WO1988005144A1 - Generateur thermique polycombustible a lit circulant integre - Google Patents

Generateur thermique polycombustible a lit circulant integre Download PDF

Info

Publication number
WO1988005144A1
WO1988005144A1 PCT/FR1987/000511 FR8700511W WO8805144A1 WO 1988005144 A1 WO1988005144 A1 WO 1988005144A1 FR 8700511 W FR8700511 W FR 8700511W WO 8805144 A1 WO8805144 A1 WO 8805144A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
circulating bed
circulating
combustion chamber
generator according
Prior art date
Application number
PCT/FR1987/000511
Other languages
English (en)
Inventor
Alain Feugier
Edmond Perthuis
Manuel Chretien
Alexandre Petrovic
Original Assignee
Institut Français Du Petrole
Charbonnages De France
Lardet-Babcock
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Français Du Petrole, Charbonnages De France, Lardet-Babcock filed Critical Institut Français Du Petrole
Priority to JP88501145A priority Critical patent/JPH03502234A/ja
Publication of WO1988005144A1 publication Critical patent/WO1988005144A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0015Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/101Entrained or fast fluidised bed

Definitions

  • the subject of the invention is a thermal generator capable of burning fuels with a high sulfur content and which, in the form of a compact assembly, makes it possible to decouple the production of useful heat and the desulfurization of the combustion gases.
  • This in-situ desulphurization process is mainly envisaged for solid fuels, and its efficiency (between 30 and
  • a different route consists in using fluidized bed boilers of "dry ash", which operate at around 800-900 ° C. and in which fuel and absorbent are intimately brought into contact.
  • the proposed device has the essential advantage of being reliable since it can be implemented using proven techniques.
  • the generator according to the present invention is compact and compact.
  • the guiding idea is based on the combination of three main elements arranged in such a way that the exchange surfaces are withdrawn from the rapid flow of solid particles which are often at the origin of rapid degradation of these surfaces.
  • the proposed generator essentially comprises a combustion chamber or combustion chamber preferably with cold walls, a recovery boiler capturing the sensible heat of the combustion gases and an intermediate circulating bed with no significant internal exchange surface, the function of which is to desulfurize the gases passing between the upstream hearth and the downstream exchanger.
  • cold wall here is meant that The wall includes means for extract heat.
  • the present invention relates to a thermal generator comprising a combustion chamber, a circulating bed and a recovery boiler.
  • the circulating bed and the combustion chamber have a common wall.
  • This common wall may comprise at least one orifice for feeding the bed circulating in the flow of primary fluid and / or at least one orifice for feeding the bed circulating in the flow of secondary fluid.
  • This common wall may be a cold wall.
  • the other walls of the combustion chamber could be cold walls.
  • the various cold walls may include a circulation of a fluid.
  • the circulating bed and the recovery boiler may have a common wall.
  • combustion chamber and the recovery boiler may have a common wall.
  • the walls of the circulating bed may have a coating of thermal insulating material.
  • the desulphurizing circulating bed the entrained solid material of which consists essentially of the absorbent, has as its working fluid the hot gases coming from the hearth.
  • the temperature of the gases being able to vary with the load of the generator, the maintenance of the bed at the optimal temperature of desulfurization ( 800-900 C ) can be obtained by the injection of an additional fuel in the reactor, the combustion taking place with excess oxygen from the upstream focus, and possibly with a supply of fresh oxidant.
  • the compactness of the generator according to the invention is obtained by an original spatial distribution of the three main elements arranged vertically. This compactness makes it easier to pre-manufacture.
  • FIG. 1 illustrates a general diagram of the thermal generator according to the invention
  • FIG. 2 a simplified perspective view of such a heat generator
  • FIG. 1 deals with a particular example adapted to the combustion of a solid or liquid fuel, injected in sprayed form into the upstream hearth or combustion chamber .
  • the combustion chamber 1 is preferably with cold walls.
  • the exchange surfaces 2 being for example of the "membrane wall” type, that is to say that means for circulating a fluid are associated and / or integrated into the walls of the combustion chamber. These cold walls are dimensioned so that the temperature of the combustion gases at the end of the furnace can be in the range 600-850 C for all operating stages.
  • the burner 3 can advantageously be a burner with "low NO emission” to limit the emissions of nitrogen oxides, and thus contribute to making the generator completely anti-pollutant. Under these conditions, the excess air or oxidant can be adjusted so that the quantity of residual oxygen is at least equal to that necessary to carry out the second combustion in the circulating bed 16, which comprises a reactor 6 and a separator 10 which may be of the cyclone type.
  • the reactor 6 of the circulating bed 16 is attached to the hearth 1 thanks to a common wall 17, the communication between these two elements being effected directly by one or more passages arranged in this wall.
  • the flow 41 of primary gas supplying the circulating bed coming from the combustion chamber 1 takes place through the lower passage 4, while the flow of secondary gas takes place through the upper passage 5.
  • the internal walls consist of a layer of refractory insulating material which can be thin 7 resistant to abrasion, and
  • the heat losses are, for the most part, recovered by the heat transfer fluid irrigating the envelope of the hearth 1.
  • the auxiliary fuel and / or the material absorbing sulfur oxides are injected through at least one orifice 9 in the lower part of the reactor 6, which constitutes the dense phase of the circulating bed.
  • these products are injected at another location in the circulation loop of the circulating bed, in particular by injecting one or both products at the level of the return leg 20.
  • the oxidizing gases or fumes 41 and 51 coming from the lower 4 and upper 5 passages defined above and serving as working fluid and oxidizer in the circulating bed are injected on either side of the dense phase 18 of this bed.
  • the gases or fumes of the primary flow 41 enter the dense phase 18 via a perforated grid 8, or any other device capable of ensuring good distribution of the gases in the mass of fluidized solids.
  • the gases or fumes from the secondary flow 51 are injected into the transition zone or diluted zone of the reactor 19 also called the release zone. They can also be distributed by several orifices along the same straight section or staged sections relative to the axis of circulation in the reactor 6. It is the same for the introduction of the primary flow.
  • the distribution controlled by appropriate means such as smoke flaps between primary 41 and secondary flow 51 makes it possible to control the course of combustion in the reactor 6 and to act on the flow rate of the solids entrained outside the dense zone 18 to be recycled. .
  • valve 12 which can be of mechanical or hydraulic design, for example a fluidized siphon or an "L-valve".
  • the desulphurized gases 21 leave the upper part of the separator 10 to feed the recovery boiler 13 and transfer heat energy to the exchange surfaces 14 which may consist of tubular bundles.
  • the fumes are finally discharged through line 15 and directed to the filtration system not shown in the diagram, which can be of a type known to those skilled in the art.
  • the withdrawal of solid waste not recycled or having escaped from the separator 10 of the circulating bed 16 can be carried out at the base of the combustion chamber, through the orifice 22 which can be closed by a valve 23, at the base of the dense phase. 18 of the bed circulating at the level of the grid 8, through the orifice 24 which may include a valve 25 and / or the base of the recovery boiler, through the orifice 26 which can be closed by the valve 27.
  • the heat-transfer fluid 28 such as a steam-water emulsion from the combustion chamber is directed to a pressurized tank or tank 29 by a pipe 30.
  • This tank located in the upper part of the generator in the example of Figure 1 also receives in this example the steam water emulsion 28a from the recovery boiler 13, via the pipe 30a.
  • the fluid stored in Capacity 29 is transferred in the form of vapor via a pipe 31 to a member of use such as a turbine 32, a heating network, etc.
  • the heat transfer fluid after having transferred part of its energy and after condensation in a condenser not shown, is distributed by a valve means 33 between the supply of heat transfer fluid to the tubular bundles 14 of the recovery boiler 13 and the supply of heat transfer fluid of the irrigation circuit of the combustion chamber 1, this circuit possibly comprising conduits forming an integral part of the walls of this combustion chamber or being able to be formed by a blade of water.
  • conduits 35, 36 and 37 shown at least partially in phantom.
  • these conduits can be thermally insulated.
  • FIG. 2 gives an example of a practical embodiment of a unit for which the optimum compactness has been obtained by grouping edge by edge the hearth 1, the reactor 6 of the circulating bed 16 and the recovery boiler 13.
  • FIG. 2 The wall 17 is interrupted before reaching the lower part 38 of the hearth 1 and of the circulating bed reactor 6, thus allowing the simple passage of the lower passage 4 to be achieved.
  • the cyclone has not been shown in this figure.
  • the reference 39 designates the orifice allowing the placing of the burner 3 (FIG. 1).
  • the orifice 40 designates the outlet orifice of the reactor 6 of the circulating flow 42 in the direction of the separator 10.
  • the reference 43 designates the gas inlet orifice 21 coming from the separator 10 and directed towards the recovery boiler 13 (fig. 1).
  • the circulating bed 6 does not extend in height in the same way as the hearth 1, but is interrupted before by the wall 44.
  • the latter is surmounted by a formwork parallelepiped 45 in direct communication with the recovery boiler 13 which also has a parallelepiped shape.
  • the orifice 46 corresponds to the connection of the leg 20 (fig. 1) connecting the separator 10 (fig. 1) to the reactor of the circulating bed 6 (fig. 1).
  • FIG. 3 represents a section at the level of the reactor of the circulating bed of the generator represented in FIG. 2.
  • the reactor 6 of the circulating bed 16 is thermally insulated on its four faces by the material designated by the reference 47.
  • the combustion chamber has a flat wall 48 common to both the reactor 6 of the Bed circulating in 49 and to the recovery boiler in 50.
  • the recovery boiler 13 and the reactor 6 of the circulating bed have a common wall 52 which is substantially perpendicular to the planar wall 48.
  • FIG. 4 represents an alternative embodiment of the device according to the invention for which it is the recovery boiler 13 which has a flat wall 53 common both to the hearth 1 and to the reactor 6 of the circulating bed.
  • the reference 54 designates the wall common to the hearth 1 and to the reactor 6, this wall possibly being substantially perpendicular to the flat wall 53 of the boiler.
  • valve 33 can be controlled taking into account the call for power due to the turbine 32, the amount of fuel consumed by the burner 3 and / or the temperature of the reactor 6 of the circulating bed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

Générateur thermique comportant une chambre de combustion, un lit circulant et une chaudière de récupération. Le lit circulant (16) et ladite chambre de combustion (1) ont une paroi commune (17). La présente invention peut être utilisée pour réaliser la combustion de combustible à haute teneur en soufre.

Description

Générateur thermique poly combustibles à lit circulant intégré.
L'invention a pour objet un générateur thermique susceptible de brûler des combustibles à haute teneur en soufre et qui, sous forme d'un ensemble compact, permet de découpler la production de chaleur utile et la désulfuration des gaz de combustion.
Les réglementations sévères limitant dans les zones protégées les émissions d'oxydes de soufre par les effluents gazeux des générateurs de chaleur y interdisent l'emploi de combustibLes à haute teneur en soufre, qui, par ailleurs, peuvent présenter des avantages économiques certains : i l en est ainsi de certains charbons s 'apparentant aux lignites, et de résidus pétroliers issus des procédés de raffinage.
En dehors des procédés de traitement aval des fumées qui s'adressent généralement aux installations de très grande puissance, on réalise sur certaines unités thermiques alimentées aux combustibles fossiles La désulfuration au cours de La combustion, en injectant directement dans le foyer un absorbant à base de calcium (calcaire, chaux, dolomite...).
Ce procédé de désulfuration in-situ est principalement envisagé pour les combustibles solides, et son efficacité (comprise entre 30 et
60 %) est largement tributaire de La distribution des températures dans la chambre de combustion, tout en nécessitant une consommation
Ca Calcium importante de calcaire (rapport — = de l'ordre de 3 à 4
S Soufre moles/mole) . Une voie différente consiste à utiliser des chaudières à lit fluidisé d tes à "cendres sèches", qui opèrent aux environs de 800-900 C et dans lesquelles combustible et absorbant sont intimement mis en contact.
En particulier, au sein d'un Lit fluidisé "rapide", ou "circulant", comportant une recirculation systématique des particules solides, on peut obtenir des taux de désulfuration très élevés (85-90 %) avec des rapports Ca/s relativement modestes (1,5 à 2 moles/mole).
Mais le générateur de chaleur auto-désulfurant à Lit circulant pose un certain nombre de problèmes technologiques.
En particulier, sa fiabilité est étroitement Liée à La résistance des faisceaux d'échange thermique, aux phénomènes d'abrasion et de corrosion.
Le dispositif proposé a pour avantage essentiel d'être fiable puisqu' l peut être mis en oeuvre en utilisant des techniques éprouvées. De plus le générateur selon la présente invention est compact et peu encombrant.
L'idée directrice repose sur la combinaison de trois éléments principaux agencés de telle sorte que Les surfaces d'échange soient soustraites au flux rapide des particules solides qui sont souvent à l'origine de dégradation rapide de ces surfaces.
Ainsi, Le générateur proposé comporte essentiellement un foyer ou chambre de combustion de préférence à parois froides, une chaudière de récupération captant la chaleur sensible des gaz de combustion et un lit circulant intermédiaire sans surface d'échange interne notable, et dont la fonction est de désulfurer les gaz transitant entre le foyer amont et L'échangeur aval.
Par "paroi froide" on entend ici que La paroi comporte des moyens pour extraire de la chaleur.
D'une manière générale la présente invention concerne un générateur thermique comportant une chambre de combustion, un Lit circulant et une chaudière de récupération. Selon La présente invention le lit circulant et la chambre de combustion ont une paroi commune.
Cette paroi commune pourra comporter au moins un orifice d'alimentation du lit circulant en flux de fluide primaire et/ou au moins un orifice d'alimentation du lit circulant en flux de fluide secondaire.
Cette paroi commune pourra être une paroi froide. De même les autres parois de la chambre de combustion pourront être des parois froides.
Les différentes parois froides pourront comporter une circulation d'un fluide.
Selon La présente invention Le Lit circulant et la chaudière de récupération pourront avoir une paroi commune.
De même la chambre de combustion et la chaudière de récupération pourront avoir une paroi commune.
Les parois du lit circulant pourront comporter un revêtement en matériau isolant thermique.
Le lit circulant désulfurant, dont Le matériau solide entraîné est constitué pour l'essentiel par l'absorbant, a pour fluide moteur les gaz chauds issus du foyer.
La température des gaz étant susceptible de varier avec la charge du générateur, le maintien du lit à la température optimale de désulfuration (800-900 C) peut être obtenu par l'injection d'un combustible d'appoint dans le réacteur, la combustion s'effectuant avec l'oxygène en excès provenant du foyer amont, et éventuellement avec un apport de comburant frais.
La compacité du générateur conforme à l'invention est obtenue par une répartition spatiale originale des trois éléments principaux disposés vert calement. Cette compacité en facilite La pré-fabrication.
La présente invention sera mieux comprise et ses avantages apparaitront plus clairement à la description qui suit d'exemples particuliers, nullement Limitatifs, illustrés par Les figures ci-annexées parmi lesquelles :
- La figure 1 illustre un schéma général du générateur thermique selon l'invention,
- la figure 2 une vue simplifiée en perspective d'un tel générateur thermique, et
- Les figures 3 et 4 montrent deux variantes particulières de disposition de différents éléments du génétateur thermique.
Le principe de L'unité auto-désulfurante compacte selon L'invention est illustré par La figure 1, qui traite un exemple particulier adapté à la combustion d'un combustible solide ou liquide, injecté sous forme pulvérisée dans le foyer amont ou chambre de combustion.
La chambre de combustion 1 est préférentiellement à parois froides. Les surfaces d'échange 2 étant par exemple du type "mur membrane" c'est-à-dire que des moyens de circulation d'un fluide sont associés et/ou intégrés aux parois de la chambre de combustion. Ces parois froides sont dimensionnées de telle sorte que la température des gaz de combustion en fin de foyer puisse se situer dans la fourchette 600-850 C pour toutes les allures de fonctionnement.
Le brûleur 3 peut avantageusement être un brûleur à "basse émission de N0 " pour limiter les émissions d'oxydes d'azote, et contribuer ainsi à rendre le générateur complètement anti-polluant. Dans ces conditions, on peut régler l'excès d'air ou de comburant de telle sorte que la quantité d'oxygène résiduel soit au moins égale à celle nécessaire pour effectuer la deuxième combustion dans le lit circulant 16, qui comporte un réacteur 6 et un séparateur 10 pouvant être du type à cyclone.
Le réacteur 6 du Lit circulant 16 est accolé au foyer 1 grâce à une paroi commune 17, La communication entre ces deux éléments s'effectuant directement par un ou des passages aménagés dans cette paroi. Le flux 41 de gaz primaire d'alimentation du lit circulant en provenance de la chambre de combustion 1 se fait par le passage inférieur 4, alors que Le flux de gaz secondaire s'effectue par Le passage supérieur 5.
Les parois internes sont constituées d'une couche de matériau réfractaire isolant pouvant être mince 7 résistant à L'abrasion, et
Les pertes de chaleur sont, pour L'essentiel, récupérées par le fluide caloporteur irriguant l'enveloppe du foyer 1.
Dans l'exemple de la figure 1 du combustible auxiliaire et/ou le matériau absorbant d'oxydes de soufre sont injectés par au moins un orifice 9 dans la partie basse du réacteur 6, qui constitue la phase dense du lit circulant. Toutefois on ne sortira pas du cadre de l'invention si on injecte ces produits à un autre endroit de La boucle de circulation du lit circulant notamment en injectant l'un ou Les deux produits au niveau de La jambe de retour 20.
Les gaz ou fumées oxydantes 41 et 51 provenant des passages inférieur 4 et supérieur 5 définis précédemment et servant de fluide moteur et de comburant au lit circulant sont injectés de part et d'autre de la phase dense 18 de ce lit.
Les gaz ou fumées du flux primaires 41 pénètrent dans La phase dense 18 par L'intermédiaire d'une grille perforée 8, ou de tout autre dispositif pouvant assurer une bonne répartition des gaz dans la masse de solides fluidisée. Les gaz ou fumées du flux secondaires 51 sont injectés dans la zone de transition ou zone diluée du réacteur 19 dite également zone de dégagement. Ils peuvent être d'ailleurs, répartis par plusieurs orifices suivant une même section droite ou des sections étagées relativement à L'axe de circulation dans le réacteur 6. Il en est de même pour l'introduction du flux primaire.
La répartition contrôlée par des moyens appropriés tels des volets des fumées entre flux primaire 41 et secondaire 51 permet de maîtriser le déroulement de La combustion dans le réacteur 6 et d'agir sur le débit des solides entraînés hors de la zone dense 18 pour être recyclés.
Ce recyclage s'effectue par L'intermédiaire du séparateur 10 qui peut être commodément un cyclone comme cela a déjà été dit précédemment. Le débit de recîrculation est réglé par un dispositif de vannage 12 qui peut être de conception mécanique ou hydraulique, par exemple un siphon fluidîdé ou une "vanne en L".
L'ensemble réacteur 6, cyclone 10 et jambe de Liaison 20, qui constitue Le Lit circulant désulfurant 16, est protégé thermiquement par des revêtements réfractaires isolants 7 et 11.
Les gaz désulfurés 21 quittent la partie supérieure du séparateur 10 pour alimenter La chaudière de récupération 13 et céder de L'énergie calorifique aux surfaces d'échange 14 qui peut être constituée de faisceaux tubulaires.
Les fumées sont finalement évacuées par le conduit 15 et dirigées vers le système de filtration non représenté sur Le schéma, qui peut être d'un type connu de l'homme de L'art.
Le soutirage des déchets solides non recyclés ou ayant échappé au séparateur 10 du Lit circulant 16 peut être effectué à la base de La chambre de combustion, par L'orifice 22 qui peut être obturé par une vanne 23, à La base de La phase dense 18 du lit circulant au niveau de la grille 8, par L'orifice 24 qui peut comporter une vanne 25 et/ou à la base de La chaudière de récupération, par l'orifice 26 qui peut être obturé par La vanne 27.
Dans le mode de réalisation illustré à la figure 1 qui concerne La production de vapeur non surchauffée, Le fluide caloporteur 28 tel une émuLsion eau vapeur provenant de la chambre de combustion est dirigé vers une capacité ou ballon sous pression 29 par une canalisation 30. Ce ballon situé en partie haute du générateur dans l'exemple de la figure 1 reçoit également dans cet exemple l'émulsion eau vapeur 28a provenant de la chaudière de récupération 13, par l'intermédiaire de la canalisation 30a. Le fluide stocké dans La capacité 29 est transféré sous forme de vapeur par une canalisation 31 vers un organe d'utilisation telle une turbine 32, un réseau de chauffage etc.. . Le fluide caloporteur, après avoir cédé une partie de son énergie et après condensation dans un condensateur non représenté est réparti par un moyen de vannage 33 entre l'alimentation en fluide caloporteur des faisceaux tubulaires 14 de La chaudière de récupération 13 et l'alimentation en fluide caloporteur du circuit d'irrigation de La chambre de combustion 1, ce circuit pouvant comporter des conduits faisant partie intégrante des parois de cette chambre de combustion ou pouvant être formé par une Lame d'eau.
Le cheminement du fluide caloporteur entre la sortie de la turbine 32 et le vannage 33, l'alimentation des faisceaux tubulaires 14 et des conduits 34, se fait par Les conduits 35, 36 et 37 représentés au moins partiellement en traits mixtes. Bien entendu ces conduits pourront être isolés thermiquement.
La figure 2 donne un exemple de réalisation pratique d'une unité pour laquelle la compacité optimale a été obtenue en regroupant bords à bords le foyer 1, le réacteur 6 du Lit circulant 16 et la chaudière de récupération 13.
Les sections droites de ces différents éléments constitutifs sont rectangulaires (voir figure 3), ce qui permet d'établir d'étroits contacts thermiques entre eux, et de minimiser les pertes fatales des parois vers le milieu ambiant.
Sur la figure 2 La paroi 17 s'interrompt avant d'atteindre La partie inférieure 38 du foyer 1 et du réacteur du Lit circulant 6, permettant ainsi la réalisation, simple, du passage inférieur 4.
Sur cette figure n'ont pas été représentés Le cyclone. Les conduits de circulation du fluide caloporteur ainsi que le brûleur.
La référence 39 désigne l'orifice permettant la mise en plaεe du brûleur 3 (fîg. 1).
L'orifice 40 désigne l'orifice de sortie du réacteur 6 du flux circulant 42 en direction du séparateur 10.
La référence 43 désigne l'orifice d'entrée des gaz 21 provenant du séparateur 10 et dirigé vers la chaudière de récupération 13 (fig. 1).
Sur le mode de "réalisation représenté à la figure 2, le Lit circulant 6 ne se prolonge pas en hauteur de la même manière que le foyer 1, mais s'interrompt avant par la paroi 44. Celle-ci est surmontée d'un coffrage parallélépipèdique 45 en communication directe avec la chaudière de récupération 13 qui a également une forme parallélépipèdique.
l'orifice 46 correspond à la liaison de la jambe 20 (fîg. 1) reliant le séparateur 10 (fig. 1) au réacteur du lit circulant 6 (fig. 1).
La figure 3 représente une coupe au niveau du réacteur du lit circulant du générateur représenté à la figure 2.
Sur cette figure 3 on s'aperçoit que Le réacteur 6 du lit circulant 16 est isolé thermiquement sur ses quatre faces par le matériau désigné par la référence 47. La chambre de combustion a une paroi plane 48 commune à La fois au réacteur 6 du Lit circulant en 49 et à la chaudière de récupération en 50. La chaudière de récupération 13 et le réacteur 6 du lit circulant ont une paroi commune 52 qui est sensiblement perpendiculaire à la paroi plane 48.
La figure 4 représente une variante de réalisation du dispositif selon l'invention pour laquelle c'est la chaudière de récupération 13 qui a une paroi plane 53 commune à la fois au foyer 1 et au réacteur 6 du lit circulant.
La référence 54 désigne la paroi commune au foyer 1 et au réacteur 6, cette paroi pouvant être sensiblement perpendiculaire à La paroi plane 53 de La chaudière.
Sur La figure 1 la vanne 33 peut être commandée en tenant compte de l'appel de puissance dû à la turbine 32, de La quantité de combustible consommée par le brûleur 3 et/ou de la température du réacteur 6 du Lit circulant.
L'introduction d'un combustible auxiliaire dans le lit circulant par exemple en 9, bien que non impérative, permet un contrôle plus souple de la température du lit circulant.

Claims

REVENDICATIONS
1. - Générateur thermique comportant une chambre de combustion, un lit circulant et une chaudière de récupération, caractérisé en ce que Ledit Lit circulant et ladite chambre de combustion ont une paroi commune.
2. - Générateur thermique selon La revendication 1, caractérisé en ce que Ladite paroi commune comporte au moins un orifice d'alimentation du Lit circulant en flux primaire.
3. - Générateur thermique selon l'une des revendications 1 ou 2, caractérisé en ce que Ladite paroi commune comporte au moins un orifice d'alimentation du lit circulant en flux secondaire.
4. - Générateur thermique selon l'une des revendications 1 à 3, caractérisé en ce que Ladite paroi commune est une paroi froide.
5. — Générateur thermique selon l'une des revendications 1 à 4, caractérisé en ce que ladite chambre de combustion est à parois froides.
6- - Générateur selon l'une des revendications 4 ou 5, caractérisée en ce que Lesdites parois froides comportent une circulation d'un fluide.
7. - Générateur selon l'une des revendications 1 à 5, caractérisée en ce que ledit lit circulant et ladite chaudière de récupération ont une paroi commune.
8. - Générateur selon L'une des revendications 1 à 7, caractérisée en ce que ladite chambre de combustion et ladite chaudière de récupération ont une paroi commune.
9. - Générateur selon l'une des revendications 1 à 8, caractérisée en ce que Les parois du lit circulant comportent un revêtement en matériau isolant thermique.
PCT/FR1987/000511 1986-12-24 1987-12-23 Generateur thermique polycombustible a lit circulant integre WO1988005144A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP88501145A JPH03502234A (ja) 1987-12-23 1987-12-23 燃焼ガスの脱硫が可能な集中循環層式火力発電機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR86/18259 1986-12-24
FR8618259A FR2609150B1 (fr) 1986-12-24 1986-12-24 Generateur thermique poly-combustibles a lit circulant integre, permettant la desulfuration in situ des gaz de combustion

Publications (1)

Publication Number Publication Date
WO1988005144A1 true WO1988005144A1 (fr) 1988-07-14

Family

ID=9342362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1987/000511 WO1988005144A1 (fr) 1986-12-24 1987-12-23 Generateur thermique polycombustible a lit circulant integre

Country Status (4)

Country Link
US (1) US4936230A (fr)
EP (2) EP0313588A1 (fr)
FR (1) FR2609150B1 (fr)
WO (1) WO1988005144A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021825A1 (fr) * 1995-01-10 1996-07-18 Von Roll Umwelttechnik Ag Procede d'incineration de dechets avec recuperation d'energie thermique

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2636720B1 (fr) * 1988-09-20 1990-12-14 Inst Francais Du Petrole Procede et dispositif pour generer de la chaleur comportant une desulfuration des effluents avec des particules d'absorbant de fine granulometrie en lit transporte
FR2644560B1 (fr) * 1989-03-14 1994-07-01 Inst Francais Du Petrole Procede et dispositif pour bruler des combustibles riches en produits chlores et/ou en metaux lourds
US5072696A (en) * 1990-12-11 1991-12-17 Foster Wheeler Energy Corporation Furnace temperature control method for a fluidized bed combustion system
US5365889A (en) * 1992-11-13 1994-11-22 Fostyer Wheeler Energy Corporation Fluidized bed reactor and system and method utilizing same
BE1018137A3 (nl) * 2007-03-20 2010-06-01 Goemans Marcel Gerardus Edmond Inrichting voor het verwerken van vloeibare, pasteuze en vaste reststromen en werkwijze daarbij toegepast.
US10041667B2 (en) * 2011-09-22 2018-08-07 Ensyn Renewables, Inc. Apparatuses for controlling heat for rapid thermal processing of carbonaceous material and methods for the same
EP3565664A4 (fr) 2016-12-29 2020-08-05 Ensyn Renewables, Inc. Démétallisation de biomasse liquide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3009366A1 (de) * 1980-03-12 1981-09-24 Wehrle-Werk Ag, 7830 Emmendingen Einrichtung zur trocknen entfernung von schadstoffen aus rauchgasen
EP0119115A1 (fr) * 1983-02-21 1984-09-19 Elf France Générateur thermique pour la réalisation du chauffage de fluide par échange thermique au moyen d'un lit fluidisé et le procédé pour sa mise en oeuvre
GB2159432A (en) * 1984-06-01 1985-12-04 Ahlstroem Oy Fluidised combustion of fuel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499857A (en) * 1983-10-17 1985-02-19 Wormser Engineering, Inc. Fluidized bed fuel burning
US4665864A (en) * 1986-07-14 1987-05-19 Foster Wheeler Energy Corporation Steam generator and method of operating a steam generator utilizing separate fluid and combined gas flow circuits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3009366A1 (de) * 1980-03-12 1981-09-24 Wehrle-Werk Ag, 7830 Emmendingen Einrichtung zur trocknen entfernung von schadstoffen aus rauchgasen
EP0119115A1 (fr) * 1983-02-21 1984-09-19 Elf France Générateur thermique pour la réalisation du chauffage de fluide par échange thermique au moyen d'un lit fluidisé et le procédé pour sa mise en oeuvre
GB2159432A (en) * 1984-06-01 1985-12-04 Ahlstroem Oy Fluidised combustion of fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021825A1 (fr) * 1995-01-10 1996-07-18 Von Roll Umwelttechnik Ag Procede d'incineration de dechets avec recuperation d'energie thermique
CH689312A5 (de) * 1995-01-10 1999-02-15 Von Roll Umwelttechnik Ag Verfahren zum Verbrennen von Abfallmaterial unter Gewinnung von thermischer Energie.

Also Published As

Publication number Publication date
EP0275798A1 (fr) 1988-07-27
US4936230A (en) 1990-06-26
EP0313588A1 (fr) 1989-05-03
FR2609150B1 (fr) 1990-09-07
FR2609150A1 (fr) 1988-07-01

Similar Documents

Publication Publication Date Title
WO1988005144A1 (fr) Generateur thermique polycombustible a lit circulant integre
JP6958489B2 (ja) 廃棄物焼却によるエネルギーの貯蔵供給装置
EP0119115A1 (fr) Générateur thermique pour la réalisation du chauffage de fluide par échange thermique au moyen d'un lit fluidisé et le procédé pour sa mise en oeuvre
EP1766289A1 (fr) Procede de combustion homogene et générateur thermique utilisant un tel procédé.
CN203880691U (zh) 无烟囱多功能燃油燃气锅炉
FR2636720A1 (fr) Procede et dispositif pour generer de la chaleur comportant une desulfuration des effluents avec des particules d'absorbant de fine granulometrie en lit transporte
WO1996040837A1 (fr) Reacteur a lits fluidises pour le traitement thermique des dechets
WO2002097327A1 (fr) Generateur thermique et procede de combustion permettant de limiter les emissions d'oxydes d'azote par recombustion des fumees
WO2004079260A1 (fr) Generateur a foyers de combustion successifs destine a la productiion de vapeur
KR101032773B1 (ko) 발전소용 보일러 노
FR2735560A1 (fr) Procede et dispositif pour reduire les emissions de polluants dans les fumees d'un systeme de chauffe a lit fluidise par etagement des injections de combustible
JP2528711B2 (ja) 複床型流動床ボイラ
CN109737598B (zh) 一种双锅筒双炉膛复合燃烧沉降室角管锅炉
CN101251250B (zh) 双炉膛结构的循环流化床锅炉
EP3472517B1 (fr) Procede de combustion
Puzyrev et al. Tornado Technology for Power Boilers
EP3816512A1 (fr) Module de production de chaleur comprenant un systeme de filtration haute temperature
FR2515312A1 (fr) Installation de recuperation de chaleur pour chaudiere a eau chaude et chaudiere a vapeur avec foyer a gaz
JP3698484B2 (ja) 排ガス利用の燃焼用空気供給方法及びその装置
EP0187569A1 (fr) Procédé et dispositif permettant de générer de la chaleur et de réaliser une désulfuration des gaz de combustion
FR2489360A1 (fr) Equipement auxiliaire pour gazogene a charbon
SU1141269A1 (ru) Способ слоевого сжигани жидких отходов
JP2000297613A (ja) 廃棄物燃焼発電方法及び装置
FR2777073A1 (fr) Procede de reduction de la quantite d'oxydes d'azote produite dans un four thermique
CN116241876A (zh) 气固二相高效燃烧生物质锅炉

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988900460

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988900460

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1988900460

Country of ref document: EP