WO1988004124A1 - Dispositif de traitement d'un signal electrique audiofrequence - Google Patents

Dispositif de traitement d'un signal electrique audiofrequence Download PDF

Info

Publication number
WO1988004124A1
WO1988004124A1 PCT/FR1987/000457 FR8700457W WO8804124A1 WO 1988004124 A1 WO1988004124 A1 WO 1988004124A1 FR 8700457 W FR8700457 W FR 8700457W WO 8804124 A1 WO8804124 A1 WO 8804124A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
output
input
filter
transducer
Prior art date
Application number
PCT/FR1987/000457
Other languages
English (en)
Inventor
Philippe Robineau
Eric Vincenot
Didier Dal Fitto
Original Assignee
Nexo Distribution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexo Distribution filed Critical Nexo Distribution
Priority to GB8911511A priority Critical patent/GB2230402B/en
Priority to DE19873790740 priority patent/DE3790740T1/de
Priority to DE3790740A priority patent/DE3790740C2/de
Publication of WO1988004124A1 publication Critical patent/WO1988004124A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • the invention relates to a device for processing or pre-correcting an audio frequency electrical signal, delivered, for example, at the output of an amplifier and normally intended to be applied to a high-efficiency transducer such as for example a loudspeaker.
  • Compression chamber speaker specializing in the reproduction of sounds emitted in the frequency range called "high mid and high”.
  • the invention relates more particularly to an improvement making it possible to pre-compensate the variable phase shifts undergone by the emitted acoustic wave, resulting from non-linearities of response of the propagation medium (that is to say the air) which essentially arise at- beyond the transducer.
  • a transmission medium like air has a non-linear behavior, especially when the amplitudes of the acoustic vibrations applied to it are large. This phenomenon is particularly audible and annoying, when the transducer is, for example, a speaker with compression chamber, therefore with high efficiency. In this case, it has been possible to observe the appearance of a high rate of distortion due to parasitic harmonic components which are particularly troublesome in the frequency range mentioned above. However, this is precisely the frequency range for which a compression chamber loudspeaker is more particularly intended.
  • the invention results from the study of distortion phenomena in such transducers. The following observations were made:
  • the deformation of the sound wave created can be described as being a variable phase shift (that is to say a succession of "delays” or “advances") of certain parts of the sound wave, depending on the sound intensity.
  • the basic principle of the invention therefore consists in predicting (calculating) the evolution of such deformations of the sound wave, in order to apply variable compensating delays on the electrical signal intended to excite the transducer.
  • the invention essentially relates to a device for processing an electrical signal intended to be applied to an electro-acoustic transducer, in particular a high-efficiency transducer, as for example in a loudspeaker with compression chamber, characterized in that it comprises means for delaying said signal or a signal derived therefrom, by a variable value depending on its amplitude, this value changing to substantially compensate for a phase shift of variable propagation undergone by the sound wave generated by said transducer.
  • the means to delay the signal will be made from all-phase phase shift filters, with operational amplifiers.
  • the invention therefore also relates to a device for processing an electrical signal according to the above definition, characterized in that it comprises:
  • - sampler means receiving said signal, or derived signal and delivering successive samples thereof at its output, calculation means, one input of which is connected to said output of said sampler means, said calculation means producing representative output signals delays to be applied respectively to said samples, each delay calculated being a function of the amplitude of the corresponding sample, and - means forming a variable delay line comprising a control input connected to the output of the calculation means and a signal input connected to the output of said sampler means.
  • the delay line means can, for their part, be arranged around a buffer memory after analog-digital conversion, as will be seen below, or else use components with charge transfer or with switched capacities such as than those known under the name "CCD", which avoids analog-digital conversion and digital-analog conversion.
  • CCD charge transfer or with switched capacities
  • FIG. 1 is a schematic sectional view of a loudspeaker with compression chamber to which the invention more particularly applies;
  • Figure 2 is a block diagram of a possible embodiment of a signal processing device according to the invention.
  • FIG. 3 is a simplified block diagram illustrating a possible variant of the signal processing device.
  • a conventional compression chamber speaker 11 more particularly concerned with the invention.
  • This comprises a transducer comprising a moving coil 12 capable of moving in the air gap of a magnetic block 16 comprising a permanent magnet 13 and integral with a dome 14, here concave, attached to the block 16 by means of 'a flexible annular suspension 15.
  • the block 16 contains a frustoconical part 17 provided with channels 18, here of annular shape, opening in the vicinity of the dome 14 on a convex surface 19 defining, with the dome 14, a compression chamber 22.
  • the loudspeaker is completed by a rigid horn 20 connected at the front of the block 16 to an orifice 21 communicating with the channels 18.
  • the horn 20 can be of the exponential or conical type.
  • the compression chamber 22 is thus defined between the surface of the dome 14 and the convex surface 19.
  • this distance represents the abscissa of a point considered along the axis of propagation of the sound wave Ox, the origin being located at the front end of. the compression chamber.
  • the determination of the overall deformation to be considered at the exit of the pavilion can be done by an integration calculation which takes account of the shape of this pavilion.
  • the shape of the flag can be characterized by expressing the variation in amplitude v (x) of the speed during the propagation path Ox.
  • the shape of the pavilion can be associated with an analytical function S (x) expressing the variation in cross-section of the pavilion along the axis Ox, we can deduce a function v (x) characterizing the amplitude variation speed during the Ox path. of propagation.
  • the determination of the tr function can also be carried out experimentally by directly measuring the deformation of the wave leaving the horn. We can then establish an approximate mathematical function expressing the relationship between the values of measured and the corresponding values of V O. This method makes it possible in particular to apply the correction device defined by the invention to all forms of complex pavilions.
  • the aforementioned calculation means can therefore be adapted to reproduce the shape of the function electrically. corresponding to the form of .
  • the application of the delays can only be done on the electrical signal and not on the acoustic wave emitted, it is advisable to apply the transformation defined by one of the relations above, not on the signal electric e (t) itself, as delivered by the amplifier, but on a signal y (t) derived from or deduced from it and proportional to the acoustic speed V O (t).
  • This is physically obtained by applying the electrical signal to a first, filter H having at least approximately a transfer function equivalent to that of said transducer.
  • H is the electrical equivalent of the transfer function of the transducer, including the compression chamber.
  • the electrical signal processing device 30 is inserted as a whole between a means elaboration of the electrical signal e (t), in this case a low frequency pre-amplifier 32, and the transducer of the loudspeaker with compression chamber 11 described above.
  • a linear power amplifier AP is however inserted between the output of the processing device and the loudspeaker 11.
  • the filter H is recognized, the calculation means C "electrically simulating" the one of the relationships indicated above, in this case here the relationship (2) relating to a loudspeaker with exponential horn, and the means forming a variable delay line T comprising a pilot input 34 connected to the output 36 of the means computation C and a signal input 38 connected to the output of the first filter H via sampler means 40.
  • the output of the sampler means is also connected to the input 42 of the computation means, so that the signal transformed by the filter H and representative of the speed of the sound wave "to be corrected" is applied both to the input of the computing means C and to the input of the delay line means T.
  • the output 44 of the latter is connected at a se cond filter H -1 , this second filter having at least approximately a reverse transfer function to that of said first filter H.
  • the H filter is just there. electrical "transcription" of the transfer function of the transducer 11.
  • Its output signal y (t) is therefore representative of the acoustic wave produced by the transducer 11 to the outlet of the compression chamber. It comprises a series branch comprising a resistor R 1 , a choke L 1 and a capacitor C 1 , followed by a branch in branch to ground, comprising a capacitor C 2 and a resistor R 2 in parallel.
  • the set of these two branches is inserted between two amplifier amplifiers A 1 and A 2 , of unity gain.
  • the calculation of the passive components R 1 , L 1 , C 1 , C 2 , R 2 is within the reach of those skilled in the art knowing the transfer function from the transducer to the compression chamber.
  • the second filter H -1 has a reverse transfer function to that of the filter H. It is composed from three operational amplifiers A 3 , A 4 , A 5 . According to the example, the signal delivered by the delay line means is applied to the respective inputs of a second order high pass filter wired around the operational amplifier A 3 and of a second order low pass filter wired around amplifier A 4 . The two outputs of these "filters are applied to a conventional summing circuit via two resistors R 3 , R 4 connected to the inverting input of the amplifier A 5 which is provided with a feedback resistance R c .
  • the high-pass filter has a series connection of two capacitors C 3 , C 4 , connected to the non-inverting input of amplifier A., a resistor R 5 connected between this input and ground and a resistor R 6 connected between the common point of the two capacitors and the inverting input of the amplifier. The latter is subject to a total counter-reaction.
  • the low-pass filter has a series connection of resistors R 7 , R 8 connected to the non-inverting input of amplifier A 4 , a capacitor C 5 connected between this input and ground and a capacitor C 6 connected between the common point of the two resistors and the inverted input of the amplifier A 4 . The latter is subject to a total counter-reaction.
  • the means forming a line variable delay comprise a cascade arrangement comprising an analog-digital converter 48, the input of which merges with the input 38 and is therefore connected to the output of the sampler 40, a buffer memory 50 and a digital-analog converter 52.
  • the memory 50 includes a write control input 51 controlled by the converter 48 to write the data at a predetermined rate and a read control input combined with the control input 34.
  • the pulses presented at this input depend on the signal delivered by the calculation means and these pulses organize the reading of the memory at a variable rate.
  • Said buffer memory 50 is for example of the type known by the abbreviation "FIFO" which means that the first information written in this memory is also the first information to be output therefrom after a variable delay dependent on the frequency of the pulses applied to the input read command.
  • the signal reconstituted in analog form at the output of the converter 52 is applied to the input of the filter H -1 before being transmitted to the transducer 11.
  • the assembly of the memory 50 and of the two converters 48 and 52 could be replaced by a cascade arrangement of components with switched capacities ("CCD" type).
  • the calculation means C successively receive samples of the signal, y (t). They comprise a first amplification stage 60 comprising an operational amplifier A 6 and two resistors R 9 , R 10 . Resistor R 9 is connected between input 42 and the inverting input of amplifier A 6 . R 10 is a counter-reaction resistance. The gain of amplifier A 6 , defined by resistors R 9 and R 10 . is representative of the constant:
  • the output of this amplification stage 60 is therefore representative of O for each sample delivered by the sampler 40.
  • This output is connected to the inputs of two summing circuits 61, 62.
  • the circuit 61 includes a resistor R 11 connected between the output of stage 60 and the inverting input d an operational amplifier A 7 and a resistor R 12 connected between a voltage reference RE 1 and the same inverting input.
  • R 13 is a counter-reaction resistance.
  • a resistor R 14 is connected between the non-inverting input of the amplifier A 7 and the ground.
  • the voltage reference RE 1 is representative of the value 1 and the values of the resistances are chosen to develop a voltage representative of 1 + O.
  • the summing circuit 62 comprises an operational amplifier A 8 and resistors R 15 to R 19 connected respectively as the amplifier A 7 and the resistors R 11 to R 14 .
  • the resistance values are chosen to develop a voltage representative of:
  • the two outputs of the summing circuits are connected by respective resistors R 20 .
  • This voltage is applied to an input of another summing circuit 66 comprising an operational amplifier A 9 and resistors R 22 -R 25 connected like the resistors R 11 -R 14 .
  • Resistor R 23 is connected to a voltage reference RE 2 representative of the value 1 / C O.
  • the output of amplifier A 9 confused with output 36, is therefore representative of the delay to be applied in the case of an exponential horn speaker.
  • the output 36 is connected to an analog divider 68, known per se, polarized to develop an output voltage representative of 1 / (having the dimension of a frequency) and the output of which is connected to the input of a voltage-frequency converter 70 supplying pulses to the read control input 34 of said variable delay line means T.
  • the delay constant to be systematically applied to the samples which pass through these means forming a delay line can be translated by a monostable integrated into the converter 70 and by making the reading of the memory 50 operate from the rear flanks of the pulses.
  • the operation is evident from the foregoing description.
  • the signal delivered by the amplifier 32 is filtered by the first filter H before being sampled.
  • Each sample is delayed by a variable value calculated simultaneously by the calculation means C, according to its own amplitude.
  • the samples thus treated are then successively applied to the loudspeaker 11, via the second filter H
  • the assembly of Figure 3 To avoid any risk of adding spurious switching noises between the preamplifier 32 and the loudspeaker 11, the assembly of Figure 3.
  • the precorrection device 30a is similar to that which has just been described above with reference to Figure 2 but it is connected in a correction loop 76 established in derivation with respect to the path of the signal between the output of the amplifier 32 and the loudspeaker 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Amplifiers (AREA)

Abstract

Dispositif de traitement d'un signal électrique pour transducteur électro-acoustique tel que notamment un haut-parleur à chambre de compression. Selon l'invention, le dispositif comporte essentiellement des moyens (T) pour retarder le signal d'une valeur variable dépendant de son amplitude, cette valeur étant déterminée par des moyens de calcul (C), pour compenser les déformations de l'onde sonore résultant de la non linéarité de réponse du milieu de transmission, c'est-à-dire l'air. Les moyens pour retarder le signal peuvent être agencés autour d'une mémoire tampon, après numérisation du signal.

Description

"Dispositif de traitement d'un signal électrique audiofréquence"
L'invention se rapporte à un dispositif de traitement ou de précorrection d'un signal électrique audiofréquence, délivré, par exemple, à la sortie d'un amplificateur et normalement destiné à être appliqué à un transducteur à haut rendement comme par exemple un haut-parleur à chambre de compression spécialisé dans la reproduction des sons émis dans la gamme des fréquences dites "haut médium et aiguës".
L'invention concerne plus particulièrement un perfectionnement permettant de précompenser les déphasages variables subis par l'onde acoustique émise, résultant des non linéarités de réponse du milieu de propagation (c'est-à-dire l'air) qui prennent essentiellement naissance au-delà du transducteur.
Un milieu de transmission comme l'air a un comportement non linéaire, spécialement lorsque les amplitudes des vibrations acoustiques qui lui sont appliquées sont importantes. Ce phénomène est particulièrement audible et gênant, lorsque le transducteur est, par exemple, un haut-parleur à chambre de compression, donc à rendement élevé. Dans ce cas, on a pu observer l'apparition d'un taux élevé de distorsion dû à des composantes harmoniques parasites particulièrement gênantes dans la gamme des fréquences mentionnées ci-dessus. Or, c'est précisément la gamme de fréquences pour laquelle un haut-parleur à chambre de compression est plus particulièrement destiné.
Les constructeurs de tels hauts-parleurs, se sont efforcés de concevoir leur dispositif de façon à réduire le plus possible de telles distorsions, mais les tentatives faites dans ce domaine n'ont pas donné de résultat totalement satisfaisant, notamment parce qu'il est apparu nécessaire de faire un compromis entre deux exigences contradictoires concernant les dimensions du transducteur et du pavillon associé, à savoir: - Obtenir une réponse étendue et un bon contrôle de directivité implique des dimensions réduites,
- Obtenir un faible taux de distorsion implique au contraire d'augmenter la section de la "gorge" du transducteur (au voisinage de la chambre de compression) puisqu'à puissance acoustique donnée, l'intensité dont dépend la distorsion est inversement proportionnelle à la section.
L'invention résulte de l'étude des phénomènes de distorsion dans de tels transducteurs. On a ainsi pu faire les observations suivantes:
- la quasi-totalité des déformations de l'onde sonore dues à la non linéarité de l'air, se produit entre le transducteur et la sortie du pavillon. Au-delà, l'onde se propage normalement sans déformation (distorsion) supplémentaire notable.
- la déformation de l'onde sonore créée (par rapport au signal électrique qui la provoque) peut se décrire comme étant un déphasage variable (c'est-à-dire une succession de "retards" ou "d'avances") de certaines parties de l'onde sonore, dépendant de l'intensité sonore. Le principe de base de l'invention consiste donc à prévoir (à calculer) l'évolution de telles déformations de l'onde sonore, pour appliquer des retards variables compensateurs sur le signal électrique destiné à exciter le transducteur.
Dans cet esprit, l'invention concerne essentiellement un dispositif de traitement d'un signal électrique destiné à être appliqué à un transducteur électro-acoustique, notamment un transducteur à haut rendement, comme par exemple dans un haut-parleur à chambre de compression, caractérisé en ce qu'il comporte des moyens pour retarder ledit signal ou un signal dérivé de celui-ci, d'une valeur variable dépendant de son amplitude, cette valeur évoluant pour compenser sensiblement un déphasage de propagation variable subi par l'onde sonore engendrée par ledit transducteur.
On peut envisager de réaliser un tel dispositif dans une version entièrement analogique. Dans ce cas, les moyens pour retarder le signal seront réalisés à partir de filtres passe-tout déphaseurs, à amplificateurs opérationnels.
Dans la pratique, cependant, on envisage surtout de procéder à partir d'un échantillonnage du signal, en calculant simultanément la valeur du retard à affecter à chaque échantillon du signal.
De façon plus précise, l'invention concerne donc aussi un dispositif de traitement d'un signal électrique selon la définition qui précède, caractérisé en ce qu'il comporte:
- des moyens échantillonneurs recevant ledit signal, ou signal dérivé et délivrant des échantillons successifs de celui-ci à sa sortie, des moyens de calcul dont une entrée est reliée à ladite sortie desdits moyens échantillonneurs, lesdits moyens de calcul élaborant des signaux de sortie représentatifs de retards à appliquer respectivement auxdits échantillons, chaque retard calculé étant fonction de l'amplitude de l'échantillon correspondant, et - des moyens formant ligne à retard variable comportant une entrée de pilotage reliée à la sortie des moyens de calcul et une entrée de signal reliée à la sortie desdits moyens échantillonneurs.
Les moyens formant ligne à retard peuvent, quant à eux, être agencés autour d'une mémoire-tampon après conversion analogique-numérique, comme on le verra plus loin, ou bien mettre en oeuvre des composants à transfert de charges ou à capacités commutées tels que ceux connus sous l'appellation "CCD", ce qui évite la conversion analogique-numérique et la reconversion numérique-analogique.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels: la figure 1 est une vue schématique en coupe d'un haut-parleur à chambre de compression auquel s'applique plus particulièrement l'invention; la figure 2 est un schéma-bloc d'un mode de réalisation possible d' un dispositif de traitement de signal conforme à l'invention; et
- la figure 3 est un schéma-bloc simplifié illustrant une variante possible du dispositif de traitement de signal.
En se reportant aux dessins, on a représenté un haut-parleur à chambre de compression 11, classique, plus particulièrement concerné par l'invention. Celui-ci comporte un transducteur comportant une bobine mobile 12 susceptible de se déplacer dans l'entrefer d'un bloc magnétique 16 comprenant un aimant permanent 13 et solidaire d'un dôme 14, ici concave, rattaché au bloc 16 par l'intermédiaire d'une suspension annulaire souple 15. Le bloc 16 renferme une pièce tronconique 17 munie de canaux 18, ici de forme annulaire, débouchant au voisinage du dôme 14 sur une surface convexe 19 définissant, avec le dôme 14, une chambre de compression 22. Le haut-parleur est complété par un pavillon rigide 20 raccordé à l'avant du bloc 16 à un orifice 21 communiquant avec les canaux 18. Le pavillon 20 peut être de type exponentiel, ou conique. On trouvera plus loin des exemples concrets concernant ces deux formes, mais il est bien évident que l'invention peut s'appliquer, avec la même méthodologie, à un haut-parleur comportant un pavillon de forme quelconque. La chambre de compression 22 est ainsi définie entre la surface du dôme 14 et la surface convexe 19. Dans la suite du texte, certaines relations seront exprimées en fonction d'une distance x. Physiquement, cette distance représente l'abscisse d'un point considéré le long de l'axe de propagation de l'onde sonore Ox , l'origine se situant à l'extrémité avant de. la chambre de compression. Comme., indiqué plus haut, on ne prend en considération que les déformations de l'onde sonore qui prennent naissance entre l'origine et l'extrémité libre du pavillon de longueur L.
Si on considère une onde acoustique plane dont la vitesse acoustique en un point d'abscisse x = O est une fonction quelconque du temps VO (t), la fonction V (x,t) représentant la vitesse en un point d'abscisse x quelconque et en fonction du temps t, peut s'écrire:
Figure imgf000007_0003
si le milieu de propagation est considéré comme linéaire, ce qui est une approximation valable pour de faibles amplitudes. En revanche, cette même fonction s'exprime (à l'ordre 2) de la façon suivante:
Figure imgf000007_0002
où est une constante.
Figure imgf000007_0004
La comparaison terme à terme, de ces deux expressions permet de discerner le principe de base mis en oeuvre dans le cadre, de l'invention puisque, à un retard x/CO prédéterminé en fonction de la distance, dans le cas linéaire, correspond un retard:
Figure imgf000007_0001
lorsqu'on tient compte de la non linéarité du milieu de propagation. Par conséquent, tout se passe comme si l'onde acoustique en un point fixe quelconque était déformée ou modulée par des retards ou des avances variables dépendant de la vitesse VO à l'origine. L'invention permet de corriger ce phénomène en appliquant des retards variables compensateurs au signal électrique appliqué au transducteur lui-même.
La détermination de la déformation globale à considérer à la sortie du pavillon (puisqu'on peut négliger les déformations de non linéarité engendrées entre la sortie du pavillon et l'auditeur) peut se faire par un calcul d'intégration qui tient compte de la forme de ce pavillon.
En particulier, on peut caractériser la forme du pavillon en exprimant la variation d'amplitude v( x) de la vitesse au cours du trajet Ox de propagation. En effet, si la forme du pavillon peut être associée à une fonction analytique S(x) exprimant la variation de section du pavillon le long de l'axe Ox, on peut en déduire une fonction v(x) caractérisant la variation d'amplitude de la vitesse au cours du trajet Ox. de propagation.
Dans un certain nombre de cas, la fonction de retard peut être alors obtenue elle-même sous une forme analytique relativement simple. Ainsi, pour un pavillon conique de longueur L et de section de gorge So, défini par la relation
Figure imgf000008_0003
dans laquelle xo est une constante caractéristique du pavillon, on obtient: (1)
où est une variable telle que:
Figure imgf000008_0002
Pour un pavillon exponentiel de longueur L et de section de gorge So, défini par la relation S(x) = so.emx dans laquelle m est une constante caractéristique du pavillon, on a:
Figure imgf000008_0001
On appelle ici "section de gorge" la somme des sections des ouvertures des canaux 18 débouchant sur la surface 19.
L'application d'une méthode de calcul similaire peut être étendue à d'autres formes de pavillon, les deux formes mentionnées étant les plus classiques: on aboutit alors à d'autres expressions analytiques de la fonction
Figure imgf000009_0002
.
La détermination de la fonction tr peut également être effectuée de façon expérimentale en mesurant directement la déformation de l'onde en sortie du pavillon. On pourra alors établir une fonction mathématique approchée exprimant la relation entre les valeurs de
Figure imgf000009_0004
mesurées et les valeurs correspondantes de VO. Cette méthode permet notamment d'appliquer le dispositif de correction défini par l'invention à toutes formes de pavillons complexes.
Les moyens de calcul précités pourront dès lors être adaptés pour reproduire électriquement la forme de la fonction
Figure imgf000009_0003
correspondant à la forme de
Figure imgf000009_0001
.
Comme par ailleurs, l'application des retards ne peut se faire que sur le signal électrique et non pas sur l'onde acoustique émise, il convient d'appliquer la transformation définie par l'une des relations ci-dessus, non sur le signal électrique e(t) lui-même, tel qu'il est délivré par l'amplificateur, mais sur un signal y(t) dérivé ou déduit de celui-ci et proportionnel à la vitesse acoustique VO(t). Ceci est obtenu physiquement en appliquant le signal électrique à un premier, filtre H ayant au moins approximativement une fonction de transfert équivalente à celle dudit transducteur. Autrement dit, H est l'équivalent électrique de la fonction de transfert du transducteur, chambre de compression comprise. La détermination de la structure et des valeurs des composants électriques d'un tel filtre est à la portée de l'homme du métier connaissant les paramètres mécaniques des éléments constitutifs du transducteur. Enfin, des moyens formant ligne à retard variable, pilotés par les moyens de calcul et recevant le signal délivré par le filtre H, complètent la structure de base d'un dispositif de traitement de signal conforme à l'invention. Un dispositif complet de ce genre est illustré par le schéma de la figure 2.
Sur ce schéma, le dispositif de traitement de signal électrique 30 est inséré dans son ensemble entre un moyen d'élaboration du signal électrique e(t), en l'occurrence ici un pré-amplificateur basse fréquence 32, et le transducteur du haut-parleur à chambre de compression 11 décrit plus haut. Un amplificateur de puissance AP, linéaire, est cependant inséré entre la sortie du dispositif de traitement et le haut-parleur 11. Dans le dispositif de traitement de signal, on reconnaît le filtre H, les moyens de calcul C "simulant" électriquement l'une des relations indiquées ci-dessus, en l'occurrence ici la relation (2) relative à un haut-parleur à pavillon exponentiel, et les moyens formant ligne à retard variable T comportant une entrée de pilotage 34 reliée à la sortie 36 des moyens de calcul C et une entrée de signal 38 reliée à la sortie du premier filtre H via des moyens échantillonneurs 40. La sortie des moyens échantillonneurs est aussi reliée à l'entrée 42 des moyens de calcul, de sorte que le signal transformé par le filtre H et représentatif de la vitesse de l'onde sonore "à corriger" est appliqué à la fois à l'entrée des moyens de calcul C et à l'entrée des moyens formant ligne à retard T. La sortie 44 de ces derniers est reliée à un second filtre H-1, ce second filtre ayant au moins approximativement une fonction de transfert inverse de celle dudit premier filtre H.
Dans une version simplifiée, on pourrait envisager de n'intercaler que les moyens formant ligne à retard T entre le pré-amplificateur 32 et le transducteur 11. La boucle de commande desdits moyens formant ligne à retard (comportant seulement un montage en cascade du premier filtre H et des moyens de calcul C) serait connectée entre la sortie de l'amplificateur 32 et l'entrée 34. Revenant maintenant plus particulièrement à la version de la figure 1 , on va décrire plus en détails, la réalisation de chacun des sous-ensembles identifiés plus haut.
Le filtre H, comme mentionné ci-dessus, n'est que la. "transcription" électrique de la fonction de transfert du transducteur 11. Son signal de sortie y(t) est donc représentatif de l'onde acoustique élaborée par le transducteur 11 jusqu'à la sortie de la chambre de compression. Il comporte une branche série comprenant une résistance R1, une self L1 et une capacité C1, suivies d'une branche en dérivation vers la masse, comprenant un condensateur C2 et une résistance R2 en parallèle. L'ensemble de ces deux branches est inséré entre deux amplificateurs adaptateurs A1 et A2, de gain unité.
Comme mentionné précédemment, le calcul des composants passifs R1, L 1 , C1, C2, R2 est à la portée de l'homme du métier connaissant la fonction de transfert du transducteur jusqu'à la chambre de compression.
Le second filtre H-1 a une fonction de transfert inverse de celle du filtre H. Il est composé à partir de trois amplificateurs opérationnels A3, A4, A5. Selon l'exemple, le signal délivré par le moyen formant ligne à retard est appliqué aux entrées respectives d'un filtre passe-haut du second ordre câblé autour de l'amplificateur opérationnel A3 et d'un filtre passe-bas du second ordre câblé autour de l'amplificateur A4. Les deux sorties de ces «filtres sont appliquées à un circuit sommateur classique via deux résistances R3, R4 connectées à l'entrée inverseuse de l'amplificateur A5 lequel est muni d'une résistance de contreréaction Rc. Le filtre passe-haut comporte un branchement en série de deux condensateurs C3 , C4, connectés à l'entrée non-inverseuse de l'amplificateur A., , une résistance R5 connectée entre cette entrée et la masse et une résistance R6 connectée entre le point commun des deux condensateurs et l'entrée inverseuse de l'amplificateur. Ce dernier est soumis à une contreréaction totale. De façon analogue, le filtre passe-bas comporte un branchement en série de résistances R7, R8 connectées à l'entrée non-inverseuse de l'amplificateur A4, un condensateur C5 connecté entre cette entrée et la masse et un condensateur C6 connecté entre le point commun des deux résistances et l'entrée inverseusè de l'amplificateur A4. Ce dernier est soumis à une contreréaction totale.
Dans l'exemple représenté, les moyens formant ligne à retard variable comportent un montage en cascade comprenant un convertisseur analogique-numérique 48 dont l'entrée est confondue avec l'entrée 38 et est donc reliée à la sortie de l'échantillonneur 40, une mémoire tampon 50 et un convertisseur numérique-analogique 52. La mémoire 50 comporte une entrée de commande d ' écriture 51 pilotée par le convertisseur 48 pour inscrire les données à un rythme prédéterminé et une entrée de commande de lecture confondue avec l'entrée de pilotage 34. Les impulsions présentées à cette entrée dépendent du signal délivré par les moyens de calcul et ces impulsions organisent la lecture de la mémoire à un rythme variable. Ladite mémoire tampon 50 est par exemple du type connu sous l'abréviation "FIFO" qui signifie que les premières informations écrites dans cette mémoire sont aussi les premières informations à en sortir après un retard variable dépendant de la fréquence des impulsions appliquées à l'entrée de commande de lecture. Le signal reconstitué sous forme analogique à la sortie du convertisseur 52 est appliqué à l'entrée du filtre H-1 avant d'être transmis au transducteur 11.
L'ensemble de la mémoire 50 et des deux convertisseurs 48 et 52 pourrait être remplacé par un montage en cascade de composants à capacités commutées (type "CCD"). Les moyens de calcul C reçoivent successivement des échantillons du signal, y(t). Ils comportent un premier étage d'amplification 60 comprenant un amplificateur opérationnel A6 et deux résistances R9, R10. La résistance R9 est connectée entre l'entrée 42 et l'entrée inverseuse de l'amplificateur A6. R10 est une résistance de contreréaction. Le gain de l'amplificateur A6, défini par les résistances R9 et R10. est représentatif de la constante:
Figure imgf000012_0001
La sortie de cet étage d'amplification 60 est donc représentative de O pour chaque échantillon délivré par l'échantillonneur 40. Cette sortie est reliée aux entrées de deux circuits sommateurs 61, 62. Le circuit 61 comporte une résistance R11 connectée entre la sortie de l'étage 60 et l'entrée inverseuse d'un amplificateur opérationnel A7 et une résistance R12 connectée entre une référence de tension RE1 et la même entrée inverseuse. R13 est une résistance de contreréaction. Une résistance R14 est connectée entre l'entrée non inverseuse de l'amplificateur A7 et la masse. La référence de tension RE1 est représentative de la valeur 1 et les valeurs des résistances sont choisies pour élaborer une tension représentative de 1 + O. Le circuit sommateur
Figure imgf000013_0004
62 comporte un amplificateur opérationnel A8 et des résistances R15 à R19 connectés respectivement comme l'amplificateur A7 et les résistances R11 à R14. Les valeurs des résistances sont choisies pour élaborer une tension représentative de:
Figure imgf000013_0003
Les deux sorties des circuits sommateurs sont connectées par des résistances respectives R20. R21 aux deux entrées d'un circuit connu 65 comprenant deux amplificateurs logarithmiques et un amplificateur différentiel. Ce circuit élabore donc une tension représentative de:
Figure imgf000013_0001
Cette tension est appliquée à une entrée d'un autre circuit sommateur 66 comportant un amplificateur opérationnel A9 et des résistances R22-R25 connectées comme les résistances R11-R14. La résistance R23 est reliée à une référence de tension RE2 représentative de la valeur 1/CO. La sortie de l'amplificateur A9, confondue avec la sortie 36, est donc représentative du retard
Figure imgf000013_0002
à appliquer dans le cas d'un haut-parleur à pavillon exponentiel. La sortie 36 est reliée à un diviseur analogique 68, connu en soi, polarisé pour élaborer une tension de sortie représentative de 1 /
Figure imgf000014_0001
(ayant la dimension d'une fréquence) et dont la sortie est reliée à l'entrée d'un convertisseur tension-fréquence 70 fournissant des impulsions à l'entrée de commande de lecture 34 desdits moyens formant ligne à retard variable T. Le retard constant à appliquer systématiquement aux échantillons qui traversent ces moyens formant ligne à retard, peut être traduit par un monostable intégré au convertisseur 70 et en faisant fonctionner la lecture de la mémoire 50 à partir des flancs arrière des impulsions.
Le fonctionnement découle avec évidence de la description qui précède. Le signal délivré par l'amplificateur 32 est filtré par le premier filtre H avant d'être échantillonné. Chaque échantillon est retardé d'une valeur variable calculée simultanément par les moyens de calcul C, en fonction de sa propre amplitude. Les échantillons ainsi traités sont ensuite successivement appliqués au haut-parleur 11, via le second filtre H Pour éviter tout risque d'adjonction de bruits de commutations parasites entre le pré-amplificateur 32 et le haut-parleur 11, on peut adopter le montage de la figure 3. Selon cette variante, le dispositif de precorrection 30a est analogue à celui qui vient d'être décrit ci-dessus en référence à la figure 2 mais il est connecté dans une boucle de correction 76 établie en dérivation par rapport au cheminement du signal entre la sortie de l'amplificateur 32 et le haut-parleur 11. Seul un moyen formant ligne à retard constant TO est connecté entre la sortie de l'amplificateur 32 et l'entrée d'un amplificateur sommateur 78 dont la sortie alimente le haut-parleur 11. La sortie du circuit de précorrection est combinée, via un amplificateur différentiel 80 avec la sortie du moyen formant ligne à retard TO et le signal résultant constituant un signal de correction est appliqué à une autre entrée de l'amplificateur sommateur 78.

Claims

REVENDICATIONS
1- Dispositif de traitement d'un signal électrique destiné à être appliqué à un transducteur électro-acoustique, notamment un transducteur à haut rendement comme par exemple dans un haut-parleur à chambre de compression (11), caractérisé en ce qu'il comporte des moyens (T) pour retarder ledit signal (e(t)) ou un signal dérivé (y(t)) de celui-ci, d'une valeur variable dépendant de son amplitude, cette valeur évoluant pour compenser sensiblement un déphasage de propagation variable subi par l'onde sonore engendrée par ledit transducteur.
2- Dispositif de traitement selon la revendication 1, caractérisé en ce qu'il comporte: des moyens échantillonneurs (40) recevant ledit signal ou signal dérivé et délivrant des échantillons successifs de celui-ci à sa sortie, des moyens de calcul (C) dont une entrée (42) est reliée à ladite sortie desdits moyens échantillonneurs, lesdits moyens de- calcul élaborant des signaux de sortie représentatifs de retards à appliquer respectivement auxdits échantillons, chaque retard calculé étant fonction de l'amplitude de l'échantillon correspondant, et des moyens formant ligne à retard variable comportant une entrée de pilotage (34) reliée à la sortie des moyens de calcul et une entrée de signal (38) reliée à la sortie desdits moyens échantillonneurs (40).
3- Dispositif de traitement selon la revendication 2, caractérisé en ce qu'un premier filtre (H) est inséré en amont desdits moyens de calcul, ce filtre ayant au moins approximativement une fonction de transfert équivalente à celle dudit transducteur.
4- Dispositif de traitement selon la revendication 3, caractérisé en ce que ledit premier filtre (H) est inséré à la fois en amont desdits moyens de calcul (C) et desdits moyens formant ligne à retard variable (T). 5- Dispositif de traitement selon la revendication 4, caractérisé en ce qu'un second filtre (H-1) est inséré en aval desdits moyens formant ligne à retard, ce second filtre ayant au moins approximativement une fonction de transfert inverse de celle dudit premier filtre. 6- Dispositif de traitement selon l'une des revendications 2 à 5, caractérisé en ce que lesdits moyens formant ligne à retard (T) comportent un montage en cascade d'un convertisseur analogique-numérique (48) dont l'entrée est reliée à la sortie dudit échantillonneur, d'une mémoire tampon (50) comportant une entrée de commande d'écriture (51) et une entrée de commande de lecture (34) et d'un convertisseur numérique-analogique (52), ladite entrée de commande de lecture étant reliée à la sortie desdits moyens de calcul (C), via un convertisseur tension-fréquence (70). 7- Dispositif de traitement selon l'une des revendications 2 à 5, caractérisé en ce que lesdits moyens formant ligne à retard (T) sont essentiellement constitués d'un montage en cascade de composants à capacités commutées ou "CCD " . 8- Dispositif de traitement selon l'une des revendications précédentes, caractérisé en ce qu'il est inséré dans son ensemble entre un moyen d'élaboration du signal électrique (32) et ledit transducteur (11) (figure 2). 9- Dispositif de traitement selon l'une des revendications 1 à 8, caractérisé en ce qu'il est inséré dans une boucle de correction (76) établie entre un moyen d'élaboration du signal électrique (32) et une entrée d'un moyen sommateur (78), une autre entrée dudit moyen sommateur étant relié audit moyen d'élaboration de signal via un moyen formant ligne à retard constant (TO).
PCT/FR1987/000457 1986-11-21 1987-11-19 Dispositif de traitement d'un signal electrique audiofrequence WO1988004124A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB8911511A GB2230402B (en) 1986-11-21 1987-11-19 Device for processing an audio-frequency electrical signal
DE19873790740 DE3790740T1 (de) 1986-11-21 1987-11-19 Vorrichtung zur verarbeitung eines elektrischen tonfrequenzsignals
DE3790740A DE3790740C2 (de) 1986-11-21 1987-11-19 Vorrichtung zur Verarbeitung eines elektrischen Tonfrequenzsignals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR86/16244 1986-11-21
FR8616244A FR2607344B1 (fr) 1986-11-21 1986-11-21 Dispositif de traitement d'un signal electrique audiofrequence

Publications (1)

Publication Number Publication Date
WO1988004124A1 true WO1988004124A1 (fr) 1988-06-02

Family

ID=9341070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1987/000457 WO1988004124A1 (fr) 1986-11-21 1987-11-19 Dispositif de traitement d'un signal electrique audiofrequence

Country Status (6)

Country Link
US (1) US4995113A (fr)
JP (1) JP2888299B2 (fr)
DE (1) DE3790740C2 (fr)
FR (1) FR2607344B1 (fr)
GB (1) GB2230402B (fr)
WO (1) WO1988004124A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP1024A (en) * 1996-07-25 2001-11-16 C Tech Innovation Ltd Radio-frequency and microwave-assisted processing of materials.

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167259B2 (ja) * 1994-05-06 2001-05-21 三菱電機株式会社 音響再生装置
US5734728A (en) * 1994-11-30 1998-03-31 Meissner; Juergen P. Portable sound speaker system and driving circuit therefor
US5878148A (en) * 1996-02-29 1999-03-02 Alexandrov; Svetlomir Compression driver
AU2001280958A1 (en) * 2000-07-31 2002-02-13 Harman International Industries Inc. Two-stage phasing plug system in a compression driver
TW200501551A (en) * 2003-04-23 2005-01-01 Rohm Co Ltd Audio signal amplifier circuit and electronic apparatus having the same
US8712065B2 (en) * 2008-04-29 2014-04-29 Bang & Olufsen Icepower A/S Transducer displacement protection
US7938223B2 (en) * 2008-05-21 2011-05-10 Cooper Technologies Company Sintered elements and associated systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130727A (en) * 1977-06-29 1978-12-19 Teledyne, Inc. Loudspeaker equalization
EP0145997A2 (fr) * 1983-11-28 1985-06-26 Peter Michael Dipl.-Ing. Pfleiderer Dispositif de compensation d'erreurs de reproduction de transducteurs électroacoustiques
DE3507841A1 (de) * 1985-03-06 1986-09-11 Wolfgang 7320 Göppingen Paech Individuelle vorverzerrung von audiosignalen fuer lautsprecherboxen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130747A (en) * 1977-10-12 1978-12-19 Mcgill Manufacturing Company, Inc. Miniature overtravel snap action switch with pivotal cam mounting for the switch blade
JPS6030291B2 (ja) * 1978-03-20 1985-07-16 森永乳業株式会社 人顆粒球の分化増殖を促進するhgi糖蛋白質、hgi糖蛋白質の製造法及びhgi糖蛋白質を含有する白血球減少症治療剤
DE3130353C2 (de) * 1981-07-31 1983-05-19 Peter Michael Dipl.-Ing. 8000 München Pfleiderer Verfahren und Schaltungsanordnung zur Verbesserung des Einschwingverhaltens insbesondere eines Lautsprechers.
JPS60209526A (ja) * 1984-04-04 1985-10-22 Denki Kagaku Kogyo Kk 高純度csfの製造方法
JPH0615477B2 (ja) * 1985-02-08 1994-03-02 中外製薬株式会社 感染防禦剤
JPH01110629A (ja) * 1985-04-05 1989-04-27 Chugai Pharmaceut Co Ltd 感染防禦剤
JPH0632533B2 (ja) * 1985-05-20 1994-04-27 松下電器産業株式会社 音響再生装置
US4845759A (en) * 1986-04-25 1989-07-04 Intersonics Incorporated Sound source having a plurality of drivers operating from a virtual point

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130727A (en) * 1977-06-29 1978-12-19 Teledyne, Inc. Loudspeaker equalization
EP0145997A2 (fr) * 1983-11-28 1985-06-26 Peter Michael Dipl.-Ing. Pfleiderer Dispositif de compensation d'erreurs de reproduction de transducteurs électroacoustiques
DE3507841A1 (de) * 1985-03-06 1986-09-11 Wolfgang 7320 Göppingen Paech Individuelle vorverzerrung von audiosignalen fuer lautsprecherboxen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP1024A (en) * 1996-07-25 2001-11-16 C Tech Innovation Ltd Radio-frequency and microwave-assisted processing of materials.

Also Published As

Publication number Publication date
DE3790740C2 (de) 1997-07-03
FR2607344A1 (fr) 1988-05-27
GB2230402A (en) 1990-10-17
JP2888299B2 (ja) 1999-05-10
GB2230402B (en) 1991-04-17
US4995113A (en) 1991-02-19
FR2607344B1 (fr) 1994-04-29
JPH02502147A (ja) 1990-07-12
GB8911511D0 (en) 1989-08-02

Similar Documents

Publication Publication Date Title
EP1126458A1 (fr) Procédé d'ajustement du volume sonore d'un volume sonore numérique
FR2599580A1 (fr) Dispositif de reduction du bruit de fond dans une chaine electroacoustique.
WO1988004124A1 (fr) Dispositif de traitement d'un signal electrique audiofrequence
CA1225745A (fr) Procede et installation d'analyse et de restitution de signal a echantillonnage et interpolation
EP1652406A1 (fr) SYSTEME ET PROCEDE DE DETERMINATION D UNE REPRESENTATION D&a pos;UN CHAMP ACOUSTIQUE
EP0052544B1 (fr) Circuit de commande de tonalité
EP0884926B1 (fr) Procédé et dispositif de traitement optimisé d'un signal perturbateur lors d'une prise de son
EP3637792A1 (fr) Dispositif de commande d'un haut-parleur et installation de restitution sonore associée
EP0067091A1 (fr) Dispositif de correction d'intermodulation produite par un amplificateur de signaux haute fréquence
FR2613153A1 (fr) Filtre numerique fonctionnant a frequence intermediaire
EP0740414B1 (fr) Dispositif de retard programmable d'un signal analogique et antenne acoustique programmable correspondante
EP3979663B1 (fr) Casque audio à réduction de bruit
WO1981002658A1 (fr) Correcteur automatique des caracteristiques de transmission de frequence d'une voie electroacoustique
WO2024126530A1 (fr) Dispositif acoustique à fréquence de résonance variable
FR2840759A1 (fr) Procede de sonorisation
FR2499334A1 (fr) Dispositif de commande de caracteristiques pour un egalisateur numerique
FR2814008A1 (fr) Dispositif d'amplification a linearite optimisee
WO2000051234A1 (fr) Procede et systeme de traitement d'antenne
FR2542530A1 (fr) Circuit de reduction de bruit utilisant une technique d'interpolation lineaire et presentant une caracteristique de desaccentuation
FR3115176A1 (fr) Dispositif de traitement d’un signal analogique, systeme audio et porte sonorisee de vehicule associes
EP0577441A2 (fr) Dispositif d'analyse de la parole et des phénomènes acoustiques
US20120257769A1 (en) Method, system and apparatus for improving the sonic quality of an audio signal
FR3131972A1 (fr) Procédé de gestion des basses fréquences d’un haut-parleur et dispositif pour la mise en œuvre dudit procédé
FR3143170A1 (fr) Dispositif électromécanique à fréquence de résonance variable et dispositif acoustique associé
JPH0481279B2 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP US

WWE Wipo information: entry into national phase

Ref document number: 8911511.7

Country of ref document: GB

RET De translation (de og part 6b)

Ref document number: 3790740

Country of ref document: DE

Date of ref document: 19890907

WWE Wipo information: entry into national phase

Ref document number: 3790740

Country of ref document: DE