WO1985005438A1 - Four de cuisson d'un revetement synthetique sur une chaine de plastification - Google Patents

Four de cuisson d'un revetement synthetique sur une chaine de plastification Download PDF

Info

Publication number
WO1985005438A1
WO1985005438A1 PCT/FR1985/000122 FR8500122W WO8505438A1 WO 1985005438 A1 WO1985005438 A1 WO 1985005438A1 FR 8500122 W FR8500122 W FR 8500122W WO 8505438 A1 WO8505438 A1 WO 8505438A1
Authority
WO
WIPO (PCT)
Prior art keywords
oven according
oven
height
heating
sections
Prior art date
Application number
PCT/FR1985/000122
Other languages
English (en)
Inventor
Robert Dumas
Original Assignee
Saint-Gobain Emballage
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Emballage filed Critical Saint-Gobain Emballage
Publication of WO1985005438A1 publication Critical patent/WO1985005438A1/fr
Priority to DK27086A priority Critical patent/DK27086D0/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/005Coating the outside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation

Definitions

  • the glassmakers have gradually managed, by thinning the walls, to lighten more and more their products, and especially, in glass, hollow, the containers, in the first place the bottles.
  • This arouses, in particular with the intention of reusing these articles more widely, an increasing interest in various surface treatments capable of increasing hardness, reducing the coefficient of friction or absorbing shocks ..., in particular protecting the glass against phenomena abrasion which decrease its resistance.
  • One of the most advantageous processes consists in depositing various polymer coatings externally, by spraying the product in the form of a solution or better still in powder form, and this preferably by electrostatic means, which makes it possible to obtain a very regular thickness, on a container usually made conductive by a simple heating which also facilitates the fixing of the deposit.
  • the operation generally requires, before projection of the coating, the application of a primer, in principle carried out by liquid, then its drying under the effect of preheating; after the deposition, carried out in one or more layers, it requires at least a baking which allows the coating, and the polymerization if thermosetting resins are used, then a cooling time.
  • the articles are preferably hung on rotating supports, using pliers engaged inside the neck on a suspended chain conveyor which, from the loading station to the unloading station, crosses the stations successive manufacturing stations, priming and preheating stations, electrostatic spray booth, baking oven and cooling zone.
  • the product adheres first by bonding, then under the effect of the electric charge; the operation is carried out in the shelter of a thin air curtain created at the height of the ring of the containers by nozzles in the form of narrow slots arranged along the conveyor.
  • This makes it possible to coat not only the barrel and the bottom but also the upper part of the neck, without reaching the rim or the clamps, or even the ring and its counter ring, the shoulder of which will thus provide a clean edge to the coating.
  • One of the delicate points of manufacturing lies in the cooking of the product, and this mainly when it is intended to cause its polymerization.
  • the ovens therefore roughly comprise three separate sections corresponding to the three stages of heating, first intensive, intended to raise the temperature to the desired value at the desired speed, then to maintain this value for the time necessary for treatment, finally progressive cooling; they thus consist of a narrow corridor folded several times on itself to form a sufficiently compact unit because the total length of the course easily reaches 30 to 50 m.
  • the subject of the invention is precisely an oven capable of treating
  • This oven will have in the direction of the height a heterogeneous distribution of installed power, able to distribute the calorific flow wanted to all kinds of articles, whatever their size, at the price of simple adjustments.
  • this power distribution also differs in each of the three aforementioned main sections; in each of these three sections, it will preferably be done in three distinct zones at most and, even, on all of the sections, in only three bands.
  • FIG. 5 the distribution of the installed power in the different zones, of the oven.
  • the bottles A circulate on a suspended chain conveyor C of which it is unnecessary to describe the route in detail.
  • the furnace 1 whose metal wall 2, reflective and insulated, defines an enclosure divided by suspended panels 3 into five straight reaches of just over ten meters each one, placed side by side and which the conveyor successively crosses by a laces path which therefore exceeds fifty meters.
  • each reach forms a corridor 4 of about 20 cm wide and 70 cm high, separated by a spring hatch 5 from a lower compartment 6 of neighboring height, in the form of a hopper intended to collect debris from the bottles which are damaged.
  • the conveyor chain equipped with mandrels 7 with an axial control rod, engaged inside the neck of the bottles, is carried by a rail 8, mounted on carrying irons 9; the mandrels 7, entering the oven through the slots formed by the roof beams 10, are periodically rotated about one-sixth of a turn by the action, on their pinion 7a, of cleats 11 mounted on the rail every 50 cm approx.
  • the panels 3 which laterally limit the corridors 4 are suspended between the irons 9 and the beams 10. To constitute the heating chambers, the first of them carry various batteries of heating elements 12.
  • FIG. 3B The arrangement of FIG. 3B amounts to placing only one tube on the height of the furnace, without vertical overlap, that of FIG.
  • FIG. 3C where there is only one tube per panel again, to heat only a narrow zone; that of FIG. 3A, on the contrary, which authorizes the placing of ten, makes it possible to vary the heating profile much more widely.
  • Only the first three reaches are heated, and the distribution of the tubes on the panels of their heating chambers according to the three arrangements explained above appears briefly from FIG. 1.
  • FIG. 1 We immediately see that there is an asymmetry between the panels 13, 15, 17, placed on the left side of the path of the conveyor C and those 14, 16, 18, which are placed on its right side: it is the rotation of the bottles which makes it possible to establish the uniformity of the treatment.
  • the distribution of the heating elements along the path of the bottles is shown in more detail in FIG.
  • each of the ten panels 13 of the first reach carries a single tube 12c of 6 kW.
  • This tube is inclined at 10 ° according to the arrangement of FIG. 3C, and placed in a lower median zone, more precisely in the third quarter of the height.
  • In the second reach are ten similar panels 15, fitted with 6 kW tubes inclined at 10 °.
  • In the third reach are again placed ten tubes, but only 1.6 kW, and of type 12b, inclined at 30 ° according to FIG. 3B, so as to cover substantially the entire height except the margins already indicated.
  • the first reach has first of all four identical panels 14 each comprising eight tubes 12a of 1.6 kW and at the bottom a ninth tube 12'a of 3 kW; these tubes are horizontal and substantially equidistant, according to the arrangement in FIG. 3A. There are then six panels 16 each equipped with a tube 12b of 6 kW; these tubes are inclined at 30 ° according to the arrangement of Figure 3B.
  • the second reach has ten similar panels, 18, also fitted with 6 kW tubes, but type 12c, inclined at 10 ° so placed like those on the left side.
  • the wall is free of heating elements.
  • the first reach has two distinct regions R 1 , R 2 : the installed power, which is 22 kW per meter of length in the first region, drops to 12 kW / m in the second; in the second reach, the dissipated power is still 12 kW / m; in the third reach, it falls to a much lower value of only 1.6 kW / m.
  • the first, S 1 of intensive heating and adjustable in height, over a length of the order of four meters corresponds to the rise in temperature
  • the second, S 2 of less intensive heating, over a total length of 16 m straddling the first two reaches corresponds to the maintenance of temperature with, if necessary, slow growth for a time four times longer
  • the third, S 3 very little heated over ten meters and then unheated over the remaining twenty, provides progressive cooling before being put into free air.
  • the distribution of the tubes defines, in short, in addition to the zones corresponding to the margins M 1 and M 2 , three distinct zones whose respective heights are substantially in the proportions 4, 3, 2. Over the entire oven, these zones generate three distinct heating bands N 1 , N 2 , N 3 : in the first reach, the installed power, if it is homogeneous inside each of these bands, differs from one to another; in the second, only the central strip N 2 is heated; in the third, the three bands N 1 , N 2 , N 3 provide equal heating.
  • thermosetting polymers which can be used here require, at temperatures of the order of 200 to 250 ° C., a cooking time of the order of 2 to 3 min, followed of course by a significantly greater cooling time.
  • a transparent polyurethane coating with a thickness of the order of 70 microns will be given in the final table under the references I-II-III.
  • Example I 33 cl bottles weighing 190 g are treated at a rate of 3000 per hour, which corresponds to a conveyor speed of 6 m / min.
  • Example II these are 150 cl bottles, weighing 820 g, treated at a rate of 1500 per hour, which increases the residence times and therefore leads to a slight reduction in the treatment temperatures.
  • Example III 125 cl bottles weighing 430 g are treated at a rate of 3000 per hour. The table provides:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Coating Apparatus (AREA)
  • Cookers (AREA)

Abstract

Four de cuisson (1) sur une chaîne de plastification d'articles (A) mis en rotation sur un convoyeur (7, 8, 9) suspendu. Ce four, (1) dont les chambres de chauffe constituent un étroit couloir (4) comprenant sommairement trois sections distinctes correspondant à trois stades de chauffage, intensif, de maintien en température, enfin de refroidissement progressif, possède en hauteur une puissance installée répartie différemment dans chacune des trois sections principales, en trois zones homogènes distinctes. Il est destiné en particulier à la cuisson d'un revêtement synthétique thermodurcissable sur des articles verriers ou céramiques de dimensions diverses (A', A").

Description

FOUR DE CUISSON D'UN REVÊTEMENT SYNTHETIQUE SUR UNE CHAINE DE PLASTIFICATION
Srâce a une meilleure régularité de leurs fabrications, les verriers sont progressivement parvenus, par amincissement des parois, à alléger de plus en plus leurs produits, et spécialement, en verre, creux, les récipients, au premier chef les bouteilles. Ceci suscite, notamment dans l'intention de réutiliser plus largement ces articles, un intérêt croissant pour divers traitements de surface aptes à augmenter la dureté, réduire le coefficient de frottement ou amortir les chocs ... , protégeant en particulier le verre contre les phénomènes d'abrasion qui en diminuent la résistance.
L'un des procédés les plus intéressants consiste à déposer extérieurement divers revêtements de polymères, en pulvérisant le produit sous forme de solution ou mieux encore de poudre, et ceci de préférence par voie électrostatique, ce qui permet d'obtenir une épaisseur très régulière, sur un récipient habituellement rendu conducteur par un simple chauffage qui facilite aussi la fixation du dépôt. L'opération requiert en règle générale, avant projection du revêtement, l'application d'un primaire, effectuée en principe par voie liquide, puis son séchage sous l'effet du préchauffage ; après le dépôt, effectué en une ou plusieurs couches, elle exige au moins une cuisson qui en permet le nappage, et la polymérisation si l'on emploie des résines thermodurcissables, puis un temps de refroidissement.
Pour l'effectuer, on suspend de préférence les articles à des supports tournants, à l'aide de pinces en prise à l'intérieur du goulot sur un convoyeur à chaîne suspendue qui, du poste de chargement au poste de déchargement, traverse les postes de fabrication successifs, postes de primage puis de préchauffage, cabine de pulvérisation électrostatique, four de cuisson et zone de refroidissement.
Lors de la pulvérisation du revêtement le produit adhère d'abord par collage, puis sous l'effet de la charge électrique ; l'opération s'effectue à l'abri d'un mince rideau d'air créé à hauteur de la bague des récipients par des buses en forme de fentes étroites disposées le long du convoyeur. Ceci permet de revêtir non seulement le fût et le fond mais également la partie supérieure du col, sans atteindre le buvant ni les pinces, ni même la bague et sa contrebague dont l'épaulement fournira ainsi un bord net au revêtement. L'un des points délicats de la fabrication réside dans la cuisson du produit, et ceci principalement lorsqu'elle est destinée à provoquer sa polymérisation.
Il faut en effet réchauffer progressivement l'article refroidi par l'opération de dépôt, de façon à obtenir tout d'abord la fusion complète des particules et par conséquent le nappage du revêtement sans provoquer de gélification prématurée de la résine, puis maintenir la température à la valeur voulue pour la polymérisation, enfin permettre un refroidissement progressif avant de transférer les articles à Vair libre. Ces difficultés sont susceptibles de se rencontrer de façon plus générale dans d'autres opérations d'application de revêtements protecteurs ou décoratifs d'articles divers.
Les fours comprennent donc sommairement trois sections distinctes correspondant aux trois stades de chauffage, d'abord intensif, destiné à élever la température jusqu'à la valeur voulue à la vitesse désirée, puis de maintien à cette valeur pendant la durée nécessaire au traitement, enfin de refroidissement progressif ; ils sont ainsi constitués d'un étroit couloir replié à plusieurs reprises sur lui-même pour former un ensemble suffisamment compact car la longueur totale du parcours atteint facilement 30 à 50 m. Pour pouvoir y admettre des bouteilles dont la taille peut atteindre 35 cm, il faut donner à ce couloir une hauteur interne au moins double ; en effet, à la partie supérieure, on doit chauffer les pinces métalliques sur une longueur suffisante pour éviter qu'elles ne refroidissent à l'excès la bague des articles, ainsi placée à hauteur du premier quart à partir du haut ; à la partie inférieure, il doit exister un dégagement suffisant, de Tordre aussi du quart de la hauteur, pour permettre de chauffer le fond comme pour éviter que la chute accidentelle d'un article n'encombre la trajectoire des suivants, et surtout n'atteigne les éléments chauffants, ce qui ne manquerait pas de créer un incident.
Bien que Ton puisse aussi opérer par con vection forcée à partir de bouches convenablement étagées dans les parois eu four, il est avantageux d'employer des fours à rayonnement infra-rouge qui permettent de répartir la puissance de chauffage avec une bonne précision en face des articles.
L'une des principales difficultés consiste en effet à obtenir une cuisson homogène du revêtement sur toute la hauteur de l'article, sans provoquer ni un défaut de nappage ni une élévation de température excessive qui ferait brunir le revêtement, et ceci malgré la présence des pinces et les différences d'épaisseur de la paroi de verre ou de la couche de revêtement que Ton peut observer entre le col et le culot, malgré aussi les facteurs de forme et en particulier les variations rapides de diamètre et de pente que Ton peut rencontrer à hauteur de l'épaule. Cette difficulté se complique du fait qu'une même chaîne doit permettre de traiter à des cadences d'ailleurs variables des articles de types divers tels que des bouteilles de contenances et par conséquent de masses et capacités calorifiques très différentes, dont les hauteurs peuvent varier du simple au double de sorte. qu'elles n'occupent pas la même position dans le four.
L'invention a précisément pour objet un four apte à traiter
.des articles et en particulier des bouteilles ou flacons de verre ou céramique de dimensions variables sans provoquer de défauts, revêtement cassant par insuffisance locale de cuisson, jaunissement dans le cas opposé.
Ce four possédera dans le sens de la hauteur une répartition de puissance installée hétérogène, apte à distribuer le débit calorifique voulu à toutes sortes d'articles, quelle que soit leur taille, au prix de réglages simples. Selon l'invention, cette répartition de puissance diffère en outre dans chacune des trois sections principales précitées ; dans chacune de ces trois sections, elle se fera de préférence en trois zones distinctes au plus et, même, sur l'ensemble des sections, en trois bandes seulement.
De façon complémentaire, et profitant de ce que la rotation des articles homogénéise la température sur toute leur périphérie, la répartition de puissance en question différera aussi d'un côté à l'autre du four ; il est ainsi possible d'obtenir la répartition cherchée seul possède un débit calorifique ajustable en hauteur, ce qui simplifie la fabrication et la réparation du matériel. Un exemple avantageux de four à rayonnement infra-rouge conforme à l'invention sera décrit ci-dessous en référence aux dessins annexés, qui représentent :
- figure 1 : une vue en plan schématique du four,
- figure 2 : une coupe verticale selon la ligne II. II de la figure 1,
- figure 3 : les trois types A, B, C de panneaux chauffants,
- figure 4 : un schéma de la répartition des tubes émetteurs,
- figure 5 : la répartition de la puissance installée dans les différentes zones, du four. Comme le montre la figure 1, les bouteilles A circulent sur un convoyeur à chaîne suspendue C dont il est inutile de décrire le parcours en détail. A la sortie de la cabine de pulvérisation, elles s'engagent dans le four 1, dont la paroi métallique 2, réfléchissante et isolée, définit une enceinte divisée par des panneaux suspendus 3 en cinq biefs recti lignes d'un peu plus de dix mètres chacun, disposés côte à côte et que le convoyeur traverse successivement par un trajet en lacets qui dépasse donc cinquante mètres. Comme le montre la figure 2, chaque bief forme un couloir 4 d'environ 20 cm de 1argeur et 70 cm de hauteur, séparé par une trappe à ressort 5 d'un compartiment inférieur 6 de hauteur voisine, en forme de trémie destinée à recueillir les débris des bouteilles qui seraient accidentées.
La chaîne du convoyeur, équipée de mandrins 7 à tige de commande axiale, en prise à l'intérieur du goulot des bouteilles, est portée par un rail 8, monté sur des fers porteurs 9 ; les mandrins 7, pénétrant dans le four par les fentes que ménagent les poutrelles 10 du toit, sont périodiquement mis en rotation sur un sixième de tour environ par l'action, sur leur pignon 7a, de taquets 11 montés sur le rail tous les 50 cm environ. Les panneaux 3 qui limitent latéralement les couloirs 4 sont suspendus entre les fers 9 et les poutrelles 10. Pour constituer les chambres de chauffe, les premiers d'entre eux sont porteurs de diverses batteries d'éléments chauffants 12. Ceux-ci peuvent être placés de façons diverses, horizontaux, verticaux ou plus ou moins inclinés ; dans le cas représenté, il existe dix panneaux indépendants successifs porteurs de tubes à rayonnement infra-rouge d'une longueur de Tordre du mètre ; de manière plus précise, et compte tenu des marges qu'il est nécessaire de laisser entre les éléments chauffants et le cadre des panneaux, le toit du couloir ou sa trappe inférieure, trois dispositions distinctes sont ici prévues :
- en plusieurs rangées horizontales, selon la figure 3A,
- en oblique à 30 ° environ sur l'horizontale, selon la figure 3B,
- en oblique à 10 ° environ sur l'horizontale, selon la figure 3C,
La disposition de la figure 3B revient à ne placer qu'un tube sur la hauteur du four, sans recouvrement vertical, celle de la figure
3C, où n'existe à nouveau qu'un tube par panneau, à ne chauffer qu'une zone étroite ; celle de la figure 3A au contraire, qui autorise à en placer une dizaine, permet de faire varier beaucoup plus largement le profil de chauffage. Seuls les trois premiers biefs sont chauffants, et la répartition des tubes sur les panneaux de leurs chambres de chauffe selon les trois dispositions explicitées ci-dessus apparaît sommairement dès la figure 1. On voit immédiatement qu'il existe une dissymétrie entre les panneaux 13, 15, 17, placés du côté gauche de la trajectoire du convoyeur C et ceux 14, 16, 18, qui sont placés de son côté droit : c'est la rotation des bouteilles qui permet d'établir l'uniformité du traitement. La répartition des éléments chauffants le long du trajet des bouteilles est représentée de façon plus récise sur la figure 4, où la trace verticale du trajet en S du convoyeur C est développée en ligne droite, les parois droite et gauche du four étant représentées rabattues à l'horizontale, en. D et G, de part et d'autre, avec la schématisation de deux profils de bouteilles, l'un A' de dimension maximale, d'une capacité de 1,5 1 par exemple, l'autre A" de dimension minimale, d'une capacité de 33 ou même 20 cl par exemple et les deux traces horizontales H des bagues.
Sur cette même figure 4, l'échelle des dimensions verticales est respectée mais pour des raisons évidentes d'encombrement, il n'en est pas de même de celle des dimensions longitudinales qui ne l'est que pour les bouteilles, mais se trouve très fortement comprimée en ce qui concerne la longueur des panneaux de sorte que les tubes apparaissent très redressés, donc déformés en longueur.
Du côté gauche de la trajectoire du convoyeur, chacun des dix panneaux 13 du premier bief est porteur d'un unique tube 12c de 6 kW. Ce tube est incliné à 10 ° selon la disposition de la figure 3C, et placé dans une zone médiane inférieure, plus précisément dans le troisième quart de la hauteur. Dans le deuxième bief se trouvent dix panneaux semblables 15, équipés de tubes de 6 kW inclinés à 10 °. Dans le troisième bief sont à nouveau placés dix tubes, mais de 1,6 kW seulement, et du type 12b, inclinés à 30 ° selon la figure 3B, de façon à couvrir sensiblement toute la hauteur sauf les marges déjà signalées.
A droite au contraire, on peut voir que le premier bief possède tout d'abord quatre panneaux identiques 14 comprenant chacun huit tubes 12a de 1,6 kW et à la partie inférieure un neuvième tube 12'a de 3 kW ; ces tubes sont horizontaux et sensiblement équi distants, selon la disposition de la figure 3A. On y trouve ensuite six panneaux 16 équipés chacun d'un tube 12b de 6 kW ; ces tubes sont inclinés à 30 ° selon la disposition de la figure 3B. Le second bief possède dix panneaux semblables, 18, également équipés de tubes de 6 kW, mais de type 12c, inclinés à 10 ° donc placés comme ceux du côté gauche. Dans le troisième bief, la paroi est exempte d'éléments chauffants.
La somme des puissances qu'il est possible de rayonner dans chaque zone depuis l'ensemble des parois en direction des bouteilles apparaît sur la figure 5.
Dans le sens de la longueur, le premier bief présente deux régions distinctes R1, R2 : la puissance installée, qui est de 22 kW par mètre de longueur dans la première région, tombe à 12 kW/m dans laseconde ; dans le deuxième bief, la puissance dissipée est encore de 12 kW/m ; dans le troisième bief, elle tombe à une valeur beaucoup plus faible de 1,6 kW/m seulement.
Il se crée donc trois sections distinctes : la premfère, S1, de chauffage intensif et réglable en hauteur, sur une longueur de Tordre de quatre mètres correspond à la montée en température ; la deuxième, S2, de chauffage moins intensif, sur une longueur totale de 16 m à cheval sur les deux premiers biefs correspond au maintien en température avec au besoin une croissance lente pendant un temps quatre fois plus long ; la troisième, S3, très peu chauffée sur une dizaine de mètres puis non chauffée sur la vingtaine qui reste, assure le refroidissement progressif avant mise à Tair libre.
Mais on se rend également compte que, dans le sens vertical, la répartition des tubes définit en somme, outre les zones correspondant aux marges M1 et M2, trois zones distinctes dont les hauteurs respectives se trouvent sensiblement dans les proportions 4, 3, 2. Sur l'ensemble du four, ces zones engendrent trois bandes de chauffage distinctes N1, N2, N3 : dans le premier bief, la puissance installée, si elle est homogène à l'intérieur de chacune de ces bandes, diffère de Tune à l'autre ; dans le second, seule la bande centrale N2 est chauffée ; dans le troisième, les trois bandes N1, N2, N3 dispensent un chauffage égal. En résumé, si Ton néglige les marges inévitables et la section de refroidissement où ne règne qu'un chauffage uniforme de faible intensité, on trouve une première section de chauffage intensif ajustable sur toute la hauteur puis une deuxième, de chauffage moins intense mais où la puissance spécifique, si elle tombe par degrés à zéro dans les zones supérieure N1 et inférieure N3, augmente au contraire dans la zone médiane basse N2 située devant le fût des bouteilles les plus grandes mais sous le fond des plus petites. De façon quelque peu paradoxale, cet écart relatif de position ne s'est pas révélé nuisible mais, au contraire favorable à une cuisson homogène de bouteilles de différents modèles. Il est cependant clair qu'il reste possible de régler la quantité de chaleur effectivement distribuée par les tubes dans chaque cas particulier ; en fait, il s'avère suffisant de régler solidairement les tubes horizontaux de chacune des trois zones de la première région. II est également clair qu'à la surface des articles la répartition du rayonnement s'égalise et qu'il règne aussi à l'intérieur du four des courants de convection non négligeables, de sorte que la séparation entre, les diverses zones ainsi que les coupures provoquées par l'existence des coudes sont beaucoup moins nettes et qu'il n'existe pas en réalité de chocs thermiques.
La plupart des polymères thermodurcissables utilisables ici requièrent, à des températures de Tordre de 200 à 250 °C, un temps de cuisson de Tordre de 2 à 3 min, suivi bien entendu d'un temps de refroidissement nettement plus important. Trois exemples de cuisson d'un revêtement transparent de polyuréthanne d'une épaisseur de Tordre de 70 microns seront donnés dans le tableau final sous les références I-II-III.
Dans le cas de l'exemple I, on traite des bouteilles de 33 cl d'un poids de 190 g, à une cadence de 3000 par heure, ce qui correspond à une vitesse de convoyeur de 6 m / min.
Dans l'exemple II, il s'agit de bouteilles de 150 cl, d'un poids de 820 g, traitées à une cadence de 1500 par heure ce qui augmente les temps de séjour et conduit donc à diminuer un peu les températures de traitement. Dans le l'exemple III, des bouteilles de 125 cl, d'un poids de 430 g sont traitées à une cadence de 3000 par heure. Le tableau fournit :
- le réglage des tubes en pourcentage de puissance émise par rapport à la puissance installée, ceci pour chaque zone des bandes N1, N2, N3, à droite et à gauche du couloir, dans les régions successives du four,
- la puissance totale ainsi émise par mètre de longueur du four,
- les températures atteintes au cours de la traversée de ce dernier par les bouteilles sortant de la cabine de pulvérisation ; grâce aux réglages effectués, ces températures sont constantes à 10 ºC près sur l'ensemble du corps des bouteilles.
Figure imgf000010_0001

Claims

REVENDICATIONS
1. Four de cuisson sur une chai ne de plastification, dont les chambres de chauffe constituent un étroit couloir comprenant sommairement trois sections distinctes correspondant à trois stades de chauffage, intensif, de maintien en température, enfin de refroidissement progressif, destiné en particulier à la cuisson d'un revêtement synthétique sur des articles verriers ou céramiques de dimensions diverses mis en rotation sur un convoyeur suspendu dans une position susceptible de couvrir le deuxième et le troisième quart de la hauteur du couloir, caractérisé en ce que celui-ci possède en hauteur une répartition de puissance installée hétérogène, différente dans chacune des trois sections principales.
2. Four selon la revendication 1, caractérisé en ce que, dans chacune de ces trois sections, la puissance installée se répartit au plus en trois zones verticales homogènes distinctes sur la partie disponible des panneaux chauffants (3).
3. Four selon la revendication 2, caractérisé en ce que, sur l'ensemble des sections, la puissance installée se répartit en trois bandes (N1, N2, N3) seulement.
4. Four selon la revendication 3, caractérisé en ce que la bande médiane se situe dans le troisième quart de la hauteur, compté à partir du haut.
5. Four selon la revendication 4, caractérisé en ce que, dans la deuxième section (S2), la puissance installée diminue dans les bandes extrêmes (N1, N3) mais augmente au contraire dans la bande médiane (N2).
6. Four selon Tune des revendications 1 à 5, caractérisé en ce que la répartition de puissance en question diffère d'un côté à l'autre du couloir.
7. Four selon la revendication 6, caractérisé en ce qu'il est équipé de panneaux chauffants indépendants, à raison de trois types seulement, dont un seul possède un débit calorifique ajustable en hauteur.
8. Four selon la revendication 7, caractérisé en ce que les panneaux de débit calorifique réglable en hauteur sont placés exclusivement dans la première section (S1).
9. Four selon Tune des revendications 1 à 7, caractérisé en ce qu'il est équipé de tubes (12) à rayonnement infra-rouge.
PCT/FR1985/000122 1984-05-21 1985-05-21 Four de cuisson d'un revetement synthetique sur une chaine de plastification WO1985005438A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK27086A DK27086D0 (da) 1984-05-21 1986-01-20 Ovn til paabraending af syntetisk overtraek i en plastificeringskaede

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8407849A FR2564578B1 (fr) 1984-05-21 1984-05-21 Four de cuisson d'un revetement synthetique sur une chaine de plastification
FR84/07849 1984-05-21

Publications (1)

Publication Number Publication Date
WO1985005438A1 true WO1985005438A1 (fr) 1985-12-05

Family

ID=9304196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1985/000122 WO1985005438A1 (fr) 1984-05-21 1985-05-21 Four de cuisson d'un revetement synthetique sur une chaine de plastification

Country Status (5)

Country Link
EP (1) EP0186674A1 (fr)
DK (1) DK27086D0 (fr)
ES (1) ES8608146A1 (fr)
FR (1) FR2564578B1 (fr)
WO (1) WO1985005438A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102825698B (zh) * 2012-09-05 2014-07-30 青岛即发集团股份有限公司 假发用人造头皮的自动生产系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28947E (en) * 1971-11-24 1976-08-31 E. W. Bowman Incorporated Apparatus for annealing, conveying, transferring, and spraying glassware
USRE29528E (en) * 1971-11-10 1978-01-31 E. W. Bowman, Incorporated Jet fired zonal lehr for applying treating medium inside and outside of glass containers simultaneously

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29528E (en) * 1971-11-10 1978-01-31 E. W. Bowman, Incorporated Jet fired zonal lehr for applying treating medium inside and outside of glass containers simultaneously
USRE28947E (en) * 1971-11-24 1976-08-31 E. W. Bowman Incorporated Apparatus for annealing, conveying, transferring, and spraying glassware

Also Published As

Publication number Publication date
DK27086A (da) 1986-01-20
DK27086D0 (da) 1986-01-20
EP0186674A1 (fr) 1986-07-09
FR2564578A1 (fr) 1985-11-22
ES8608146A1 (es) 1986-06-01
ES543305A0 (es) 1986-06-01
FR2564578B1 (fr) 1986-09-05

Similar Documents

Publication Publication Date Title
CA2652865C (fr) Systeme de revetement de contenant et procede
CH637568A5 (fr) Appareil pour la fabrication d'une bouteille par soufflage.
FR2689442A1 (fr) Procédé de conditionnement thermique de préformes en matières thermoplastiques et dispositif pour la mise en Óoeuvre de ce procédé.
FR2602226A1 (fr) Equipement pour l'application d'email sous forme granulaire sur des carreaux a haute temperature
EP0443948A1 (fr) Bombage de feuilles de verre par effondrement sur un cadre de bombage
FR2915418A1 (fr) Procede de chauffe d'ebauches pour la fabrication de recipients
FR2484365A1 (fr) Procede et appareil pour appliquer des manchons en matiere plastique sur des recipients
SU625588A3 (ru) Устройство дл нанесени полимерного покрыти на детали
EP2021295A1 (fr) Chauffage d'objets dans une ligne de four
EP0241356A1 (fr) Amélioration aux techniques de chauffage de feuilles de verre
FR2858297A1 (fr) Procede et machine de thermoretraction de manchons thermoretractables enfiles individuellement sur des objets tels que des bouteilles
US7926197B2 (en) Process and device for treating the coating of thermoplastic resin containers
CA2091745A1 (fr) Appareil de traitement thermique des verres ophtalmiques, en particulier des verres de contact
WO1985005438A1 (fr) Four de cuisson d'un revetement synthetique sur une chaine de plastification
CN100391621C (zh) 容器的涂覆方法和设备
KR101545727B1 (ko) 피브이씨 코팅장치 및 이를 이용한 코팅방법
FR2508889A1 (fr) Moule de contour leger a faible inertie thermique pour la mise en forme de feuilles de verre
EP0044787A1 (fr) Four à parois chauffantes interchangeables pour le traitement thermique de feuilles de verre
JP3268973B2 (ja) ガラス成形体の絵付焼成法及びそのための装置
FR2576912A1 (fr) Procede de fusion d'aluminium et four a cuve verticale pour la mise en oeuvre de ce procede
FR2505470A1 (fr) Appareil et procede de cuisson d'articles en ceramique ou d'articles analogues
WO2018025442A1 (fr) Machine de moulage par embouage de poudre et procédé de moulage par embouage de poudre
KR200249832Y1 (ko) 유리제품의 불광처리용 연속로
CH112766A (fr) Four-tunnel pour recuire de la verrerie.
CH112566A (fr) Four-tunnel pour recuire de la verrerie.

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DK FI JP NO

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1985902558

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1985902558

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1985902558

Country of ref document: EP