WO1987000609A1 - Procede et installation de distillation d'air - Google Patents

Procede et installation de distillation d'air Download PDF

Info

Publication number
WO1987000609A1
WO1987000609A1 PCT/FR1986/000247 FR8600247W WO8700609A1 WO 1987000609 A1 WO1987000609 A1 WO 1987000609A1 FR 8600247 W FR8600247 W FR 8600247W WO 8700609 A1 WO8700609 A1 WO 8700609A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
section
liquid
argon
low pressure
Prior art date
Application number
PCT/FR1986/000247
Other languages
English (en)
Inventor
Jean-Renaud Brugerolle
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'e
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'e filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'e
Priority to DE8686904215T priority Critical patent/DE3669392D1/de
Priority to AT86904215T priority patent/ATE50857T1/de
Priority to BR8606791A priority patent/BR8606791A/pt
Priority to JP61503742A priority patent/JPH0731004B2/ja
Priority to IN620/DEL/86A priority patent/IN167585B/en
Publication of WO1987000609A1 publication Critical patent/WO1987000609A1/fr
Priority to NO871015A priority patent/NO165465C/no
Priority to FI871121A priority patent/FI871121A0/fi
Priority to DK130687A priority patent/DK130687A/da
Priority to KR1019870700216A priority patent/KR880700215A/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/08Processes or apparatus using separation by rectification in a triple pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/52Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen enriched compared to air ("crude oxygen")
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/923Inert gas
    • Y10S62/924Argon

Definitions

  • the present invention relates to the air distillation technique by means of an installation provided with an argon production column.
  • air distillation installations provided with an argon production column generally comprise a double column consisting of a medium pressure distillation column operating at about 6 bars, a low distillation column pressure operating a little above atmospheric pressure, and a condenser-vaporizer. The air is sent, after purification and cooling, to the bottom of the medium pressure column.
  • “rich liquid” (oxygen-enriched air) collected in the bottom of the medium pressure column is sent to the feed at an intermediate point in the low pressure column, while part of the “lean liquid”, consisting almost entirely of nitrogen, collected at the head of the medium pressure column is sent to reflux at the head of the low pressure column.
  • the low pressure column is connected to the argon production column by a line called "argon tapping" and a liquid return line minus the argon plug.
  • the low pressure column is generally provided in the tank with gaseous oxygen and liquid oxygen withdrawal pipes, and the medium pressure column is generally provided at the head with gaseous nitrogen and liquid nitrogen withdrawal pipes.
  • the vapor at the top of the low pressure column (“impure nitrogen”) consists of nitrogen containing up to a few% of oxygen and is generally discharged into the atmosphere.
  • impure nitrogen consists of nitrogen containing up to a few% of oxygen and is generally discharged into the atmosphere.
  • impure nitrogen gases containing up to a few% of oxygen and is generally discharged into the atmosphere.
  • the oxygen is temporarily excess. This is particularly the case during periods of shutdown of the user's factories.
  • FR-A-2 550 325 proposes a solution to limit this drawback. This solution has the advantage of being simple, but its effectiveness is limited.
  • the distillation of a given air flow is capable of supplying approximately 21% of this oxygen flow and, under certain conditions, this quantity of oxygen is in excess compared to the real needs, while other productions, notably argon, are sought.
  • the object of the invention is to make it possible in all cases to optimize the excess oxygen in order to increase the desired productions, in particular that of argon.
  • the subject of the invention is a process for the distillation of air by means of an installation comprising a main distillation apparatus associated with an argon production column by an argon tapping pipe, this process being characterized in what: - one sends to the base of a first section of column, of mixture of nitrogen gas possibly impure but practically without argon, and to the sonnet of a second section of column of mixture of liquid oxygen possibly impure would practice without argon;
  • At least between the base of the pranier section and the top of the second section is carried out at least one intermediate racking constituting a waste gas or from which such a gas is produced, which is a mixture of nitrogen and oxygen comprising approximately 10 to 30 % oxygen;
  • the invention is also concerned with an installation intended for the implementation of such a method.
  • This installation of the type comprising a main distillation apparatus associated with an argon production column by an argon tapping pipe, is characterized in that it comprises:
  • FIG. 1 is a diagrarrcre which illustrates the basic principle of the invention
  • FIG. 2 schematically shows an air distillation installation according to the invention
  • Figure 3 schematically shows part of a variant of the installation of Figure 2;
  • a “column” or “column section” is used for a material and heat exchange apparatus having the structure of a distillation column, that is to say comprising a packing or a certain number of trays of the type used for distillation.
  • FIG. 1 illustrates by a diagram the manner in which a conventional air distillation installation, shown in more detail in the other figures, is modified in accordance with the invention.
  • At least two sections of mixing column K1 and K2 are added to the conventional installation, operating under two pressures P1 and P2 which, as will be seen below, may or may not be equal.
  • the section K1 is supplied at its base with nitrogen gas which may contain up to a few% of oxygen but which is practically devoid of argon (that is to say containing less than 1% of argon, and preferably less than 0.05% argon), while the K2 section is supplied at its top with liquid oxygen practically free of argon (with the same meaning as above) and nitrogen.
  • Overhead steam from section K1 is sent to the base of the section K2, and the tank liquid of the latter is sent under reflux at the top of the section K1.
  • lean LP1 liquid consisting of nitrogen containing up to a few% of oxygen, is drawn off and impure oxygen, that is to say containing, is drawn off at the sonnet of the section K2. up to about 15% of nitrogen, and preferably from 5 to 10% of about nitrogen.
  • At least one intermediate withdrawal is carried out between the base of the section K1 and the top of the section K2, to constitute a residual gas from the installation composed of an oxygen-nitrogen mixture at approximately 10 to 30% d oxygen, and therefore having a composition similar to that of air but devoid of argon.
  • the intermediate racking is carried out between the sections K1 and K2. It can be constituted by overhead steam from section K1, which directly supplies the residual gas R. In some cases, it may be preferable to draw tank liquid LR1 from section K2, this liquid being made up of a mixture oxygen-nitrogen with a content of approximately 40 to 75% of oxygen; this liquid is then sent to the head of a third section, of mixing column K3, fractionating under a pressure P3 and supplied at its base, like the section K1, with nitrogen gas which is possibly impure but practically without argon.
  • the residual gas R1 is then drawn off at the head of the section K3, while the tank liquid of this section constitutes lean liquid LP2 consisting, like the liquid LP1, of nitrogen containing up to a few% of oxygen.
  • the liquids LP1 and LP2 are sent back to the installation to improve the distillation; the impure gaseous oxygen withdrawn at the head of the section K2 can constitute a production gas, or be purified to produce pure gaseous oxygen, as will be seen below.
  • the source of the liquid oxygen and of the nitrogen gas flow (s) will appear in the following description.
  • This energy manifests itself in the form of a heat pump type refrigeration transfer between liquid oxygen and the lean liquid LP1 - LP2 and can be used to increase the production of the installation other than oxygen, to to know nitrogen gas under pressure, the liquid productions and especially the argon, came that will appear in the continuation of the description. It is noted that the above technical effect would also be obtained by supplying the s ⁇ met of the section K2 with liquid oxygen containing up to a few% of impurity cam nitrogen.
  • FIGS 2 to 9 show several examples of implementation of the basic principle illustrated in Figure 1 with double column air distillation plants.
  • the air distillation installation shown in FIG. 2 is intended to produce on the one hand iirpur oxygen containing approximately 5 to 10% of nitrogen, on the other hand of argbn, and possibly of nitrogen. It essentially comprises a double column 1, an argon production column 2, a remixing column 3 and a remixing minaret 4.
  • the double column 1 comprises, in a conventional manner, a lower column 5 operating under a medium pressure MP of around 6 bars absolute, an upper column 6 operating under a low pressure BP slightly higher than atmospheric pressure, and a vaporizer-condenser 7 which puts the tank liquid in heat exchange relationship (liquid oxygen practiced pure) of the low pressure column with the overhead vapor (nitrogen practiced pure) of the medium pressure column.
  • the air to be treated, compressed to 6 bars, purified and cooled near its dew point, is injected at the bottom of the medium pressure column.
  • the bottom liquid of this column rich in oxygen (rich liquid LR at about 40% oxygen) contains almost all of the oxygen and argon from the incoming air; it is relaxed and injected in 8 in an intermediate location of the low pressure column, while liquid from the top of column 5 (liquid poor in oxygen, LP), is expanded and injected in 9 at the top of the low pressure column.
  • a pipe 10 for argon tapping sends a gas almost free of nitrogen into column 2, and a pipe 11 makes up the tank liquid of the latter, slightly less rich in argon, about worse at the top level in the low pressure column.
  • the impure argon (argon mixture) is extracted from the top of column 2 and is then purified in a conventional manner.
  • purified oxygen gas oxygen containing less than 15% of nitrogen, for example 5 to 10% of nitrogen approximately
  • the remixing minaret 4 constitutes the section of the mixing column K3 in FIG. 1. Its comunic base directly with the top from the low pressure column 6. It is therefore supplied at its base with impure nitrogen (nitrogen containing up to a few% of oxygen). At its end, this minaret is supplied with 13 by the rich liquid LR1 coming from column 3 and suitably expanded.
  • the relatively reversible remixing of the irrigated nitrogen and the rich liquid LR1 produces an additional quantity of poor liquid LP2, consisting of nitrogen containing up to a few% of oxygen, which falls into column 6 and increases the reflux there.
  • the waste gas R1 devoid of argon and whose composition is close to that of air is evacuated.
  • part of the rich liquid LR or LR1 can be expanded and vaporized in a condenser at the head of column 2, then returned to column 6 near level 8.
  • part of the vapor from the top of column 6 can be drawn off, for example to produce by distillation in an auxiliary column section (not shown) pure nitrogen under low pressure.
  • liquid is taken from the low pressure column, a few trays above the argon tapping 10, and sent to the head of an auxiliary low pressure column 14; the latter is supplied at its base with impure oxygen from the mixing column 3, expanded at low pressure, in a turbine 15.
  • the bottom liquid of the column 14 is impure oxygen without argon, which l 'is added upstream of the p ⁇ rpe 12 to the pure liquid oxygen withdrawn from the low pressure column. All the argon contained in the liquid injected at the top of the column 14 leaves with the overhead vapor of this column and is returned to the low pressure column 6, at about the same level as the withdrawal of said liquid.
  • the column 3 operates in the vicinity of the low pressure and receives direct oxygen at the head from the tank of the column 6.
  • the turbine 15 of FIG. 3 is eliminated and the columns 3 and 14 are combined in a single ferrule 16.
  • the tank of column 3 is supplied with nitrogen obtained by expansion in a turbine 17 of medium pressure nitrogen. As shown, medium pressure nitrogen expanded in the turbine 17 and then in an expansion valve 17A can also be blown at the head of the column 6.
  • FIG. 5 shows another means of supplying low pressure nitrogen at the base of column 3: the upper part of column 6 is split by an auxiliary column 18 operating at somewhat higher pressure, for example 1 , 8 bar center 1.4 bar for column 6.
  • Part of the treated air flow is diverted and expanded to 1.8 bar in a turbine 19.
  • Part of the turbinated flow is sent to the base of column 18, which receives at the head, cam column 6, lean liquid at the appropriate pressure.
  • the rest of the turbined air is expanded to 1.4 bar in an expansion valve 20 and blown into column 6, like the tank liquid in column 18. It is pure nitrogen, containing up to 'to a few% of oxygen and practiced no argon, drawn off at the head of column 18, which is used to feed the base of column 3.
  • FIG. 6 illustrates a variant of FIG. 5 which makes it possible to remove the pump (not shown) for raising the liquid LP 1.
  • the section K1 is transferred above the column 18, in the same shell as that- ci, and the liquid LR 1 is shared between the top of the minaret 4 and that of the section K1.
  • a second waste gas R is then produced at the head of the section K, a cam indicated in phantom in FIG. 6.
  • the waste gas R1 leaves the minaret 4 at a pressure of the order of 1.3 bar, sufficient for it to be used for the regeneration of the adsorption bottles (not shown) serving purifying the incoming air.
  • This is advantageous but results in a relatively high operating pressure, which is costly in terms of energy for compressing the incoming air.
  • the air rolling in the valve 20 corresponds to a loss of energy.
  • FIG. 7 takes up the principle of FIG. 5 but makes it possible to avoid any rolling of air and to lower the operating pressure: the column 18 is transferred under the column 3, in the same shell; it is supplied at the head by the lean liquid falling from the section K1 and by an addition of lean liquid LP drawn off at the top of the column 5 and expanded in a valve 21, and in the tank by all of the air expanded to 1.8 bar in the turbine 19.
  • Came this flow provides at the head of the column 18 a flow of impure nitrogen higher than that necessary for the operation of the column 3, one can withdraw from this one an additional residual gas R, under approximately 1 , 6 bar, which can be used for the regeneration of the above-mentioned adsorption bottles.
  • the gas R1 leaving the minaret 4 is then no longer used for this regeneration and need only be at a pressure slightly higher than atmospheric pressure, to overcome the pressure drops of the heat exchange line serving cooling the incoming air. The system operating pressure is thus lowered.
  • FIG. 7 shows the origin and the use of the two types of rich liquid: (a) rich liquid with argon, coming on the one hand from the tank of the medium pressure column 5, on the other hand from the tank in column 18. These two streams are combined and serve both to reflux into the low pressure column 6 and to supply the head condenser 2A of column 2, in a conventional manner; and (b) rich liquid LRl without argon, taken between the sections K1 and K2 of column 3 and sent to the head of the minaret 4. Furthermore, by comparing this FIG. 7 with FIG. 1, it can be seen that one performs between the sections K1 and K2 the two withdrawals indicated in FIG. 1, namely a direct withdrawal of waste gas R and a withdrawal of liquid LR1 which, after mixing with nitrogen, also supplies waste gas R1, but at a pressure different.
  • FIG. 7 also shows lines for drawing off gaseous oxygen or low pressure liquid from column 6 and nitrogen gas or medium pressure liquid from column 5.
  • FIG. 8 Another possibility to avoid any loss of energy by air rolling is illustrated by the installation of FIG. 8.
  • the double column 5,6 surmounted by the minaret 4 constituting the section K3 of FIG. 1
  • the turbined air in turbine 19 is expanded to 1.3 bar and blown into column 6.
  • two auxiliary columns are used: on the one hand a column 3A, operating at 1.4 bar, which joins the column 14 for purifying oxygen and, under it, the section K2 of FIG. 1, and on the other hand a column 3B, operating at 1.5 bar, which joins the section K1 of FIG. 1 and, under this one, a splitting 6A of the upper part of the low pressure column 6.
  • the section K2 is supplied at the head by liquid oxygen withdrawn from the tank of column 6 and, in tank, by gas G withdrawn by head of column 3B, that is to say at the head of section K1.
  • Rich liquid without argon LR1 withdrawn from the tank of column 3A, is sent under reflux both at the head of column 3B and minaret 4.
  • Poor liquid is sent under reflux both at the head of column 6 and of section 6A, while the liquid rich with argon coming from the tank of column 5 is, in part, injected both into column 6 and in section 6A, and, for another part, vaporized in the overhead condenser 2A of column 2 and then injected into the tank of section 6A.
  • the very rich liquid collected at the bottom of the latter is in turn injected into column 6.
  • FIG. 8 Pressure drop considerations show that the arrangement of Figure 8 is particularly suitable in the case where at least column 2 is fitted with packings. Furthermore, it is understood that the installation of FIG. 8 could also operate by replacing the air trigger with a nitrogen trigger.
  • FIG. 9 shows another installation in which the sections K1 and K3 both operate at the pressure of the low pressure column 6 and are combined.
  • the double column is surmounted by a remixing column 3B supplied at the head with liquid oxygen coming from the tank of column 6 and in the tank by the purified nitrogen at the head of this same column 6.
  • the liquid of tank of column 3B is sent to reflux in column 6, and impure oxygen is drawn off at the top of column 3B.
  • the residual gas R is drawn between the sections K2 on the one hand, K1-K3 on the other hand.
  • the invention is compatible not only with double column installations, but also with any type of air distillation installation comprising means for producing argon.
  • FIG. 10 is a more complete diagram than FIGS. 2 to 9.
  • the compressed and purified air is cooled and partially liquefied in a heat exchange line 20.
  • the majority of the air flow is expanded to around 1.5 bar in a turbine 21 (Claude cycle), then injected into the distillation column 1A connected to the column 2 for the production of argon.
  • the liquefied air, expanded in a valve 22, is injected into the same column. This produces oxygen in the tank and nitrogen at the top.
  • This latter gas after heating in the exchange line 20, is partially compressed to 6 bars by a compressor 23, cooled and passes through a coil 24 provided in the tank of column 1A, where it condenses by vaporizing the liquid oxygen, then is partially expanded in a valve 25 and sent backward to the top of the column 1A.
  • the rest of the condensed nitrogen is expanded in a valve 26, vaporized in the condenser at the head of column 2 and then sent to the tank of the mixing column 3, bringing together the sections K1 and K2, which operates at 2 to 3 bars.
  • the liquid oxygen produced in the tank of column 1A is at least partly brought by pump to the pressure of column 3 and injected at the time of the latter.
  • the purified gaseous oxygen withdrawn at the head of column 3 is condensed in a second coil 27 in the bottom of column 1A, expanded in a valve 28 and injected into this same column 1A.
  • the section K3 located above the column 1A, is supplied with the s ⁇ met by the rich liquid LR1 drawn off between the sections K1 and K2 and expanded at low pressure, and in the tank by the nitrogen at the head of the column 1A.
  • This section K3 produces in the tank lean liquid LP2 which, like the lean liquid LP1 coming from the tank of column 3, is sent under reflux to the s ⁇ met of column 1A; it produces the waste gas R1 at the head, which is heated in the exchange line 20 before being evacuated or, if the pressure is sufficient, used to regenerate the bottles of adsorbent used to purify the incoming air .
  • the installation can also produce liquid oxygen, drawn off in the tank. column 1A, gaseous oxygen, also drawn off from the bottom of this column and reheated in the exchange line 20, and nitrogen gas, drawn off at the head of the same column and, after reheating, discharged upstream of the compressor 23.
  • gaseous oxygen also drawn off from the bottom of this column and reheated in the exchange line 20
  • nitrogen gas drawn off at the head of the same column and, after reheating, discharged upstream of the compressor 23.
  • nitrogen can also be taken at 6 bars downstream of compressor 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

De l'oxygène liquide (OL) et de l'azote gazeux (N2MP) sont remélangés de façon à peu près réversible dans une colonne auxiliaire (3); du liquide riche sans argon (LR1) prélevé en un emplacement intermédiaire de cette colonne auxiliaire (3), est remélangé dans un autre tronçon de colonne auxiliaire (4) avec l'azote impur de tête de la colonne basse pression (6), et le gaz de tête de ce tronçon auxiliaire constitue un résiduaire (R1) de l'installation. Application à la production d'argon.

Description

"PROCEDE ET INSTALIATION DE DISTILLATION D'AIR"
La présente invention est relative à la technique de distillation de l'air au moyen d'une installation munie d'une colonne de production d'argon.
Comme il est bien connu, les installations de distillation d'air munies d'une colonne de production d'argon cαrprennent généralement une double colonne constituée d'une colonne de distillation moyenne pression fonctionnant sous environ 6 bars, d'une colonne de distillation basse pression fonctionnant un peu au-dessus de la pression atmosphérique, et d'un condenseur-vaporiseur. L'air est envoyé, après épuration et refroidissement, en cuve de la colonne moyenne pression. Le
"liquide riche" (air enrichi en oxygène) recueilli en cuve de la colonne moyenne pression est envoyé en alimentation en un point intermédiaire de la colonne basse pression, tandis qu'une partie du "liquide pauvre", constitué presque entièrement d'azote, recueilli en tête de la colonne moyenne pression est envoyé en reflux en tête de la colonne basse pression. Au-dessous de l'entrée du liquide riche, la colonne basse pression est reliée à la colonne de production d'argon par une conduite dite de "piquage argon" et une conduite de retour de liquide moins fiche en argon. La colonne basse pression est généralement munie en cuve de conduites de soutirage d'oxygène gazeux et d'oxygène liquide, et la colonne moyenne pression est généralement munie en tête de conduites de soutirage d'azote gazeux et d'azote liquide. La vapeur de tête de la colonne basse pression ("azote impur") est constituée d'azote contenant jusqu'à quelques % d'oxygène et est généralement rejetée à l'atmosphère. Dans les installations destinées essentiellement à produire de l'oxygène gazeux délivré directement à un utilisateur par canalisation, il arrive que l'oxygène soit temporairement excédentaire. C'est le cas notamrent pendant les périodes d'arrêt des usines de l'utilisateur. Avec les installati≈is classiques de distillation, l'oxygène gazeux est alors mis à l'atmosphère, et l'énergie dépensée pour la séparation de cet oxygène est perdue. Le FR-A-2 550 325 propose une solution pour limiter cet inconvénient. Cette solution a l'avantage d'être simple, mais son efficacité est limitée.
Plus généralement, la distillation d'un débit d'air donné est capable de fournir environ 21 % de ce débit en oxygène et, dans certaines conditions, cette quantité d'oxygène est excédentaire par rapport aux besoins réels, alors que d'autres productions, notamment l'argon, sont recherchées.
L'invention a pour but de permettre dans tous les cas de valoriser de façon optimale l'excès d'oxygène pour augmenter les productions souhaitées, en particulier celle d'argon.
A cet effet, l'invention a pour objet un procédé de distillation d'air au moyen d'une installation comprenant un appareil principal de distillation associé à une colonne de production d'argon par une conduite de piquage argon, ce procédé étant caractérisé en ce que : - on envoie à la base d'un premier tronçon de colonne, de mélange de l'azote gazeux éventuellement impur mais pratiquement sans argon, et au sonnet d'un second tronçon de colonne de mélange de l'oxygène liquide éventuellement impur irais pratiquaient sans argon ;
- on envoie à la base du deuxième tronçon une partie au moins de la vapeur de tête du premier tronçon et au sommet du premier tronçon une partie au moins du liquide produit à la base du second tronçon ;
- on effectue entre la base du pranier tronçon et le sommet du second tronçon au moins un soutirage intermédiaire constituant un gaz résiduaire ou à partir duquel on produit un tel gaz, lequel est un mélange d'azote et d'oxygène comportant environ 10 à 30 % d'oxygène ;
- on évacue du second tronçon, en tête de celui-ci, de l'oxygène impur contenant au plus quelques % d'azote ; et
- on évacue du premier tronçon, à la base de celui-ci, du liquide pauvre constitué d'azote contenant au plus quelques % d'oxygène, et on envoie ce liquide pauvre en reflux dans l'appareil principal de distillation.
L'invention a également peur objet une installation destinée à la mise en oeuvre d'un tel procédé. Cette installation, du type comprenant un appareil principal de distillation associé à une colonne de production d'argon par une conduite de piquage argon, est caractérisée en ce qu'elle comprend :
- un premier tronçon de colonne de mélange, et des moyens pour alimenter la base de ce tronçon avec de l'azote gazeux éventuellement impur mais pratiquement sans argon ;
- un second tronçon de colonne de mélange, et des moyens pour alimenter le sonnet de ce tronçon avec de l'oxygène liquide éventuellement impur mais pratiquement sans argon ; - des moyens pour alimenter la base du second tronçon avec une partie au moins de la vapeur de tête du second tronçon et le sαrnret du premier tronçon avec une partie au moins du liquide produit à la base du second tronçon ; - des moyens de soutirage intermédiaire prévus entre la base du premier tronçon et le sommet du second tronçon ;
- des moyens pour envoyer le liquide produit à la base du premier tronçon en reflux dans l'appareil principal de distillation ; et
- des moyens pour évacuer du deuxième tronçon la vapeur de tête de celui-ci.
Quelques exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :
- la figure 1 est un diagrarrcre qui illustre le principe de base de l'invention ; - la figure 2 représente schénatiquement une installation de distillation d'air conforme à l'invention ;
- la figure 3 représente schématiquement une partie d'une variante de l'installation de la figure 2 ; et
- les figures 4 à 10 représentent schéiratiquement d'autres modes de réalisation de l'installation suivant l'invention.
Dans tout ce qui suit, on appelle "colonne" ou "tronçon de colonne" un appareil d'échange de matière et de chaleur ayant la structure d'une colonne de distillation, c'est-à-dire comportant un garnissage ou un certain nombre de plateaux du type de ceux utilisés en distillation.
La figure 1 illustre par un diagramme la manière dont une installation classique de distillation d'air, représentée plus en détail sur les autres figures, est modifiée conforirerent à l'invention.
On adjoint à l'installation classique au moins deux tronçons de colonne de mélange K1 et K2, foncticamant sous deux pressions P1 et P2 qui, comme on le verra plus loin, peuvent être ou non égales.
Le tronçon K1 est alimenté à sa base par de l'azote gazeux pouvant contenir jusqu'à quelques % d'oxygène mais pratiquement dépourvu d'argon (c'est-à-dire contenant moins de 1 % d'argon, et de préférence moins de 0,05 % d'argon), tandis que le tronçon K2 est alimenté à son sommet par de l'oxygène liquide pratiquement dépourvu d'argon (avec la même signification que précéderaient) et d'azote. La vapeur de tête du tronçon K1 est envoyée à la base du tronçon K2, et le liquide de cuve de ce dernier est envoyé en reflux au sommet du tronçon K1. A la base de ce dernier, on soutire du liquide pauvre LP1, constitué d'azote contenant jusqu'à quelques % d'oxygène, et on soutire au sonnet du tronçon K2 de l'oxygène impur, c'est-à-dire contenant jusqu'à 15 % environ d'azote, et de préférence de 5 à 10 % environ d'azote.
Pour permettre ces deux soutirages, on effectue au moins un soutirage intermédiaire entre la base du tronçon K1 et le sommet du tronçon K2, pour constituer un gaz résiduaire de l'installation composé d'un mélange oxygène-azote à environ 10 à 30 % d'oxygène, et donc ayant une composition voisine de celle de l'air mais dépourvu d'argon.
Dans l'exemple illustré à la figure 1, le soutirage intermédiaire est effectué entre les tronçons K1 et K2. Il peut être constitué par de la vapeur de tête du tronçon K1, ce qui fournit directement le gaz résiduaire R. Dans certains cas, il peut être préférable de soutirer du liquide de cuve LR1 du tronçon K2, ce liquide étant constitué d'un mélange oxygène-azote à une teneur de 40 à 75 % d'oxygène environ ; ce liquide est alors envoyé en tête d'un troisième tronçon, de colonne de mélange K3, fractionnant sous une pression P3 et alimenté à sa base, comme le tronçon K1, par de l'azote gazeux éventuellement impur mais pratiquement sans argon. On soutire alors le gaz résiduaire R1 en tête du tronçon K3, tandis que le liquide de cuve de ce tronçon constitue du liquide pauvre LP2 constitué, comme le liquide LPl, d'azote contenant jusqu'à quelques % d'oxygène. Les liquides LP1 et LP2 sont envoyés en reflux dans l'installation pour y améliorer la distillation ; l'oxygène gazeux impur soutiré en tête du tronçon K2 peut constituer un gaz de production, ou être épuré pour produire de l'oxygène gazeux pur, comme on le verra plus loin. La provenance de l'oxygène liquide et du ou et des flux d'azote gazeux apparaîtra dans la suite de la description.
Si les pressions P1, P2 et P3 diffèrent entre elles, on utilisera des organes de détente appropriés (vannes ou turbines) entre les tronçons de colonne de mélange. Par ailleurs, si P1 = P3, les tronçons K1 et K3 fonctionnent dans des conditions identiques et peuvent être confondus en un seul tronçon de colonne, coure on le verra plus loin en regard de la figure 9. Dans tous les cas, le schéma de la figure 1 assure un remélange d'oxygène liquide et d'azote gazeux, tous deux à peu près exeupts d'argon, dans des conditions proches de la réversibilité, ce qui correspond à une récupération d'énergie. Cette énergie se manifeste sous forme d'un transfert frigorifique du type pompe à chaleur entre l'oxygène liquide et le liquide pauvre LP1 - LP2 et peut être mise à profit pour augmenter les productions de l'installation autres que l'o xygène, à savoir l'azote gazeux sous pression, les productions liquides et surtout l'argon, came cela apparaîtra dans la suite de la description. On remarque que l'effet technique ci-dessus serait également obtenu en alimentant le sαmet du tronçon K2 avec de l'oxygène liquide contenant jusqu'à quelques % d'azote came impureté.
Les figures 2 à 9 montrent plusieurs exemples de mise en oeuvre du principe de base illustré à la figure 1 avec des installations de distillation d'air à double colonne. Sur ces figures, on a omis de représenter certaines conduites et éléments classiques (notamment les ëchangeurs de chaleur) des installations à double colonne, dans un but de clarté des dessins.
L'installation de distillation d'air représentée à la figure 2 est destinée à produire d'une part de l'oxygène iirpur contenant environ 5 à 10 % d'azote, d'autre part de l'argbn, et éventuellement de l'azote. Elle comprend essentiellement une double colonne 1, une colonne 2 de production d'argon, une colonne de remélange 3 et un minaret de remélange 4. La double colonne 1 comprend, de façon classique, une colonne inférieure 5 foncticnnant sous une moyenne pression MP de l'ordre de 6 bars absolus, une colonne supérieure 6 fonctionnant sous une basse pression BP légèrement supérieure à la, pression atmosphérique, et un vaporiseur-condenseur 7 qui met en relation d'échange thermique le liquide de cuve (oxygène liquide pratiquèrent pur) de la colonne basse pression avec la vapeur de tête (azote pratiquèrent pur) de la colonne moyenne pression.
L'air à traiter, comprimé à 6 bars, épuré et refroidi au voisinage de son point de rosée, est injecté au bas de la colonne moyenne pression. Le liquide de cuve de cette colonne, riche en oxygène (liquide riche LR à environ 40 % d'oxygène) contient la quasi-totalité de l'oxygène et de l'argon de l'air entrant ; il est détendu et injecté en 8 en un emplacement intermédiaire de la colonne basse pression, tandis que du liquide de tête de la colonne 5 (liquide pauvre en oxygène, LP), est détendu et injecté en 9 au sommet de la colonne basse pression.
Au-dessous du point 8, une conduite 10 de piquage argon envoie un gaz à peu près dépourvu d'azote dans la colonne 2, et une conduite 11 rairêne le liquide de cuve de cette dernière, un peu moins riche en argon, à peu pires au mène niveau dans la colonne basse pression. L'argon impur (mixture argon) est extrait du sommet de la colonne 2 et est ensuite épuré de façon classique. La colonne 3 fonctionne sous la moyenne pression de l'installation et réunit les tronçons de colonne de mélange K1 et K2 de la figure 1, avec P1 = P2. Elle est alimentée à sa base en azote prélevé en tête de la colonne moyenne pression 5, et en tête par de l'oxygène liquide prélevé en cuve de la colonne basse pression 6 et amené à la moyenne pression par une pompe 12.
Dans la colonne 3, l'oxygène liquide descendant et l'azote gazeux montant se remélangent d'une façon relativement réversible, de sorte que l'on obtient : - en cuve de la colonne 3, du liquide pauvre supplérrentaire LPl, constitué d'azote contenant jusqu'à quelques % d'oxygène, gui peut être adjoint au liquide pauvre issu de la colonne moyenne pression pour augmenter en 9 le reflux dans la colonne basse pression ;
- en tête de la colonne 3, de l'oxygène gazeux irrpur (oxygène contenant moins de 15 % d'azote, par exerple 5 à 10 % environ d'azote) sous 6 bars ; et
- en un emplacement intermé diaire de la colonne 3, qui peut être considéré corme situé entre les tronçons inférieur K1 et supérieur K2 de la colonne 3, du liquide riche LRl constitué d'un mélange d'azote et d'oxygène à une teneur qui dépend du niveau du soutirage, cette teneur pouvant varier par exemple de 40 à 75 % en oxygène et étant par exemple voisine de celle du liquide riche LR.
Came les deux fluides introduits en tête et en cuve de la colonne 3 sont pratiquement exempts d'argon, il en est de même des trois fluides soutirés de cette colonne. En particulier, l'oxygène impur ainsi produit contient pratiquement uniquement de l'azote came impureté.
Le minaret de remélange 4 constitue le tronçon de colonne de mélange K3 de la figure 1. Sa base comunique directement avec le sommet de la colonne basse pression 6. Il est donc alimenté à sa base par de l'azote impur (azote contenant jusqu'à quelques % d'oxygène). A son sαmet, ce minaret est alimenté en 13 par le liquide riche LR1 provenant de la colonne 3 et convenablement détendu. Le remélange relativement réversible de l'azote irrpur et du liquide riche LR1 produit une quantité supplémentaire de liquide pauvre LP2, constitué d'azote contenant juqu'à quelques % d'oxygène, qui tombe dans la colonne 6 et y augmente le reflux. En tête du minaret 4, on évacue le gaz résiduaire R1 dépourvu d'argon et dont la composition est voisine de celle de l'air. Came il est classique, une partie du liquide riche LR ou LR1 peut être détendue et vaporisée dans un condenseur de tête de la colonne 2, puis renvoyée dans la colonne 6 au voisinage du niveau 8. Par ailleurs, corme représenté, une partie de la vapeur de tête de la colonne 6 peut être soutiré, par exemple pour produire par distillation dans un tronçon de colonne auxiliaire (non représenté) de l'azote pur sous la basse pression.
En supposant que la totalité de l'oxygène liquide produit dans la colonne 6 est envoyée dans la colonne 3, l'installation de la figure 2 permet de produire, outre l'argon, de .l'azote et de l'oxygène impur. Pour obtenir de l'oxygène pur, qui sera soutiré de façon classique au bas de la colonne basse pression, on peut utiliser le schéma de la figure 3, qui présente l'avantage de ne pas perturber le fonctionnement de la colonne 2 de production d'argon.
Sur cette figure 3, on voit que du liquide est prélevé dans la colonne basse pression, quelques plateaux au-dessus du piquage argon 10, et envoyé en tête d'une colonne basse pression auxiliaire 14 ; cette dernière est alimentée à sa base par l'oxygène impur issu de la colonne de mélange 3, détendu à la basse pression, dans une turbine 15. Le liquide de cuve de la colonne 14 est de l'oxygène impur sans argon, que l'on adjoint en amont de la pαrpe 12 à l'oxygène liquide pur soutiré de la colonne basse pression. Tout l'argon contenu dans le liquide injecte en tête de la colonne 14 repart avec la vapeur de tête de cette colonne et est renvoyé dans la colonne basse pression 6, à peu près au mare niveau que le soutirage dudit liquide. Ainsi, dans la colonne 14, on effectue une séparation de l'oxygène et de l'argon, parallèle à celle qui se produit dans la partie inférieure de la colonne 6, mais en présence d'un ballast de 5 à 10 % d'azote. La quantité d'oxygène liquide renvoyée de la cuve de la colonne 14 vers la colonne 3 n'a plus besoin d'être soutirée de la cuve de la colonne 6, ce qui permet de soutirer à la base de celle-ci la même quantité d'oxygène pur en tant que produit. Dans les installations des figures 2 et 3, le soutirage d'oxygène liquide en cuve de la colonne 6 pour alimenter la colonne 3 équivaut à une augmentation du chauffage de cette colonne. On a donc, dans la colonne 6, à la fois une augmentation du reflux en tête et du chauffage en cuve ; la distillation y est par suite améliorée, ce qui peut être mis à profit pour augmenter le rendement d'extraction en argon et/ou les productions de l'installation autres que l'oxygène gazeux : l'azote moyenne pression complémentaire peut être utilisé directement corme produit sous pression, ou turbiné pour produire du froid et donc augmenter la production de liquide (azote liquide ou oxygène liquide) de l'installation. L'augmentation de la production de liquide de l'installation peut d'ailleurs être obtenue d'une autre manière, dans les installations à insufflation d'air dans la colonne basse pression, en augmentant le débit d'air turbine. Ces diverses possibilités sont illustrées par les figures 4 à 8. On peut également envisager, dans le même but, de turbiner un débit de gaz résiduaire R soutiré en un errplacement intermédiaire de la colonne 3, cαπre représenté à la figure 3.
A la figure 4, la colonne 3 fonctionne au voisinage de la basse pression et reçoit directerent en tête de l'oxygène liquide provenant de la cuve de la colonne 6. Par suite, la turbine 15 de la figure 3 est supprimée et les colonnes 3 et 14 sont réunies dans une seule virole 16. La cuve de la colonne 3 est alimentée par de l'azote obtenu par détente dans une turbine 17 d'azote moyenne pression. Came représenté, de l'azote moyenne pression détendu dans la turbine 17 puis dans une vanne de détente 17A peut également être insufflé en tête de la colonne 6.
A la figure 5 est indiqué un autre moyen pour fournir de l'azote basse pression à la base de la colonne 3 : la partie supérieure de la colonne 6 est dédoublée par une colonne auxiliaire 18 fonctionnant sous une pression quelque peu supérieure, par exemple 1,8 bar centre 1,4 bar pour la colonne 6.
Une partie du débit d'air traité est dérivée et détendue à 1,8 bar dans une turbine 19. Une partie du débit turbiné est envoyée à la base de la colonne 18, laquelle reçoit en tête, came la colonne 6, du liquide pauvre à la pression convenable. Le reste de l'air turbiné est détendu à 1,4 bar dans une vanne de détente 20 et insufflé dans la colonne 6, de mare que le liquide de cuve de la colonne 18. C'est l'azote im pur, contenant jusqu'à quelques % d'oxygène et pratiquèrent pas d'argon, soutiré en tête de la colonne 18, qui est utilisé pour alimenter la base de la colonne 3.
La figure 6 illustre une variante de la figure 5 qui permet de supprimer la pompe (non représentée) de remontée du liquide LP 1. Pour cela, le tronçon K1 est reporté au-dessus de la colonne 18, dans la même virole que celle-ci, et le liquide LR 1 est partagé entre le sommet du minaret 4 et celui du tronçon K1. En variante, on peut supprimer la conduite pourvue de la vanne 20 et distiller tout l'air turbiné dans la colonne 18. On produit alors en tête du tronçon K1 un second gaz résiduaire R, came indiqué en trait mixte à la figure 6.
Dans les installations des figures 5 et 6, le gaz résiduaire R1 sort du minaret 4 à une pression de l'ordre de 1,3 bar, suffisante pour qu'il soit utilisé pour la régénération des bouteilles d'adsorption (non représentées) servant à l'épuration de l'air entrant. Ceci est avantageux mais conduit à une pression de marche relativement élevée, ce qui est coûteux en énergie de compression de l'air entrant. De plus, lorsqu'on y fait appel, le laminage d'air dans la vanne 20 correspond à une perte d'énergie.
L'installation de la figure 7 reprend le principe de la figure 5 mais permet d'éviter tout laminage d'air et d'abaisser la pression de marche : la colonne 18 est transférée sous la colonne 3, dans la même virole ; elle est alimentée en tête par le liquide pauvre tombant du tronçon K1 et par un appoint de liquide pauvre LP soutiré en haut de la colonne 5 et détendu dans une vanne 21, et en cuve par la totalité de l'air détendu à 1,8 bar dans la turbine 19. Came ce débit fournit en tête de la colonne 18 un débit d'azote impur supérieur à celui nécessaire pour le fonctionnement de la colonne 3, on peut soutirer de celle-ci un gaz résiduaire supplémentaire R, sous environ 1,6 bar, qui peut servir à la régénération des bouteilles d'adsorption précitées. Le gaz R1 sortant du minaret 4 ne sert alors plus pour cette régénération et n'a besoin que d'être à une pression légèrement supérieure à la pression atmosphérique, pour vaincre les pertes de charge de la ligne d'échange thermique servant au refroidissement de l'air entrant. La pression de marche de l'installation est ainsi abaissée.
On a représenté à la figure 7 la provenance et l'utilisation des deux types de liquide riche : (a) du liquide riche avec argon, provenant d'une part de la cuve de la colonne moyenne pression 5, d'autre part de la cuve de la colonne 18. Ces deux flux sont réunis et servent à la fois de reflux dans la colonne basse pression 6 et à l'alimentation du condenseur de tête 2A de la colonne 2, de façon classique ; et (b) du liquide riche LRl sans argon, prélevé entre les tronçons K1 et K2 de la colonne 3 et envoyé en tête du minaret 4. Par ailleurs, en comparant cette figure 7 avec la figure 1, on constate qu'on effectue entre les tronçons K1 et K2 les deux soutirages indiqués à la figure 1, à savoir un soutirage direct de gaz résiduaire R et un soutirage de liquide LRl qui, après mélange avec de l'azote, fournit également du gaz résiduaire R1, mais à une pression différente.
On a également représenté à la figure 7 des conduites de soutirage d'oxygène gazeux ou liquide basse pression de la colonne 6 et d'azote gazeux ou liquide moyenne pression de la colonne 5.
Une autre possibilité pour éviter toute perte d'énergie par laminage d'air est illustrée par l'installation de la figure 8. Dans cette installation, on retrouve la double colonne 5,6 surmontée du minaret 4 constituant le tronçon K3 de la figure 1. L'air turbiné dans la turbine 19 est détendu à 1,3 bar et insufflé dans la colonne 6. Cependant, on utilise deux colonnes auxiliaires : d'une part une colonne 3A, fonctionnant à 1,4 bar, qui réunit la colonne 14 d'épuration d'oxygène et, sous celle-ci, le tronçon K2 de la figure 1, et d'autre part une colonne 3B, fonctionnant à 1,5 bar, qui réunit le tronçon K1 de la figure 1 et, sous celui-ci, un dédoublement 6A de la partie supérieure de la colonne basse pression 6. Le tronçon K2 est alimenté en tête par de l'oxygène liquide soutiré de la cuve de la colonne 6 et, en cuve, par le gaz G soutiré en tête de la colonne 3B, c'est-à-dire en tête du tronçon K1. Du liquide riche sans argon LRl, soutiré en cuve de la colonne 3A, est envoyé en reflux à la fois en tête de la colonne 3B et du minaret 4. Du liquide pauvre est envoyé en reflux à la fois en tête de la colonne 6 et du tronçon 6A, tandis que le liquide riche avec argon provenant de la cuve de la colonne 5 est, pour partie, injecté à la fois dans la colonne 6 et dans le tronçon 6A, et, pour une autre partie, vaporisé dans le condenseur de tête 2A de la colonne 2 puis injecté en cuve du tronçon 6A. Le liquide très riche recueilli au bas de ce dernier est à son tour injecté dans la colonne 6.
Des considérations de perte de charge montrent que l'agencement de la figure 8 est particulièrement approprié au cas où au moins la colonne 2 est équipée de garnissages. Par ailleurs, on comprend que l'installation de la figure 8 pourrait également fonctionner en remplaçant la détente d'air par une détente d'azote.
La figure 9 montre une autre installation dans laquelle les tronçons K1 et K3 fonctionnent tous deux à la pression de la colonne basse pression 6 et sont confondus. Ainsi, la double colonne est surmontée d'une colonne de remélange 3B alimentée en tête par de l'oxygène liquide provenant de la cuve de la colonne 6 et en cuve par l'azote irrpur de tête de cette même colonne 6. Le liquide de cuve de la colonne 3B est envoyé en reflux dans la colonne 6, et de l'oxygène impur est soutiré en tête de la colonne 3B. Le gaz résiduaire R est soutiré entre lès tronçons K2 d'une part, K1-K3 d'autre part. L'invention est compatible non seulement avec les installations à double colonne, mais également avec tout type d'installation de distillation d'air comprenant des moyens de production d'argon. Un exemple d'une telle installation à siirple colonne est illustré à la figure 10, qui est un schéma plus complet que les figures 2 à 9.
Dans cette figure, l'air, cαrprimé et épuré, est refroidi et partiellement liquéfié dans une ligne d'échange thermique 20. La majorité du débit d'air est détendu vers 1,5 bar dans une turbine 21 (cycle Claude), puis injecté dans la sirrple colonne de distillation 1A reliée à la colonne 2 de production d'argon. L'air liquéfié, détendu dans une vanne 22, est injecté dans la même colonne. Celle-ci produit en cuve de l'oxygène et en tête de l'azote. Ce dernier gaz, après réchauffement dans la ligne d'échange 20, est partiellement comprimé à 6 bars par un compresseur 23, refroidi et traverse un serpentin 24 prévu en cuve de la colonne 1A, où il se condense en vaporisant l'oxygène liquide, puis est en partie détendu dans une vanne 25 et envoyé en reflux au sommet de la colonne 1A. Le reste de l'azote condensé est détendu dans une vanne 26, vaporisé dans le condenseur de tête de la colonne 2 puis envoyé en cuve de la colonne de mélange 3, réunissant les tronçons K1 et K2, qui fonctionne sous 2 à 3 bars.
L'oxygène liquide produit en cuve de la colonne 1A est au moins en partie amené par pompe à la pression de la colonne 3 et injecté au sαmet de celle-ci. L'oxygène irrpur gazeux soutiré en tête de la colonne 3 est condensé dans un second serpentin 27 en cuve de la colonne 1A, détendu dans une vanne 28 et injecté dans cette même colonne 1A.
Le tronçon K3, situé au-dessus de la colonne 1A, est alimenté au sαmet par le liquide riche LR1 soutiré entre les tronçons K1 et K2 et détendu à la basse pression, et en cuve par l'azote de tête de la colonne 1A. Ce tronçon K3 produit en cuve du liquide pauvre LP2 qui, de même que le liquide pauvre LP1 provenant de la cuve de la colonne 3, est envoyé en reflux au sαmet de la colonne 1A ; il produit en tête le gaz résiduaire R1, lequel est réchauffé dans la ligne d'échange 20 avant d'être évacué ou, si la pression est suffisante, utilisé pour régénérer les bouteilles d'adsorbant servant à l'épuration de l'air entrant.
Came représenté, l'installation peut également produire de l'oxygène liquide, soutiré en cuve de la. colonne 1A, de l'oxygène gazeux, également soutiré en cuve de cette colonne et réchauffé dans la ligne d'échange 20, et de l'azote gazeux, soutiré en tête de la même colonne et, après réchauffement, évacué en amont du compresseur 23. Came indiqué en trait mixte, on peut également prélever de l'azote sous 6 bars en aval du compresseur 23.

Claims

REVENDICATIONS
1. - Procédé de distillation d'air au moyen d'une installation comprenant un appareil principal de distillation (1 ; 1,18 ; 1 ,6A ; 1A) associé à une colonne de production d'argon (2) par une conduite (10) de piquage argon, ce procédé étant caractérisé en ce que : - on envoie à la base d'un premier tronçon de colonne de mélange (K1) de l'azote gazeux éventuellement impur mais pratiquement sans argon, et au sommet d'un second tronçon de colonne de mélange (K2) de l'oxygène liquide éventuellement impur mais pratiquèrent sans argon ;
- on envoie à la base du deuxième tronçon (K2) une partie au moins de la vapeur de tête du premier tronçon et au sαmet du premier tronçon (K1) une partie au moins du liquide produit à la base du second tronçon ;
- on effectue entre la base du premier tronçon (K1) et le sommet du second tronçon (K2) au moins un soutirage intermédiaire (R, LR1) constituant un gaz résiduaire (R) ou à partir duquel on produit un tel gaz (R1), lequel est un mélange d'azote et d'oxygène comportant environ 10 à 30 % d'oxygène ;
- on évacue du second tronçon (K2), en tête de celui-ci, de l'oxygène impur contenant au plus quelques % d'azote ; et
- on évacue du premier tronçon (K1), à la base de celui-ci, du liquide pauvre (LPl) constitué d'azote contenant au plus quelques % d'oxygène, et on envoie ce liquide pauvre en reflux dans l'appareil principal de distillation (1 ; 1,18 ; 1,6A ; 1A).
2. - Procédé suivant la revendication 1, caractérisé en ce que ledit oxygène impur contient moins de 15 % d'azote.
3. - Procédé suivant l'une des revendications 1 et 2, caractérisé en ce que ledit soutirage intermédiaire consiste à soutirer entre les deux tronçons de colonne de mélange (K1, K2) une partie de la vapeur de tête (R) du premier tronçon et/ou une partie du liquide (LRl) produit à la base du second tronçon (K2).
4. - Procédé suivant la revendication 3, dans lequel on soutire du liquide (LRl) entre les deux tronçons de colonne de mélange (K1, K2), caractérisé en ce qu'on effectue un remélange de ce liquide avec de l'azote gazeux éventuellerent imçur mais pratiquement dépourvu d'argon dans un troisième tronçon de colonne de mélange (K3), la vapeur de tête de ce troisième tronçon constituant du gaz résiduaire (R1) tandis que le liquide (LP2) produit à sa base constitue du liquide pauvre supplémentaire de reflux pour l'appareil principal de distillation (1 ; 1,18 ; 1,6A ; 1A), ce liquide étant constitué d'azote contenant au plus quelques % d'oxygène.
5. - Procédé suivant la revendication 4, dans lequel l'appareil principal de distillation comprend une double colonne (1) qui comprend elle-même une colonne moyenne pression (5) fonctionnant sous une pression relativerent élevée et une colonne basse pression (6) fonctionnant sous une pression relativement basse et reliée à la colonne de production d'argon (2) par ladite conduite (10) de piquage argon, caractérisé en ce qu'on fait fonctionner les premier et second tronçons de colonne de mélange (K1, K2) à la moyenne pression en alimentant le prenier tronçon (K1) avec de l'azote soutiré de la colonne moyenne pression (5) et le second tronçon (K2) avec de l'oxygène liquide soutiré en cuve de la colonne basse pression (6) et amené à la même pression.
6. - Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on condense l'oxygène irrpur par vaporisation d'oxygène liquide de l'appareil principal de distillation (1A), le liquide obtenu étant envoyé en reflux dans cette colonne à un niveau situé au-dessus de la conduite de piquage argon (10).
7. - Procédé suivant l'une quelconque des revendications 1 à 5, dans lequel l'appareil principal de distillation cαrprend une double colonnn (1) qui comprend elle-même une colonne moyenne pression (5) fonctionnant sous une pression relativement élevée et une colonne basse pression (6) fonctionnant sous une pression relativerent basse et reliée à la colonne de production d'argon (2) par ladite conduite (10) de piquage argon, caractérisé en ce qu'on distille l'oxygène irrpur dans une colonne basse pression auxiliaire (14) alimentée par du liquide prélevé dans la colonne basse pression (6) au-dessus de la conduite de piquage argon (10), la vapeur de tête de cette colonne basse pression auxiliaire (14) étant renvoyée à peu près au même niveau dans la colonne basse pression (6) tandis que son liquide de cuve est envoyé en reflux dans le second tronçon de colonne de mélange (K2).
8. - Procédé suivant l'une quelconque des revendications 1 à 7, dans lequel l'appareil principal de distillation cαrprend une double colonne (1) qui comprend elle-même une colonne moyenne pression (5) fonctionnant scus une pression relativement élevée et une colonne basse pression (6) fonctionnant sous une pression relativement basse et reliée à la colonne de production d'argon (2) par ladite conduite (10) de piquage argon, caractérisé en ce qu'on détend dans une turbine (17) une partie de la vapeur de tête de la colonne moyenne pression (5).
9. - Procédé suivant la revendication 8, caractérisé en ce qu'on fait fonctionner les premier (K1) et second (K2) tronçons de colonne de mélange à une même pression voisine de la basse pression en alimentant le premier tronçon (K1) avec de l'azote soutiré de la colonne moyenne pression et détendu dans ladite turbine (17) et en alimentant directerent le second tronçon (K2) avec de l'oxygène liquide prélevé en cuve de la colonne basse pression (6).
10. - Procédé suivant l'une quelconque des revendications 1 à 4, dans lequel l'appareil principal de distillation (1,18) comprend une double colonne (1) qui cαrprend elle-même une colonne moyenne pression (5) fonctionnant sous une pression relativement élevée et une colonne basse pression (6) fonctionnant sous une pression relativement basse et reliée à la colonne de production d'argon (2) par ladite conduite (10) de piquage argon, caractérisé en ce qu'on fait fonctionner les premier (K1) et second (K2) tronçons de colonne de mélange à une pression de recyclage légèrement supérieure à la basse pression, on détend dans une turbine (19) à cette pression de recyclage une partie de l'air traité, on distille au moins une partie de l'ail, turbiné (en 18) en utilisant du liquide pauvre came reflux, et on alimente le prenier tronçon de colonne de mélange (K1) avec l'azote impur résultant de cette distillation.
11. - Procédé suivant la revendication 10, caractérisé en ce qu'on insuffle dans la colonne basse pression (6) l'air turbiné excédentaire, après détente dans une vanne (20).
12. - Procédé suivant la revendication 10, caractérisé en ce qu'on distille la totalité de l'air turbiné en utilisant came reflux le liquide pauvre produit à la base du premier tronçon de colonne de mélange (K1), ce dernier étant alimenté à sa base par l'azote irrpur résultant de cette distillation et du gaz résiduaire (R) étant soutiré entre les deux tronçons de colonne de mélange (K1, K2).
13. Procédé suivant l'une quelconque des revendications 1 à 12, caractérisé en ce que l'on utilise le gaz résiduaire (R, R1) pour régénérer des bouteilles d'adsorption servant à l'épuration de l'air entrant.
14. - Installation de distillation d'air, du type comprenant un appareil principal de distillation (1 ; 1,18 ; 1,6A ; 1A) associé à une colonne de production d'argon (2) par une conduite de piquage argon (10), cette installation étant caractérisée en ce qu'elle comprend : - un prenier tronçon de colonne de mélange (K1), et des moyens pour alimenter la base de ce tronçon avec de l'azote gazeux éventuellement impur mais pratiquement sans argon ;
- un second tronçon de colonne de mélange (K2), et des moyens pour alimenter le sommet de ce tronçon avec de l'oxygène liquide éventuellement impur mais pratiquement sans argon ;
- des moyens pour alimenter la base du second tronçon (K2) avec une partie au moins de la vapeur de tête du premier tronçon et le sommet du premier tronçon (K1) avec une partie au moins du liquide produit à la base du second tronçon ; - des moyens de soutirage intermédiaire prévus entre la base du premier tronçon (K1) et le sommet du second tronçon (K2) ;
- des moyens pour envoyer le liquide (LPl) produit à la base du premier tronçon (K1) en reflux dans l'appareil principal de distillation (1 ; 1,18 ; 1,6A ; 1A) ; et - des moyens pour évacuer du deuxième tronçon (K2) la vapeur de tête de celui-ci.
15. - Installation suivant la revendication 14, caractérisée en ce qu'elle comprend un troisième tronçon de colonne de mélange (K3), des moyens pour alimenter la base de ce tronçon par de l'azote gazeux éventuellement impur mais pratiquement sans argon et son sommet par du liquide (LRl) soutiré par lesdits moyens de soutirage intermédiaire, et des moyens pour soutirer en tête de ce troisième tronçon un gaz résiduaire de l'installation (R1).
16. - Installation suivant l'une des revendications 14 et 15, du type dans lequel l'appareil principal de distillation (1) comprend une double colonne qui comprend elle-mêre une colonne moyenne pression (5) fonctionnant sous une pression relativement élevée et une colonne basse pression (6) fonctionnant sous une pression relativement basse et reliée à la colonne de production d'argon (2) par ladite conduite (10) de piquage argon, caractérisée en ce qu'elle comprend un tronçon de colonne auxiliaire (14) alimenté à son sommet par du liquide prélevé dans la colonne basse pression (6) au-dessus de la conduite de piquage argon (10), des moyens pour renvoyer la vapeur de tête de ce tronçon auxiliaire dans la colonne basse pression à peu près au même niveau, le tronçon auxiliaire (14) étant alimenté à sa base par la vapeur de tête du second tronçon de colonne de mélange (K2) tandis que le liquide de cuve de ce tronçon auxiliaire est envoyé en reflux en tête du second tronçon de colonne de mélange.
17. - Installation suivant l'une quelconque des revendications 14 à 16, du type dans lequel l'appareil principal de distillation (1) comprend une double colonne qui comprend elle-même une colonne moyenne pression (5) fonctionnant sous une pression relativement élevée et une colonne basse pression (6) fonctionnant sous une pression relativement basse et reliée à la colonne de production d'argon (2) par ladite conduite (10) de piquage argon, caractérisée en ce qu'elle comprend une turbine (17) de détente de la vapeur de tête de la colonne moyenne pression (5).
18. - Installation suivant l'une quelconque des revendications 14 à 17, du type dans lequel l'appareil principal de distillation (1,18) comprend une double colonne (1) qui comprend elle-même une colonne moyenne pression (5) fonctionnant sous une pression relativerent élevée et une colonne basse pression (6) fonctionnant sous une pression relativement basse et reliée à la colonne de production d'argon (2) par ladite conduite (10) de piquage argon, caractérisée en ce qu'elle comprend une turbine (19) de détente d'une partie de l'air entrant et un second tronçon de colonne auxiliaire (18) fonctionnant à une pression légèrement supérieure à la basse pression et produisant en tête de l'azote irrpur qui alimente la base du premier tronçon de colonne de mélange (K1).
PCT/FR1986/000247 1985-07-15 1986-07-09 Procede et installation de distillation d'air WO1987000609A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE8686904215T DE3669392D1 (de) 1985-07-15 1986-07-09 Verfahren und vorrichtung fuer luftdestillation.
AT86904215T ATE50857T1 (de) 1985-07-15 1986-07-09 Verfahren und vorrichtung fuer luftdestillation.
BR8606791A BR8606791A (pt) 1985-07-15 1986-07-09 Processo e instalacao de destiliacao de ar
JP61503742A JPH0731004B2 (ja) 1985-07-15 1986-07-09 空気蒸留方法及びプラント
IN620/DEL/86A IN167585B (fr) 1985-07-15 1986-07-14
NO871015A NO165465C (no) 1985-07-15 1987-03-12 Fremgangsmaate og anlegg for destillering av luft.
FI871121A FI871121A0 (fi) 1985-07-15 1987-03-13 Foerfarande och anordning foer destillering av luft.
DK130687A DK130687A (da) 1985-07-15 1987-03-13 Proces og anlaeg til destillation af luft
KR1019870700216A KR880700215A (ko) 1985-07-15 1987-03-14 공기증류 공정및 그 플랜트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8510796A FR2584803B1 (fr) 1985-07-15 1985-07-15 Procede et installation de distillation d'air
FR85/10796 1985-07-15

Publications (1)

Publication Number Publication Date
WO1987000609A1 true WO1987000609A1 (fr) 1987-01-29

Family

ID=9321294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1986/000247 WO1987000609A1 (fr) 1985-07-15 1986-07-09 Procede et installation de distillation d'air

Country Status (17)

Country Link
US (1) US4818262A (fr)
EP (1) EP0229803B1 (fr)
JP (1) JPH0731004B2 (fr)
KR (1) KR880700215A (fr)
AU (1) AU584229B2 (fr)
BR (1) BR8606791A (fr)
CA (1) CA1310579C (fr)
DE (1) DE3669392D1 (fr)
DK (1) DK130687A (fr)
ES (1) ES2000213A6 (fr)
FI (1) FI871121A0 (fr)
FR (1) FR2584803B1 (fr)
IN (1) IN167585B (fr)
NZ (1) NZ216821A (fr)
PT (1) PT82966B (fr)
WO (1) WO1987000609A1 (fr)
ZA (1) ZA865185B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259070A2 (fr) * 1986-08-28 1988-03-09 The BOC Group plc Séparation d'air
EP0286314B1 (fr) * 1987-04-07 1992-05-20 The BOC Group plc Procédé de séparation d'air
US6295835B1 (en) 1999-02-01 2001-10-02 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for air separation by cryogenic distillation
EP1318367B2 (fr) 2001-12-04 2009-11-11 Air Products And Chemicals, Inc. Procédé et dispositif de séparation d'air cryogénique
FR3110686A1 (fr) 2020-05-19 2021-11-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de fourniture d’oxygène et/ou d’azote ainsi que d’argon à une zone géographique

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8806478D0 (en) * 1988-03-18 1988-04-20 Boc Group Plc Air separation
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
US5133790A (en) * 1991-06-24 1992-07-28 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification method for producing refined argon
US5309719A (en) * 1993-02-16 1994-05-10 Air Products And Chemicals, Inc. Process to produce a krypton/xenon enriched stream from a cryogenic nitrogen generator
US5490391A (en) * 1994-08-25 1996-02-13 The Boc Group, Inc. Method and apparatus for producing oxygen
FR2778233B1 (fr) * 1998-04-30 2000-06-02 Air Liquide Installation de distillation d'air et boite froide correspondante
FR2801963B1 (fr) 1999-12-02 2002-03-29 Air Liquide Procede et installation de separation d'air par distillation cryogenique
JP2002541421A (ja) * 1999-04-05 2002-12-03 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 可変生産能力の流体混合物分離装置及びプロセス
DE10139097A1 (de) * 2001-08-09 2003-02-20 Linde Ag Verfahren und Vorrichtung zur Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
EP1387136A1 (fr) * 2002-08-02 2004-02-04 Linde AG Procédé et appareil de production d'oxygène impur par distillation cryogénique de l'air
FR2854232A1 (fr) * 2003-04-23 2004-10-29 Air Liquide Procede de distillation d'air pour produire de l'argon
DE102012021694A1 (de) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft in einer Luftzerlegungsanlage und Luftzerlegungsanlage
BR112015009379A2 (pt) * 2012-11-02 2017-07-04 Linde Ag processo para separação de baixa temperatura de ar em uma usina de separação de ar e usina de separação de ar
JP2020521098A (ja) 2017-05-16 2020-07-16 イーバート,テレンス,ジェイ. 気体を液化するための装置およびプロセス
FR3074274B1 (fr) 2017-11-29 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation d'air par distillation cryogenique
FR3093172B1 (fr) 2019-02-25 2021-01-22 L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude Appareil d’échange de chaleur et de matière
WO2020174169A1 (fr) 2019-02-25 2020-09-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Appareil d'échange de chaleur et de matière
US20240035743A1 (en) * 2022-08-01 2024-02-01 Air Products And Chemicals, Inc. Process and apparatus for recovery of at least nitrogen and argon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2204376A1 (de) * 1971-02-01 1972-08-17 LAir Liquide, Societe Anonyme pour lEtude et !Exploitation des Procedes Georges Claude, Paris Thermisches Kreislaufverfahren zur Verdichtung eines Strömungsmittels durch Entspannung eines anderen Strömungsmittels
FR2550325A1 (fr) * 1983-08-05 1985-02-08 Air Liquide Procede et installation de distillation d'air au moyen d'une double colonne

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280383A (en) * 1939-09-08 1942-04-21 Baufre William Lane De Method and apparatus for extracting an auxiliary product of rectification
US2547177A (en) * 1948-11-02 1951-04-03 Linde Air Prod Co Process of and apparatus for separating ternary gas mixtures
US4137056A (en) * 1974-04-26 1979-01-30 Golovko Georgy A Process for low-temperature separation of air
US4433989A (en) * 1982-09-13 1984-02-28 Erickson Donald C Air separation with medium pressure enrichment
US4533375A (en) * 1983-08-12 1985-08-06 Erickson Donald C Cryogenic air separation with cold argon recycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2204376A1 (de) * 1971-02-01 1972-08-17 LAir Liquide, Societe Anonyme pour lEtude et !Exploitation des Procedes Georges Claude, Paris Thermisches Kreislaufverfahren zur Verdichtung eines Strömungsmittels durch Entspannung eines anderen Strömungsmittels
FR2169561A6 (fr) * 1971-02-01 1973-09-07 Air Liquide
FR2550325A1 (fr) * 1983-08-05 1985-02-08 Air Liquide Procede et installation de distillation d'air au moyen d'une double colonne

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259070A2 (fr) * 1986-08-28 1988-03-09 The BOC Group plc Séparation d'air
EP0259070A3 (en) * 1986-08-28 1988-11-30 The Boc Group Plc Air separation
EP0286314B1 (fr) * 1987-04-07 1992-05-20 The BOC Group plc Procédé de séparation d'air
US6295835B1 (en) 1999-02-01 2001-10-02 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for air separation by cryogenic distillation
EP1318367B2 (fr) 2001-12-04 2009-11-11 Air Products And Chemicals, Inc. Procédé et dispositif de séparation d'air cryogénique
FR3110686A1 (fr) 2020-05-19 2021-11-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de fourniture d’oxygène et/ou d’azote ainsi que d’argon à une zone géographique

Also Published As

Publication number Publication date
BR8606791A (pt) 1987-10-13
FI871121A (fi) 1987-03-13
ES2000213A6 (es) 1988-01-16
IN167585B (fr) 1990-11-17
US4818262A (en) 1989-04-04
EP0229803A1 (fr) 1987-07-29
JPS63500329A (ja) 1988-02-04
JPH0731004B2 (ja) 1995-04-10
KR880700215A (ko) 1988-02-20
FI871121A0 (fi) 1987-03-13
FR2584803B1 (fr) 1991-10-18
AU584229B2 (en) 1989-05-18
DK130687D0 (da) 1987-03-13
PT82966B (pt) 1992-08-31
EP0229803B1 (fr) 1990-03-07
NZ216821A (en) 1988-01-08
DK130687A (da) 1987-03-13
CA1310579C (fr) 1992-11-24
PT82966A (fr) 1986-08-01
DE3669392D1 (de) 1990-04-12
FR2584803A1 (fr) 1987-01-16
ZA865185B (en) 1987-03-25
AU6129086A (en) 1987-02-10

Similar Documents

Publication Publication Date Title
EP0229803B1 (fr) Procede et installation de distillation d'air
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0420725B1 (fr) Procédé de production frigorifique, cycle frigorifique correspondant et leur application à la distillation d'air
EP0576314B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0628778B1 (fr) Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air
EP0547946B1 (fr) Procédé et installation de production d'oxygène impur
EP0676373B1 (fr) Procédé et installation de production de monoxyde de carbone
EP0605262B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0937679B1 (fr) Procédé et installation de production de monoxyde de carbone et d'hydrogène
FR3066491B1 (fr) Procede de recuperation d'un courant d'hydrocarbures en c2+ dans un gaz residuel de raffinerie et installation associee
EP0644996A1 (fr) Procede et installation de refroidissement d'un fluide, notamment pour la liquefaction de gaz naturel
EP0937681B1 (fr) Procédé et installation pour la production combinée d'un mélange de synthèse d'amomniac et de monoxyde de carbone
WO2005073651A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
EP0379435A1 (fr) Procédé et installation de séparation d'air et de production d'oxygène ultra-pur
WO2010109130A1 (fr) Procédé de traitement d'un gaz naturel de charge pour obtenir un gaz naturel traité et une coupe d'hydrocarbures en c5 +, et installation associée
EP2712419A2 (fr) Procede de separation d'air par distillation cryogenique
EP0430803B1 (fr) Procédé et installation de distillation d'air avec production d'argon
EP1446620B1 (fr) Procede et installation de production d'helium
EP2932177A2 (fr) Procédé et appareil de séparation d'un mélange contenant du dioxyde de carbone par distillation
WO1999054673A1 (fr) Procede et installation de distillation d'air avec production d'argon
EP0732556B1 (fr) Procédé et appareil de vaporisation d'un débit liquide
CA2115399C (fr) Procede et installation de production d'oxygene sous pression
FR2847568A1 (fr) Procede et installation de production d'un melange krypton/xenon a partir d'air
FR2636543A1 (en) Process and plant for treating a purge gas from an ammonium synthesis plant
EP3913310A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1986904215

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK FI JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 871121

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1986904215

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1986904215

Country of ref document: EP