedoch eine gewisse Bauhöhe, die mit einem Materialauf¬ wand verbunden ist. Eine einstufige Version ist kürzer, wenn auch optisch weniger effektiv. Diese Version konzentriert in der Nord-Süd-Richtung stärker als in der Ost-West-Richtung und erfordert daher rechteckige an Stelle quadratischer Solarzellen 21. Fig. 5 zeigt einen einzelnen Konzentrator für eine einstufige Ver¬ sion, dessen Stirnseiten 4 und 5 wie die Vorderwände 18 und 19 der zweiten Stufen 15 parabelförmig gekrümmt sind.
Nach den"schon dargelegten Prinzipien sind die Dimen¬ sionen nach Fig. 5
lineare Nord-Süd-Konzentration
SN a2 sin i.,/2
mit <_ = Eintrittsöffnungswinkel, n = Brechungsindex lineare Ost-West-Konzentration
Gow " " n ' b2
Gesamtkonzentration a1b1 n a2b2 sin Φ../2
Diese Strukturen können, wie oben beschrieben, mit einer durchgehenden Platte 11 verbunden sein, was in Fig. 6 veranschaulicht ist und an den optischen Ver- hältnissen nichts ändert.
Auch die im Gegensatz zu den quadratischen zweiten
Stufen 15 rechteckigen Konzentratoren 22 können, wie in
Fig. 7 veranschaulicht ist, mit zwei Materialien 23, 24 verwirklicht werden, deren Brechungsindizes n1 und τx? sind. Die Stirnflächen 4, 5 des in Fig. 7 dargestellten Konzentrators 22 sind ebenso wie die Vorderwände 18 und Hinterwände 19 der zweiten Stufe 15 parabelförmig gebogen. Die zusätzliche Konzentration ist dann
a2 b2 n2 a- n2 b_, d.h. —- = _ . »— 7-7 : r— = n. a3 b3 " n1 ' a3 " sin f1/2 ' b3 " 2
Diese Gleichungen enthalten die Dimensionierungsvor- Schriften für die Längen des Konzentrators 22, wobei a, , a2 und a, die Abmessungen in Nord-Süd-Richtung und b, , b2 und b, die Abmessungen in Ost-West-Richtung an der Eintrittsapertur des Konzentrators 22 , am Übergang zum zweiten Material 24 und an der Austrittsapertur bedeuten.
In den Fig. 8a, 8b und 8c sind Kontaktgeometrien für die Solarzellen 21 in Verbindung mit den Austritts¬ aperturen der Konzentratoranordnung 10 dargestellt. Da die Metallkontakte der Solarzellen 21 die Strahlung abschirmen, verursachen sie Verluste. Aus diesem Grunde werden die Kontaktgitterflächen möglichst klein ge¬ halten. Statische Konzentratoren der oben beschriebenen Art bieten die Möglichkeit die Abschirmung durch das Ableitgitter 25 der Solarzellen 21 zu minimieren, indem die Stromsamraelkontakte 26 (Busbars) außerhalb der beleuchteten Flächen der Solarzellen 21 angeordnet werden, wie dies in Fig. 8 veranschaulicht ist. Fig. 8a zeigt dabei den Verlauf der Stromsammeischiene 26 außerhalb des Umfangs des unteren Endes einer zweiten Stufe 15. Fig. 8b zeigt eine Draufsicht auf die Solar¬ zelle 21 vor der Befestigung an der zweiten Stufe 15. Fig. 8c zeigt eine Gestaltungsmöglichkeit bei einer rechteckigen Solarzelle 21, die zusammen mit einem Konzentrator 22 zum Einsatz kommt.

Claims

PATENTANSPRÜCHE
1. Konzentratoranordnung mit einer Vielzahl von Solarzellen und mit einer aus einem transparenten Material mit einem Brechungsindex von mehr als 1,45 hergestellten Platte, die eine ebene Ober¬ seite und eine Unterseite aufweist, die mit einer Konzentratorstruktur aus trogförmigen nichtabbil¬ denden Konzentratorelementen mit parabelförmig gekrümmten Seitenwänden verbunden ist, dadurch gekennzei chnet , daß die Konzentratorele- mente (15, 22) nach allen vier Himmelsrichtungen weisende parabelförmig gekrümmte Spiegelflächen (2, 3, 4, 5, 16, 17, 18, 19) aufweisen.
2. Konzentratoranordnung nach Anspruch 1, dadurch gekennzeichnet , daß die parabelförmig gekrümmten Spiegelflächen (2, 3, 4, 5) an in Draufsicht rechteckförmigen Konzentratorelementen (22) ausgebildet sind.
3. Konzentratoranordnung nach Anspruch 1, dadurch gekennzeichnet , daß die parabelförmig gekrümmten Spiegelflächen (16, 17, 18, 19) an in Draufsicht quadratischen Konzentratorelementen (15) ausgebildet sind.
4. Konzentratoranordnung nach Anspruch 3, dadurch gekennzeichnet , daß die in Draufsicht quadratischen Konzentratorelemente als zweite Stufen (15) mit als erste Stufen (14) dienenden linear-eindimensionalen Konzentratorelementen optisch gekoppelt sind. 5. Konzentratoranordnung nach Anspruch 2, dadurch gekennz ei chnet , daß die in Draufsicht rechteckigen mit parabelförmig gekrümmten Seiten¬ wänden (2, 3, 4,
5) versehenen Konzentratorelemen- te (22) in Lichteinfallsrichtung aus zwei Materi¬ alien (23, 24) mit unterschiedlichen Brechungsin¬ dizes bestehen.
6. Konzentratoranordnung nach Anspruch 4, dadurch gekennzei chnet , daß die zweiten Stufen
(15) aus einem Material mit einem anderen Bre¬ chungsindex als dem des Materials der ersten Stufe
(14) bestehen.
7. Konzentratoranordnung nach Anspruch 5 oder 6, dadurch gekennzei chnet , daß das den Solarzellen (21) benachbarte Material den höheren Brechungsindex aufweist.
8. Konzentratoranordnung nach Anspruch 4, dadurch gekennze i chnet , daß die zweiten Stufen
(15) in Längsrichtung der ersten linear-eindimen¬ sionalen Stufen (14) sich gegenseitig berührend angeordnet sind.
PCT/DE1988/000688 1987-12-08 1988-11-07 Concentrator arrangement WO1989005463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873741477 DE3741477A1 (de) 1987-12-08 1987-12-08 Konzentratoranordnung
DEP3741477.1 1987-12-08

Publications (1)

Publication Number Publication Date
WO1989005463A1 true WO1989005463A1 (en) 1989-06-15

Family

ID=6342070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1988/000688 WO1989005463A1 (en) 1987-12-08 1988-11-07 Concentrator arrangement

Country Status (5)

Country Link
US (1) US4964713A (de)
EP (1) EP0347444A1 (de)
JP (1) JPH02502500A (de)
DE (1) DE3741477A1 (de)
WO (1) WO1989005463A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0534853A1 (de) * 1991-09-25 1993-03-31 Marc Hoffman Doppele Refraktion und Total Reflektion nicht abbildender, fester Linse
EP0539296A1 (de) * 1991-10-25 1993-04-28 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels (Armines) Reflektor für Strahlungsquelle mit einem vorbestimmten maximalen seitlichen Strahlungswinkel
EP0810409A1 (de) * 1996-05-21 1997-12-03 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Anordnung für Lichtleitsystem
WO2001050181A1 (fr) * 2000-01-07 2001-07-12 Honeywell Dispositif optique monolithique de transmission de lumiere, et bloc optique a voies multiples utilisant un tel dispositif
GB2417094A (en) * 2004-08-12 2006-02-15 Innovium Res Ltd Light collecting element array with tapered light reflecting surfaces
WO2007036199A3 (de) * 2005-09-30 2007-06-21 Solartec Ag Konzentrator-photovoltaik-vorrichtung, photovoltaik-einrichtung zur verwendung darin sowie herstellverfahren hierfür
WO2007149001A2 (en) * 2006-06-19 2007-12-27 Corneliu Antonovici Method and structure for solar energy harvesting type glass roof tile
US9012771B1 (en) 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9806215B2 (en) 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220462A (en) * 1991-11-15 1993-06-15 Feldman Jr Karl T Diode glazing with radiant energy trapping
DE4225130C2 (de) * 1992-07-30 1994-11-10 Fraunhofer Ges Forschung Zweistufige Konzentratoranordnung mit mehreren Solarzellen
US5604607A (en) * 1992-10-19 1997-02-18 Eastman Kodak Company Light concentrator system
US5327293A (en) * 1992-11-24 1994-07-05 Equestrian Co., Ltd. Reflection mirror apparatus
IL111207A0 (en) * 1994-10-09 1994-12-29 Yeda Res & Dev Photovoltaic cell system and an optical structure therefor
US6020553A (en) * 1994-10-09 2000-02-01 Yeda Research And Development Co., Ltd. Photovoltaic cell system and an optical structure therefor
ES2115554B1 (es) * 1996-10-23 1999-01-01 Univ Madrid Politecnica Concentrador optico de alta ganancia.
DE19719083B4 (de) * 1997-04-30 2006-04-27 René Dipl.-Krist. Kokoschko Vorrichtung zur Sammlung, Konzentrierung und Leitung von direkter und diffuser Strahlung
US6057505A (en) 1997-11-21 2000-05-02 Ortabasi; Ugur Space concentrator for advanced solar cells
US6020554A (en) * 1999-03-19 2000-02-01 Photovoltaics International, Llc Tracking solar energy conversion unit adapted for field assembly
DE10059455A1 (de) * 2000-11-30 2002-06-06 Steigerwald Niluh Kusani Statischer Konzentrator
US6541694B2 (en) * 2001-03-16 2003-04-01 Solar Enterprises International, Llc Nonimaging light concentrator with uniform irradiance
EP1261039A1 (de) * 2001-05-23 2002-11-27 Université de Liège Solar-Konzentrator
ES2282657T3 (es) 2002-05-17 2007-10-16 Jason E. Schripsema Modulo fotovoltaico con disipador de calor ajustable y procedimiento de fabricacion.
US7068446B2 (en) * 2003-05-05 2006-06-27 Illumitech Inc. Compact non-imaging light collector
WO2004114419A1 (en) * 2003-06-20 2004-12-29 Schripsema Jason E Linear compound photovoltaic module and reflector
GB0421236D0 (en) * 2004-09-23 2004-10-27 Innovium Res Ltd Device and method for the homogenisation of optical communications signals
KR20080013979A (ko) * 2005-05-03 2008-02-13 유니버시티 오브 델라웨어 초고효율 태양 전지
HRPK20050434B3 (en) * 2005-05-16 2008-06-30 Urli Natko Stationary photovoltaic module with low concentration ratio of solar radiation
DE102005033272A1 (de) * 2005-06-03 2006-12-07 Solartec Ag Konzentrator-Photovoltaik-Einrichtung, daraus gebildetes PV-Konzentratormodul sowie Herstellverfahren hierfür
US20080178922A1 (en) * 2005-07-26 2008-07-31 Solaria Corporation Method and system for manufacturing solar panels using an integrated solar cell using a plurality of photovoltaic regions
US20070056626A1 (en) * 2005-09-12 2007-03-15 Solaria Corporation Method and system for assembling a solar cell using a plurality of photovoltaic regions
US7910822B1 (en) 2005-10-17 2011-03-22 Solaria Corporation Fabrication process for photovoltaic cell
US8227688B1 (en) 2005-10-17 2012-07-24 Solaria Corporation Method and resulting structure for assembling photovoltaic regions onto lead frame members for integration on concentrating elements for solar cells
US7875792B2 (en) * 2006-07-05 2011-01-25 Stellaris Corporation Apparatus and method for forming a photovoltaic device
DE102006044603A1 (de) * 2006-09-19 2008-03-27 Solar Dynamics Gmbh Solarer Mehrstufenkonzentrator
JP5337961B2 (ja) * 2007-03-01 2013-11-06 国立大学法人長岡技術科学大学 太陽追尾モジュール装置
US20090056806A1 (en) * 2007-09-05 2009-03-05 Solaria Corporation Solar cell structure including a plurality of concentrator elements with a notch design and predetermined radii and method
US7910392B2 (en) 2007-04-02 2011-03-22 Solaria Corporation Method and system for assembling a solar cell package
US20080236651A1 (en) * 2007-04-02 2008-10-02 Solaria Corporation Solar cell concentrator structure including a plurality of concentrator elements with a notch design and method having a predetermined efficiency
DE102007022164A1 (de) * 2007-05-11 2008-11-13 Vci Technoinvest Gmbh Anordnung zum Gewinnen von elektrischer und thermischer Energie
US8119902B2 (en) 2007-05-21 2012-02-21 Solaria Corporation Concentrating module and method of manufacture for photovoltaic strips
FR2916901B1 (fr) * 2007-05-31 2009-07-17 Saint Gobain Procede d'obtention d'un substrat texture pour panneau photovoltaique
ITBO20070471A1 (it) * 2007-07-11 2009-01-12 Cpower S R L Dispositivo concentratore di luce solare per un sistema di generazione fotovoltaica
US8707736B2 (en) 2007-08-06 2014-04-29 Solaria Corporation Method and apparatus for manufacturing solar concentrators using glass process
US20100078063A1 (en) * 2007-08-29 2010-04-01 Barnett Allen M High efficiency hybrid solar cell
US8513095B1 (en) 2007-09-04 2013-08-20 Solaria Corporation Method and system for separating photovoltaic strips
US20110017263A1 (en) * 2007-09-05 2011-01-27 Solaria Corporation Method and device for fabricating a solar cell using an interface pattern for a packaged design
US8049098B2 (en) 2007-09-05 2011-11-01 Solaria Corporation Notch structure for concentrating module and method of manufacture using photovoltaic strips
US20090151770A1 (en) * 2007-12-12 2009-06-18 Solaria Corporation Method and material for coupling solar concentrators and photovoltaic devices
US7910035B2 (en) 2007-12-12 2011-03-22 Solaria Corporation Method and system for manufacturing integrated molded concentrator photovoltaic device
US8748727B2 (en) 2008-01-18 2014-06-10 Tenksolar, Inc. Flat-plate photovoltaic module
US20090183764A1 (en) * 2008-01-18 2009-07-23 Tenksolar, Inc Detachable Louver System
US8212139B2 (en) 2008-01-18 2012-07-03 Tenksolar, Inc. Thin-film photovoltaic module
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
DE102008017370A1 (de) 2008-02-13 2009-08-27 Solartec Ag Photovoltaik-Vorrichtung, Herstellverfahren für Photovoltaik-Vorrichtung sowie Solaranlage
DE102008013523B4 (de) * 2008-03-07 2012-04-05 Q-Cells Ag Solarmodul mit optischer Konzentratoreinrichtung
DE102008030819A1 (de) 2008-06-30 2009-12-31 Osram Opto Semiconductors Gmbh Optoelektronische Vorrichtung
DE102008035575B4 (de) * 2008-07-30 2016-08-11 Soitec Solar Gmbh Photovoltaik-Vorrichtung zur direkten Umwandlung von Sonnenenergie in elektrische Energie enthaltend eine zweistufige aus mehreren Elementen bestehende Konzentratoroptik
FR2938078B1 (fr) * 2008-11-03 2011-02-11 Saint Gobain Vitrage a zones concentrant la lumiere par echange ionique.
JP2012510182A (ja) * 2008-11-26 2012-04-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー アイオノマー材料を含む集光器を備えた集光式太陽電池モジュール
EP2375456A1 (de) * 2009-03-06 2011-10-12 Suinno Solar Oy Preisgünstige Solarzelle
JP2012530382A (ja) 2009-06-15 2012-11-29 テンケーソーラー インコーポレイテッド 不均一な照度に寛容な太陽電池パネル
US8895838B1 (en) 2010-01-08 2014-11-25 Magnolia Solar, Inc. Multijunction solar cell employing extended heterojunction and step graded antireflection structures and methods for constructing the same
US8829330B2 (en) 2010-02-23 2014-09-09 Tenksolar, Inc. Highly efficient solar arrays
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
ES2372083B1 (es) * 2010-03-08 2013-02-18 Abengoa Solar New Technologies, S.A. Elemento de concentración solar fotovoltaica, módulo que comprende dichos elementos y dispositivo modular formado por dichos módulos.
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
JP2012023099A (ja) * 2010-07-12 2012-02-02 Mitaka Koki Co Ltd 太陽光発電モジュールおよび集光型太陽光発電システム
CN102401989B (zh) * 2010-09-07 2014-04-16 聚日(苏州)科技有限公司 一种聚光装置及其制造方法
US9190546B1 (en) * 2010-09-30 2015-11-17 Sandia Corporation Solar photovoltaic reflective trough collection structure
US9893223B2 (en) 2010-11-16 2018-02-13 Suncore Photovoltaics, Inc. Solar electricity generation system
DE202011001115U1 (de) 2010-12-01 2011-05-26 Hug, Alexander, 72766 Solarmodul mit erhöhtem Wirkungsgrad
USD699176S1 (en) 2011-06-02 2014-02-11 Solaria Corporation Fastener for solar modules
US20130038132A1 (en) * 2011-08-09 2013-02-14 Southwest Solar Technologies, Inc. CPV System and Method Therefor
CN102790114A (zh) * 2012-08-25 2012-11-21 赵雪冰 一种太阳能电池用聚光透镜及免跟踪聚光太阳能电池装置
JP6351459B2 (ja) 2014-09-22 2018-07-04 株式会社東芝 太陽電池モジュール
US9773934B2 (en) * 2014-10-01 2017-09-26 Sharp Laboratories Of America, Inc. Hybrid Trough solar power system using photovoltaic two-stage light concentration
US9787247B2 (en) * 2014-10-01 2017-10-10 Sharp Laboratories Of America, Inc. Solar concentrator with asymmetric tracking-integrated optics
US10411645B1 (en) 2016-05-09 2019-09-10 Solarbos, Inc Photovoltaic module sourced control power
US10950402B2 (en) 2017-10-17 2021-03-16 Solarbos, Inc. Electrical contactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923381A (en) * 1973-12-28 1975-12-02 Univ Chicago Radiant energy collection
US4029519A (en) * 1976-03-19 1977-06-14 The United States Of America As Represented By The United States Energy Research And Development Administration Solar collector having a solid transmission medium
US4045246A (en) * 1975-08-11 1977-08-30 Mobil Tyco Solar Energy Corporation Solar cells with concentrators
EP0021027A1 (de) * 1979-07-03 1981-01-07 Licentia Patent-Verwaltungs-GmbH Solarzellen-Anordnung
US4546757A (en) * 1982-07-16 1985-10-15 Jakahi Douglas Y Fixed position concentrating solar collector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146408A (en) * 1977-12-23 1979-03-27 Varian Associates, Inc. Aspherical solar cell concentrator
ATE12684T1 (de) * 1980-10-27 1985-04-15 Arbeitsgruppe Tech Photosynthe Konzentrierender reflektor fuer sonnenstrahlung mit geringem aerodynamischen widerstand und hohem aerodynamischen auftrieb.
US4538886A (en) * 1983-04-19 1985-09-03 Stellar Energy Ststems, Inc. Circular arc solar concentrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923381A (en) * 1973-12-28 1975-12-02 Univ Chicago Radiant energy collection
US4045246A (en) * 1975-08-11 1977-08-30 Mobil Tyco Solar Energy Corporation Solar cells with concentrators
US4029519A (en) * 1976-03-19 1977-06-14 The United States Of America As Represented By The United States Energy Research And Development Administration Solar collector having a solid transmission medium
EP0021027A1 (de) * 1979-07-03 1981-01-07 Licentia Patent-Verwaltungs-GmbH Solarzellen-Anordnung
US4546757A (en) * 1982-07-16 1985-10-15 Jakahi Douglas Y Fixed position concentrating solar collector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.T. WELFORD, R. WINSTON, "The Optics of Non-Imaging Concentrators", page 163, 1978, ACADEMIC PRESS, (NEW YORK). *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0534853A1 (de) * 1991-09-25 1993-03-31 Marc Hoffman Doppele Refraktion und Total Reflektion nicht abbildender, fester Linse
US5343330A (en) * 1991-09-25 1994-08-30 Rousseau Sauve Warren Inc. Double refraction and total reflection solid nonimaging lens
EP0539296A1 (de) * 1991-10-25 1993-04-28 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels (Armines) Reflektor für Strahlungsquelle mit einem vorbestimmten maximalen seitlichen Strahlungswinkel
FR2683051A1 (fr) * 1991-10-25 1993-04-30 Armines Reflecteur pour source de rayonnement a angle de rayonnement lateral maximal controle.
US5369528A (en) * 1991-10-25 1994-11-29 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels - A.R.M.I.N.E.S. Plane or cylindrical reflector for source of radiation
EP0810409A1 (de) * 1996-05-21 1997-12-03 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Anordnung für Lichtleitsystem
WO2001050181A1 (fr) * 2000-01-07 2001-07-12 Honeywell Dispositif optique monolithique de transmission de lumiere, et bloc optique a voies multiples utilisant un tel dispositif
FR2803667A1 (fr) * 2000-01-07 2001-07-13 Honeywell Dispositif optique de transmission de lumiere, et bloc a voies multiple utilisant un tel dispositif
GB2417094A (en) * 2004-08-12 2006-02-15 Innovium Res Ltd Light collecting element array with tapered light reflecting surfaces
WO2007036199A3 (de) * 2005-09-30 2007-06-21 Solartec Ag Konzentrator-photovoltaik-vorrichtung, photovoltaik-einrichtung zur verwendung darin sowie herstellverfahren hierfür
WO2007149001A2 (en) * 2006-06-19 2007-12-27 Corneliu Antonovici Method and structure for solar energy harvesting type glass roof tile
WO2007149001A3 (en) * 2006-06-19 2008-03-06 Corneliu Antonovici Method and structure for solar energy harvesting type glass roof tile
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9012771B1 (en) 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US9806215B2 (en) 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells

Also Published As

Publication number Publication date
DE3741477C2 (de) 1991-10-02
JPH02502500A (ja) 1990-08-09
EP0347444A1 (de) 1989-12-27
DE3741477A1 (de) 1989-06-22
US4964713A (en) 1990-10-23

Similar Documents

Publication Publication Date Title
WO1989005463A1 (en) Concentrator arrangement
EP0034211B1 (de) Solarzellenanordnung
EP0644995B1 (de) Plattform zur nutzung der sonnenenergie
DE19907506A1 (de) Photovoltaisches Bauelement, photovoltaisches Modul und Aufstellverfahren für ein photovoltaisches Modul
DE2709284A1 (de) Vorrichtung zum konzentrieren von energie
DE102009008170A1 (de) Verfahren und System zur Lichtkollektion und Lichtenergie-Umwandlungsgerät
DE3107888A1 (de) Solarkonzentrator
DE112006003262T5 (de) Lichteinfang durch gemusterte Solarzellen-Busdrähte
DE112009001135T5 (de) Photovoltaischer Generator mit sphärischer Abbildungslinse zur Verwendung mit einem parabolischen Solarreflektor
DE2938942A1 (de) Leitvorrichtung fuer strahlungsenergie
EP2227832A2 (de) Photovoltaik-vorrichtung und deren verwendung
DE3741485C2 (de)
EP2534701B1 (de) Photovoltaik-vorrichtung sowie dessen verwendung
DE2907128A1 (de) Linearer stufen-sonnenkollektor mit geneigten reflektorplatten
DE102008014618B4 (de) Vorrichtung zur Konzentrierung und Umwandlung von Solarenergie
DE3205439A1 (de) Solarkonzentrator mit hohlspiegeln
EP2188846A1 (de) Solarzelle mit optischen verstärkungsstrukturen
DE102006028932A1 (de) Photovoltaikmodul
DE2631412C2 (de) Vorrichtung zum Bündeln von Sonnenlicht durch Brechung oder Reflexion
CH658918A5 (de) Zeitlich feststehender refraktor aus durchsichtigem material.
EP2489079A2 (de) Vorrichtung zur konzentrierung und umwandlung von solarenergie
DE2840094C2 (de)
DE4225130C2 (de) Zweistufige Konzentratoranordnung mit mehreren Solarzellen
DE4201126A1 (de) Duennschicht-halbleiterbauelement fuer photoelektrische energieumwandlung
DE19732481A1 (de) Solarkollektor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1988909974

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1988909974

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1988909974

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1988909974

Country of ref document: EP