WO1988010277A1 - Process for preparing cationic, water-soluble resin and water-treating agent containing said resin - Google Patents

Process for preparing cationic, water-soluble resin and water-treating agent containing said resin Download PDF

Info

Publication number
WO1988010277A1
WO1988010277A1 PCT/JP1987/000408 JP8700408W WO8810277A1 WO 1988010277 A1 WO1988010277 A1 WO 1988010277A1 JP 8700408 W JP8700408 W JP 8700408W WO 8810277 A1 WO8810277 A1 WO 8810277A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
weight
parts
soluble resin
soluble
Prior art date
Application number
PCT/JP1987/000408
Other languages
English (en)
French (fr)
Inventor
Yasumasa Tanaka
Shigehiro Nishimura
Masatoshi Kurahashi
Yugi Sugiura
Yoshinori Sano
Original Assignee
Nippon Shokubai Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Kagaku Kogyo Kabushiki Kaisha filed Critical Nippon Shokubai Kagaku Kogyo Kabushiki Kaisha
Priority to EP87904104A priority Critical patent/EP0323509B1/en
Priority to DE8787904104T priority patent/DE3783772T2/de
Priority to PCT/JP1987/000408 priority patent/WO1988010277A1/ja
Publication of WO1988010277A1 publication Critical patent/WO1988010277A1/ja
Priority to US07/318,065 priority patent/US5039787A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/52Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • C08G73/0226Quaternisation of polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a method for producing a water-soluble resin and a water treatment agent containing the resin. More specifically, it can be made highly soluble in water over a wide range of molecular weights, and has been used as an agent for improving water filtration and retention during papermaking in the paper industry, as a flocculant, and as a dehydration accelerator.
  • Polyalkyleneimine is used in the paper industry as a drainage improver during papermaking, as a filler, a dye, a pigment, as a retention enhancer for fine fibers, as a flocculant for white water, and as an active agent in industrial wastewater and sewage treatment. It is known that it is useful as a flocculant for sludge and the like and a dehydration accelerator.
  • polyalkyleneimine is one of the indispensable conditions for these uses, and it is difficult to increase the molecular weight, and it is very expensive.
  • polyalkyleneimine was used as a drainage retention improver for papermaking. Effect only in the neutral region However, it has the disadvantage that stable effects cannot be obtained in a wide range of PH areas.
  • a nitrogen-containing condensation product described in the specification of DE 24, 36, 386 has been proposed as an improvement over such disadvantages.
  • polyalkyleneimine is converted to polyalkylene glycol polychloride. It is said that cross-linking with phosphorus ether enables to increase the molecular weight, and provides a water-soluble nitrogen-containing condensation product that is economical and effective over a wide pH range.
  • an object of the present invention is to provide a water-soluble resin capable of forming a high-concentration aqueous solution in a wide molecular weight range by a simple process.
  • An object of the present invention is to provide a method that can be rapidly and safely manufactured, and a water treatment agent that can exert a remarkable effect in a wide range of PH ⁇ .
  • the above object is achieved by (A) (a) polyethylene glycol polyhalohydrin ether obtained by reacting (b) epihalohydrin ⁇ to ⁇ 0 mol per mol of polyethylene glycol ⁇ 00 parts by weight, (B) aziridine compound It is achieved by a method for producing a water-soluble resin which is characterized by reacting 0.1 to ⁇ 000 parts by weight.
  • the above object is further achieved by adding (A) (a) 100 parts by weight of polyethylene glycol polyhalohydrin ether obtained by reacting 0 mol of (b) epihalohydrin per mol of polyethylene glycol, and (B) Acrylidine-based water-soluble resin (I) obtained by reacting 0, 1 to 0,0 ⁇ 0 parts by weight of aziridine compound with (C) ephalohydrin and (D) water-soluble or water-dispersible polyfunctional epoxy At least one member selected from the group consisting of compounds is reacted at 0.0 to 20 parts by weight until the viscosity of a 20% by weight aqueous solution at 25 becomes ⁇ 00 to 2,000 cps. It is also achieved by a method for producing a water-soluble resin.
  • the object of the present invention is to provide a poly (ethylene glycol) polyoctahydrin ether obtained by reacting (A) (a) polyethylene glycol (0 mol) per mol of (b) ephalohydrin.
  • the cation-based water-soluble resin (I) is preferably selected from the group consisting of (C) ephalohydrin and (D) a water-soluble or water-dispersible polyfunctional epoxy compound.
  • a water-soluble resin obtained by reacting ⁇ to 20 parts by weight of a 20% by weight aqueous solution at 25 ° C until the viscosity becomes ⁇ 00 to 2,0 ⁇ Ocps;
  • the cationic water-soluble resin (I) comprises a polyalkyleneimine (99% to 99% by weight) and (E) 20 parts by weight of (F) ephalohydrin and (G) water-dispersible polyfunctional epoxy compound in the range of 0.01 to 20 parts by weight per 100 parts by weight It is also achieved by a water treatment agent containing at least two kinds of cationic resins selected from the group consisting of water-soluble resins which react to reach 2,000 Ocps.
  • FIG. 5 is a graph showing the relationship between the amount of resin added to pulp and the amount of drainage of the cationic water-soluble resin obtained by the method of the present invention. .
  • FIG. 2 shows the relationship between the amount of resin added to pulp of the cationic water-soluble resin obtained by another method of the present invention and the amount of drainage.
  • FIG. 3 shows the relationship between the cationic water-soluble resin obtained by the method of the present invention.
  • 4 is a graph showing a relationship between PH and transmittance. Also,
  • FIG. 4 is a graph showing the relationship between the amount of the water-soluble resin obtained by the method of the present invention and the dehydration rate.
  • the polyethylene glycol (a) used in the present invention preferably has a molecular weight in the range of 200 to 100,0QQ, more preferably 600 to 50,000, most preferably 1,0Q0 to 20. , Q ⁇ 0. That is, if the molecular weight is less than 20 Q, cationic When a water-soluble resin is produced, it is easy to gel. On the other hand, when the water-soluble resin exceeds 100,000, the reactivity with ephalohydrin becomes low, and a water-based aqueous solution suitable for the purpose of the present invention is obtained. This is because it becomes impossible to obtain a conductive resin.
  • epihalohydrin (b) used in the present invention include, for example, epichlorohydrin, epibromohydrin and the like. It is preferable to use epichlorohydrin from the viewpoint of industrial availability.
  • polyethylene glycol (a) for the synthesis of polyethylene glycol polyhalohydrin ether (A).
  • polyethylene glycol (a) instead of polyethylene glycol (a), other polyalkylene glycols, for example, When polypropylene glycol or ethylene glycol-propylene glycol copolymer is used, the water-solubility decreases, and even if water-soluble, the viscosity of the aqueous solution increases, and the effect as a water treatment agent is remarkably poor. Is not preferred.
  • the aziridine compound (B) used in the present invention is not particularly limited as long as it has ⁇ aziridine groups in the molecule.
  • those having a substituent on the aziridine ring, or two or more of these aziridine compounds may be used.
  • aziridine compounds include ethylenimine, propyleneimine, butyleneimine, and N-hydridene. Loxyshethylethyleneimine, N-cyanoethylethyleneimine, N-methylethyleneimine, N-ethylethyleneimine, N-phenylethyleneimine, N-acetylethylenimine, N-methacryloylaziridine, 3-aziridini Methyl propionate, 3-azi-ridinylethyl methacrylate and the like.
  • the aziridine compound (B) used in the present invention is as included in the above, but has economic advantages, reactivity with polyethylene glycol polyhalohydrin ether (A), and the obtained strength. From the viewpoint of stable water solubility of the ethylene-based water-soluble resin and performance as a water treatment agent, alkyleneimine is more preferable, and ethyleneimine is more preferable.
  • polyethylene glycol polyhalohydrin ether (A) from polyethylene glycol (a) and epihalohydrin (b)
  • polyethylene glycol (a) is added with a blend of Blensted acid or Lewis acid as a catalyst. C, preferably at 50 to 100, may be reacted with epihalohydrin (b).
  • Lewis acid presnsted acid sulfuric acid, paratoluenesulfonic acid, perchloric acid, aluminum chloride, hydrofluoric acid, etc.
  • boron fluoride ethers are particularly preferable, and boron fluoride ethers are particularly preferable, in an amount of 0,0% to 0% by weight, preferably 0,0% by weight, based on polyethylene glycol (a).
  • Polyethylene glycol (a) and epihalohydrin (b) The amount of the ephalohydrin (b) is 1 to 100 mol, preferably 2 to 5 mol, per mol of the polyethylene glycol (a). That is, if the amount of the ephalohydrin (b) is less than 1 mol, unreacted polyethylene glycol (a) remains, and a water-soluble water-soluble resin meeting the object of the present invention cannot be obtained. On the other hand, if the amount exceeds 0 mol, gelation is apt to occur during the production of the water-soluble resin, which is not suitable.
  • the second method of the method for producing a water-based aqueous resin according to the present invention is a method of adding the aziridine compound (B) to the polyethylene glycol polyhalohydrin ether (A) or the aqueous solution obtained by the above-mentioned procedure to open the ring.
  • the weight ratio between the polyethylene glycol polyhalohydrin ether (A) and the aziridine compound (B) is preferably from 1 to 100,000, and more preferably from 1 to 10,000. 500, most preferably in the range of ⁇ 00 ⁇ 0 to 250.
  • the reaction is carried out in an aqueous solution having a final concentration of the obtained water-soluble resin of 5 to 100% by weight, preferably 20 to 70% by weight.
  • the temperature at which the compound is a ring-opening polymerization reaction eg if 0 ⁇ 200.C, preferably line Ukoto preferably at a temperature of at 50 ⁇ 0_Rei.
  • Final temperature in an aqueous solution of 5 wt% Not ⁇ Has a slow reaction and inadequate performance when used as a water treatment agent.
  • the temperature during the reaction is lower than 0 ° C, the reaction rate is slow.
  • the temperature exceeds 200 ° C it is difficult to control the reaction.
  • the water-soluble resin (I) obtained by this method can be adjusted to a wide range of molecular weights. For example, ⁇ , 000 to 200,000, preferably 50,000 to The viscosity of the aqueous solution of the cationic water-soluble resin (I>) is low, and therefore, it is suitable as a coagulant by producing it according to the purpose, and in a wide pH range. Demonstrate its effect.
  • a second method of the method for producing a water-soluble resin according to the present invention comprises: adding 100 parts by weight of the water-soluble resin obtained by the above procedure to ephalohydrin (C); At least one compound selected from the group consisting of water-soluble or water-dispersible polyfunctional epoxy compounds (D) is used. ⁇ It is achieved by reacting until it reaches 0-2,000 cps.
  • hydrin hydrin (C) used in this case are the same as those of the above-mentioned ephalohydrin (b), and epichlorohydrin is preferred from the viewpoint of industrial availability.
  • the water-soluble or water-dispersible polyfunctional epoxy compound (D) is not limited as long as it has two or more epoxy groups in the molecule and is water-soluble or water-dispersible.
  • Rudiglycidyl ether, polypropylene Water-soluble polyfunctional epoxy compounds such as glycol diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, etc.
  • Bisph a water-dispersible polyfunctional epoxy compound such as a ⁇ -nor type epoxy resin. Among them, the following equation ( ⁇ )
  • polyethylene glycol diglycidyl ether represented by the formula is easy to handle because it is water-soluble by itself, and the reaction with the water-soluble water-soluble resin (I) is possible even at low temperatures and occurs quickly. Therefore, it is preferable because the molecular weight can be easily adjusted, and a cationic water-soluble resin having a high molecular weight and a low viscosity aqueous solution can be obtained.
  • the amount of the ephalohydrin (C) and / or the water-soluble or water-dispersible polyfunctional epoxy compound (D) used in this reaction is based on 100 parts by weight of the water-soluble resin (I).
  • the amount is as described above, but if the amount is less than 0.0 parts by weight, no effect is observed, while if the amount exceeds 20 parts by weight, gelation occurs during the reaction. It is preferably used in the range of 0, 0 to 0 parts by weight, and in order to further enhance the effect as a water treatment agent, water-soluble or water-dispersible polyfunctional epoxidation. More preferably, the compound (D) is used alone in an amount of 0,1 to ⁇ 0 parts by weight.
  • the viscosity of the 2 Q% by weight aqueous solution of the obtained water-soluble resin is 25. In C, it reacts until it becomes ⁇ 00 ⁇ 2, OO Ocps. If the viscosity is less than 0 Ocps, the effect as a water treatment agent is insufficient, and conversely, even if it reacts to a viscosity exceeding 2, QQQcps. The effect as a water treatment agent does not improve, but only causes time and cost loss.
  • the cationic water-soluble resin (I) is adjusted to an aqueous solution of about 0 to 30% by weight, preferably 15 to 25% by weight, and ephalohydrin (C) and / or a water-soluble or water-dispersible polyfunctional epoxy compound is prepared.
  • (D) is added, and the reaction is preferably carried out at 0 to 80, preferably at 20 to ⁇ Q ° C, in order to make the reaction proceed smoothly.
  • the cationic water-soluble resin (II) obtained by this method has a molecular weight of, for example, 50,000 to 2,000,000, preferably ⁇ 100,000 to Q0,000, and is used as a water treatment agent in a wide pH range. The effect is higher than that of the cationic water-soluble resin (I).
  • the third method of the method for producing a water-soluble resin according to the present invention comprises: 99 to 99% by weight of the cationic water-soluble resin (II) obtained by the above procedure and polyalkyleneimine (E). ⁇ -99% by weight of a polycation component in 00 parts by weight of Epiha mouth hydrin (F) and Z or water-soluble or water-dispersible polyhydrin
  • the viscosity of a 20% by weight aqueous solution at 25 ° C in the range of 0 to 0 to 20 parts by weight, preferably 0 to 0 to 10 parts by weight, for the functional epoxy compound (G) is 0 to 0 parts by weight. 2. It is achieved by reacting until it reaches OOO cps.
  • the polyalkyleneimine (E) maintains the effect in a wide pH range when the obtained water-soluble resin is used as a water treatment agent, and furthermore, in an alkaline range.
  • polyalkyleneimine (E) examples include, for example, polyethyleneimine, polypropyleneimine, and polybutyleneimine.
  • polyethylene is preferably used. It is preferred to use imines. Also, its average molecular weight and Thus, it is suitable that the polyethyleneimine has a molecular weight of 1,000 or more, preferably 2,000 to 1,000,000.
  • the water-soluble resin component is adjusted to an aqueous solution of 0 to 30% by weight, preferably 15 to 25% by weight. Then, ephalohydrin (F) and ⁇ or a water-soluble or water-dispersible polyfunctional epoxy compound (G) are added, and the reaction is preferably carried out at 0 to 80 ° C, preferably 20 to 60 ° C.
  • the water-soluble water-treating agent ( ⁇ >) thus obtained has a molecular weight of, for example, 50,000 to 2,000,000, preferably ⁇ 100,000 to ⁇ 00000, and While maintaining the effect of the water-soluble resin (II) as a water treatment agent in a wide pH range, the effect in the alkaline range is enhanced.
  • the second and third production methods can use a water-soluble water-soluble resin (I) as a raw material and arbitrarily change its molecular weight as desired. ⁇ Accordingly, even if the molecular weight of the water-soluble resin (I) is reduced to obtain a high-concentration aqueous solution of the water-soluble resin (I), the water-treating agent can be obtained by applying the second and third production methods. The resulting water-soluble resins (II) and (III) have dramatically improved performance.
  • the water treatment agent of the present invention comprises a water-soluble water-soluble resin (1), a water-soluble water-soluble resin (II) and a water-soluble resin (111) obtained by the above method. At least ⁇ It contains a power-based resin.
  • the water treatment agent of the present invention is remarkable for the water treatment effect in a wide pH range, and is particularly low in water-soluble resin (II) and water-soluble resin (111).
  • the water treatment effect in a wide range of PH area is further enhanced by using one of them indispensable.
  • those using a cation-based water-soluble resin ( ⁇ ) as essential are those that have enhanced water treatment effects in alkaline treatment areas while maintaining high water treatment effects in a wide pH range. .
  • the water treatment agent of the present invention is particularly useful as a drainage improver, a filler, a dye, a pigment, a fine fiber retention improver and a flocculant for white water in papermaking in the papermaking industry, and an activity in industrial wastewater and sewage treatment. It is useful as a sludge flocculant and a dehydration accelerator. '
  • the resulting polyethylene glycol polychlorohydrin Dilute 1 603 with ion-exchanged water ,, 600 ⁇ , heat to 80 ° C, then add ethyleneimine 240 dropwise over 45 minutes, continue the reaction for 6 hours, It was confirmed by gas chromatography that the residual ethyleneimine was ⁇ ppm or less and the viscosity of the resin became constant, and the reaction was completed. Thus, a water-soluble water-soluble resin (I) of the present invention was obtained.
  • Example ⁇ ⁇ ⁇ ⁇ ⁇ was repeated except that the types of raw materials used, their amounts used, and the conditions for the reaction in Example ⁇ ⁇ ⁇ were as shown in Table ⁇ . ⁇ (7) was obtained.
  • the properties of the aqueous solutions of these resins are as shown in Table II.
  • Reaction time 6 8 6 6.5 4 5 Reaction temperature () 80 70 80 80 80 90 Viscosity of aqueous solution (B type) Resin solution obtained 16,700 480 680 9,380 2,060 18,100
  • a 20% by weight aqueous solution of polyethyleneimine having a molecular weight of 1,800 was charged in a flask with 3 QQ, ripened to 8 Q ° C, and polyethylene glycol polychloride obtained by repeating the same operation as in Example 1
  • a 2% by weight aqueous solution of phosphor ether was added dropwise over a period of 5 hours over a period of 5 hours, and a 50% aqueous sodium hydroxide solution was allowed to react for 6 hours while maintaining the pH of the system at 9.5 or more.
  • a soluble resin ( ⁇ ) was obtained.
  • the concentration of the obtained resin aqueous solution was 20% by weight, and the viscosity at 25 ° C was 465 cps.
  • the reaction rate of poly (ethylene glycol) polychloride-drine ether determined by analyzing chloride ions by ion chromatography was 52.3%.
  • Example 2 The same operation as in Example 2 was repeated to obtain polyethylene glycol polychlorohydrin ether.
  • a 40% by weight aqueous solution of polyethyleneimine having a molecular weight of 800 and a weight of 30% was charged into a flask, ripened to 8 CTC, and ripened to the above-mentioned polyethylene glycol polychlorohydrin ether.
  • a 40% by weight aqueous solution 2Q0if was added dropwise over 5 hours, and the mixture was reacted with a 50% by weight aqueous solution of sodium hydroxide while maintaining the pH of the mixture at 9.5 or more.
  • an ethylene glycol-propylene glycol block copolymer (molecular weight 7, 5) was prepared by copolymerizing ethylene glycol and propylene glycol at a weight ratio of 80 Z 20.
  • a comparative water-soluble resin (4) was obtained by repeating the same operation as in Example 5 except that (0)) was used.
  • the concentration of the obtained aqueous resin solution was 50% by weight, the viscosity at 25 ° C. was ⁇ 3,640 cps, and the viscosity of the aqueous solution adjusted to the concentration of 20% by weight was ⁇ 20 cp.
  • the reaction rate of polyalkyleneglycolpolychlorohydrin ether determined by analyzing chloride ions by ion chromatography was 82.2%. Met.
  • Example 2 The same operation as in Example 1 was repeated except that the types of raw materials used in Example III, the amounts used and the conditions for the reaction were as shown in Table 2, and the water-soluble resin for comparison ( 5) to (9) were obtained. The properties of the aqueous solutions of these resins were as shown in Table 2.
  • Example 8 the same operation as in Example 8 was repeated except that the types of raw materials used, the amounts used, and the conditions for the reaction were as shown in Table 3, and the cationic aqueous solution was repeated. Resins (9) to ( ⁇ 3) were obtained. The properties of the aqueous solutions of these resins were as shown in Table 3.
  • Epoxy compound (B) ( ⁇ ⁇ 1) / Epicro
  • Crosslinking agent amount (% by weight vs. resin solids) 0.5 / 1.4 3.3 0.01 7.2 11.0 Reaction temperature (° C) 60 60 25 25 25 Reaction time (hr) 2 3 6 & 6
  • the cation-based water-soluble resin 943 obtained in Example 5 was diluted with ⁇ 463 exchanged water and a 30% by weight aqueous solution of polyethyleneimine having a molecular weight of 70,0 Q0 ⁇ Q was added thereto with stirring to make it uniform. .
  • 0.65? (1.3% by weight of resin solids) of ethylene glycol diglycidyl ether was added, and after sufficiently stirring, the mixture was allowed to stand for 6 hours, thereby obtaining the water-soluble resin of the present invention ( ⁇ 4). I got The final viscosity was 425 CDS at 25 ° C.
  • Example ⁇ 4 the same operation as in Example ⁇ 4 was repeated, except that the types of raw materials used, the amounts used, and the conditions for the reaction were as shown in Table 4, and the cationic aqueous solution was repeated.
  • the properties of the resins ( ⁇ 5) to ( ⁇ 9) were obtained.
  • the properties of the aqueous solutions of these resins were as shown in Table 4.
  • Rehydrin ( ⁇ 22) Amount of cross-linking agent (% by weight to resin solids) 0.5 / 1.4 3.3 0.01 7.2 11.0 Reaction temperature (° C) 60 60 25 25 25 Reaction time () 2 3 6 6 6
  • Example 8 In place of the polycation component consisting of 86% by weight of the cationic water-soluble resin (6) and 14% by weight of polyethyleneimine used in Example 8, instead of the polycation component, 99.5% by weight of the water-soluble resin of the cationic type (6) % Of polyethyleneimine and 0.5% by weight of polyethyleneimine, and the same operation as in Example 8 was repeated to obtain a water-soluble resin for comparison (1%).
  • the final viscosity is 25. It was 305 cps at C.
  • the cationic water-soluble resin (6) 0.5 wt.
  • the polyhydric component composed of 86% by weight and 4% by weight of polyethyleneimine used in Example 18 The same operation as in Example 8 was repeated except that a polyolefin component consisting of 99.5% by weight of polyethyleneimine and 99.5% by weight of polyethyleneimine was used to obtain a water-soluble resin for comparison ( ⁇ 2).
  • the final viscosity is 25. It was 720 cps at C.
  • the cationic water-soluble resin (6> 107.5 if) obtained in Example 6 was diluted to a concentration of 20% by weight with ion-exchanged water (107.5 if) to form a polyethylene resin having a molecular weight of 20 and Q00 with stirring. Add 353 of a 20% by weight aqueous solution of min to make the mixture homogeneous, and add polyethylene glycol to polyglycidyl ether;
  • the water treating agent composed of the comparative water-soluble resins (5), (7), and (9) had a small flocculating effect and was not capable of dehydration filtration.
  • a cationic water-soluble resin capable of forming a high-concentration aqueous solution in a wide molecular weight range can be quickly and safely produced in a simple process.
  • the cationic water-soluble resin (I) obtained by the second method can be adjusted to a wide range of molecular weight, and is suitable for use in a wide pH range as a water treatment agent such as a flocculant.
  • the cationic water-soluble resin (II) obtained by the second method can obtain particularly high-molecular-weight aqueous resin solutions with low viscosity.
  • the effect as a water treatment agent in a wide pH range is enhanced by the water-soluble resin (I), and is suitable as a drainage improver in the papermaking industry and an industrial wastewater treatment agent.
  • the strength-based water-soluble resin (m) obtained by the third method is a strength-based strength of the strength-based water-soluble resin, and is a water treatment agent with a wide pH range. In addition to being able to be used in the field, the effect is remarkably exhibited especially in the region of resistance.
  • the water treatment agent of the present invention is a water-soluble resin as described above.
  • (I), (II) and (III), which contain at least two kinds of power-sensitive resins, can be arbitrarily selected for the kind and the use ratio according to a desired purpose. It can be used for a wide range of water treatment applications, and is particularly suitable as a water treatment agent for papermaking in the papermaking industry and as a flocculant for activated sludge of industrial wastewater and sewage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Epoxy Resins (AREA)
  • Paper (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

m 田 β 力チ才ン系水溶性樹脂の製造方法および該樹脂を 含有してなる水処理剤
技術分野
本発明は、 力チ才ン系水溶性樹脂の製造方法および該樹 脂を含有してなる水処理剤に関するおのである。 詳しく述 ベると、 幅広い分子量域で高濃度の水溶性とすることが可 能で、 製紙工業における抄紙時の瀘水性や歩留り向上剤と しての用途を始め、 凝集剤、 脱水促進剤としての用途に好 適な力チ才ン系水溶性樹脂を簡単な工程で迅速かつ安全に 製造できる方法ならびに該製造方法によって得られ、 前記 用途に幅広い Ρ Η頜域で効果を発揮し得る水処理剤に関す るちのである。
背景技術
ポリアルキレンィミンが、 製紙工業において抄紙時の瀘 水性向上剤ゃ充塡剤、 染料、 顔料、 微細繊維等の歩留り向 上剤として、 また白水の凝集剤として、 さらには工業廃水 下水処理における活性汚泥等の凝集剤および脱水促進剤と して有用なことは公知のことである。
しかしながら、 ポリアルキレンイミンは、 これらの用途 に必須の条件の一つである高分子量化が困難で、 しかも非 常に高価なものであり、 また例えば、 製紙用濾水性歩留性 向上剤として使用した場合、 中性域のみでしか効果が得ら れず、 広範囲の P H鎮域で安定した効果が得られないとい う欠点を有している。
このような欠点を改良したものとして D E 2 4 , 3 6 , 3 8 6明細書記載の窒素含有縮合生成物が提案されている, この明細書によると、 ポリアルキレンイミンをポリアルキ レングリコールポリクロルヒドリンエーテルで架橋するこ とに り高分子量化が可能で、 経済的かつ幅広い P H域で 効果がある水溶性の窒素含有縮合生成物が得られるとして いる。
しかしながら、 実際には、 ポリアルキレンィミンとポリ エチレングリコールポリハロヒドリンエーテルとの反応が 遅く、 製造に長時間を要したり、 また架橋反応の制御や希 望の分子量のものを得るのが困難で水処理剤としての性能 が不充分であつたり、 さらには低濃度の樹脂水溶液しか得 られないという問題点を有するものであった。 加えて、 安 定な製造には均一な P Hで反応を行なう必要があり、 その ためにアル力リ性物質の添加を必要とする問題点も有して いる。
また、 ポリエチレングリコール -ポリプロピレングリコ ールボリクロルヒドリンとエチレンィミンとの反応により 得られる水溶性の架橋した窒素含有縮合生成物も知られて いる ( D E 2 , 638, 955明細書〉 。 しかしながら、 このよう な窒素含有縮合生成物も、 溶解度が不充分で低濃度の樹脂 水溶液しか得られず、 また前記の水処理剤としては満足な 性能が得られないという問題点があつた。
本発明は、 上記問題点を解消するものであり、 したがつ て本発明の目的は幅広い分子量域で高濃度の水溶液とする ことが可能な力チ才ン系水溶性樹脂を簡単な工程で迅速か つ安全に製造できる方法ならびに幅広い P H頜域で著しい 効果を発揮し得る水処理剤を提供することにある。
発明の開示
上記目的は、 (A〉 ( a〉 ポリエチレングリコール 1モ ル当り、 ( b ) ェピハロヒドリン Ί〜 Ί 0モルを反応して 得られるポリエチレングリコールポリハロヒドリ ンエーテ ル Ί 00重量部に、 ( B〉 アジリジン化合物 0. 1〜 Ί 0, 000重量部を反応することを特徴とする力チ才ン系水溶 性樹脂の製造方法により達成される。
上記目的はさらに、 ( A ) ( a〉 ポリエチレングリコー ル Ίモル当り ( b ) ェピハロヒドリン Ί〜 ^! 0モルを反応 して得られるポリエチレングリコールポリハロヒドリ ンェ 一テル 1 00重量部に、 ( B ) アジリジン化合物 0 , つ 〜 1 0, 0〇 0重量部を反応して得られる力チ才ン系水溶性 樹脂 ( I 〉 に、 ( C〉 ェピハロヒドリンおよび ( D〉 水溶 性もしくは水分散性多官能エポキシ化合物よりなる群から 選ばれた少なく とも 1種のもの 0. 0 Ί〜20重量部を、 25でにおける 20重量%水溶液の粘度が Ί 00〜2, 0 00 cps になるまで反応させることを特徴とする力チ才ン 系水溶性樹脂の製造方法によっても達成される。 - 上記目的は、 (A) ( a〉 ポリエチレングリコール Ίモ ル当り ( b〉 ェピハ口ヒドリン Ί〜 Ί 0モルを反応して椁 られるポリエチレングリコールポリハロヒドリンエーテル 100重量部に、 ( B〉 アジリジン化合物 0, 1〜10,
000重量部を反応させて得られる力チ才ン系 溶性樹脂 ( ェ ) に、 ( C〉 ェピハロヒドリンおよび ( D )水溶性も しくは水分散性多官能エポキシ化合物 0, 0 Ί〜20重量 部を反応させて得られる力チ才ン系水溶性樹脂によっても 達成される。
上記目的は、 ( A ) ( a ) ポリエチレングリコール Ίモ ル当り ( b ) ェピハロヒドリン Ί〜Ί 0モルを反応して得 られるポリエチレングリコールポリ八ロヒドリンエーテル
Ί 00重量部に、 (Β) アジリジン化合物 0. 1〜1 Q, 000重量部を反応して得られる力チ才ン系水溶性樹脂 ( I ) 99〜 Ί重量%および ( E ) ポリアルキレンィミン 1〜99重量%からなるポリ力チ才ン成分 Ί 00重量部に 対し、 ( F) ェピハロヒドリンおよび (G) 水溶性ないし 水分散性多官能エポキシ化合物よりなる群か 還ばれた少 なくとも Ί種のものを 0, 01〜20重量部の範囲で 25 における 2 Q重量%水溶液の粘度が 1 Q 0〜 20 Qcps になるまで反応させることを特徴とする力チ才ン系水溶性 樹脂の製造方法によっても達成される。
上記目的は、
( I ) ( A ) ( a ) ボリエチレングリコール Ίモル当り ( b ) ェピハロヒドリン 1〜 1 0モルを反応して得られる ポリエチレングリコールポリハロヒドリンエーテル Ί 00 ¾に、 ( B ) アジリジン化合物 0. Ί〜 Ί 〇, 000 重量部を反応して得られる力チ才ン系水溶性樹脂 ( I 〉 9 9〜 Ί重量? および ( E〉 ポリアルキレンィミン 1〜 99 重量部からなるポリ力チ才ン成分 Ί 00重量部に対し、 ( F ) ェピハロヒドリンおよび ( G ) 水溶性ないし水分散 性多官能エポキシ化合物よりなる群から選ばれた少なく と も 1種のものを 0. 01〜 20重量部の範囲で反応させて 得られるカチオン系水溶性樹脂によっても達成される。
上記目的は、
( I ) ( A ) ( a〉 ポリエチレングリコール Ίモル当り ( b ) ェピハロヒドリン Ί〜 Ί 0モルを反応して得られる ポリエチレングリコールポリハロヒドリンエーテル Ί 00 重量部に、 ( B ) アジリジン化合物〇, Ί〜 Ί 0000重 量部を反応して得られる力チ才ン系水溶性樹脂、
( II ) 該カチ才ン系水溶性樹脂 ( I ) に ( C ) ェピハロヒ ドリンおよび ( D ) 水溶性もしくは水分散性多官能ェポキ シ化合物よりなる群から選ばれた少なくとも Ί種のもの 0. 0 Ί〜 20重量部を 25°Cにおける 20重量%水溶液の粘 度が Ί 00〜 2 , 0〇 Ocps になるまで反応させて得られ るカチ才ン系水溶性樹脂および
(111〉 該カチオン系水溶性樹脂 ( I 〉 99〜 Ί重量%およ び ( E〉 ポリアルキレンィミンつ 〜 99重量%からなるポ リカチ才ン成分 Ί 00重量部に対し ( F) ェピハロヒドリ ンおよび (G〉 水分散性多官能エポキシ化合物を 0. 01 〜 20重量部の範囲で 25でにおける 20重量? 水溶液の 粘度が Ί 00〜2, 00 Ocps になるまで反応してなる力 チ才ン系水溶性樹脂よりなる群から選ばれた少なくとも Ί 種のカチオン系樹脂を含有してなる水処理剤によっても達 成される。
図面の簡単な説明
第 Ί図は、 本発明方法で得られるカチオン系水溶性樹脂 のパルプに対する樹脂添加量と濾水量との関係を示すグラ フである。 .
第 2図は、 本発明の他の方法で得られるカチオン系水溶 性樹脂のパルプに対する樹脂添加量と濾水量との関係を示 第 3図は、 本発明方法で得られるカチオン系水溶性樹脂 の P Hと透過率との関係を示すグラフである。 また、
第 4図は、 本発明方法で得られる力チ才ン系水溶性樹脂 の添加量と脱水速度との関係を示すグラフである。
発明を実施するための最良の形態
本発明で使用されるポリエチレングリコール ( a } とし ては、 その分子量が 200〜 100 , 0Q Qの範囲のもの が好ましく、 より好ましくは 600〜50, 000、 最も 好ましくは 1 , 0 Q 0〜20, Q〇0のものが好適に用い られる。 すなわち、 分子量が 20 Q未満では、 カチオン系 水溶性樹脂を製造する際にゲル化し易く、 一方、 Ί 0 0 , 0◦ 0を越える場合にば、 ェピハロヒドリ ンとの反応性が 低くなり、 本発明の目的に合致した力チ才ン系水溶性樹脂 を得られなくなるからである。
本発明で使用されるェピハロヒドリン ( b ) の具体例と しては、 例えば、 ェピクロルヒドリン、 ェピブロムヒドリ ン等が挙げられるが、 工業上の入手の容易性からェピクロ ルヒドリンを用いることが好ましい。
本発明の製造方法においてポリエチレングリコールポリ ハロヒドリンエーテル ( A ) の合成にはポリエチレングリ コール ( a ) を用いることが必須であるが、 ポリエチレン グリコール ( a〉 の代りに他のポリアルキレングリコール、 例えばポリプロピレングリコールやエチレングリコール - プロピレングリコール共重合体を用いた場合は、 水溶性が 低下したり、 水溶性であっても水溶液の粘度が高くなると ともに、 水処理剤としての効果も著しく劣ったものとなる ので好ましくない。
本発明において用いられるアジリジン化合物 ( B ) とし ては、 Ί 分子中にアジリジン基を Ί 個有するものであれば、 特に制限されることなく用いられる。 例えば、 アジリジン 環に置換基を有するものや、 あるいはこれらアジリジン化 合物の 2種以上が用いられてもよい。
このようなアジリジン化合物の具体例としては、 ェチレ ンィミン、 プロピレンィミン、 ブチレンィミン、 N - ヒド ロキシェチルエチレンィミン、 N - シァノエチルエチレン ィミン、 N -メチルエチレンィミン、 N -ェチルエチレン ィミン、 N - フエニルエチレンィミン、 N - ァセチルェチ レンイミン、 N -メタクリ ロイルアジリジン、 3 - アジリ ジニルメチルプロピオネー卜、 3 - アジ-リジニルェチルメ タクリ レー卜等が挙げられる。
本発明において用いられるアジリジン化合物 ( B〉 は上 記に含まれるようなものであるが、 経済上の利点、 ポリエ チレンダリコールポリハロヒドリンエーテル ( A〉 との反 応性、 得られる力チ才ン系水溶性樹脂の安定な水溶性や水 処理剤としての性能から好ましくはアルキレンィミン、 よ り好ましくはエチレンィミンである。
ポリエチレングリコール ( a〉 とェピハロヒドリン ( b〉 からポリエチレングリコールポリハロヒドリンエーテル ( A ) を得るには、 ポリエチレングリコール ( a ) にブレ ンステッ ド酸やルイス酸を触媒として加え、 3 0〜 1 5 0 。C、 好ましくは 5 0〜 1 0 0ででェピハロヒドリン ( b〉 とを反応させればよい。 ルイス酸ゃプレンステッ ド酸とし ては硫酸、 パラトルエンスルホン酸、 過塩素酸、 塩化アル ミニゥム、 フッ化ホウ素エーテル鍩体等が挙げられるが、 なかでもフッ化ホウ素エーテル鍩体が特に好ましい。 その 使用量は、 ポリエチレングリコール ( a〉 に対して 0 , 0 Ί 〜 Ί重量%、 好ましくは 0 , 0 2〜 0 . 5重量 9 である。 ポリエチレングリコール ( a ) とェピハロヒドリン ( b〉 の割合は、 ポリエチレングリコール ( a ) 1モル当りェピ ハロヒドリ ン ( b ) が 1〜 Ί 0モル、 好ましくは 2〜5モ ルの量である。 すなわち、 ェピハロヒドリン ( b〉 の量が 1モル未満では未反応のポリエチレングリコール ( a ) が 残存し、 本発明の目的に合致する力チ才ン系水溶性樹脂が 得られず、 水処理剤としての性能も不充分なものとなる。 逆に、 Ί 0モルを越える場合には、 力チ才ン系水溶性樹脂 の製造時にゲル化を生じ易いので適当ではない。
本発明の力チ才ン系水溶液樹脂の製造方法のうちの第 Ί の方法は、 前記手順で得たポリエチレングリコールポリハ ロヒドリ ンエーテル ( A ) またはその水溶液にアジリジン 化合物 ( B〉 を加えて開環付加重合反応させることによつ て達成される。 その際、 ポリエチレングリコールポリハロ ヒドリ ンエーテル ( A〉 とアジリジン化合物 ( B ) の重量 比は Ί Ο ΟΖΟ. 1〜1 0, 000好ましくは 1 0071 〜500、 最も好ましくは Ί 00ΖΊ 0〜 250の範囲で 選ばれる。 すなわち、 アジリジン化合物が 0. 1未満では 水処理剤として用いたときに性能か不充分であり、 一方、 0 , 000を越えると、 経済的に不利である。 また反応 は、 得られる力チ才ン系水溶性樹脂の最終濃度が 5〜 Ί 0 0重量? の水溶液、 好ましくは 20〜 70重量? の水溶液 で、 通常アジリジン化合物を開環重合反応させる温度、 例 えば 0〜200。C、 好ましくは 50〜Ί 0〇での温度で行 うことが好ましい。 最終温度が 5重量%未篛の水溶液中で は反応が遅く、 水処理剤として用いたとき性能が不充分で ある。 また、 反応時の温度が o °c未篛では反応速度が遅く, 一方、 2 0 0 °Cを越えると反応の制御が困難である。
この方法によって得られる力チ才ン系水溶性樹脂 ( I ) は、 幅広い分子量のものに調節することが可能で、 例えば. Ί , 0 0 0〜2 0 0万、 好ましくは 5 0 0 0〜 Ί 0 0万で あり、 しかも該カチオン系水溶性樹脂 ( I 〉 の水溶液は低 粘度である。 したがって、 その目的に応じて製造すること により、 凝集剤として好適であり、 しかも幅広い P H鎮域 でその効果を発揮する。
本発明の力チ才ン系水溶性樹脂の製造方法のうちの第 2 の方法は、 前記手順で得た力チ才ン系水溶性樹脂 ( 1 ) 1 0 0重量部にェピハロヒドリン ( C ) および水溶性もしく は水分散性多官能エポキシ化合物 ( D〉 よりなる群から選 ばれた少なくとも 1 種のもの 0 , 0 1 〜 2 0重量部を 2 5 °Cにおける 2 0重量%水溶液の粘度が Ί 0 0〜 2 , 0 0 0 cps になるまで反応させることにより達成される。
この際甩ぃられるェピハ口ヒドリン ( C ) の具体例は、 前記ェピハロヒドリン ( b〉 と周様であり、 工業上の入手 の容易性からェピクロルヒドリ ンが好ましい。
水溶性もしくは水分散性多官能エポキシ化合物 ( D ) と しては、 分子中にエポキシ基を 2個以上有し、 かつ水溶性 もしくは水分散性のものであれば制限されず、 例えばポリ ェチレングリコ一ルジグリシジルエーテル、 ポリプロピレ ングリコールジグリシジルエーテル、 グリセロールポリグ リシジルエーテル、 卜リメチロールプロパンポリグリシジ ルエーテル、 ジグリセロールポリグリシジルエーテル、 ポ リグリセロールポリグリシジルエーテル、 ソルビ卜ールポ リグリシジルエーテル等の水溶性多官能エポキシ化合物、 ビスフ: πノール型エポキシ樹脂などの水分散性多官能ェポ キシ化合物が挙げられる。 この中でも下記式 ( Ί )
H 2 ( )
Figure imgf000013_0001
( n=1 〜30)
で表されるポリエチレングリコールジグリシジルエーテル を用いることがそれ自身水溶性であるために取扱いが容易 で、 力チ才ン系水溶性樹脂 ( I ) との反応が低温でも可能 でしかも迅速に起るため分子量の調節が容易であり、 しか も高分子量でかつその水溶液が低粘度のカチオン系水溶性 樹脂が得られるので、 好ましい。
この反応の際に用いられるェピハロヒドリン ( C ) およ び/または水溶性もしくは水分散性多官能エポキシ化合物 ( D ) の量は、 力チ才ン系水溶性樹脂 ( I ) Ί 0 0重量部 に対して前記の量の通りであるが、 その使用量が〇 . 0 Ί 重量部未満では効果がみられず、 一方、 2 0重量部を越え る量では反応時にゲル化が生じる。 0, Ί〜 Ί 0重量部の 範囲で用いるのが好ましく、 水処理剤としての効果をより 高めるために、 水溶性もしくは水分散性多官能エポキシ化 合物 ( D〉 0, 1〜 Ί 0重量部をを単独で用いるのがより 好ましい。
反応は得られる力チ才ン系水溶性樹脂の 2 Q重量%水溶 液の粘度が 25。Cにおいて Ί 00〜 2 , OO Ocps になる まで反応するが.、 0 Ocps 未満の粘度の場合は、 水処理 剤としての効果が不充分で、 逆に 2 , QQQcps を越える 粘度まで反応しても水処理剤としての効果は向上せず、 単 に時間的、 絰済的擤失を生じるだけである。
反応に際し、 カチオン系水溶性樹脂 ( I ) を Ί 0〜30 重量%、 好ましくは 1 5〜25重量%の水溶液に調整し、 ェピハロヒドリン (C) および/または水溶性もしくは水 分散性多官能エポキシ化合物 ( D ) を加え、 0〜80で、 好ましくは 20〜 δ Q °Cで行なうのが反応を円滑に進行さ せる上で好ましい。
この方法により得られるカチオン系水溶性樹脂 ( II } は 例えば 5万〜 200万、 好ましくは Ί 0万〜 Ί 0Q万の分 子量を有し、 また幅広い P H鎮域での水処理剤としての効 果がカチオン系水溶性樹脂 ( I ) に比べてより高められた ちのである。
本発明の力チ才ン系水溶性樹脂の製造方法のうちの第 3 の方法は、 前記手順で得たカチオン系水溶性樹脂 ( II ) 9 9〜 Ί重量%およびポリアルキレンィミン ( E ) Ί〜 99 重量%からなるポリカチオン成分 00重量部にェピハ口 ヒドリン ( F ) および Zまたは水溶性もしくは水分散性多 官能エポキシ化合物 ( G〉 を 0 , 0 Ί 〜 2 0重量部、 好ま しくは 0 , Ί 〜 1 0重量部の範囲で 2 5 °Cにおける 2 0重 量%の水溶液の粘度が Ί 〇 0〜 2, O O O cps になるまで 反応させることにより達成される。
この際、 ェピクロルヒドリン ( F ) およびノまたは水溶 性もしくは水分散性多官能エポキシ化合物 ( G〉 の上記範 囲の量で用いる理由および 2 5 °Cにおける 2 0重量%の水 溶液の粘度が上記範囲になるまで反応させる理由はカチ才 ン系水溶性樹脂 ( II ) を得る場合と周様である。
この反応において、 ポリアルキレンィミン ( E ) は得ら れるカチ才ン系水溶性樹脂を水処理剤に用いる際に幅広い P H頜域での効果を維持しながら、 しかもアル力リ性頜域 での効果をより高める成分で、 ポリ力チ才ン成分中、 上記 範囲の量、 好ましくは 5〜 7 0重量%の量で用いられる。 ポリ アルキレンィミン ( E ) の使用量がポリ力チ才ン成分 中 1 重量%未満の湯合は、 ポリアルキレンィミン ( E ) を 用いる効果が全くみられず単にコス 卜上昇を招くだけであ り、 一方、 9 9重量%を越える場合には幅広い P H鎮域で 水処理剤としての効果を発揮し得る力チ才ン系水溶性樹脂 が得られなくなる。 ポリ アルキレンィミン ( E ) の具体例 としては、 例えばポリエチレンィミン、 ポリプロピレンィ ミン、 ポリプチレンイミン等が挙げられるが、 本発明にお いては、 特に優れた水処理剤を得るうえで、 ポリエチレン イミンを用いることが好ましい。 また、 その平均分子量と しては、 1 , 000以上、 好ましくは 2 , 000〜Ί ΟΟ, 000のボリエチレンィミンであるのが好適である。 また、 力チ才ン系水溶性樹脂 ( II ) を製造する方法におけるのと 周じ理由からポリ力チ才ン成分を Ί 0〜30重量 、 好ま しくは 1 5〜 25重量%の水溶液に調整し、 ェピハロヒド リン ( F ) および Ζまたは水溶性もしくは水分散性多官能 エポキシ化合物 (G) を加え、 0〜80°C, 好ましぐは 2 0〜60°Cにて行なうのが好ましい。
このようにして得られた力チ才ン系水溶性水処理剤 ( ΠΙ〉 は、 例えば 5万〜 200万、 好ましくは Ί 0万〜 Ί 00万 の分子量を有し、 力チ才ン系水溶性樹脂 ( II ) の幅広い P H頜域での水処理剤としての効果を維持しながら、 しかも アルカリ性領域での効果が高められている。
これら本発明の製造方法のうち、 第 2および第 3の製造 方法は、 力チ才ン系水溶性樹脂 ( I ) を原料として用いて、 その分子量を所望に応じて任意に変更することができる σ したがって、 力チ才ン系水溶性樹脂 ( I ) を高濃度の水溶 液として得るためにその分子量を低分子量としても、 第 2 および第 3の製造方法を適用することにより、 水処理剤と しての性能が飛躍的に高められた力チ才ン系水溶性樹脂 ( II ) および (III) を得ることができる。
本発明の水処理剤は、 前記の方法で得られた力チ才ン系 水溶性樹脂 ( 1〉 、 力チ才ン系水溶性樹脂 ( II ) および力 チ才ン系水溶性樹脂 (111〉 から違ばれる少なく とも Ί種の 力チ才ン系樹脂を含有してなるものである。 本発明の水処 理剤は幅広い p H鎮域での水処理効果に慶れており、 特に 力チ才ン系水溶性樹脂 ( II ) および力チ才ン系水溶性樹脂 ( 111 ) の少なく とも一方を必須に用いたものは幅広い P H 鎮域での水処理効果が一層高められている。 さらに、 カチ オン系水溶性樹脂 ( ΠΙ ) を必須に用いたものは、 幅広い P H頜域での高い水処理効果を維持しながら、 アルカリ性鎮 域での水処理効果がより高められたものである。
本発明の水処理剤は、 特に製紙工業における抄紙時の濾 水性向上剤、 充塡剤、 染料、 顔料、 微細繊維の歩留り向上 剤および白水の凝集剤として、 また工業廃水および下水処 理における活性汚泥の凝集剤、 脱水促進剤として有用なも のである。 '
以下、 実施例を挙げて本発明を具体的に説明するが、 こ れにより本発明はなんら制限を受けものではない。
実施例 Ί
滴下ロー 卜、 攪拌機、 温度計および還流冷却器を備えた フラスコに分子量 Ί , 8 0 0のポリエチレングリコール Ί , 0 0 0 3を仕込み、 6 5 °Cに加熱した。 触媒として三フッ 化ホウ素ェ一テラー 卜 2 , を加えたのち、 ェピクロル ヒドリン Ί 1 3 . Ί SPを 2 0分間にわたって滴下し、 さら に 4 . 5時間反応を行なうことによりポリエチレングリコ 一ルポリクロルヒドリンエーテルを得た。
得られたポリエチレングリコールポリクロルヒ ドリンェ 一テル 1 6 0 3をイオン交換水 Ί , 6 0 0 ^で希釈し、 8 0 °Cに加熱し、 ついでエチレンィミン 2 4 0 を 4 5分間 にわたつて滴下し、 6時間反応を続けて、 ガスクロマ卜グ ラフィ一で残存エチレンィミンが Ί ppm 以下でかつ樹脂の 粘度が一定になったことを確認して反応完了とし、 本発明 の力チ才ン系水溶性樹脂 ( I ) を得た。
得られた樹脂水溶液の濃度は、 2 0重量? で 2 5でにお ける粘度 ( B型〉 は、 3 6 0 cps であった。 また、 イオン クロマ卜グラフィ一でクロルイオンを分析することにより 求めたポリエチレングリコールポリクロルヒドリンエーテ ルの反応率は、 9 5 . 2 %であった。
実施例 2〜
実施例 Ί において用いた原料の種類とその使用量および 反応の際の条件を第 Ί表に示したとおりとした以外は.、 実 施例 Ί と同様の操作を繰り返してカチオン系樹脂 ( 2 ) 〜 ( 7 ) を得た。 これら樹脂の水溶液の性状は、 第 Ί表に示 したとお であった。
第 Ί 表 実 施 例 2 3 4 5 6 7 カチ才ン 水溶性樹脂 (2) (3) (4) (5) (6) (7) ポリエチレングリコ一 /レポリロクロル
ヒ卜リノエ一アルの台成
用いたポリエチレングリコールの分子量 1,800 1,000 3,800 7,500 7,500 12,980
Λ|、ソ丄 7 レノノ ノ ~ 1 /レ Ζ 丄 Lノ ノレ 1/2.2 1/1.6 1/2.2 1/2.2 1/2.2 1/3.0 ヒドリン使用比率(モル比〉
触 媒 一 フ ッ 化 ホ ウ 素 エ ー テ ル 錯 体 一
触媒 エピクロルヒドリン使用比率(モル比) 1/83 1/115 1/20 1/20 1/20 1/10 反応時間 (hr) 4.5 3 1 5 3 3 反応温度 ( ) 65 65 80 75 75 80 力チ才ン系水溶性樹脂の台成
ポリアルキレングリコ一ルポリクロルヒドリ 40/60 40/60 50/50 50/50 70/30 50/50 ンエーテル/エチレンィミン使用比率(重量比)
最終濃产 (電鼂。も、 40 20 30 50 40 60 反応時間 ( ) 6 8 6 6.5 4 5 反応温度 ( ) 80 70 80 80 80 90 水溶液粘度(B型) 得られた樹脂液 16, 700 480 680 9,380 2,060 18,100
( c ps) [ 25 ] 20%水溶液 ' 700 疆 202 63 128 69 ポリアルキレングリコ一ルポリクロルヒドリン 94.3 94.1 98.9 90.0 98.2 90.5 エーテルの反応率(%)
比較例 1
分子量 1 , 8 0 0のポリエチレンィミンの 2 0重量%水 溶液 3 Q Q をフラスコに仕込み、 8 Q °Cに加熟し、 実施 例 1 と同様の操作を繰り返して得たポリエチレングリコー ルポリクロルヒドリンエーテルの 2 Q重量%水溶液 2 0 0 ^を 5時間にわたって滴下し、 5 0 %水酸化ナ卜リゥム水 溶液で系の P Hを 9 . 5以上に保ちながら 6時間反応させ ることにより比較用水溶性樹脂 ( Ί ) を得た。 得られた樹 脂水溶液の濃度は 2 0重量%で 2 5 °Cにおける粘度は 4 6 5 cps であった。 またイオンクロマ卜グラフィ一でクロル イオンを分析することにより求めたボリエチレングリコー ルポリクロル匕ドリンエーテルの反応率は 5 2 . 3 %であ つた。
比較例 2
実施例 2と同様の操作を繰り返してポリエチレングリコ 一ルポリクロルヒドリンエーテルを得た。
分子量 Ί , 8 0 0 のポリエチレンィミンの 4 0重量% 水溶液 3 0 Q をフラスコに仕込み、 8 CTCに加熟し、 上 記ポリエチレングリコールポリクロルヒドリンエーテルの
4 0重量%水溶液 2 Q 0 if を 5時間にわたって滴下し、 5 0重量%水酸化ナトリウム水溶液で系の P Hを 9 . 5以上 に保ちながら反応させたところ、 途中でゲル化した。
比較例 3
実施例 4と同様の操作を繰り返してポリエチレングリコ ールポリクロルヒドリ ンエーテルを得た。
分子量 1 , 2 0〇のポリエチレンィミンの 3 0重量? 水 溶液 2 0 0 2をフラスコに仕込み、 8 0 °Cに加熱し、 上記 ポリエチレングリコールポリクロルヒドリンエーテルの 3 0重量%水溶液 2 0 0 9tを 5時間にわたって滴下、 5 0重 量%の水酸化ナ卜リウム水溶液で系の P Hを 9 . 5以上に 保ちながら 6時間反応をさせることにより比較用水溶性樹 脂 ( 3 ) を得た。 得られた樹脂水溶液の濃度は 3 0重量% で 2 5 °Cにおける粘度は 7 9 0 cps 2 0重量%に調整した 水溶液の粘度は 2 Ί O cps であった。 また、 クロルイオン を分析することにより求めたポリエチレングリコールポリ クロルヒドリンエーテルの反応率は 7 9 . 6 %であった。 比較例 4 '
実施例 5において用いたポリエチレングリコールの代わ りに、 エチレングリコールとプロピルレングリコールとを 重量比が 8 0 Z 2 0の比率で共重合したエチレングリコー ル - プロピレングリコールブロック共重合体 (分子量 7 , 5 0 0 ) を用いた以外は、 実施例 5 と同様の操作を繰り返 して比較用水溶性樹脂 ( 4 ) を得た。 得られた樹脂水溶液 の濃度は 5 0重量%で 2 5 °Cにおける粘度は Ί 3 , 6 4 0 cps 、 2 0重量%の濃度に調整した水溶液の粘度は Ί 2 0 c p であった。 また、 イオンクロマ 卜グラフィ一でクロル イオンを分析することにより求めたポリアルキレングリコ 一ルポリクロルヒドリンエーテルの反応率は、 8 2 . 2 % であった。
比較例 5〜 9
実施例 Ί において用いた原料の種類とその使甩量および 反応の際の条件を第 2表に示した通,りとする以外は実施例 1 と同様の操作を繰り返して、 比較用水溶性樹脂 ( 5 ) 〜 ( 9 ) を得た。 これら樹脂の水溶液の性状は第 2表に示し た通りであった。
(以下余白〉
第 2 表
Figure imgf000023_0001
実施例 8
実施例 5で得られた力チ才ン系水溶性樹脂 2 0 0 を 2 Q重量%濃度にまでイオン交換水 3 0 0 3にて希釈し、 撹 拌しながらエチレングリコールジグリシジルエーテル ( ( Ί 〉 式における η = Ίのもの) Ί . 3 Sf ( 1 . 3重量0 /0 対樹脂固形分〉 を加えた。 その後、 2 5 °Cで 6時間放置す ることにより本発明のカチオン系水溶性樹脂 ( 8 ) を得た 最終粘度は 2 5 °Cで 3 8 5 cps であった。
実施例 9〜 Ί 3
実施例 8において、 用いた原料の種類とその使用量およ び反応の際の条件を第 3表に示した通りとした以外は、 実 施例 8と同様の操作を繰り返してカチオン系水溶性樹脂 ( 9 ) 〜 ( Ί 3 ) を得た。 これら樹脂の水溶液の性状は第 3表に示した通りであった。
(以下余白)
3 ハ
実 施 例 y 1 U 1 Ί 12 13 カチ才ン釆水溶性樹脂 ( 9 ) (10) (11) (12) (13) 原料に用いた力チ才ン系水溶性樹脂 (5) (5) (6) (6) (6) 用いたェピハロヒドリン エチレングリコ ェピクロル ポリエチレングリコ一ルジグリ .
(C)および または水溶 一ルジグリシジ ヒドリン シジルエール
性もしくは水分散性多官能 ルエーテル
エポキシ化合物(B) (ΙΊ二 1)/ェピクロ
ルヒドリン (ϊ\=22)
架橋剤量(重量%対樹脂固形分) 0.5/1.4 3.3 0.01 7.2 11.0 反応温度(°C) 60 60 25 25 25 反応時間 (hr) 2 3 6 & 6
B型粘度 (cps) [25 °C] 420 400 130 310 1750
比較例 1 0
実施例 6で得られたカチオン系水溶性樹脂 Ί 00 を 2 Q重量%濃度にまでイオン交換水 Ί 00 にて希釈し、 攪 拌しながらポリエチレングリコールポリグリシジルエーテ ル ( n = 22 ) 2. 5 ( 25重量%対樹脂固形分) を 加えた。 その後 6時間放置しておいたところ、 流動性のな いゲル状物が得られた。 またこのものは水に不溶であつた。 実施例 14
実施例 5で得られたカチオン系水溶性樹脂 943をィ才 ン交換水 Ί 463で希釈し、 撹拌しながら分子量 70 , 0 Q0のポリエチレンィミンの 30重量%水溶液 Ί Q を加 えて均一にした。 これにエチレングリコールジグリシジル エーテル 0. 65 ? ( 1. 3重量%対樹脂固形分) を加え、 充分攛拌した後 6時間放置することにより本発明のカチ才 ン系水溶性樹脂 ( Ί 4 ) を得た。 最終粘度は 25 °Cで 4 2 5 CDS であった。
実施例 Ί 5〜Ί 9
実施例 Ί 4において、 用いた原料の種類とその使用量お よび反応の際の条件を第 4表に示した通りとする以外は実 施例 Ί 4と同様の操作を繰り返して、 カチオン系水溶性樹 脂 ( Ί 5 ) 〜 ( Ί 9》 を得た。 これら樹脂の水溶液の性状 は第 4表に示した通りであった。 第 実 施 例 Ί 5 1 1 R 17 Ί 8 Ί 9 用いた力チ才ン系水溶性樹脂 (5) (5) (6) (6) (6) ポリエチレンィミンの分子量 70000 70000 20, 000 20, 000 20, 000 樹脂 Zポリエチレンィミン(重量比) 94/6 94/6 86/ 86/U 6/Η 用いたェピハロヒドリン エチレングリコ ェピクロル ポリエチレングリコールジグリ
II 1 ■ 1
(F)および/または水溶 一ルンクリンン ヒ卜リノ シジルエーテル
性もしくは水分散性多官能 ルエーテル
エポキシ化台物(G) (n=1)/ェピクロ
レヒドリン (Π=22) 架橋剤量(重衋%対樹脂固形分) 0.5/1.4 3.3 0.01 7.2 11.0 反応温度(°C) 60 60 25 25 25 反応時間( ) 2 3 6 6 6
B型粘度 (cps) [25 C] 460 450 170 350 1930
比較例 Ί 1
実施例 Ί 8において用いたカチオン系水溶性樹脂 ( 6 ) 86重量%およびポリエチレンィミン 14簠量%からなる ポリカチオン成分の代わりに、 力チ才ン系水溶性樹脂 ( 6 ) 99. 5重量%およびポリエチレンィミン 0 5重量%か らなるポリ力チ才ン成分を用いた以外は実施例 Ί 8と同様 の操作を繰り返して比較用水溶性樹脂 ( 1 Ί ) を得た。 最 終粘度は 25。Cで 305 cps であった。
比較例 Ί 2
実施例 18において用いたカチオン系水溶性樹脂 ( 6 ) 86重暈%およびポリエチレンィミン Ί 4重量%からなる ポリ力チ才ン成分の代わりに、 カチオン系水溶性樹脂 ( 6 ) 0. 5重量%ぉよびポリエチレンィミン 99. 5重量%か らなるポリ力チ才ン成分を用いた以外は実施例 Ί 8と同様 の操作を繰り返して比較用水溶性樹脂 ( Ί 2 ) を得た。 最 終粘度は 25。Cで 720 cps であった。
比較例 3
実施例 6で得られたカチオン系水溶性樹脂 ( 6〉 1 07. 5 if をイオンを交換水 1 07. 5 if で 20重量%濃度に希 釈し、 撹拌しながら分子量 20 , Q00のポリエチレンィ ミンの 20重量%水溶液 353を加えて均一にする。 これ にポリエチレングリコ一ルポリグリシジルェ一テ ; ( n =
22 ) を ^ I 2. 53 ( 25重量%対樹脂固形分) 加え充分 に攪拌した後、 6時間放置しておいたところ流動性のない ゲル状物が得られた。 またこのものは水に不溶であった。 実施例 20
実施例 Ί , 2 , 4 , 8および Ί 4で得られたカチオン系 水溶性樹脂 ( Ί ) . ( 2 ) , ( 4 ) , ( 8 ) および ( Ί 4〉 を比較例 Ίおよび 3で得られた比較用水溶液樹脂 ( Ί ) お よび ( 3 ) を用いて製紙工業における抄紙時の濾水性向上 剤としての効果をテス卜し^。 テス卜条件を下記に示す。 テス卜結果は第 Ί図に示した通りであった。
テス卜条件
紙料 : 0. 5 %ダンボール故紙
評価方法 : 濾水度を紙料 Ί ϋ に上記カチオン系水溶性 樹脂あるいは比較用水溶性樹脂を加え、 力 ナディアンフリーネス ♦ テスターにより瀘 水量を測定して評価した。
実施例 2
実施例 8 , 9 , Ί 0, 1 4 , Ί 5および Ί 6で得られた カチオン系水溶性樹脂 ( 8〉 , ( 9 ) , ( 1 0 ) , ( 1 4 ) , ( Ί 5 ) および ( Ί 6〉 と比較例 Ίおよび 3で得られた 比較用水溶性樹脂 ( Ί ) および ( 3 ) を用いた抄紙時の頃 料歩留りの効果をテス 卜した。 テス卜条件を下記に示す。 テス 卜結果は第 5表に示した通りであった。
テス 卜条件
紙料 : L Β Κ Ρ
嗔料 : 炭酸カルシウム 平均粒径 0. 2ミクロン (白石工業鰓製) ( 30? 対パルプ) 手順: Ί %紙料→塡料→サイズ剤→硫酸バンド —希釈—薬剤—抄紙、
歩留率:紙を 600°Cx 20分熟処理した灰分より 塡料歩留率を算出した。 第 ^¾
Figure imgf000030_0001
実施例 22
実施例 Ί Ί〜Ί 3および Ί 7〜Ί 9で得られたカチオン 系水溶性樹脂 ( Ί Ί ) , ( Ί 2〉 , ( 3 ) , ( 7 ) , ( Ί 8 ) および ( Ί 9 ) を用いて抄紙時の瀘水性向上剤と しての効果をテス卜した。 テス卜条件を下記に示す。 テス 卜結果は第 2図に示した通りであった。
テス 卜条件
紙料 : 0, 3%ダンボール故紙
評価方法 : 瀘水度を紙料 Ί H に上記カチオン系水溶性
樹脂を加え、 カナディ アンフ リ ーネス ♦ テスターにより瀘水量を測定して評価した。 実施例 23
実施例 Ί 2および Ί 8で得られたカチオン系水溶性樹脂 ( Ί 2 ) および ( Ί 8 ) と比較例 Ί , 3 , Ί Ίおよび Ί 2 で得られた比較用水溶性樹脂 ( Ί 〉 , ( 3 ) , ( Ί Ί ) お よび ( Ί 2 ) を用いてカオリン水分散液の凝集効果をテス 卜した。 テス卜は ΡΗを調整した 3重量%カオリン (日本 薬局法に準ずる) 水分散液 Ί 00 を比色管にとり、 樹脂 を Ί OPPm になるように加え、 Ί 0回転倒撹拌後静止し、 上澄み液の透過率を分光計 ( ス = 600 ) で測定するこ とによって行なった。 結果は第 3図に示す通りであった。 比較例つ は凝集効果がなく透過率はほとんど 0 %であった。 実施例 24
実施例 3 , 5 , 6および 7で得られたカチオン系水溶性 樹脂 ( 3 〉 , ( 5 ) , ( 6〉 および ( 7 〉 および比較例 4 , 5 , 7および 9で得られた比較用水溶性樹脂 ( 4〉 , ( 5 ) , ( 7 ) および ( 9 ) を活性汚泥の凝集♦脱水瀘過^進剤 にして用いたときの濾過速度と脱水ケーキの含水率を測定 し、 凝集力のテス卜を行なった。 テス 卜条件を下記に示す。 テス卜条件
活性汚泥 : S S : 4 8 0 O ppm , Ρ Η 7 . 1
評価方法 : 活性汚泥 2 0 Q fli に樹脂を加え 100rpm X
1分間攪拌した後、 瀘布にて 200關 Hgで減 圧濾過した。 濾水速度は瀘液が 100 に達 するまでの時間で評価した。 含水率は脱水 ケーキを 120°C x 2hで乾燥させてもとめた。 テス卜結果は第 4図に示した通りであった。
また比較用水溶性樹脂 ( 5 ) , ( 7 } , ( 9 〉 から成る水 処理剤は凝集効果が小さく脱水濾過が不能であつた。
(産業上の利用分野)
本発明の製造方法により、 幅広い分子量域で高濃度の水 溶液とすることが可能なカチオン系水溶性樹脂を簡単なェ 程で迅速かつ安全に製造することができる。
第 Ί の方法により得られるカチオン系水溶性樹脂 ( I ) は、 幅広い分子量に調節することが可能で、 凝集剤等の水 処理剤として広い P H領域での使用に適している。
第 2の方法により得られるカチオン系水溶性樹脂 ( II ) は、 特に高分子量の樹脂水溶液を低粘度で得ることが可能 で、 広い P H頜域での水処理剤としての効果が力チ才ン系 水溶性樹脂 ( I ) より高められ、 製紙工業における瀘水性 向上剤や工業用廃水処理剤に好適である。
第 3の方法により得られる力チ才ン系水溶性樹脂 ( m ) は、 力チ才ン系水溶性樹脂の力チ才ン強度が高められたも のであり、 幅広い P H鎮域の水処理剤に使用できるととも に、' 特にアル力リ性領域においてその効果を顕著に発揮す る。
本発明の水処理剤は、 前記の力チ才ン系水溶性樹脂
( I 〉 , ( II ) および (III ) から選ばれる少なくとも Ί 種 の力チ才ン系樹脂を含んでなるために、 その種類や使用比 率を所望の目的に応じて任意に選択することにより、 広範 な水処理の用途に使用することができ、 特に製紙工業にお ける抄紙時の水処理剤として、 また工業廃水や下水の活性 汚泥の凝集剤に好適である。

Claims

請 求 の 範 囲
1 , ( A ) ( a〉 ポリエチレングリコール ^! モル当り ( b〉 ェピハロヒドリン Ί 〜 ! 0モルを反応させて得られる ポリエチレングリコールポリハロヒドリンエーテル 1
0 0重量部に、
( B ) アジリジン化合物 0 . 1〜 ^! 0 , 0 0 0重量% を反応させることを特徴とするカチオン系水溶性樹脂 の製造方法。
2 , ェピ八ロヒドリン ( b ) をポリエチレングリコール
( a } 1モル当り 2〜5モルの範囲で反応させてなる請求 の範囲第 Ί項に記載の方法。
3 , アジリジン化合物 ( B》 をポリエチレングリコールポ リハロヒドリンエーテル ( A ) Ί 0 0重量部当り、 Ί 〜 5 Q Q重量部の範囲で反応させてなる請求の範囲第 Ί項に記 載の方法。
4 , ポリエチレングリコールポリハロヒドリンエーテル
( A ) とアジリジン化合物 ( B ) とを得られる力チ才ン系 水溶性樹脂が 5〜 1 0 0重量%の範囲の最終濃度になる水 溶液中で Q〜 2 0 0 °Gの温度で反応させてなる請求の範囲 第 Ί項に記載の方法。
5 , ポリエチレングリコールポリ八ロヒドリンエーテル
( A ) とアジリジン化合物 ( B〉 とを、 得られるカチオン 系水溶性樹脂 Γΐ ) が 2 0〜 7 0重量%の範囲の最終濃度 になる水溶液中で 50〜Ί 00°Cの温度で反応させてなる 請求の範囲第 1項に記載の方法。
6. ポリエチレングリコール ( a ) が分子量 200〜 1 0 〇, 000の範囲にある請求の範囲第 Ί項に記載の方法。
7. ェピハロヒドリン ( b〉 がェピクロルヒドリンである 請求の範囲第 Ί項に記載の方法。
8. アジリジン化合物 ( B〉 がアルキレンィミンである請 求の範囲第 1項に記載の方法。
9. アルキレンィミンがエチレンィミンである請求の範囲 第 8項に記載の方法。
1 0. ( A ) ( a〉 ポリエチレングリコール Ίモル当り
( ) ェピハロヒドリン 1〜 1 0モルを反応させて 得られるポリエチレングリコールポリハロヒドリン エーテル Ί 00重量部に ( B〉 アジリジン化合物 0. 1〜1 0, 000重量部を反応して得られるカチ才 ン系水溶性樹脂 ( I 〉 Ί 00重量部に、
( C ) ェピハロヒドリンおよび ( D ) 水溶性もしく は水分散性多官能性エポキシ化合物よりなる群から 選ばれた少なく とも 1種のもの 0. 01〜20重量 部を、
25°Cにおける 20重量 °/0水溶液の粘度が Ί 00〜 2, 00 Ocps になるまで反応させることを特徴と するカチオン系水溶性樹脂の製造方法。
. ェピハロヒドリン ( b ) をポリ エチレングリコール ( a ) Ίモル当り 2〜5モルの範囲で反応させてなる請求 の範囲第 Ί 0項に記載の方法。
1 2. アジリジン化合物 ( B〉 をポリエチレングリコール ポリハロヒドリンエーテル (A ) 1 00重量部当り、 ^! 〜 500重量部の範囲で反応させてなる請求の範囲第 Ί 0項 に記載の方法。
13. ポリエチレングリコールポリ八ロヒドリンエーテル ( A ) と、 アジリジン化合物 ( B ) とを、 得られるカチォ ン系水溶性樹脂 ( I ) が 5〜Ί 00重量%の範囲の最終濃 度になる水溶液中で 0〜 200°Cの温度で反応させてなる 請求の範囲第 1Ό項に記載の方法。
14. ポリエチレングリコールポリ八ロヒドリンエーテル ( A ) とアジリジン化合物 (B) とを、 得られるカチオン 系水溶性樹脂 ( I ) が 20〜 70重量%の範囲の最終濃度 になる水溶液中で 50〜 Ί 0 CTCの温度で反応させてなる 請求の範囲第 Ί 0項に記載の方法。
1 5. 力チ才ン系水溶性樹脂 ( 1 ) 100重量部に対しェ ピハロヒドリン ( C) および水溶性もしくは水分散性多官 能エポキシ化合物 ( D) よりなる群から選ばれた少なくと も 1種のもの 0, Ί〜 Ί Q重量部を反応させてなる請求の 範囲第 Ί ひ項に記載の方法。
1 6. 力チ才ン系水溶性樹脂 ( ΐ ) Ί 00重量部に対し水 溶性もしくは水分散性多官能エポキシ化合物 (D ) を 0.
Ί〜 10重量部) の範囲で反応させてなる請求の範囲第 Ί 〇項に記載の方法。
1 7 , 力チ才ン系水溶性樹脂 ( I ) とェピハロヒ ドリン
( C ) および水溶性もしくは水分散性多官能エポキシ化台 物 ( D ) とを該カチ才ン系水溶性樹脂 ( I ) の濃度が Ί 0 〜 3 0重量%となる水溶液中で〇〜 8 CTCの温度で反応さ せてなる請求の範囲第 Ί 0項に記載の方法。
8 , ポリ エチレングリコール ( a〉 が分子量 2 0 0〜 0 0 , 0〇 0の範囲にある請求の範囲第 Ί 0項に記載の方 法。
9 , ェピハロヒドリン ( C ) がェピクロルヒドリンであ る請求の範囲第 Ί 0項に記載の方法。
2 0 , アジリジン化合物 ( B〉 がアルキレンィミンである 請求の範囲第 Ί 0項に記載の方法。
2 1 , アルキレンィミンがエチレンィミンである請求の範 囲第 2 0項に記載の方法。
2 2 . ェピハロヒドリン ( C ) がェピクロルヒ ドリンであ る請求の範囲第 Ί 0項に記載の方法。
2 3 , 水溶性もしくは水分散性多官能エポキシ化合物 ( D 〉 が下記式 ( Ί )
H 2 ( Ί 》
Figure imgf000037_0001
(ただし、 式中 ηは 1 〜 30の整数である。 ) - で表わされる化合物である請求の範囲第 ] 0項に記載の方 法。
24. ( A ) ( a ) ポリエチレングリコール Ίモル当り ( ) ェピハロヒドリン 1〜 Ί 0モルを反応させて得られ るポリエチレングリコールポリハロヒドリンエーテル 1 0 0重量部に ( Β〉 アジリジン化合物 0, Ί〜1 0, 000 重量部を反応させて椁られる力チ才ン系水溶性樹脂 ( I 〉 に、 ( G〉 ェピハロヒドリンおよび ( D ) 水溶性もしくば 水分散性多宫能性エポキシ化合物 0. 0 Ί〜20重量部を 反応させて得られる力チ才ン系水溶性樹脂。
25. ( A ) ( a〉 ポリエチレングリコール Ίモル当り ( ) ェピハロヒドリン 1〜 0モルを反応させて得られ るポリェチレングリコ一ルポリハロヒドリンエーテル Ί 0 0重量部に ( B〉 アジリジン化合物 0. Ί〜Ί Ο, 000 重量部を反応して椁られる力チ才ン系水溶性樹脂 ( ί ) 9 9〜 Ί重量%および、 ( Ε ) ボリアルキレンィ-ミン Ί〜 99 重量%からなるポリ力チ才ン成分 1 00重量部に対し、 ( F ) ェピハ口ヒドリンおよび ( G ) 水溶性もしくは水分 散性多宫能エポキシ化合物よりなる群から選ばれた少なく とも Ί種のもの 0. 0 Ί〜20重量部を、 25。Cにおける 20重量%水溶液の粘度が Ί 00〜 2 , 00 Ocps になる まで反応させることを特徵とする力チ才ン系水溶性樹脂の 製造方法。
26. ェピハロヒドリン ( b ) をポリエチレングリコール ( a ) Ίモル当り 2〜 5モルの範囲で反応させてなる請求 の範囲第 25項に記載の方法。
27. アジリジン化合物 ( B ) をポリエチレングリコール ポリハロヒドリ ンエーテル ( A ) Ί 00重量部当り、 Ί〜 500重量部の範囲で反応させてなる請求の範囲第 25項 に記載の方法。
28. ポリエチレングリコールポリハロヒ ドリンェ一テル (A) と、 アジリジン化合物 ( B ) とを、 得られるカチ才 ン系水溶性樹脂 ( I ) が 5〜 Ί 〇 0重量%の範囲の最終濃 度になる水溶性液で 0〜 2〇 0°Cの温度で反応させてなる 請求の範囲第 25項に記載の方法。
29. ポリエチレングリコ一ルポリハロヒドリンエーテル ( A) と、 アジリジン化合物 ( B ) とを、 得られるカチ才 ン系水溶性樹脂 ( I ) が 2〇〜了 0重量%の範囲の最終濃 度になる水溶液中で 50〜 Ί 00°Cの温度で反応させてな る請求の範囲第 25項に記載の方法。
30. ポリ 力チ才ン成分が力チ才ン系水溶性樹脂 ( I ) 9 5〜 3〇重量%およびポリアルキレンィミン 5〜 7〇重量 %からなる請求の範囲第 25項に記載の方法。
3 . ポリ 力チ才ン成分 Ί 00重量部に対しェピハロヒド リン ( F〉 および水溶性もしくは水分散性多官能エポキシ 化合物 ( G) よりなる群から選ばれた少なく とも 種のも のを 0. Ί〜 1 0重量部の範囲で反応させてなる請求の範 囲 25項に記載の方法。
32 , ポリ 力チ才ン成分 Ί 00重量部に対し水溶性もしく は水分散性多官能エポキシ化合物 ( G〉 を 0. Ί〜 Ί 0重 量部の範囲で反応させる請求の範囲第 25項に記載の方法。 33, ボリカチオン成分とェピハロヒドリン ( F) および 水溶性もしくは水分散性多宫能エポキシ化合物 (G) より なる群から選ばれた少なくとも Ί種のものとを力チ才ン性 水溶性樹脂 ( I 》 の濃度が 1 0〜30重量%となる水溶液 中で 0〜8 ΟΌの温度で反応させてなる請求の範囲第 25 項に記載の方法。
34. ポリエチレングリコール ( a ) が分子量 200〜Ί 00, 000の範囲にある請求の範囲第 25項に記載の方 法。
35. ェピ八ロヒドリン ( b ) がェピク口ルヒドリンであ る請求の範囲第 25項に記載の方法。
36. アジリジン化合物 ( B ) がアルキレンィミンである 請求の範囲第 25項に記載の方法。
37. アルキレンィミンがエチレンィミンである請求の範 囲第 36項に記載の方法。
38. ェピハロヒドリン ( F ) がェピクロルヒドリンであ る請求の範囲第 25項に記載の方法。
39. 水溶性もしくは水分散性多官能エポキシ化合物 (G) が下記式 ( Ί )
CH2 -CH-CH2 CH2 - 0+n CH2 CH-CH 2 ( 1 )
Ν0' 、び
(ただし、 式中、 η は 1 〜30の整数である。 ) で表わされる化合物である請求の範囲第 25項に記載の方 法。
4 0 . ポリアルキレンィミン ( E ) がポリエチレンィミン である請求の範囲第 2 5項に記載の方法。
4 1 . ( A ) ( a ) ポリエチレングリコール Ί モル当り ( b ) ェピハロヒドリン Ί 〜 Ί 0モルを反応して得られる ポリエチレングリコールポリハロヒドリンエーテル Ί 0 0 重量部に、 ( B〉 アジリジン化合物 0 . 0 Ί 〜 Ί 0 , 0 0 0重量部を反応して得られる力チ才ン系水溶性樹脂 ( I 〉 9 9〜 Ί 重量0 /0および ( E 〉 ポリアルキレンイミン Ί 〜 9 9重量部からなるポリカチオン成分 Ί 0 0重量部に対し、 ( F ) ェピハロヒドリンおよび ( G ) 水溶性ないし水分散 性多官能エポキシ化合物よりなる群から選ばれた少なくと も Ί 種のものを 0 . 0 Ί 〜 2 0重量部の範堀で反応させて 得られる力チ才ン系水溶性樹脂。
4 2 . ( I ) ( A ) ( a ) ポリエチレングリコール Ί モル 当り ( b ) ェピハロヒドリン Ί 〜 Ί 0モルを反応し て得られるポリエチレングリコールポリ八ロヒドリ ンエーテル Ί 0 0重量部に、 ( B〉 アジリジン化合 物 0 . 0 Ί 〜 Ί 0 , 0 0 0重量部を反応して得られ る力チ才ン系水溶性樹脂、
( II ) 該カチオン系水溶性樹脂 ( I ) に ( C ) ェピ ハロヒドリンおよび.( D ) 水溶性もしくは水分散性 多官能エポキシ化合物よりなる群から選ばれた少な く とも Ί 種のもの◦ . 〇 〜 2 0重量部を 2 5 °Cに おける 20重量%水溶液の粘度が 1 00〜2, 00 Ocps になるまで反応させて得られる力チ才ン系水 溶性樹脂および、
(III) 該カチオン系水溶性樹脂 ( 1 ) 99〜 !重量 %および ( E ) ポリアルキレンイミン Ί〜99重量 %からなるポリカチオン成分 Ί 00重量部に対し ( F) ェピハロヒドリンおよび (G》 水分散性多官 能エポキシ化合物を 0. 0 Ί〜20重量部の範囲で 25°Cにおける 20重量%水溶液の粘度が Ί Q 0〜 2, 00 Ocps になるまで反応してなるカチオン系 水溶性樹脂よりなる群から還ばれた少なくとも 1種 のカチオン系樹脂を含有してなる水処理剤。 43. ェピハロヒドリン ( b ) をポリエチレングリコール ( a) Ίモル当り 2〜5モルの範囲で反応させてなる請求 の範囲第 42項に記載の水処理剤。
44. アジリジン化合物 ( B ) をポリエチレングリコール ポリハロヒドリンエーテル ( A ) 100重量部当り、 Ί〜 500重量部の範囲で反応させてなる請求の範囲第 42項 に記載の水処理剤。
45. ポリエチレングリコールポリ八口ヒドリンエーテル ( A ) とアジリジン化合物 (B ) とを、 得られるカチオン 系水溶性樹脂 ( I ) が 5〜 Ί 00重量%の範囲の最終濃度 になる水溶液中で 0〜 200°Cの温度で反応させてなる請 求の範囲第 42項に記載の水処理剤。 J 4匕 Β 6. ポリエチレングリコールポリハロヒドリンエーテル ( A ) とアジリジン化合物 ( B ) とを、 得られる力チ才ン 系水溶性樹脂 ( I 〉 が 2〇〜 70重量%の範囲の最終濃度 になる水溶液中で 50〜Ί O CTCの温度で反応させてなる 請求の範囲第 42項に記載の水処理剤。
47. 力チ才ン系水溶性樹脂 ( II〉 が力チ才ン系水溶性樹
I ) 1 00重量部に対しェピハロヒドリン ( C〉 およ び水溶性もしくは水分散性多官能エポキシ化合物 ( D〉 よ りなる群から選ばれた少なく とも Ί種のもの 0. 1〜1 0 重量部を反応させたものである請求の範囲第 42項記載の 水処理剤。
48. 力チ才ン系水溶性樹脂 ( II ) が力チ才ン系水溶性樹 脂 ( I 〉 Ί 00重量部に対し水溶性もしくは水分散性多官 能エポキシ化合物 ( D〉 を 0, Ί〜Ί 0重量部の範囲で反 応させたものである請求の範囲第 42項に記載の水処理剤 49. カチオン系水溶性樹脂 ( II ) がカチオン性水溶性樹
( I ) とェピハロヒドリン ( C ) および水溶性もしくは 水分散性多官能エポキシ化合物 ( D ) よりなる群から選ば れた少なく とも Ί種のものとを力チ才ン系水溶性樹脂 ( I 〉 の濃度が Ί 0〜30重量%となる水溶液中で 0〜8〇°Cの 温度で反応させたものである請求の範囲第 42項に記載の 水処理剤。
50. ポリ カチオン成分が力チ才ン系水溶性樹脂 95〜3 0重量%およびポリアルキレンィミン 5〜 70重量%から なる請求の範囲第 42項に記載の水処理剤。
51. ポリ力チ才ン系水溶性樹脂 (111〉 がポリ力チ才ン成 分 Ί 00重量部に対しェピハロヒドリン ( F ) およぴ水溶 性もしくは水分散性多官能エポキシ化合物 (G) よりなる 群から選ばれた少なく とも 1種のものを 0. Ί〜1 0重量 部の範囲で反応させたものである請求の範囲第 42項に記 載の水処理剤。
52. カチオン系水溶性樹脂 (III) がポリカチオン成分 Ί 0 Q重量部にに対し水溶性もしくは水分散性多官能ェポキ シ化合物 (G) を 0. 〜 1 0重量部の範囲で反応させた ちのである請求の範囲第 42項に記載の水処理剤。
53. カチオン系水溶性樹脂 (III) がポリカチオン成分と ェピハロヒドリン ( F ) および水溶性もしくは水分散性多 官能エポキシ化合物 (G) よりなる群から還ばれたものと をカチオン性水溶性樹脂 ( I〉 の濃度が ! 0〜30重量% ' となる水溶液中で 0〜80°0の温度で反応させたものであ る請求の範囲第 42項に記載の水処理剤。
54. ポリエチレングリコール ( a } が分子量 200〜 1 00, 000の範囲にある請求の範囲第 42項に記載の水 処理剤。
55. ェピハロヒドリン ( C ) がェピクロルヒドリンであ る請求の範囲第 42項に記載の水処理剤。
56, アジリジン化台物 (B ) がアルキレンィミンである 請求の範囲第 42項に記載の水処理剤。 57 , アルキレンィミンがエチレンィミンである請求の範 囲第 56項記載の水処理剤。
58. ェピハロヒドリ ン ( E ) がェピクロルヒドリ ンであ る請求の範囲第 42項に記載の水処理剤。
59. 水溶性もしくは水分散性多官能エポキシ化合物 ( D〉 が下記式 ( Ί )
-0-f CH2 CH2 -0-fn CH2 CH-CH 2 ( 1 )
Figure imgf000045_0001
J
(ただし、 式中 n は 1 〜30の整数である。 ) で表わされる化合物である請求の範囲第 42項に記載の水 処理剤。
60. ポリアルキレンィミン ( E ) がポリエチレンィミン である請求の範囲第 42項に記載の水処理剤。
61 . 力チ才ン系水溶性樹脂 ( Π } および力チ才ン系水溶 性樹脂 (111〉 の少なくとも一方を必須に用いる請求の範囲 第 42項に記載の水処理剤。
62, 力チ才ン系水溶性樹脂 (III) を必須に用いる請求の 範囲第 42項記載の水処理剤。
63 , 製紙工業における抄紙時の濾水性および歩留り向上 剤ならびに白水の凝集剤として用いる請求の範囲第 40項 に記載の水処理剤。
64. 工業廃水処理および下水処理における活性汚泥の凝 集剤ならびに脱水処理剤に用いる請求の範囲第 4 2項に記 載の水処理剤。
PCT/JP1987/000408 1987-06-22 1987-06-22 Process for preparing cationic, water-soluble resin and water-treating agent containing said resin WO1988010277A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP87904104A EP0323509B1 (en) 1987-06-22 1987-06-22 Process for preparing cationic, water-soluble resin and water-treating agent containing said resin
DE8787904104T DE3783772T2 (de) 1987-06-22 1987-06-22 Verfahren zur herstellung kationischer wasserloeschlicher harze sowie mittel zur behandlung von wasser.
PCT/JP1987/000408 WO1988010277A1 (en) 1987-06-22 1987-06-22 Process for preparing cationic, water-soluble resin and water-treating agent containing said resin
US07/318,065 US5039787A (en) 1987-06-22 1989-02-21 Method for production of cationic water-soluble resin and water-treating agent containing said resin based on imine modified polyethylene glycol halohydrin ethers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1987/000408 WO1988010277A1 (en) 1987-06-22 1987-06-22 Process for preparing cationic, water-soluble resin and water-treating agent containing said resin

Publications (1)

Publication Number Publication Date
WO1988010277A1 true WO1988010277A1 (en) 1988-12-29

Family

ID=13902736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000408 WO1988010277A1 (en) 1987-06-22 1987-06-22 Process for preparing cationic, water-soluble resin and water-treating agent containing said resin

Country Status (4)

Country Link
US (1) US5039787A (ja)
EP (1) EP0323509B1 (ja)
DE (1) DE3783772T2 (ja)
WO (1) WO1988010277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519442A (ja) * 1998-06-22 2002-07-02 クラリアント インターナショナル リミティド ポリカチオン性ポリマー、その製法、および使用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274041B1 (en) 1998-12-18 2001-08-14 Kimberly-Clark Worldwide, Inc. Integrated filter combining physical adsorption and electrokinetic adsorption
US6537614B1 (en) 1998-12-18 2003-03-25 Kimberly-Clark Worldwide, Inc. Cationically charged coating on hydrophobic polymer fibers with poly (vinyl alcohol) assist
US6645388B2 (en) 1999-12-22 2003-11-11 Kimberly-Clark Corporation Leukocyte depletion filter media, filter produced therefrom, method of making same and method of using same
US6673205B2 (en) * 2001-05-10 2004-01-06 Fort James Corporation Use of hydrophobically modified polyaminamides with polyethylene glycol esters in paper products
US7651559B2 (en) 2005-11-04 2010-01-26 Franklin Industrial Minerals Mineral composition
US20140127746A1 (en) * 2011-06-21 2014-05-08 Xenia M. Kachur System for handling biological samples
KR101308390B1 (ko) * 2011-07-13 2013-09-13 임호 수용성 에폭시 수지, 이것의 제조방법 및 이것을 포함하는 블록
US10662586B2 (en) 2017-06-28 2020-05-26 Gpcp Ip Holdings Llc Cationic polyetheramine dispersants for preparing papermaking stock

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2436386A1 (de) * 1974-07-29 1976-02-12 Basf Ag Stickstoffhaltige kondensationsprodukte
DE2638955A1 (de) * 1976-08-28 1978-03-02 Basf Ag Wasserloesliche, vernetzte stickstoffhaltige kondensationsprodukte

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA690538A (en) * 1959-01-16 1964-07-14 Bohme Fettchemie Gmbh Process for the production and use of water soluble hardenable polyalkylene and/or polyamine condensation products containing epoxide and/or halogen hydrin groups in the molecule
US3129133A (en) * 1960-04-21 1964-04-14 Shell Oil Co Colloidal dispersions of partially cured polyepoxides, their preparation and use for preparing wet strength paper
US3635842A (en) * 1966-06-27 1972-01-18 Dow Chemical Co Short life paper size from modified polyalkylene-imines
US3577313A (en) * 1967-10-16 1971-05-04 Amicon Corp Condensation products of amines with epihalohydrins
US3890172A (en) * 1968-11-29 1975-06-17 Dow Chemical Co Solid propellant composition with aziridine cured epichlorohydrin polymer binder
US3658641A (en) * 1969-03-26 1972-04-25 Ciba Geigy Corp Polymerization product of urea, epichlorohydrin and alkylenimine and method of preparing same
CH541595A (de) * 1970-06-05 1973-09-15 Sandoz Ag Verfahren zur Herstellung von neuen Polyätheraminen
US3746678A (en) * 1971-09-13 1973-07-17 Dow Chemical Co Amine-modified polyalkylene oxides
US3915904A (en) * 1972-08-25 1975-10-28 Betz Laboratories Water-soluble cationic polymeric materials and their use
US3819541A (en) * 1973-04-27 1974-06-25 Dow Chemical Co Polyalkanolamine resins
DE2733973A1 (de) * 1977-07-28 1979-02-15 Basf Ag Wasserloesliche, vernetzte stickstoffhaltige kondensationsprodukte
DE3413567A1 (de) * 1984-04-11 1985-10-24 Bayer Ag, 5090 Leverkusen Papierhilfsmittel
DE3541163A1 (de) * 1985-11-21 1987-05-27 Basf Ag Verfahren zur herstellung von papier und karton

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2436386A1 (de) * 1974-07-29 1976-02-12 Basf Ag Stickstoffhaltige kondensationsprodukte
DE2638955A1 (de) * 1976-08-28 1978-03-02 Basf Ag Wasserloesliche, vernetzte stickstoffhaltige kondensationsprodukte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519442A (ja) * 1998-06-22 2002-07-02 クラリアント インターナショナル リミティド ポリカチオン性ポリマー、その製法、および使用

Also Published As

Publication number Publication date
EP0323509B1 (en) 1993-01-20
US5039787A (en) 1991-08-13
DE3783772T2 (de) 1993-05-13
EP0323509A1 (en) 1989-07-12
EP0323509A4 (en) 1990-05-14
DE3783772D1 (de) 1993-03-04

Similar Documents

Publication Publication Date Title
US4144123A (en) Incorporating a crosslinked polyamidoamine condensation product into paper-making pulp
CA1058794A (en) Crosslinked polyamidoamine condensation products for papermaking
US5510004A (en) Azetidinium polymers for improving wet strength of paper
US3915904A (en) Water-soluble cationic polymeric materials and their use
CA1109196A (en) Resinous reaction products
US3738945A (en) Polyquaternary flocculants
US4371674A (en) Water soluble crosslinked ethyleneimine grafted polyamidoamine
US4066494A (en) Nitrogenous condensation products used as retention aids in papermaking
US4328142A (en) Preparation of water-soluble condensates and their use as crosslinking agents for the preparation of papermaking aids
US3663461A (en) Chain extended polyelectrolyte salts and their use in flocculation processes
JPH01229027A (ja) 窒素含有水溶性化合物
WO1988010277A1 (en) Process for preparing cationic, water-soluble resin and water-treating agent containing said resin
US4056510A (en) Amine-modified polyethers
US3746678A (en) Amine-modified polyalkylene oxides
JPS5893710A (ja) 4級アンモニウムグラフトポリマ−
US4347339A (en) Cationic block copolymers
GB2141130A (en) Polyamidoaminepolyamines
CA1124963A (en) Auxiliary for improving retention, dewatering and working up, particularly in the manufacture of paper
EP0763073A4 (ja)
US3507847A (en) Polyacrylamide-based wet-strength resin and paper having a content thereof
US3647763A (en) Chain extended polyamine resin compositions
CA1114094A (en) Quaternary ammonium salts of epihalohydrin polymers as additives for fibrous materials
PL199980B1 (pl) Sposób zmniejszania zawartości adsorbowalnych organicznie związanych chlorowców w wyjściowej rozpuszczalnej w wodzie wodotrwałej żywicy
US4036821A (en) Manufacture of modified basic polyaminoamide with ammonium compound
US4988790A (en) Substances for the manufacture of paper

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT SE

WWE Wipo information: entry into national phase

Ref document number: 1987904104

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987904104

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987904104

Country of ref document: EP