EP3472517B1 - Procede de combustion - Google Patents

Procede de combustion Download PDF

Info

Publication number
EP3472517B1
EP3472517B1 EP17742471.0A EP17742471A EP3472517B1 EP 3472517 B1 EP3472517 B1 EP 3472517B1 EP 17742471 A EP17742471 A EP 17742471A EP 3472517 B1 EP3472517 B1 EP 3472517B1
Authority
EP
European Patent Office
Prior art keywords
combustion
enclosure
transfer medium
mixture
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17742471.0A
Other languages
German (de)
English (en)
Other versions
EP3472517A1 (fr
Inventor
Alain Fernandez De Grado
Philippe HAFFNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haffner Energy SA
Original Assignee
Haffner Energy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haffner Energy SA filed Critical Haffner Energy SA
Publication of EP3472517A1 publication Critical patent/EP3472517A1/fr
Application granted granted Critical
Publication of EP3472517B1 publication Critical patent/EP3472517B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/00001Exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50005Waste in combustion chamber supported on bed made of special materials

Definitions

  • the present invention relates to the field of the production of heat or cogeneration (heat and electricity) by combustion of organic material used in a solid or liquid form, this material being able to consist of biomass of mainly vegetable or animal or fossil origin such as example of plastics or other products composed of hydrocarbons.
  • the invention relates in particular to a combustion process and the combustion installation from organic material using said process, particularly suitable for the combined production of heat and electricity, in other words cogeneration, using a cycle of Rankine or equivalent, notably using a steam turbine and an alternator.
  • heat production alone can also be ensured by the invention, with a view to its use by a hot water or steam heat network, or any other conversion of heat into mechanical energy or into cold, for example by a group by absorption.
  • the combustion of organic matter is one of the possible routes for its energy recovery, the other main routes being gasification and anaerobic digestion.
  • Organic matter is still mainly made up of molecules composed of Carbon C, Hydrogen H and Oxygen 0, often combined with H2O water and mineral elements.
  • the combustion reaction is ensured by an oxidation of the material, which is strongly exothermic, the oxidizer being traditionally air in excess relative to the stoichiometric equilibrium, so as to prevent incomplete combustion.
  • the products of the process should be only carbon dioxide, nitrogen and water.
  • the purity and the reaction conditions pressure, temperature, speed, etc.).
  • other elements such as nitrogen oxides (NOx), dioxins and furans can be produced during the reactions, representing a high risk to the health of surrounding populations.
  • NOx nitrogen oxides
  • dioxins and furans can be produced during the reactions, representing a high risk to the health of surrounding populations.
  • pulverulent material is injected at high speed, which allows almost instantaneous combustion approaching the combustion of a gaseous fuel, without however being able to bring the same homogeneity of the thermal gradients.
  • EP0381195 discloses a combustion process according to the preamble of claim 1.
  • the present invention aims to overcome the drawbacks of the state of the art by proposing an economical process capable of producing heat and / or electricity and emitting fumes that are less harmful to the environment. In addition, this process improves the overall energy efficiency as well as the life of the equipment, in particular the heat exchangers.
  • the present invention relates to a method of combustion of organic matter, remarkable in that it comprises a step consisting in mixing a transfer medium composed of independent solid particles, with organic matter and in circulating said mixture in an enclosure and in that said mixture is subjected to combustion using an oxidizer introduced inside said enclosure and in that said mixture fills the entire horizontal section of the enclosure over all or part of the height of said enclosure.
  • said mixture fills the entire horizontal section of the enclosure over the entire height of said enclosure.
  • said mixture flows vertically from top to bottom under the effect of its own weight.
  • under the effect of its own weight means that said mixture moves in whole or in part under the effect of gravity and preferably only under the effect of gravity.
  • said mixture is subjected to successive combustion steps in different zones of said enclosure.
  • the combustion fumes produced are wholly or partly reinjected inside said enclosure.
  • Upstream and downstream are used with reference to the direction of circulation of said mixture.
  • said transfer medium passes, inside said enclosure, several zones of action of successive fluids.
  • the method comprises an additional step consisting in separating said transfer medium from the mineral material obtained after combustion and in that said transfer medium thus obtained is then reused in a method, according to 'invention.
  • the present invention also relates to a device for the combustion of an organic material according to a method according to the invention, comprising a combustion chamber comprising an inlet of said organic matter, at least one inlet of oxidant connected to a source of oxidant, a residual mineral outlet and combustion smoke outlet, remarkable in that independent solid particles forming a stacked mobile transfer medium are placed in said enclosure and in that said transfer medium fills the entire horizontal section of the enclosure over all or part of the height of said enclosure and in that a transfer media outlet is placed at one end of said enclosure and in that a transfer media outlet is placed at the other end of said enclosure and in that a transfer medium transfer means is interposed between the transfer media outlet and the transfer media inlet ensuring the ci looping of the transfer media.
  • the term “piled up” means that said mobile transfer medium fills the entire horizontal section of the enclosure over all or part of the height of said pregnant. Preferably, said mixture fills the entire horizontal section of the enclosure over the entire height of said enclosure.
  • said combustion chamber comprises several oxidizer inlets stepped relative to each other, each being connected to a common or separate source of oxidant.
  • a means for regulating the oxidant flow rate is associated with at least one of the oxidant inputs.
  • said device further comprises at least one sealed heat exchanger placed inside said enclosure, in contact with said transfer medium, and connected to a fluid inlet and outlet , ensuring the increase in the enthalpy of said fluid.
  • zone or “action zone” is intended to designate a part of the interior volume of the enclosure in which a heap of individual heat-transferable solid particles will circulate, called transfer media and in which said transfer medium fulfills a specific function in interaction with one or more fluids, such as air, combustion fumes, steam, etc.
  • zones can be delimited structurally in the case where a fluid will circulate between its inlet and its outlet, in a sealed heat exchanger placed inside the enclosure.
  • an area can be defined by the position of the fluid inlet and outlet.
  • a fluid inlet and outlet placed on either side of the enclosure will define a zone which corresponds to the part of the enclosure disposed between said inlet and said outlet.
  • the person skilled in the art is able to determine the ideal position of each inlet and of each outlet, in particular as a function of the physico-chemical nature of the fluid, of its speed. traffic and pressure losses.
  • One of the advantages of the invention is that the high thermal inertia of the mobile transfer medium, associated with its high conductivity and thermal diffusivity, make it possible to limit temperature fluctuations in the combustion zone.
  • the temperature gradient is much more stable, despite the inevitable variations in dryness or calorific capacity of the organic matter to be oxidized.
  • thermal capacity of the mobile transfer medium can be defined so that the enthalpy transfer takes place at the temperatures required to perfectly control the transformation of the organic matter.
  • this inertia allows low thermal pinching and improves the performance of the heat exchange between the fluids and the materials involved.
  • Another advantage is that the speed of movement of the transfer medium can be adjusted in real time as a function of the required combustion power, thus making it possible to adjust, for example, the parameters of the peripheral processes making it possible to recover the energy emitted during combustion such as, for example, the recirculation of fumes which stabilize the temperature of the hearth, the supply of primary or secondary air as oxidant or the circulation of fluids in the various exchangers ensuring the production of steam.
  • the mobile heat transfer medium can be set in motion slowly, for example at a particle displacement speed of less than 0.1 m / s, which is much less energy-consuming than a sand fluidization movement in a fluidized bed combustion furnace.
  • the only significant energy consumed for the movement of said mobile heat transfer medium is the energy of its transfer from the bottom to the top by a lifting means such as a bucket elevator.
  • Another advantage is that the exchange of enthalpy takes place in the same enclosure, thus avoiding the use of an auxiliary heating oven which would ensure the temperature rise of balls or any other moving mass and making it possible to avoid the constraints linked to transfers at very high temperatures.
  • Another advantage is that it is possible to choose a mobile heat transfer medium made of a material insensitive to chemical, acid or oxidation attacks such as, for example, alumina beads (AL203).
  • a mobile heat transfer medium made of a material insensitive to chemical, acid or oxidation attacks such as, for example, alumina beads (AL203).
  • Another advantage is that the mobile media does not have to be cleaned in situ, unlike traditional condensing installations by fixed lining which, by nature, cannot be easily removed from the reactor for cleaning.
  • Another advantage is that the control of the temperature gradients and of the combustion air introduction zones, divided into several stages, make it possible to greatly limit the production of thermal NOx, but also of so-called NOx of fuels.
  • Another advantage is that it is possible to define two separate media zones, making it possible to ensure extremely rapid cooling of the fumes in order to limit the formation of dioxins in the temperature range 250-450 ° C.
  • Another advantage is that the absence of direct contact between the fumes and the pressurized steam tubes makes it possible to envisage an increase in the superheating temperature of the steam, advantageously above 500 ° C., in particular in the event of use of inputs heavily loaded with chlorine and sulfur.
  • Another advantage is that the performance of the heat exchanges makes it possible to reduce the exchange surfaces and the length of the superheaters, while allowing circuits that are less sinuous than the superheaters in conventional boilers, thereby limiting the pressure drops in the boiler.
  • This advantage makes it possible to envisage one or more stages of steam reheating and the use of multi-body steam turbines, thereby making it possible to restore the steam to energy usable by a steam turbine. This greatly improves the electrical yields. Until now, such an arrangement was reserved for very large power installations, typically of more than 100 MW electric.
  • the invention makes it possible to make the reheating of steam exploitable for installations with an electrical power of less than 10 MW electrical.
  • Another advantage is that the mass of particles in motion involves an action of crushing and dispersion of the incandescent particles, and of all particles depolymerized and embrittled by the combustion front, which allows direct contact between the fixed carbon and the oxidizer. and limits the presence of hot spots confined within glowing embers, said hot spots being the source of emission of thermal NOx by a temperature punctually higher than 1200 ° C.
  • the method according to the invention uses a device for the combustion of organic matter.
  • the objective is to burn the incoming in the presence of oxidizer such as, for example, oxygen provided by air, to channel the heat released and to enhance this heat by heating a heat transfer fluid, for example water or steam.
  • oxidizer such as, for example, oxygen provided by air
  • the organic material to be treated is introduced into the enclosure in the middle of independent solid particles forming a mobile transfer medium.
  • the mixture obtained has several advantageous characteristics described below, in particular in terms of thermal inertia, porosity and mass.
  • the mixture is mobile, that is to say that a slow flow is put in place so as to make it pass through different action zones, the flow speed preferably being less than 6 m / min, and more preferably less than 1 m / min and even more preferably less than 0.1 m / min.
  • the flow is slow, that is to say that the speed of the particles forming the media is adapted both to the need for combustion, which must be supplied with fuel (the inputs) present in the mixture, and to the need for thermal inertia provided by the media in the combustion chamber. It is therefore necessary to have a means for regulating the formation of the mixture, so that the flow rate of the inflows and the flow rate of transfer medium are regulated independently.
  • the mixture leaves the supply zone and descends into the combustion zone, supplied with combustion air.
  • the air flow is regulated so as to allow combustion at controlled power of the inputs brought in by the mixture.
  • the oxidizer inlets are separated so as to create separate combustion zones, but the fumes created by each combustion are grouped together and discharged in a single outlet from the enclosure.
  • an auxiliary combustion means or burner for example comprising a fuel supply and a starting means (spark), is put in place in the combustion zone.
  • the combustion zone is divided into three sub-zones, each being supplied by a specific air inlet, the flow of which is regulated separately in relation to the measurement of the temperature prevailing in the zone.
  • the three air inlets are called primary air, secondary air and tertiary air.
  • This separate and controlled management allows both to maintain an increasing temperature gradient from the first zone, normally stabilized between 250 ° C and 350 ° C, preferably 300 ° C, then the second zone, normally stabilized between 450 ° C and 550 ° C, preferably at 500 ° C, up to in the third zone, normally stabilized between 750 ° C and 950 ° C, preferably at 850 ° C; and also to ensure the conversion of so-called combustion NOx into elements which are harmless to human health.
  • the fumes generated contain a minimum amount of NOX, since no combustion zone reaches more than 1200 ° C, as is generally the case with traditional technologies.
  • a solution for regulating the oxygen level can be obtained by injecting recirculated fumes in admixture with air. More broadly, any sort of regulation of oxygen level obvious to a person skilled in the art and preserving the yield of the process or the quality of the gases produced is conceivable.
  • the burned mixture At the end of this combustion, the duration of which can be adjusted by modifying the speed of flow of the media extracted from the bottom of the combustion chamber, the burned mixture then contains only particles of transfer media, advantageously non-combustible, mineral ash and unburnt organic matter if the power and the residence time of the combustion were insufficient.
  • This mixture comprising the burned inputs at a high temperature (typically more than 800 ° C) and represents a large energy stock, mainly contained in the hot particles of the transfer medium.
  • This hot mass can be used to subject the fumes to a high temperature for a minimum time, for example above 800 ° C for more than 2 seconds, so that the dioxins created during the combustion are destroyed, and thus meet the regulatory constraints of many countries aimed at guaranteeing the destruction of said dioxins.
  • This energy stock can also be exploited by various enthalpy recovery zones.
  • the hot mixture can, for example, pass through a zone of vaporization of pressurized water or superheating of steam circulating in a sealed exchanger in front of which or around which the mixture circulates.
  • the heat exchanges are then made by radiation, convection and conduction between the media particles and the walls of the exchanger.
  • These exchanges are advantageously improved if a fluid, such as for example the combustion fumes, circulates simultaneously through the mixture.
  • the flow of this fluid around the particles of the transfer medium amplifies the phenomena of convection and improves the power of heat exchanges, and the uniformity of temperatures.
  • the hot mixture can pass through an air preheating zone which will then be used as combustion air during combustion.
  • the overall yield of the process is improved.
  • the burnt mixture is subjected to a separation step during which the transfer medium is separated from the mineral ash and is reinjected into the process, possibly after one or more specific treatments (cleaning, repair, cooling, reheating, ...) .
  • the ashes are evacuated for storage or subsequent recovery, such as by spreading, etc.
  • the unburnt materials can be reinjected into the process in association with the recovered media, or separately.
  • the technical means required to carry out the separation may include a screen with holes, a screen with magnetic effect, (advantageously of the “omeric” type, a ballistic screen, an eddy current screen, a vibrating screen, a rotating drum or any other technique known to those skilled in the art depending on the nature of the elements to be separated. It is also advisable to separate, in a continuous or periodic manner, the particles of transfer media in good condition from those which are worn, broken and which can no longer fulfill their function.
  • the technical means required to carry out the specific treatments may include cleaning which can be carried out in a bath of pure water or with the addition of cleaning agents such as surfactants, or in a bath of solvent, or under a shower of water or solvent, or under a jet of cleaning gas or steam, such as steam, or by blowing compressed air.
  • a cleaning variant can use a vibration cleaning device, in particular in order to separate dust adhering to the media particles by circulating them on a vibrating screen, or any other vibration cleaning device, or any other high frequency device, such as ultrasound, with the possible addition of a bath of cleaning liquid.
  • the fumes can be extracted from the enclosure and undergo separate recovery stages such as enthalpy recovery, smoke condensation, etc.
  • a transfer media bed can be added in the vaporization zone, above the combustion zone.
  • the media plays an additional role in helping heat transfer in this area.
  • the organic matter can have any appearance; it can be liquid such as, for example, animal manure or sewage sludge; it can be solid such as, for example, refusals to store agricultural grain or forest chips; it can also be in a pasty intermediate state or in a heterogeneous mixture. Any organic material preferably less than 30 cm in size is suitable.
  • the mass of the transfer medium consists of a set of individual solid particles which are used without cohesion between them. A mass of particles is thus obtained, the size and shape of which allows natural flow by the effect of gravity.
  • This natural flow also allows the entrainment of the inputs introduced as a mixture within said transfer medium.
  • the mass plays a role of media which will constantly warm and cool under the influence of the energy and fluids involved, so that exchanges of enthalpy operate in the various zones of the device according to the invention.
  • the storage of heat or thermal inertia is one of the characteristics of the invention.
  • the transfer media has a mass which allows to accumulate enthalpy under the effect of its rise in temperature and according to its specific thermal capacity expressed in the unit J / (kg.K).
  • the total enthalpy contained in the media represents at least the enthalpy generated by the combustion of the entrants for 5 min.
  • the transfer medium can contain a material which changes phase during its use so as to also take advantage of the latent heat of phase change of this material, which also makes it possible to have more high thermal inertia.
  • a hollow refractory molybdenum steel ball whose melting temperature exceeds 2600 ° C, filled with an aluminum alloy whose melting temperature is 600 ° C, can store, during the solid phase change -liquid of aluminum at this fixed temperature of 600 ° C, more than 370 kJ / kg of aluminum, ie the equivalent of the sensible heat of a kg of aluminum heating up to 400 ° C.
  • the thermal inertia of the media is sought because it ensures storage of the enthalpy which stabilizes the combustion of the incoming and the heat exchanges in the different work zones. This avoids overheating the incoming or fumes, which limits the risk of the appearance of nitrogen oxides. Thanks to the inertia of the medium, the distribution of temperatures in the combustion medium is also distributed.
  • the transfer medium provides a high-power heat exchange, both during the combustion of the inputs, but also in the other stages when the transfer medium restores the energy captured at other elements, such as water or steam.
  • This result is advantageously obtained by the use of a medium having numerous cavities easily traversed by the fluid.
  • a transfer medium consisting of beads perforated over 25% of their volume guarantees a porosity (ratio of the vacuum volume to the total solid + vacuum volume) of more than 50% and therefore good circulation of the oxidant and / or the fumes throughout the enthalpy exchange zone.
  • the oxidant flows are not uniformly distributed, which creates pockets of more intense combustion than the optimum and others less intense. Thanks to the invention and the more uniform porosity provided by the medium, the distribution of the oxidant and the combustion powers are more homogeneous.
  • the exchange power is improved if the medium has good diffusivity, that is to say if the material has a high capacity to transfer heat.
  • the geometry and the dimension of the media elements are preferably defined in order to ensure the presence of a large developed surface swept by the fluids in presence, said surface being the seat of the heat exchange.
  • the media elements it is advantageous for the media elements to have a large developed surface and a low material thickness in order to facilitate the exchanges of enthalpy.
  • the preferred compactness parameter defined as the ratio of the developed surface area to the solid volume, is greater than 3 m 2 / m 3 , which corresponds, for example, to ball-shaped particles with a diameter of 30 mm and pierced with two 10 mm diameter orthogonal holes.
  • the exchange power is improved if the flows of the fluids through the transfer medium take place according to a hydraulic or aeraulic regime at high speed or turbulent, such a regime accentuating the performance of the heat exchanges by convection on the surface of the medium of transfer.
  • the dimensioning of the device will take care to guarantee a fluid flow speed greater than 1 m / s for liquid and greater than 3 m / s for gas.
  • the transfer medium must withstand the operating constraints during combustion.
  • the transfer medium must withstand such a temperature.
  • a recommended solution is to use molded spheres composed of alumina ceramic, whose temperature resistance thus reaches limits greater than 1100 ° C or even 1800 ° C depending on the purity of alumina.
  • a refractory metal of the molybdenum alloy type makes it possible to have a material whose melting point is greater than 2200 ° C. and whose mechanical resistance is greater than that of an alumina ceramic. .
  • non-refractory austenitic steel can also be used.
  • an exemplary device advantageously comprises a means for washing the transfer medium, regular or continuous.
  • the choice of the material composing the transfer medium also implies taking into consideration the catalysis phenomena generated by the contact of certain smoke components with the surface of said transfer medium.
  • the transfer medium is set in circulation movement inside the enclosure of the exchanger, which assumes that the transfer medium is made up of individual particles which can be moved without bonding between them and without mechanical blocking, which would create a single block that cannot be moved. It is also advantageous that the elements constituting the transfer medium have sufficient mechanical strength to support the weight of the stacking carried out, especially at the bottom. It is also preferable that the possible setting in motion of these elements does not break or abrase them too quickly, so as not to have to replace them too often, following an inevitable wear.
  • the heat exchanger transfer medium is composed of individual particles which can be balls or individual elements of the Raschig ring type, Perl saddle, etc. which are placed in a heap in the combustion chamber.
  • the elements are of generally spherical shape.
  • the spherical shape facilitates the circulation of the elements in the enclosure without a blocking effect of particles between them being able to occur.
  • the stacking of the transfer medium is preferably mechanically resistant, porous for the circulation of the fluid, massive to improve the thermal inertia, having a large surface developed to guarantee a high power heat exchange and a thermal conductivity. allowing to accelerate heat transfers.
  • the device 1 comprises an enclosure 10 in which there are two action zones: a combustion zone 11 and a vaporization zone 12.
  • the combustion zone 11 is fed from above with a mixture 21 of inlets 22 and transfer medium 23, previously mixed with a mixing means 20.
  • Said mixture 21 is introduced into the enclosure by an inlet 26 and distributed uniformly in said enclosure 10 by means of a distribution means 25.
  • this distribution means 25 comprises one or more Archimedes screws placed horizontally and whose rotation allows the distribution of the mixture 21 homogeneously over the entire horizontal section of the enclosure 10.
  • the distribution means 25 may also include a hydraulic or mechanical plunger, which makes the equipment more compact but which however has the disadvantage of less precise metering.
  • the mixture 21 is piled up in said enclosure 10 and flows by gravity, assisted in this by an elevation means 80, which maintains the circulation of the transfer medium 23 from an outlet 103 placed at the bottom of the enclosure up to at entrance 26.
  • an oxidant supply means 30 is placed at the level of the combustion zone 11.
  • This means notably comprises one or more supply lines 31, 32, 33 which channel and distribute the oxidant so homogeneous over the entire horizontal section of the enclosure 10.
  • each supply line 31, 32, 33 has its oxidant flow regulated, for example, by means of flow adjustment valve respectively 34, 35, 36 .
  • the number of feed lines oxidizer 31 32 33 may be increased so as to better control the temperature rise curve of the inputs, which makes it possible to limit the production of NOx from fuels.
  • the oxidizer is typically outside air 41 which, in the case of this example, is previously reheated using a reheating means 40, which uses the heat from the recirculating medium 43 in order to obtain a reheated oxidant 42 and a cooled medium 44.
  • the cooled medium 44 is then used by the mixing means 20.
  • an auxiliary combustion means 60 or burner is advantageously installed in the combustion zone 11, comprising, for example, a fuel supply 104 and a firing means, not shown.
  • the fumes are generated and are evacuated from the top of the enclosure by the outlet 102.
  • the fumes pass through the vaporization zone 12 which comprises a sealed heat exchanger 123.
  • This exchanger 123 is supplied by a fluid to evaporate or to overheat, typically water or steam under pressure, from an inlet 121 to an outlet 122.
  • the fumes transmit their enthalpy to this exchanger 123.
  • the fumes After their outlet from enclosure 102, the fumes are still quite hot and this energy can be recovered by any heat recovery means suitable for the fumes.
  • a smoke return coming from the downstream of the process can be implemented by the inlet 101, at a regulated flow rate so as to bring a cold gas into the enclosure and thus reduce the power of the combustion in progress.
  • This smoke recirculation means in addition to the air supply means 30 therefore participates in the regulation of the combustion power.
  • the mixture 21 initial only includes the initial media 23 and mineral ash brought in by the entrants, as well as possibly some unburnt items.
  • This final mixture 51 thus formed is evacuated at outlet 103, and advantageously undergoes separation using a separation means 50, which makes it possible to obtain on one side the mineral ash 53 and on the other side the media transfer 52.
  • a prior drying zone 13 is located above the combustion zone 11.
  • This prior drying zone 13 is supplied with mixture 21, comprising incoming 22 and transfer medium particles 23. These particles are warmer than the incoming, for example 200 ° C, so that, during the stay of the mixture 21 in the drying zone 13, the enthalpy of the medium transfer 23 will be transmitted to the input elements in order to allow the vaporization of the moisture contained in the wet inputs and the drying, at least partially, of said inputs.
  • the drying zone can also be located upstream of the combustion zone, in particular for high power units, a transfer of the mobile heat transfer medium then being required.
  • a means of collecting 70 and evacuating the steam produced is installed in the drying zone 13.
  • the mixture is introduced into the combustion zone 11 which functions in the same way as according to the figure 1 , with the difference that the fumes produced are evacuated by an outlet 102 present in the lower part of the enclosure 10, and the transfer medium 23 is evacuated by an outlet 103, which is also placed in the lower part of the enclosure, hence the concept of co-current.
  • the medium is very hot and this heat can be recovered using a heat exchange means 40, possibly after said separation step 50.
  • FIG. 3 there is shown an embodiment of the invention for ensuring combustion in a co-current mode with prior drying and vaporization.
  • the interest of the device according to the figure 3 resides in particular in the stabilization zone 14, which has the function of maintaining the fumes at a temperature of more than 850 ° C. for at least 2 seconds.
  • the dioxins that may have formed during combustion are destroyed, the residual carbon monoxide is oxidized to carbon dioxide, the polycyclic aromatic hydrocarbons are degraded and the fixed carbon is oxidized.
  • the vaporization zone 15 and the preheating zone 16 include a heat exchanger similar to that of zone 12, allowing the heating, vaporization and / or overheating of a fluid introduced by the inlet 161 and discharged. via exit 152.
  • zones 15 and 16 makes it possible to evacuate the fumes by the outlet 102 placed between the two areas, and to supply the area 16 with combustion air, from an inlet 41 to an outlet 42, so that the hot media can heat this air before it is introduced into the combustion zone by the supply means 30.
  • the enclosure 10 is preferably of a stretched and vertical shape, that is to say that among its three characteristic dimensions (height, length, width), one of the dimensions is large compared to the others, in order to favor the setting in place of a flow of fluids from their entry to their exit, so that all the portions of fluid which arrive in the enclosure remain there for an equivalent duration and circulate in the media according to the same path.
  • a more compact enclosure shape (the three dimensions having roughly the same value) would be less efficient because the smoke flow would not be as homogeneous.
  • the enclosure 10 is insulated so as to minimize thermal leaks which could affect the performance of heat exchanges.
  • a condensing media device can be implemented.
  • One of the advantages of such a device is to be able to recover the latent heat, an energy which can represent up to 30% of the primary energy, while optimizing the recovery of a significant part of sensible heat.
  • Another advantage is that the action of condensation, combined with the permanent slowing down of the rain formed by the condensation, makes it possible to favor the capture of all elements contained in the fumes and water-soluble, or else having hydrophilic properties. This concerns most of the dust, NH3, NOx in the form of NO2, HCL (hydrochloric acid), SO2 (sulfur dioxide).
  • Another advantage is that the condensates from a Rankine cycle equipped in particular with a condensing steam turbine, can be preheated by the latent heat recovered, as well as all or part of the combustion air, thus making it possible to recover in electrical energy, part of the latent heat.
  • This last advantage makes it possible to bring a strong improvement in electrical efficiency compared to conventional technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

    Domaine de l'invention
  • La présente invention concerne le domaine de la production de chaleur ou de cogénération (chaleur et électricité) par combustion de matière organique utilisée sous une forme solide ou liquide, cette matière pouvant être constituée de biomasse d'origine majoritairement végétale ou animale ou fossile comme par exemple des plastiques ou d'autres produits composés d'hydrocarbures.
  • L'invention concerne notamment un procédé de combustion et l'installation de combustion à partir de matière organique utilisant ledit procédé, particulièrement adaptés pour la production combinée de chaleur et d'électricité, autrement dit cogénération, à l'aide d'un cycle de Rankine ou équivalent, utilisant notamment une turbine à vapeur et un alternateur. Mais une production de chaleur seule peut aussi être assurée par l'invention, en vue de son utilisation par un réseau de chaleur à eau chaude ou vapeur, ou toute autre conversion de la chaleur en énergie mécanique ou en froid par exemple par un groupe par absorption.
  • Etat de la technique
  • La combustion de la matière organique est l'une des voies possibles pour sa valorisation énergétique, les autres voies principales étant la gazéification et la méthanisation.
  • La matière organique est toujours constituée majoritairement de molécules composées de Carbone C, d'Hydrogène H et d'Oxygène 0, souvent combinée à de l'eau H2O et à des éléments minéraux.
  • La réaction de combustion est assurée par une oxydation de la matière, fortement exothermique, le comburant étant traditionnellement de l'air en excès par rapport à l'équilibre stœchiométrique, de manière à prévenir les combustions incomplètes.
  • Idéalement les produits du procédé devraient être uniquement du dioxyde de carbone, de l'azote et de l'eau. Dans la réalité, en fonction de l'origine de la matière première entrant dans le procédé (ultérieurement appelée "entrants" dans la description de l'invention), de sa pureté et des conditions de réaction (pression, température, vitesse,...), des éléments obtenus par recombinaison chimique avec certains éléments, et notamment des éléments tels que le chlore, le soufre, etc ... apparaissent et sont des éléments indésirables pour leurs effets de corrosion, abrasion et encrassement des équipements. De plus, d'autres éléments comme les oxydes d'azote (NOx), les dioxines et les furanes peuvent être produits durant les réactions, représentant un risque élevé pour la santé des populations environnantes.
  • Selon l'état de l'art actuel des procédés de combustion de matière organique, la production de chaleur et/ou électricité fait, de manière classique, appel à trois principales technologies de foyers permettant d'assurer la combustion :
    • Dans un procédé de chaudière à grille, qui comprend notamment les grilles à gradin, les spreader stockers, les grilles rotatives, les entrants sont introduits au-dessus d'une grille en mouvement, dans la partie basse d'une enceinte, dans laquelle elle subit une combustion en même temps qu'elle se déplace sous l'effet des mouvements de la grille. Du comburant, tel que de l'air ou de l'oxygène, est introduit dans l'enceinte afin de permettre la combustion de la matière organique et ainsi générer des fumées très chaudes (en général plus de 800°C). Les fumées produites sont habituellement extraites en partie haute, après avoir traversé un foyer tapissé de nappes de tubes sous pression, dites membranes, dans lesquelles circulent de l'eau à vaporiser, ou de la vapeur à surchauffer. Ensuite, les fumées traversent en général une série d'échangeurs dénommés surchauffeurs destinés à surchauffer la vapeur. En dernier lieu, les fumées, encore assez chaudes, circulent dans des circuits complémentaires, dénommés vaporisateurs et économiseurs, et transmettent encore de la chaleur au circuit d'eau ou vapeur, à l'aide d'échangeurs travaillant à diverses températures, jusqu'à des températures en général comprises entre 180 et 130°C.
    • Dans un procédé de chaudière à lit fluidisé, les entrants sont préalablement broyés et calibrés puis introduits dans un réacteur où s'agite une masse de particules à plus de 500°C telles que, par exemple, du sable, de l'olivine, de la dolomite ou du laitier de haut-fourneau. Les entrants, attaqués par un front de combustion rapide, subissent alors une oxydation en quelques fractions de secondes. Pour les installations de grande dimension dites à lit fluidisé circulant, d'une puissance généralement supérieure à 25 MW, une séparation centrifuge des gaz produits d'avec les particules volantes est réalisée. Ces dernières sont alors recirculées en partie basse vers le réacteur afin d'être réutilisées dans le foyer, entraînant avec lui la plupart des particules de matière organique non brûlées. Les gaz produits sont collectés en une seule sortie principale placée en position haute, et le circuit emprunté par les fumées est alors similaire à celui d'un foyer à grilles tel que décrit supra.
  • Dans un foyer dit à pulvérisation, de la matière pulvérulente est injectée à grande vitesse, ce qui permet une combustion quasiment instantanée se rapprochant de la combustion d'un combustible gazeux, sans toutefois pouvoir apporter la même homogénéité des gradients thermiques.
  • Ces solutions traditionnelles présentent notamment les défauts suivants :
    • Les réactions de combustion, qui ont lieu dans une même enceinte, ne permettent pas de maîtriser précisément les températures et les compositions chimiques des réactifs en présence dans les différentes zones du réacteur. Il apparait notamment des points chauds (généralement à plus de 1200°C) et localisés, ce qui peut provoquer la production de NOx de combustion (oxydes d'azote), un des polluants atmosphériques les plus nocifs pour la santé.
    • Dans le cas de la combustion par lit fluidisé circulant, qui procède instantanément à l'opération de combustion, les fumées produites sont de meilleure qualité. Toutefois, l'installation est complexe, exige des variables d'ajustement de procédé sensibles et se révèle énergivore en auxiliaires électriques, car il faut assurer la fluidisation d'éléments sableux lourds. Les particules en mouvement, généralement du sable, sont elles-mêmes très sensibles à des interactions physico-chimiques avec certains éléments alcalins contenus dans les cendres, ce qui provoque avec certains entrants, notamment ceux chargés en potassium, des phénomènes de frittage du lit, ce qui compromet la fluidité des particules jusqu'à déclencher l'arrêt de l'installation.
  • EP0381195 divulgue un procédé de combustion selon le préambule de la revendication 1.
  • Description de l'invention
  • La présente invention a pour but de pallier les inconvénients de l'état de la technique en proposant un procédé économique capable de produire de la chaleur et/ou de l'électricité et émettant des fumées moins nocives pour l'environnement. De plus, ce procédé permet d'améliorer le rendement énergétique global ainsi que la durée de vie des équipements, notamment les échangeurs thermiques.
  • Ainsi, la présente invention concerne un procédé de combustion de matière organique, remarquable en ce qu'il comprend une étape consistant à mélanger un média de transfert composé de particules solides indépendantes, avec de la matière organique et à faire circuler ledit mélange dans une enceinte et en ce que ledit mélange est soumis à une combustion à l'aide d'un comburant introduit à l'intérieur de ladite enceinte et en ce que ledit mélange remplit la totalité de la section horizontale de l'enceinte sur tout ou partie de la hauteur de ladite enceinte. Préférentiellement, ledit mélange remplit la totalité de la section horizontale de l'enceinte sur toute la hauteur de ladite enceinte.
  • Selon un mode de réalisation préféré de l'invention, ledit mélange circule verticalement de haut en bas sous l'effet de son propre poids.
  • Ceci permet aussi de favoriser l'interaction des gaz et du mélange du média de transfert avec la matière organique.
  • Par le terme « sous l'effet de son propre poids » on entend indiquer que ledit mélange se déplace en tout ou partie sous l'effet de la gravité et préférentiellement uniquement sous l'effet de la gravité.
  • Selon un mode de réalisation préféré de l'invention, ledit mélange est soumis à des étapes de combustion successives dans des zones différentes de ladite enceinte.
  • Selon un mode de réalisation préféré de l'invention, les fumées de combustion produites sont en tout ou partie réinjectées à l'intérieur de ladite enceinte.
  • Dans le cadre de la présente invention, le terme « amont » et « aval » sont utilisés en référence au sens de circulation dudit mélange.
  • Selon un mode de réalisation préféré de l'invention, ledit média de transfert traverse, à l'intérieur de ladite enceinte, plusieurs zones d'action de fluides successives.
  • Selon un mode de réalisation préféré de l'invention, le procédé comprend une étape supplémentaire consistant à séparer ledit média de transfert de la matière minérale obtenue après combustion et en ce que ledit média de transfert ainsi obtenu est ensuite réutilisé dans un procédé, selon l'invention.
  • La présente invention concerne également un dispositif pour la combustion d'une matière organique selon un procédé selon l'invention, comprenant une enceinte de combustion comprenant une entrée de ladite matière organique, au moins une entrée de comburant reliée à une source de comburant, une sortie de matière minérale résiduelle et une sortie de fumée de combustion, remarquable en ce que des particules solides indépendantes formant un média de transfert mobile entassé sont placées dans ladite enceinte et en ce que ledit média de transfert remplit la totalité de la section horizontale de l'enceinte sur tout ou partie de la hauteur de ladite enceinte et en ce qu'une entrée de média de transfert est placée à une extrémité de ladite enceinte et en ce qu'une sortie de média de transfert est placée à l'autre extrémité de ladite enceinte et en ce qu'un moyen de transfert du média de transfert est intercalé entre la sortie de média de transfert et l'entrée de média de transfert assurant la circulation en boucle du média de transfert.
  • Dans le cadre de la présente invention, le terme « entassé » entend signifier que ledit média de transfert mobile remplit la totalité de la section horizontale de l'enceinte sur tout ou partie de la hauteur de ladite enceinte. Préférentiellement, ledit mélange remplit la totalité de la section horizontale de l'enceinte sur toute de la hauteur de ladite enceinte.
  • Selon un mode de réalisation préféré de l'invention, ladite enceinte de combustion, comprend plusieurs entrées de comburant étagées les unes par rapport aux autres, chacune étant reliée à une source de comburant commune ou séparée.
  • Selon un mode de réalisation préféré de l'invention, un moyen de régulation du débit de comburant est associé à au moins une des entrées de comburant.
  • Selon un mode de réalisation préféré de l'invention, ledit dispositif comprend en outre au moins un échangeur de chaleur étanche placé à l'intérieur de ladite enceinte, au contact dudit média de transfert, et raccordé à une entrée et à une sortie de fluide, assurant l'augmentation de l'enthalpie dudit fluide.
  • Dans le cadre de la présente invention, le terme « zone » ou « zone d'action » entend désigner une partie du volume intérieur de l'enceinte dans laquelle va circuler un entassement de particules individuelles solides caloporteuses, appelé média de transfert et dans laquelle ledit média de transfert remplit une fonction spécifique en interaction avec un ou plusieurs fluides, tel que de l'air, des fumées de combustion, de la vapeur, ... .
  • Ces zones peuvent être délimitées structurellement dans le cas où un fluide va circuler entre son entrée et sa sortie, dans un échangeur de chaleur étanche placé à l'intérieur de l'enceinte. Alternativement, une zone peut être définie par la position de l'entrée et de la sortie du fluide. Par exemple, une entrée et une sortie de fluide placées de part et d'autre de l'enceinte vont définir une zone qui correspond à la partie de l'enceinte disposée entre ladite entrée et ladite sortie. Afin d'éviter que deux zones d'actions ne se superposent, l'homme du métier est à même de déterminer la position idéale de chaque entrée et de chaque sortie, notamment en fonction de la nature physico-chimique du fluide, de sa vitesse de circulation et des pertes de charges.
  • Avantages de l'invention
  • Un des avantages de l'invention est que la grande inertie thermique du média de transfert mobile, associée à sa conductivité et à sa diffusivité thermique élevées, permettent de limiter les fluctuations de température dans la zone de combustion. Le gradient de température est beaucoup plus stable, malgré les variations incontournables de siccité ou de capacité calorifique de la matière organique à oxyder.
  • Un autre avantage est que la capacité thermique du média de transfert mobile peut être définie de manière à ce que le transfert d'enthalpie se fasse aux températures requises pour contrôler parfaitement la transformation de la matière organique. De plus, cette inertie permet un faible pincement thermique et améliore la performance de l'échange thermique entre les fluides et les matières en jeu.
  • Le procédé selon l'invention présente les caractéristiques et ou les avantages suivants :
    • Le média caloporteur, qui est contenu dans l'enceinte, est mobile et non fixe, à la différence des garnissages fixes qui apportent certes une grande surface d'échange thermique mais qui ne peuvent aisément extraits de l'enceinte afin de procéder à leur nettoyage.
    • Cette mobilité permet de transporter de l'énergie captée par le média depuis une zone de l'enceinte vers une autre zone de l'enceinte, voire vers une autre enceinte.
    • Le média a pour fonction de capter l'enthalpie disponible dans l'enceinte pour la restituer ensuite. Certaines solutions connues de l'homme de l'art disposent d'un four extérieur (à gaz, électrique, ...) dans lequel le média, par exemple sous forme de boulets, circule, de sorte qu'il est chauffé par la combustion ayant lieu dans le four extérieur. Ensuite, le média est introduit dans une enceinte dans laquelle l'enthalpie apportée par le média caloporteur est valorisée. L'enthalpie échangée provient donc d'un carburant et d'un dispositif extérieur, tel une chaudière à gaz. Selon l'invention, la fonction du média est de récupérer de l'énergie habituellement perdue par la partie aval du procédé, et non de consommer du carburant pour apporter une énergie extérieure qui ne peut que dégrader le bilan énergétique du procédé, alors que ce carburant pourrait être valorisé à l'extérieur de l'invention.
    • La fonction d'échanges thermiques, notamment entre le média et un gaz (air, syngaz ou vapeur) est prépondérante.
    • Le média est déplacé de façon essentiellement verticale ce qui autorise un remplissage maximal et homogène de l'enceinte du réacteur, à la différence des tambours horizontaux tournants ou des systèmes avec vis de transfert horizontale. Cela permet ainsi d'éviter les problèmes récurrents de stratification et de mélange peu homogène des matières présentant des différences de densité importantes. Cela permet aussi de garantir un écoulement des fluides homogène dans le média, car il s'avère que dans un média disposé de façon non essentiellement verticale, les particules de média se décollent de la paroi supérieure de l'enceinte et libèrent ainsi un espace dans lequel un écoulement préférentiel de fluide apparait, au détriment de la performance de l'invention.
    • De plus, cette disposition verticale facilite la mise en mouvement des particules par la simple gravité, notamment à des températures élevées qui perturbent l'utilisation de pièces mécaniques comme par exemple une vis d'Archimède.
    • L'invention utilise un média qui comporte des espaces de porosité calibrée, à la différence des sables que l'on trouve, par exemple, dans les systèmes de chaudière ou de gazéification à lit fluidisé qui exigent l'emploi d'un gaz de fluidisation injecté à haute pression, source d'usure précoce et de consommation d'énergie. Ainsi, selon l'invention, le média pèse de tout son poids sur les particules organiques qui y sont mélangées, de sorte qu'un effet de compression, de broyage, d'effritement s'effectue, ainsi qu'un contact mécanique favorisant la rapidité des échanges thermiques.
    • Préférentiellement, le procédé selon l'invention met en œuvre un écoulement contrôlé d'un fluide à travers le média, en minimisant le risque d'apparition de circuit préférentiel d'écoulement qui court-circuiterait une partie de l'enceinte et réduirait grandement l'intérêt de l'invention. Ainsi, une enceinte dans laquelle le média serait disposé selon une couche verticale prise entre deux tôles de guidage perforées et qui serait traversé de façon globalement horizontale par un gaz circulant depuis une des tôles de guidage vers l'autre, ne permettrait pas de parvenir au rendement du procédé selon l'invention. En effet, si le lit de média vertical qui s'écoule entre les deux tôles de guidage n'est pas parfaitement homogène en porosité, un écoulement préférentiel du fluide pourrait apparaître dans une partie locale du média et tout le reste du média ne serait plus actif pour échanger de l'enthalpie avec le fluide circulant dans l'enceinte. Dans le procédé selon l'invention, ce risque est limité en assurant une circulation du fluide caloporteur le long de la dimension la plus longue du média, soit, de façon préférée, le long de la hauteur dans le cas d'un média placé par entassement dans une enceinte verticale. Cet écoulement vertical peut notamment être assuré par l'utilisation d'une enceinte à tôle pleine remplie de média et disposant d'une entrée et d'une sortie de fluide placées en position haute et basse, ou inversement, de la zone utile du média. Comme le média se déplace de façon essentiellement verticale, les gaz qui le traversent (par ex le gaz comburant ou les fumées produites par la combustion) circulent aussi de façon essentiellement verticale et afin d'éviter les court-circuit il faut une perte de charge égale sur le chemin des gaz, donc une porosité homogène assurée par un remplissage complet d'au moins une partie de l'enceinte sur toute la section transversale à l'écoulement des gaz, dite section horizontale.
  • Un autre avantage est que la vitesse de déplacement du média de transfert peut être ajustée en temps réel en fonction de la puissance de combustion requise, permettant ainsi d'ajuster, par exemple, les paramètres des procédés périphériques permettant de récupérer l'énergie émise lors de la combustion telle que, par exemple, la recirculation de fumées qui stabilisent la température du foyer, l'apport d'air primaire ou secondaire comme comburant ou encore la circulation de fluides dans les divers échangeurs assurant la production de vapeur.
  • Un autre avantage est que le média caloporteur mobile peut être mis en mouvement lentement, par exemple à une vitesse de déplacement des particules de moins de 0,1 m/s, ce qui est bien moins énergivore qu'un mouvement de fluidisation à sable dans un foyer de combustion à lit fluidisé. En effet, la seule énergie significative consommée pour le mouvement dudit média caloporteur mobile est l'énergie de son transfert du bas vers le haut par un moyen de levage tel qu'un élévateur à godet.
  • Un autre avantage est que l'échange d'enthalpie s'effectue dans une même enceinte, évitant ainsi l'usage d'un four de chauffage auxiliaire qui assurerait la montée en température de boulets ou tout autre masse en mouvement et permettant d'éviter les contraintes liées aux transferts à très haute température.
  • Un autre avantage est qu'il est possible de choisir un média caloporteur mobile fait d'un matériau insensible aux attaques chimiques, acides ou à l'oxydation tel que, par exemple, des billes en alumine (AL203).
  • Un autre avantage est que le média mobile n'a pas à être nettoyé in situ, à la différence des installations traditionnelles de condensation par garnissage fixe qui, par nature, ne peut être aisément évacué du réacteur pour nettoyage.
  • Un autre avantage est que le fait que les cendres aient éventuellement une température de fusion inférieure à la température idéale de la combustion, située aux environs de 850°C, n'implique pas d'accumulation de mâchefers dans le foyer, ou bien des phénomènes de frittage tels que ceux constatés dans les lits fluidisés, permettant ainsi d'envisager une plus grande variété d'entrants, et notamment des substrats agricoles avec des taux de potassium élevés.
  • Un autre avantage est que le contrôle des gradients de température et des zones d'introduction de l'air de combustion, divisées en plusieurs étapes, permettent de fortement limiter la production de NOx thermiques, mais aussi de NOx dits de combustibles.
  • Un autre avantage est qu'il possible de définir deux zones de média distinctes, permettant d'assurer un refroidissement extrêmement rapide des fumées afin de limiter la formation de dioxines dans la plage de température 250-450°C.
  • Un autre avantage est que l'absence de contact direct entre les fumées et les tubes de vapeur sous pression permet d'envisager un relèvement de la température de surchauffe de la vapeur, avantageusement au-delà de 500°C, notamment en cas d'utilisation d'entrants fortement chargés en chlore et en souffre.
  • Un autre avantage est que la performance des échanges thermiques permet de réduire les surfaces d'échanges et la longueur des surchauffeurs, tout en autorisant des circuits moins sinueux que les surchauffeurs en chaudière conventionnelles, limitant de ce fait les pertes de charge en chaudière. Cet avantage permet d'envisager une ou plusieurs étapes de resurchauffe de la vapeur et le recours à des turbines à vapeur multi-corps, permettant de ce fait de redonner à la vapeur de l'énergie exploitable par une turbine à vapeur. Cela permet de fortement améliorer les rendements électriques. Une telle disposition était jusqu'alors réservée aux installations de très grande puissance, typiquement de plus de 100 MW électriques. L'invention permet de rendre exploitable la resurchauffe de la vapeur pour des installations d'une puissance électrique inférieure à 10 MW électriques.
  • Un autre avantage est que la masse de particules en mouvement implique une action d'écrasement et de dispersion des particules incandescentes, et de toutes particules dépolymérisées et fragilisées par le front de combustion, ce qui permet un contact direct entre le carbone fixe et le comburant et limite la présence de points chauds confinés au sein de braises incandescentes, lesdits points chauds étant la source d'émission de NOx thermiques par une température ponctuellement supérieure à 1200°C.
  • D'autres avantages et caractéristiques de l'invention sont décrits ci-après selon les modes possibles de réalisation de l'invention.
  • Les descriptions font référence aux figures suivantes en annexe :
    • La figure 1 représente schématiquement un mode de réalisation du dispositif selon l'invention selon une première version de combustion avec une valorisation des fumées en contre-courant
    • La figure 2 représente schématiquement une variante de l'invention selon une seconde version de combustion avec un séchage préalable et un écoulement des fumées en co-courant
    • La figure 3 représente schématiquement une variante de l'invention selon une troisième version intégrant un séchage préalable, une combustion et une valorisation des fumées en co-courant
    Description d'un mode de réalisation
  • Le procédé selon l'invention met en œuvre un dispositif pour la combustion d'une matière organique. L'objectif est de brûler les entrants en présence de comburant tel que, par exemple, de l'oxygène apporté par de l'air, de canaliser la chaleur dégagée et de valoriser cette chaleur en chauffant un fluide caloporteur, par exemple de l'eau ou de la vapeur.
  • Selon l'invention, la matière organique à traiter est introduite dans l'enceinte au milieu de particules solides indépendantes formant un média de transfert mobile. Le mélange obtenu présente plusieurs caractéristiques avantageuses décrites infra, notamment en termes d'inertie thermique, de porosité et de masse.
  • Le mélange est mobile, c'est-à-dire qu'un écoulement lent est mis en place de façon à lui faire traverser différentes zones d'action, la vitesse d'écoulement étant de façon préférée inférieure à 6 m/mn, et de façon plus préférée inférieure à 1 m/mn et de façon encore plus préférée inférieure à 0,1 m/mn.
  • Le mode de réalisation décrit ici considère que l'écoulement est vertical vers le bas ; toutefois toute autre direction ou sens d'écoulement est possible, même si la mise en œuvre est plus complexe.
  • L'écoulement est lent, c'est-à-dire que la vitesse des particules formant le média est adaptée à la fois au besoin de la combustion, qui doit être alimentée en carburant (les entrants) présent dans le mélange, et au besoin d'inertie thermique apportée par le média dans l'enceinte de combustion. Il est donc nécessaire de disposer d'un moyen de régulation de la formation du mélange, de sorte que le débit des entrants et le débit de média de transfert soient régulés indépendamment.
  • Ainsi, le mélange quitte la zone d'alimentation et descend dans la zone de combustion, alimentée en air comburant. Le débit d'air est régulé de façon à permettre une combustion à puissance contrôlée des entrants apportés par le mélange.
  • Avantageusement, les arrivées de comburant sont séparées de façon à créer des zones de combustion séparées, mais les fumées créées par chaque combustion sont regroupées et évacuées en une seule sortie de l'enceinte. Selon une autre variante de l'invention, il y a plusieurs sorties, mais au moins une assure l'évacuation d'un mélange de fumées provenant des combustions séparées.
  • Si nécessaire, notamment en phase de démarrage, un moyen auxiliaire de combustion ou brûleur, par exemple comprenant une alimentation en fuel et un moyen de mise en route (étincelle), est mis en place dans la zone de combustion.
  • Avantageusement, la zone de combustion est divisée en trois sous-zones, chacune étant alimentée par une arrivée d'air spécifique, dont le débit est régulé séparément en relation avec la mesure de la température qui règne dans la zone. Ainsi, le gradient de température dans ces trois sous-zones est précisément contrôlé. Les trois arrivées d'air sont appelées air primaire, air secondaire et air tertiaire. Cette gestion séparée et contrôlée permet à la fois de maintenir un gradient de température croissant depuis la première zone, normalement stabilisée entre 250°C et 350°C, préférentiellement 300 °C, puis la seconde zone, normalement stabilisée entre 450°C et 550°C, préférentiellement à 500 °C, jusqu'à la troisième zone, normalement stabilisée entre 750°C et 950°C, préférentiellement à 850 °C; et aussi d'assurer la conversion des NOx dits de combustion en éléments inoffensifs pour la santé humaine.
  • Ainsi, les fumées générées contiennent une quantité de NOX minimale, car aucune zone de combustion n'atteint plus de 1200°C, comme cela est généralement le cas avec les technologies traditionnelles.
  • De façon avantageuse, une solution de régulation du taux d'oxygène peut être obtenue par injection de fumées recirculées en mélange avec l'air. De façon plus large, toute sorte de régulation de taux d'oxygène évidente à l'homme de l'art et préservant le rendement du procédé ou la qualité des gaz produits est envisageable.
  • A l'issue de cette combustion, dont la durée peut être ajustée par modification de la vitesse d'écoulement du média extrait par le bas de l'enceinte de combustion, le mélange brûlé ne contient alors que des particules de média de transfert, avantageusement incombustibles, des cendres minérales et de la matière organique imbrûlée si la puissance et le temps de séjour de la combustion ont été insuffisants. Ce mélange comprenant les entrants brûlés a une température élevée (typiquement de plus de 800°C) et représente un stock d'énergie important, principalement contenu dans les particules chaudes du média de transfert.
  • Cette masse chaude peut être mise à profit pour soumettre les fumées à une grande température durant un temps minimal, par exemple à plus de 800° C pendant plus de 2 secondes, de sorte que les dioxines créées durant la combustion soient détruites, et répondre ainsi aux contraintes règlementaires de nombreux pays visant à garantir la destruction desdites dioxines.
  • Ce stock d'énergie peut aussi être valorisé par diverses zones de récupération d'enthalpie.
  • Ainsi, le mélange chaud peut, par exemple, traverser une zone de vaporisation d'eau pressurisée ou de surchauffe de vapeur circulant dans un échangeur étanche devant lequel ou autour duquel circule le mélange. Les échanges de chaleur se font alors par rayonnement, convection et conduction entre les particules de média et les parois de l'échangeur. Ces échanges sont avantageusement améliorés si un fluide, comme par exemple les fumées de la combustion, circule simultanément à travers le mélange. L'écoulement de ce fluide autour des particules du média de transfert amplifie les phénomènes de convection et améliore la puissance des échanges thermiques, et l'homogénéité des températures.
  • Selon un autre exemple, le mélange chaud peut traverser une zone de préchauffage de l'air qui va ensuite être utilisé comme air comburant durant la combustion. Ainsi, le rendement global du procédé est amélioré.
  • Ensuite, le mélange brûlé est soumis à une étape de séparation durant laquelle le média de transfert est séparé des cendres minérales et est réinjecté dans le procédé, éventuellement après une ou plusieurs traitements spécifiques (nettoyage, réparation, refroidissement, réchauffage,...). Les cendres sont évacuées pour mise en centre de stockage ou valorisation ultérieures, comme par épandage, .... Les imbrûlés peuvent être réinjectés dans le procédé en association avec le média récupéré, ou séparément.
  • Les moyens techniques requis pour effectuer la séparation peuvent comprendre un crible à trous, un crible à effet magnétique, (avantageusement du type « overband », un crible balistique, un crible à effet de courant de Foucault, un tamis vibrant, un tambour rotatif ou toute autre technique connue de l'homme de l'art selon la nature des éléments à séparer. Il convient aussi de séparer, de manière continue ou périodique, les particules de média de transfert en bon état de celles qui sont usées, brisées et qui ne peuvent plus remplir leur fonction.
  • De plus, les moyens techniques requis pour effectuer les traitements spécifiques peuvent comprendre un nettoyage qui peut être effectué dans un bain d'eau pure ou additivée d'agents de nettoyage tels des surfactants, ou dans un bain de solvant, ou sous une douche d'eau ou de solvant, ou sous un jet de gaz de nettoyage ou de vapeur, telle que de la vapeur d'eau, ou par soufflage d'air comprimé. Une variante de nettoyage peut utiliser un dispositif de nettoyage par vibrations, notamment afin de séparer des poussières adhérant aux particules de média en les faisant circuler sur un tamis vibrant, ou tout autre dispositif de nettoyage par vibrations, ou tout autre dispositif à haute fréquence, tels des ultrasons, avec l'appoint éventuel d'un bain de liquide nettoyant.
  • Les fumées générées durant la combustion sont évidemment chaudes et peuvent être valorisées de deux façons
    • soit la configuration du dispositif selon l'invention est dite à "contre-courant", c'est-à-dire que si le média de transfert descend par écoulement lent, les fumées montent. Alors, la configuration ressemble à une chaudière verticale à tubes d'eau classique. Les fumées montent et traversent une zone de vaporisation d'eau pressurisée ou de surchauffe de vapeur circulant dans un échangeur étanche devant lequel circule le mélange. Les échanges de chaleur se font alors par rayonnement et convection entre les fumées et les parois de l'échangeur.
    • Soit la configuration est dite à "co-courant", c'est-à-dire que les fumées descendent avec le média de transfert, ce qui permet de les faire séjourner pendant un temps contrôlé à une haute température, comme déjà décrit.
  • Dans tous les cas, les fumées peuvent être extraites de l'enceinte et subir des étapes séparées de valorisation telles qu'une récupération d'enthalpie, une condensation de fumée, ... .
  • Selon une variante de la configuration à contre-courant, un lit de média de transfert peut être ajouté dans la zone de vaporisation, au-dessus de la zone de combustion. Ainsi, le média joue un rôle additionnel d'aide au transfert de chaleur dans cette zone.
  • La matière organique peut avoir un aspect quelconque ; elle peut être liquide comme, par exemple, du lisier d'élevage d'animaux ou des boues de station d'épuration ; elle peut être solide comme, par exemple, des refus de silo de grains agricoles ou de la plaquette forestière ; elle peut également être en état intermédiaire pâteux ou en mélange hétérogène. Toute matière organique de taille préférablement inférieure à 30 cm convient.
  • La masse du média de transfert est constituée d'un ensemble de particules individuelles solides qui sont utilisées sans cohésion entre elles. On obtient ainsi un amas de particules dont la taille et la forme permet un écoulement naturel par l'effet de la gravité.
  • Cet écoulement naturel permet aussi l'entrainement des entrants introduits en mélange au sein dudit média de transfert.
  • La masse joue un rôle de média qui va constamment se réchauffer et se refroidir sous l'influence de l'énergie et des fluides en jeu, de sorte que des échanges d'enthalpie s'opèrent dans les différentes zones du dispositif selon l'invention.
  • Le stockage de chaleur ou inertie thermique est une des caractéristiques de l'invention. En effet, le média de transfert dispose d'une masse qui permet d'accumuler de l'enthalpie sous l'effet de sa montée en température et selon sa capacité thermique massique exprimée dans l'unité J/(kg.K). Ainsi, il est nécessaire de disposer d'un média de transfert de grande masse et/ou de grande capacité thermique massique qui présente une grande inertie thermique. Concrètement, pour garantir une bonne stabilité des échanges thermiques, il est préférable que l'enthalpie totale contenue dans le média représente au moins l'enthalpie générée par la combustion des entrants pendant 5 min. De plus, il est avantageux de disposer de particules dont la densité est supérieure à 2500 kg/m3 et dont la capacité thermique est supérieure à 300 J/(kg.K).
  • Selon une variante de l'invention, le média de transfert peut contenir une matière qui change de phase durant son utilisation de façon à profiter aussi de la chaleur latente de changement de phase de cette matière, ce qui permet de disposer aussi d'une plus grande inertie thermique.
  • Par exemple, une bille d'acier au molybdène réfractaire creuse dont la température de fusion dépasse 2600°C, remplie d'un alliage d'aluminium dont la température de fusion est de 600°C, peut stocker, lors du changement de phase solide-liquide de l'aluminium à cette température fixe de 600°C, plus de 370 kJ/kg d'aluminium soit l'équivalent de la chaleur sensible d'un kg d'aluminium s'échauffant de 400°C.
  • L'inertie thermique du média est recherchée car elle assure un stockage de l'enthalpie qui stabilise la combustion des entrants et les échanges thermiques dans les différentes zones de travail. Ainsi, on évite de surchauffer les entrants ou les fumées, ce qui limite le risque d'apparition d'oxydes d'azote. Grâce à l'inertie du média, la distribution des températures dans le milieu de combustion est également répartie.
  • Une autre avantage de l'invention est que le média de transfert assure un échange thermique de grande puissance, à la fois lors de la combustion des entrants, mais aussi dans les autres étapes lorsque le média de transfert restitue l'énergie captée à d'autres éléments, tel que de l'eau ou de la vapeur d'eau. Ce résultat est avantageusement obtenu par l'utilisation d'un média présentant de nombreuses cavités facilement traversées par le fluide. Ainsi, un média de transfert constitué de billes perforées sur 25% de leur volume garantit une porosité (ratio du volume de vide sur le volume total solide + vide) de plus de 50% et donc une bonne circulation du comburant et/ou des fumées dans toute la zone d'échange d'enthalpie.
  • De plus, dans un espace de grand volume qu'est le foyer de combustion d'une chaudière industrielle (plusieurs m3), les débits de comburant ne sont pas uniformément répartis ce qui crée des poches de combustion plus intense que l'optimum et d'autres moins intense. Grâce à l'invention et à la porosité plus uniforme qu'apporte le média, la distribution du comburant et les puissances de combustion sont plus homogènes.
  • Selon une variante de l'invention, il est possible d'utiliser de simples sphères, dont l'entassement dans un volume donné permet de conserver des porosités entre les sphères, laissant un passage libre pour les fluides traversants.
  • De plus, la puissance d'échange est améliorée si le média présente une bonne diffusivité, c'est-à-dire si le matériau présente une forte capacité à transférer de la chaleur. Le coefficient de diffusivité défini par D = lambda / ro / C (où lambda = conductivité thermique, ro = masse volumique et C = capacité thermique massique) est préférentiellement supérieur à 0,2 10-6 m2/s.
  • De plus, la géométrie et la dimension des éléments de média sont préférentiellement définies afin de s'assurer de la présence d'une grande surface développée balayée par les fluides en présence, ladite surface étant le siège de l'échange de chaleur. Ainsi, il est avantageux que les éléments de média présentent une surface développée importante et une épaisseur de matière faible afin de faciliter les échanges d'enthalpie. Le paramètre de compacité préféré, défini comme le ratio de la surface développée sur le volume solide, est supérieur à 3 m2/m3, ce qui correspond, par exemple, à des particules en forme de bille de diamètre 30 mm et percée de deux trous orthogonaux de diamètre 10 mm.
  • Enfin, la puissance d'échange est améliorée si les écoulements des fluides à travers le média de transfert se font selon un régime hydraulique ou aéraulique à grande vitesse ou turbulent, un tel régime accentuant la performance des échanges thermiques par convection en surface du média de transfert. Par exemple, selon une solution préférée, le dimensionnement du dispositif veillera à garantir une vitesse d'écoulement des fluides supérieure à 1 m/s pour du liquide et supérieure à 3 m/s pour du gaz.
  • Avantageusement, le média de transfert doit supporter les contraintes de fonctionnement lors de la combustion.
  • Ainsi, si la combustion s'opère à une température supérieure à 900°C, il faut que le média de transfert supporte une telle température. Une solution recommandée consiste à utiliser des sphères moulées composées de céramique d'alumine, dont la résistance à la température atteint ainsi des limites supérieures à 1100°C voire 1800°C en fonction de la pureté de l'alumine.
  • De même, l'utilisation d'un métal réfractaire du type alliage au molybdène permet de disposer d'une matière dont le point de fusion est supérieur à 2200°C et dont la résistance mécanique est supérieure à celle d'une céramique d'alumine.
  • Comme la présente invention permet de conserver des températures inférieures à 900°C en tous points du dispositif, de l'acier austénitique non-réfractaire pourra également être utilisé.
  • De plus, si la combustion génère des fumées contenant du soufre ou du chlore et de l'humidité, en cas de condensation de vapeur d'eau durant l'échange de chaleur et le refroidissement de ces fumées, de l'acide sulfurique ou chlorhydrique peut se former et corroder rapidement le média de transfert. Dans ce cas, le matériau le constituant doit être choisi de façon à résister à un pH généralement inférieur à 3.
  • Par ailleurs, les fumées peuvent contenir des éléments en suspension susceptibles de se déposer sur le média de transfert et mener ainsi à son encrassement, avec la conséquence potentielle de réduire progressivement la porosité de ce dernier. La circulation des fluides et l'efficacité des échanges thermiques en seraient alors dégradées. Pour résoudre ce problème, un exemple de dispositif comprend avantageusement un moyen de lavage du média de transfert, régulier ou continu.
  • Le choix du matériau composant le média de transfert implique aussi de prendre en considération les phénomènes de catalyse engendrés par le contact de certains composants de fumées avec la surface dudit média de transfert.
  • Enfin, selon l'invention, le média de transfert est mis en mouvement de circulation à l'intérieur de l'enceinte de l'échangeur ce qui suppose que le média de transfert est bien composé de particules individuelles qui peuvent être déplacés sans collage entre elles et sans blocage mécanique, ce qui créerait un seul bloc impossible à déplacer. Il est aussi avantageux que les éléments constituant le média de transfert aient une résistance mécanique suffisante pour supporter le poids de l'empilage effectué, surtout en partie basse. Il est aussi préférable que la mise en mouvement éventuelle de ces éléments ne les brise ni ne les abrase trop vite, afin de ne pas devoir les remplacer trop souvent, suite à une usure inévitable.
  • Ainsi, le média de transfert échangeur de chaleur est composé de particules individuelles qui peuvent être des billes ou des éléments individuels de type anneau de Raschig, selle de Perl, ... qui sont placés en tas dans l'enceinte de combustion.
  • De façon avantageuse, les éléments sont de forme globalement sphérique. La forme sphérique facilite la circulation des éléments dans l'enceinte sans qu'un effet de blocage de particules entre elles ne puisse advenir.
  • D'autres formes sont évidemment aussi envisageables, du moment qu'elles respectent le cahier des charges décrit supra.
  • Ainsi, l'empilage du média de transfert est préférentiellement mécaniquement résistant, poreux pour la circulation du fluide, massif pour améliorer l'inertie thermique, disposant d'une grande surface développée pour garantir un échange thermique de grande puissance et d'une conductivité thermique permettant d'accélérer les transferts thermiques.
  • Selon une variante de l'invention représentée sur la figure 1 et permettant d'assurer une combustion avec une valorisation des fumées par le haut et selon un mode contre-courant, le dispositif 1 comprend une enceinte 10 dans laquelle se trouvent deux zones d'action : une zone de combustion 11 et une zone de vaporisation 12.
  • La zone de combustion 11 est alimentée par le haut avec un mélange 21 d'entrants 22 et de média de transfert 23, préalablement mélangés avec un moyen de mélange 20. Ledit mélange 21 est introduit dans l'enceinte par une entrée 26 et distribué uniformément dans ladite enceinte 10 à l'aide d'un moyen de distribution 25. De façon préférée, ce moyen de distribution 25 comprend une ou plusieurs vis d'Archimède placées de façon horizontale et dont la rotation permet la répartition du mélange 21 de façon homogène sur toute la section horizontale de l'enceinte 10. Le moyen de distribution 25 peut aussi comprendre un poussoir hydraulique ou mécanique, qui rend l'équipement plus compact mais qui présente cependant l'inconvénient d'un dosage moins précis.
  • Le mélange 21 s'entasse dans ladite enceinte 10 et s'écoule par gravité, assistée en cela par un moyen d'élévation 80, qui entretient la circulation du média de transfert 23 depuis une sortie 103 placée en bas de l'enceinte jusqu'à l'entrée 26.
  • De façon à assurer la combustion, un moyen d'alimentation en comburant 30 est placé au niveau de la zone de combustion 11. Ce moyen comprend notamment une ou plusieurs lignes d'alimentation 31, 32, 33 qui canalisent et distribuent le comburant de façon homogène sur toute la section horizontale de l'enceinte 10. Avantageusement, chaque ligne d'alimentation 31, 32, 33 voit son débit de comburant régulé, par exemple, à l'aide de vanne de réglage de débit respectivement 34, 35, 36.
  • Pour certaines applications, notamment certains entrants ayant des taux d'azotes très élevés, parfois au-delà de 1% de la matière sèche, le nombre de lignes d'alimentation de comburant 31 32 33 pourra être augmenté de manière à mieux contrôler la courbe d'élévation en température des entrants, ce qui permet de limiter la production de NOx de combustibles.
  • Le comburant est typiquement de l'air extérieur 41 qui, dans le cas de cet exemple, est préalablement réchauffé à l'aide d'un moyen de réchauffage 40, qui utilise la chaleur issue du média recirculant 43 afin d'obtenir un comburant réchauffé 42 et un média refroidi 44. Le média refroidi 44 est ensuite utilisé par le moyen de mélange 20.
  • Afin de permettre le démarrage du dispositif 1, un moyen auxiliaire de combustion 60 ou brûleur est avantageusement mis en place dans la zone de combustion 11, comprenant, par exemple, une alimentation en fuel 104 et un moyen de mise à feu, non représenté.
  • Lors de cette combustion, des fumées sont générées et sont évacuées par le haut de l'enceinte par la sortie 102. Au cours de cette évacuation, les fumées traversent la zone de vaporisation 12 qui comprend un échangeur de chaleur étanche 123. Cet échangeur 123 est alimenté par un fluide à évaporer ou à surchauffer, typiquement de l'eau ou de la vapeur sous pression, depuis une entrée 121 jusqu'à une sortie 122. Ainsi, les fumées transmettent leur enthalpie à cet échangeur 123. Après leur sortie de l'enceinte 102, les fumées sont encore assez chaudes et cette énergie peut être récupérée par tout moyen de récupération de chaleur adapté aux fumées.
  • En bas de la zone de combustion 11, un retour de fumée venant de l'aval du procédé, peut être mis en place par l'entrée 101, selon un débit régulé de façon à apporter un gaz froid dans l'enceinte et ainsi réduire la puissance de la combustion en cours. Ce moyen de recirculation de fumée, en complément du moyen d'alimentation en air 30 participe donc à la régulation de la puissance de la combustion. Enfin, à l'issue de combustion en zone 11, le mélange 21 initial ne comprend plus que le média initial 23 et des cendres minérales apportées par les entrants, ainsi qu'éventuellement quelques imbrûlés. Ce mélange final 51 ainsi constitué est évacué en sortie 103, et subit avantageusement une séparation à l'aide d'un moyen de séparation 50, qui permet d'obtenir d'un côté les cendres minérales 53 et d'un autre coté le média de transfert 52.
  • Selon le mode de réalisation de l'invention représentée en figure 2 et permettant d'assurer une combustion avec un séchage préalable et selon un mode co-courant, une zone de séchage préalable 13 est implantée au-dessus de la zone de combustion 11. Cette zone de séchage préalable 13 est alimentée en mélange 21, comprenant des entrants 22 et des particules de média de transfert 23. Ces particules sont plus chaudes que les entrants, par exemple 200°C, de sorte que, durant le séjour du mélange 21 dans la zone de séchage 13, l'enthalpie du média de transfert 23 va être transmise aux éléments d'entrants afin de permettre la vaporisation de l'humidité contenue dans les entrants humides et le séchage, au moins partiel, desdits entrants.
  • Toutefois, au lieu d'être au-dessus de la zone de combustion, la zone de séchage peut aussi se situer en amont de la zone de combustion, notamment pour les unités de puissance élevée, un transfert du média caloporteur mobile étant alors requis.
  • Un moyen de collecte 70 et d'évacuation de la vapeur produite est implanté dans la zone de séchage 13.
  • Ensuite, le mélange est introduit dans la zone de combustion 11 qui fonctionne de la même façon que selon la figure 1, à la différence que les fumées produites sont évacuées par une sortie 102 présente en partie basse de l'enceinte 10, et le média de transfert 23 est évacué par une sortie 103, elle aussi placée en partie basse de l'enceinte, d'où le concept de co-courant.
  • Après la sortie 102, les fumées sont très chaudes et cette chaleur peut être valorisée par tout moyen évident à l'homme de l'art.
  • Après la sortie 103, le média est très chaud et cette chaleur peut être valorisée à l'aide d'un moyen d'échange de chaleur 40, éventuellement après ladite étape de séparation 50.
  • En référence à la figure 3, on a représenté un mode de réalisation de l'invention permettant d'assurer une combustion selon un mode co-courant avec un séchage préalable et une vaporisation.
  • La disposition des différentes zones d'action est alors la suivante :
    • une alimentation en mélange 20
    • une zone de séchage 13
    • une zone de combustion 30
    • une zone de stabilisation 14
    • une zone de vaporisation 15
    • une zone de préchauffage d'air 16
  • L'intérêt du dispositif selon la figure 3 réside notamment dans la zone de stabilisation 14, qui a pour fonction de maintenir les fumées à une température de plus de 850°C pendant au moins 2 secondes. Ainsi, les dioxines qui se sont éventuellement formées durant la combustion sont détruites, le monoxyde de carbone résiduel est oxydé en dioxyde de carbone, les hydrocarbures polycycliques aromatiques sont dégradés et le carbone fixe est oxydé.
  • De plus, la zone de vaporisation 15 et la zone de préchauffage 16 comportent un échangeur de chaleur similaire à celui de la zone 12, permettant le chauffage, la vaporisation et/ou la surchauffe d'un fluide introduit par l'entrée 161 et évacué par la sortie 152.
  • Enfin, la séparation entre les zones 15 et 16 permet d'évacuer les fumées par la sortie 102 placée entre les deux zones, et d'alimenter la zone 16 en air comburant, depuis une entrée 41 vers une sortie 42, de sorte que le média chaud puisse réchauffer cet air avant son introduction en zone de combustion par le moyen d'alimentation 30.
  • L'enceinte 10 est préférentiellement d'une forme étirée et verticale, c'est-à-dire que parmi ses trois dimensions caractéristiques (hauteur, longueur, largeur), une des dimensions est grande par rapport aux autres, afin de favoriser la mise en place d'un cheminement des fluides depuis leur entrée jusqu'à leur sortie, de sorte que toutes les portions de fluide qui arrivent dans l'enceinte y séjournent pour une durée équivalente et circulent dans le média selon le même cheminement. Une forme d'enceinte plus compacte (les trois dimensions ayant à peu près la même valeur) serait moins performante car l'écoulement des fumées ne serait pas aussi homogène.
  • De façon avantageuse, l'enceinte 10 est calorifugée de façon à minimiser les fuites thermiques qui pourraient affecter la performance des échanges de chaleur.
  • Lorsque le média de transfert 23 est sorti de l'enceinte 10, il convient de le mouvoir depuis l'orifice de soutirage 103 vers l'orifice de réintroduction 26. A cette fin, lorsque le mouvement du média de transfert 23 est de haut en bas dans l'enceinte, un convoyage vertical d'élévation est requis. Celui-ci pourra se faire par vis d'Archimède, tapis roulant, élévateur à godets, vérin ascenseur ou tout autre moyen mécanique permettant un convoyage vertical.
  • Selon un exemple, il est avantageux de disposer d'une zone spéciale de condensation des fumées, par refroidissement de celles-ci en dessous de leur point de rosée, qui se situe en général entre 38 et 65°C selon l'humidité des entrants. A titre d'exemple, la combustion de bois sec avec un excès d'air de 20% génère plus de 70 grammes de vapeur d'eau par Nm3 de fumée, ce qui représente près de 400 grammes de vapeur d'eau par kg de combustible, l'essentiel de la vapeur d'eau étant produite par la combustion elle-même. A cet effet, un dispositif de média de condensation peut être mis en place.
  • Un des avantages d'un tel dispositif est de pouvoir récupérer la chaleur latente, une énergie qui peut représenter jusqu'à 30% de l'énergie primaire, tout en optimisant la récupération d'une part significative de chaleur sensible.
  • Un autre avantage est que l'action de condensation, conjuguée au ralentissement permanent de la pluie formée par la condensation, permet de favoriser la captation de tous éléments contenus dans les fumées et hydrosolubles, ou bien présentant des propriétés hydrophiles. Cela concerne la plupart des poussières, le NH3, les NOx sous forme de N02, le HCL (acide chlorhydrique), le S02 (dioxyde de souffre).
  • Un autre avantage est que les condensats issus d'un cycle de Rankine équipé notamment d'une turbine à vapeur à condensation, peuvent être préchauffés par la chaleur latente récupérée, ainsi que tout ou partie de l'air de combustion, permettant ainsi de valoriser en énergie électrique une partie de la chaleur latente. Ce dernier avantage permet d'apporter une forte amélioration de rendement électrique par rapport aux technologies conventionnelles.

Claims (10)

  1. Procédé de combustion de matière organique (22), comprenant une étape consistant à mélanger un média de transfert (23) composé de particules solides indépendantes, avec de la matière organique (22) et à faire circuler ledit mélange (21) dans une enceinte (10) et en ce que ledit mélange est soumis à une combustion à l'aide d'un comburant introduit à l'intérieur de ladite enceinte (10), caractérisé en ce que ledit mélange remplit la totalité de la section horizontale de l'enceinte sur tout ou partie de la hauteur de ladite enceinte.
  2. Procédé de combustion selon la revendication précédente, caractérisé en ce que ledit mélange (21) circule verticalement de haut en bas sous l'effet de son propre poids.
  3. Procédé de combustion selon l'une des revendications précédentes, caractérisé en ce que ledit mélange (21) est soumis à des étapes de combustion successives dans des zones différentes de ladite enceinte (10).
  4. Procédé de combustion selon l'une des revendications précédentes, caractérisé en ce que les fumées de combustion produites sont en tout ou partie réinjectées à l'intérieur de ladite enceinte (10).
  5. Procédé de combustion selon l'une des revendications précédentes, caractérisé en ce que ledit média de transfert (23) traverse, à l'intérieur de ladite enceinte (10), plusieurs zones d'action de fluides successives (11, 12, 13, 14, 15, 16, 111, 112, 113).
  6. Procédé de combustion selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape supplémentaire consistant à séparer ledit média de transfert (23) de ladite matière minérale obtenue après combustion et en ce que ledit média de transfert ainsi obtenu est ensuite réutilisé dans un procédé selon l'une des revendications précédentes.
  7. Dispositif (1) pour la combustion d'une matière organique (22) selon un procédé selon l'une des revendications 1 à 6, comprenant une enceinte de combustion (10) comprenant une entrée (26) de ladite matière organique (22), au moins une entrée de comburant (34, 35, 36) reliée à une source de comburant, une sortie de matière minérale résiduelle (103) et une sortie de fumée de combustion (102), dans ledit dispositif, des particules solides indépendantes (23) formant un média de transfert mobile entassé sont placées dans ladite enceinte (10), ledit média de transfert remplit la totalité de la section horizontale de l'enceinte sur tout ou partie de la hauteur de ladite enceinte, une entrée de média de transfert (26) est placée à une extrémité de ladite enceinte (10) et une sortie de média de transfert (103) est placée à l'autre extrémité de ladite enceinte (10) et un moyen de transfert (80) du média de transfert est intercalé entre la sortie de média de transfert (103) et l'entrée de média de transfert (26) assurant la circulation en boucle du média de transfert (23).
  8. Dispositif (1) selon la revendication précédente, caractérisé en ce que ladite enceinte de combustion (10), comprend plusieurs entrée de comburant (34, 35, 36) étagées les unes par rapport aux autres, chacune reliée à une source de comburant commune ou séparée.
  9. Dispositif (1) selon l'une des revendications 7 à 8, caractérisé en ce qu'un moyen de régulation du débit de comburant est associé à au moins une des entrées de comburant (34, 35, 36).
  10. Dispositif (1) selon l'une des revendications 7 à 9, caractérisé en ce qu'il comprend au moins un échangeur de chaleur étanche placé à l'intérieur de ladite enceinte, au contact dudit média de transfert (23), et raccordé à une entrée (161) et à une sortie (152) de fluide, assurant l'augmentation de l'enthalpie dudit fluide.
EP17742471.0A 2016-06-09 2017-06-09 Procede de combustion Active EP3472517B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1655304A FR3052539B1 (fr) 2016-06-09 2016-06-09 Procede de combustion
PCT/FR2017/051467 WO2017212189A1 (fr) 2016-06-09 2017-06-09 Procede de combustion

Publications (2)

Publication Number Publication Date
EP3472517A1 EP3472517A1 (fr) 2019-04-24
EP3472517B1 true EP3472517B1 (fr) 2020-07-08

Family

ID=57396521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17742471.0A Active EP3472517B1 (fr) 2016-06-09 2017-06-09 Procede de combustion

Country Status (3)

Country Link
EP (1) EP3472517B1 (fr)
FR (1) FR3052539B1 (fr)
WO (1) WO2017212189A1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656256B2 (ja) * 1989-01-31 1994-07-27 繁 齋藤 焼却炉
US5769009A (en) * 1993-11-17 1998-06-23 Saitoh; Shigeru Method of disposing of combustion residue and an apparatus therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017212189A1 (fr) 2017-12-14
FR3052539B1 (fr) 2020-12-04
FR3052539A1 (fr) 2017-12-15
EP3472517A1 (fr) 2019-04-24

Similar Documents

Publication Publication Date Title
CA2799133C (fr) Procede de combustion en boucle chimique avec une zone de reaction integrant une zone de separation gaz-solide et installation utilisant un tel procede
EP2776540B1 (fr) Reacteur de sechage et de torrefaction de biomasse, de preference ligno-cellulosique
EP2627739B1 (fr) Dispositif pour la transformation d'un combustible
JP4766562B2 (ja) 木質ペレット焚き蒸気ボイラ
KR100808140B1 (ko) 순환자원의 고형연료를 연소하기 위한 다기능 연소설비
FR2903177A1 (fr) Procede et systeme de torrefaction d'une charge de biomasse.
JP6592304B2 (ja) バイオマス利用方法及び装置
FR2701087A1 (fr) Procédé d'incinération de combustibles solides, notamment résidus urbains, à rejets solides et gazeux sensiblement neutres vis-à-vis de l'environnement.
FR2854887A1 (fr) Systeme et procede pour recycler thermiquement des dechets, et application de ce systeme au traitement de dechets a forte teneur en eau
EP1792122A1 (fr) Système et procédé pour recycler thermiquement des déchets
JP2007321520A (ja) バイオマス発電施設にて発生する熱利用方法
EP3472517B1 (fr) Procede de combustion
FR2485178A1 (fr) Perfectionnements aux dispositifs pour realiser une reaction, telle qu'une combustion, entre un solide et un gaz
FR2802616A1 (fr) Methode et dispositif d'auto-combustion de dechets organiques graisseux comportant un foyer a chauffe tangentielle
EP3816512A1 (fr) Module de production de chaleur comprenant un systeme de filtration haute temperature
EP2479493B1 (fr) Dispositif de combustion, unité d'incinération comprenant un tel dispositif de combustion, et procédé de mise en oeuvre d'un tel dispositif de combustion
EP3389883A1 (fr) Procédé et installation de traitement de déchets
FR2727747A1 (fr) Equipement ameliore pour incineration de dechets humides
JP2005265297A (ja) ボイラ装置
JP2005314549A (ja) ガス化炉装置
WO2017085434A1 (fr) Dispositif et procede de thermolyse
JP2005321183A (ja) ストーカ炉における廃棄物燃焼方法及び該ストーカ炉
FR3047300A1 (fr) Procede de gazeification et dispositifs permettant de le mettre en oeuvre
FR3052545A1 (fr) Dispositif de sechage
EP0388284A1 (fr) Procédé et dispositif pour brûler des combustibles riches en produits chlorés et/ou en métaux lourds

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017019470

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017019470

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240610

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240612

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240611

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20240612

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240611

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240611

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240607

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240611

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240610

Year of fee payment: 8