WO1985005250A1 - Die for extruders - Google Patents

Die for extruders Download PDF

Info

Publication number
WO1985005250A1
WO1985005250A1 PCT/JP1985/000287 JP8500287W WO8505250A1 WO 1985005250 A1 WO1985005250 A1 WO 1985005250A1 JP 8500287 W JP8500287 W JP 8500287W WO 8505250 A1 WO8505250 A1 WO 8505250A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
extruder
hole
perforated plate
screw
Prior art date
Application number
PCT/JP1985/000287
Other languages
English (en)
French (fr)
Inventor
Sukeyoshi Wakamiya
Yukio Fujioka
Original Assignee
Mitsubishi Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP59105593A external-priority patent/JPS60248159A/ja
Priority claimed from JP60021799A external-priority patent/JPS61181360A/ja
Priority claimed from JP60047354A external-priority patent/JPS61209580A/ja
Priority claimed from JP60052530A external-priority patent/JPS61212268A/ja
Application filed by Mitsubishi Jukogyo Kabushiki Kaisha filed Critical Mitsubishi Jukogyo Kabushiki Kaisha
Publication of WO1985005250A1 publication Critical patent/WO1985005250A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/221Extrusion presses; Dies therefor extrusion dies
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/26Working-up of proteins for foodstuffs by texturising using extrusion or expansion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/20Extruding

Definitions

  • the present invention relates to a die for an extruder for food processing, and in particular, it is possible to obtain a meat-like continuous structured molded product by using protein-based food raw materials such as defatted soy flour and high-moisture-content livestock meat. Extruder die.
  • Extruders are mechanically classified into single-screw extruders, which consist of one screw, and twin-screw extruders, which consist of two screws. Further, the twin-screw extruder is variously classified according to the degree of combination of two screws and the direction of rotation.
  • extruders have been regarded as machines with simple functions of compression, kneading, expansion, and expansion. Recently, however, all phenomena that occur inside the extruder, namely, compression, mixing and kneading, shearing, melting, The active use of sterilization, chemical reaction, puffing, molding, etc., has attracted attention.
  • FIG. 21 shows the simplest extruder, in which 1 feeds raw material 20 to screw 3.
  • the screw 3 is rotated by a driving device (not shown), and the raw material 20 is mixed and melted in the barrel 2 in the direction of the hole of the die 4 by the screw 3 to be conveyed.
  • the melting of the raw material 20 occurs by self-heating when the screw 3 kneads and shears the raw material 20 or by heating by a barrel heating device (not shown), and the raw material reaching the die 4 is extruded through the hole of the die 4.
  • the screw tip 3 has a conical shape.
  • FIG. 22 shows an extruder in which a temperature control jacket 8 having a fluid flow path 9 is provided outside a barrel 7.
  • the temperature of the barrel 7 can be controlled by flowing a temperature-controlled fluid through the temperature control jacket 8.
  • reference numeral 10 denotes a screw
  • 12 denotes a plurality of holes provided in a die
  • 11 denotes a tip of the screw 10
  • the tip 11 is formed in a hemispherical shape.
  • FIG. 23 and FIG. 24 show a twin-screw extruder having a hopper 14 for supplying raw materials in a strong rice cake, and having screws 15 and 15 ′ which are in mutual contact with each other. Also, 16 and 16 'are the tips of the screws 15 and 15', and the tips 16 and 16 'are formed in a conical shape. In FIG. 23, ⁇ is the hole of the die.
  • FIGS. 25 and 26 show a twin-screw extruder having two solid die holes 39 and 39 ′. Screws 35 and 35 ′ meet each other, 36 is a barrel, and 3 ′′ is a barrel.
  • the die 37 has two circular die holes 39, 39 '.
  • the slit die 4 ′ As shown in FIG. 28, it has a rectangular die hole 5 ′.
  • the ⁇ shown in FIG. 27 is the “length of the die hole”
  • the d shown in FIG. 26 is the “ Let T be the thickness of the die hole.
  • the length of the die hole is 10 times the diameter d of the die hole or the thickness of the die hole ⁇ (hereinafter, collectively referred to as the diameter d of the die hole for simplicity).
  • the diameter d of the die hole for simplicity.
  • the food processed by the extruder had good moldability like snacks mainly made of powder, so even if the die hole length was short, it could be easily formed. As a result, a continuous product comes out of the die, or it is not necessary to form the product at the exit of the die to form a granular product.
  • the product when processing from defatted soybean flour, the product will not be continuous but may be powdery. It is ejected from the die in the form of a so-called warped mouth.
  • the processing temperature may exceed the boiling point of water.
  • the raw materials squirt due to the vapor pressure, and the product is not only discontinuous, but also due to the destruction of the structure of the product. The trapped moisture will escape into the product structure.
  • a first object of the present invention is to obtain a continuous meat-like structured protein by causing a sufficient structural change in raw materials such as defatted soybean powder passing through a die hole and high-moisture meat.
  • Provide extruder die that can
  • a second object of the present invention is to provide a material in the die hole with a flow direction, thereby providing a strong fiber property and a tissue binding.
  • An object of the present invention is to provide an extruder die that can extrude a continuous meat product having a high Z 0 strength.
  • the present invention relates to an extruder die having a cylindrical cylinder barrel, a screw rotating in the barrel, and a die hole attached to the tip of the barrel, wherein the length of the die hole is The diameter of Or 15 to 40 times the thickness of the die hole.
  • a perforated plate having a number of small holes in the thickness direction is arranged at the entrance of the die hole at right angles to the screw eclipse.
  • FIG. 1 is a schematic vertical sectional view of a die showing one embodiment of the first invention
  • FIG. 2 is a schematic vertical sectional view of a die showing a first embodiment of the second invention
  • FIG. 3 is FIG.
  • FIG. 4 is an enlarged sectional view of a small hole portion of the perforated plate of FIG. 2
  • FIG. 5 is a schematic longitudinal sectional view of a die showing a second embodiment of the second invention
  • FIG. 6 is a front view of another embodiment of the perforated plate
  • FIG. 7 is a schematic longitudinal sectional view of a die showing a third embodiment of the second invention
  • FIG. 11 is a schematic longitudinal sectional view of a die showing a fourth embodiment of the second invention
  • FIG. 12 is a front view of another embodiment of the perforated plate
  • FIG. 13 is a fifth embodiment of the second invention.
  • FIG. 14 is a schematic vertical sectional view of a die showing an embodiment
  • FIG. 14 is a view taken along the line XIV-XIV in FIG.
  • FIG. 15 is an enlarged sectional view of a small hole of the perforated plate of FIG. 13, FIG. 16 and FIG. 17 are longitudinal side views showing other examples of the perforated plate, FIG.
  • FIG. 19 is a schematic longitudinal sectional view of a die showing a fifth embodiment of the second invention
  • FIG. 20 is a front view showing still another embodiment of a perforated plate.
  • FIGS. 21 and 22 are longitudinal side views each showing an example of a conventional single-screw extruder
  • FIG. 23 is a longitudinal side view showing an example of a conventional twin-screw extruder
  • FIG. Fig. 23 is a vertical sectional view taken along line XXW-XX IV of Fig. 23
  • Fig. 25 is a vertical sectional side view showing another example of the die of the conventional twin-type extruder.
  • Fig. 26 is an arrow XXVI of Fig. 25.
  • FIG. 27 is an enlarged sectional view of the die of FIG. 25, and
  • FIG. 28 is a front view of the slit die.
  • FIG. 1 shows a die according to an embodiment of the first invention, which is composed of three parts as shown in FIG. 1 and is fixed to a cylinder barrel 41 by a die holder 46. And dies 48 and 49 connected to the die 47, respectively.
  • the die 47 is formed with a tapered hole that becomes smaller continuously from the hole into which the screw 42 of the cylinder barrel 41 is inserted, and a cylindrical die hole 47 that surrounds the tapered hole.
  • And 49 have die holes 48B, 49B drilled linearly with the same diameter d as the die hole 47 ⁇ .
  • Each of the dies 47, 48, and 49 is provided with a jacket 47C, 48C, and 49C, respectively, so that a liquid whose temperature is set at a constant value flows.
  • the distance between the die holes 47B, 48B, and 49B is called the die hole length £.
  • the raw material supplied from the supply unit (not shown) to the barrel 41 is sent to the die 47 while being compressed, mixed, melted, and thermally denatured by the screw 42 and the barrel 41.
  • a reaction so-called organization, occurs, and a continuous meat product is formed. Further, it is sent to the tip of the die 49, cooled and shaped into an extrudate, and extruded from the die 49.
  • the reaction takes a long time, and if the cross-sectional shape of the die is changed after the reaction starts, the formed tissue is destroyed; and so on, from the reaction start point to the die exit. Requires almost the same cross-sectional shape and dimensions.
  • the present inventor made various dies as prototypes and conducted experiments.When extruding meat-structured protein using defatted soybean powder as a raw material, a good product could be obtained with a diameter d of 20 times or more. The best case was 35 times. At this time, the temperature near the die exit was suitable at 70'c.
  • FIGS. 2 to 4 show a first embodiment of the second invention, wherein 50 is a screw, 51 is a tobead, 52 is a barrel, and 53 is a heater for barrel heating.
  • 55 are small holes for orientation
  • 56 is small Perforated plate with holes 55
  • 57 is a die
  • 58 is a jacket for die temperature control medium
  • 60 is raw material just after passing through screw
  • 61 is raw material just after passing through small hole 55
  • 62 is die forming Part (indicated by length) Raw material passing through
  • 63 is an extruded product (molded product).
  • the food material supplied to the screw 50 supply unit (not shown) is compressed, mixed, and kneaded by the screw 50 and the barrel 52, and further, the tip of the screw 50. It is agitated by a torpedo 51 provided in the section and sent out to the tip of the shoe.
  • the raw material at that time is indicated by symbol 60.
  • the barrel 52 is heated and controlled by a heater 53.
  • cooling and temperature control may be performed by a cooling device instead of the heater 53.
  • the final product is already in a molten state under the symbol 60 and can be easily shaped by a die or extruded as a product by expanding at the die exit. It is not necessary to provide a large number of small holes for the alignment according to the present invention.
  • the raw material 60 at the tip of the screw 50 is in a molten state in which the protein molecules having some reactive groups exposed on the surface by kneading with the screw 50 or the like do not react with each other.
  • the stoma of the present invention in this state Due to the high velocity of the protein molecules when they pass through 55, they undergo shearing forces, causing a phenomenon in which they are aligned in the flow direction, that is, orientation. Due to this orientation, the protein molecule exposes more reactive groups on its oriented surface. This is the state of 61.
  • the extruded product when the extruded product is guided to the molding portion (length) of the die 57, reacted, and shaped, the extruded product has a fibrous orientation and is more resilient due to the organized bonding of protein molecules by the exposed reactive groups. Become flesh.
  • the shape, size, and number of the small holes 55 for orientation differ depending on the food material used and the target extruded product, but the diameter is small and long as long as the pressure drop through the small holes 55 is allowed for extrusion. It is better to make it longer and more.
  • FIG. 2 shows a structure in which a perforated plate 56 having small holes 55 for orientation is incorporated in a die 57, the small holes for orientation are provided on the extruder side. No problem.
  • twin-screw extruder having two screws may be used.
  • the shape of the alignment small holes is not limited to the cylindrical shape.
  • 65 and 66 are dies, 67 and 68 are temperature control jackets, and £ is the length of the die forming portion (15 times the diameter of the die hole 69). 40 times as long).
  • the shape of the small hole 55 may be other than circular.
  • a slit having a slit gap (hereinafter referred to as a thickness) T is provided.
  • 71 mag may be used.
  • FIG. 7 to 9 show the third embodiment, in which 80 is a screw, 81 is a tobead, 82 is a barrel, 83 is a barrel heating heater, and 85a , 85b, 85c are small holes for orientation, which are composed of a plurality of holes and have different diameters.
  • 86 is a porous plate having small holes of symbols 85a, 85b and 85c, 87 is a die, 88 is a jacket for a die temperature control medium, 90 is a raw material immediately after passing through a screw, and 91 is a symbol 85 The raw material immediately after, 92 is the raw material passing through the die forming section (indicated by length), and 93 is the extruded product (molded product).
  • the food raw material supplied to the raw material supply section (not shown) of the screw 80 is compressed, mixed, and kneaded by the screw 80 and the barrel 82.
  • the mixture is agitated by a toe bead 81 provided at the distal end and is sent to the distal end of the screw 80.
  • the raw material at that time is indicated by symbol 90.
  • the barrel 82 is heated and controlled by a heater 83.
  • cooling and temperature control may be performed by a cooling device instead of the heater 83.
  • the final product is already in a molten state in the state of symbol 90, and it should be cooled at the die part or expanded at the die exit depending on the product. And then extruded as a product It is not necessary to provide the alignment holes 95 according to the present invention.
  • raw vegetable ingredients such as defatted soy flour and okara, which are vegetable proteins, and marine beef, waste meat, etc., which are animal proteins, to obtain fibrous, structured, structured proteins. In this case, strong fibrous properties cannot be obtained even through a die in the condition of 90.
  • the raw material 90 at the tip of the screw 80 is a kneaded state by the screw 80 or the like, and the protein molecules having a certain amount of reactive groups on the surface are in a molten state where they do not react with each other. It is in. In this state, when passing through the small holes 85a, 85b, 85c of the present invention,
  • the tough meaty tissue results from the organized binding of protein molecules by the exposed reactive groups.
  • the shape, size, and number of small holes 85a, 85b, and 85c used for orientation are food materials used.
  • the pressure drop when passing through small holes 85a, 85b, and 85c depends on the target extruded product. Diameter within the allowable range
  • FIG. 7 shows a multi-hole having small holes 85a, 85b, and 85c for orientation. Although the structure is shown in which the holes 86 are incorporated in the die 87, the structure in which the small holes for orientation are provided on the side of the extruder does not matter at all.
  • the shape of the alignment small hole is not limited to the cylindrical shape.
  • the flow velocity in the cross section of the material in the die at right angles to the flow is generally large in the center of the flow, and decreases as it approaches the wall.
  • This difference in flow velocity becomes larger as the flow resistance between the raw material and the die wall increases, and in a conventional extruder die, the protein once organized in the die causes the detachment phenomenon in the flow direction due to this difference. This causes the tissue to be ruptured and torn out of the die exit in a torn state.
  • the present invention also includes means for preventing this delamination phenomenon, so-called tissue rupture.
  • the present invention is intended to reduce the flow velocity difference by changing the size of each cross section of the small holes for orientation.
  • the small holes provided in the perforated plate 86 increase in diameter Dc, Db, and Da in the order from the center to the outer periphery, such as 45c, 45b, and 45a, respectively. And place it.
  • the length L of the stoma shall be the same. In other words, the diameter of the small hole located at the center of the flow in the die cross section is small, and the diameter of the small hole increases as it approaches the outer periphery, that is, the wall surface.
  • the velocity of the fluid flowing through a certain flow path decreases as the flow resistance increases. Since the flow resistance is caused by friction (in a broad sense) with the flow channel wall, If the shape is the same length (for example, described as a circle), the smaller the diameter, the larger. In other words, the velocity at the outlet of the stoma becomes smaller as the diameter of the stoma becomes smaller.
  • the raw material that has flowed into the small holes 85a, 85b, and 85c with almost no speed difference at the section FF is the small hole outlet, that is, the diameter of the small hole located at the center in the section GG for the reason described above. Therefore, the flow velocity becomes smaller in the center. With this flow velocity distribution, the flow velocity on the wall decreases due to the flow resistance of the wall before reaching the downstream cross section H — H, G — G, the velocity distribution is flattened, and the velocity difference becomes small
  • the velocity distribution n shown in j of FIG. 10 is for the conventional case, and m is for the structure of the present invention.
  • the shape of the small hole is not limited to a circle. In the case of a rectangular shape, any shape may be used as long as the flow resistance changes by changing the cross-sectional area of the small hole, for example, by changing the length of each side. That is, it is an object of the present invention to change the flow velocity distribution in the die by the arrangement of the orientation holes having different cross-sectional shapes and dimensions.
  • FIG. 11 shows a fourth embodiment of the second invention.
  • 95 and 96 are dies
  • 97 and 98 are temperature control jackets
  • the protein molecules in the 91 state were completely reacted and shaped more slowly than in the first example, and the extruded product 100 had improved orientation. It becomes a tough fleshy tissue.
  • the cross-sectional shape of the small holes 85a, 85b, 85c is less than circular.
  • Slits 101a : 101b, 101c, etc., in which the slit gap (hereinafter, referred to as the thickness) is T, may be used.
  • FIGS. 13 to 15 show the fifth embodiment, in which 110 is a screw, 111 is a bead, 112 is a barrel, 113 is a barrel heating heater, 116 Is a perforated plate, and in the case of the perforated plate 116, the thickness is thicker at the center and gradually thinner toward the periphery. 115 has the same porosity.
  • a small hole provided in 116 the length of which differs depending on the thickness of the perforated plate 116.
  • 117 is the die
  • 118 is the jacket for the die temperature control medium
  • 120 is the raw material immediately after passing through the screw
  • 121 is the raw material immediately after passing through the small hole 115
  • 122 is the raw material passing through. Is an extruded product (molded product).
  • the food material supplied to the raw material supply unit (not shown) of the screw 110 is compressed by the screw 110 and the barrel 112.
  • the mixture is mixed and kneaded, and the mixture is stirred by a toe bead 111 provided at the tip of the screw 110, and is sent out of the screw 110.
  • the raw materials at that time are indicated by 120.
  • the barrel 112 is heated in a state where the temperature is controlled by a heater 113.
  • some raw materials may be cooled by a cooling device instead of a heater.
  • the present invention includes a perforated plate 116 having a variable thickness and a plurality of small holes 115 penetrating in the thickness direction on the inlet side of the die 117. Get the product.
  • the raw material 120 in the vicinity of the tip of the screw 110 is in a molten state in which protein molecules having some reactive groups on the surface are not reacted with each other by kneading with the screw 110 or the like.
  • the protein molecules when passing through the small holes 115 of the perforated plate 116, the protein molecules are subjected to a shearing force due to a large velocity, causing a phenomenon of being aligned in the flow direction, that is, orientation. Due to this orientation, the protein molecule exposes more reactive groups on its oriented surface. This is the state of 121.
  • the following operation is performed in the molding portion of the die 117. That is, the flow velocity of the raw material flow in the die 117 is generally large in the center of the flow, and becomes smaller as approaching the wall surface. This flow rate decreases as the raw material flows near the wall of the die 117 and the flow resistance increases, and in a conventional extruder die, the protein once organized in the die 117 is at this speed. Due to the difference, a separation phenomenon occurs in the flow direction, and the material is extruded from the exit of the die 117 in a state where the tissue is broken (teared). To prevent this tissue destruction, In this way, it is necessary to reduce the difference between the flow rates of the raw materials in the die 117. In this regard, in the present invention, the small holes 115 of the perforated plate 116 have different lengths, and the flow velocity difference is small.
  • the thickness of the perforated plate 116 is gradually reduced from the central portion to the peripheral portion, and the length of the small hole 115 is made longer in the central portion than in the peripheral portion. ing.
  • the velocity of the fluid flowing through the flow path decreases as the flow resistance increases. This flow resistance is the friction with the channel wall
  • the flow resistance in a small hole of the same cross-sectional area is proportional to the length of the small hole. In other words, the velocity at the exit of the stoma is smaller as the length of the stoma is longer.
  • the raw material that has flowed into each of the small holes 115 in the state where there is almost no difference in speed at the 0-O portion in FIG. The flow velocity of the raw material flowing through the portion is small, and the flow velocity of the raw material flowing near the wall surface is high.
  • the flow velocity on the flow path wall side is increased, on the downstream side of the perforated plate 116, for example, in the Q-Q part, the flow velocity of the raw material flowing near the wall due to the flow resistance of the die 1 ⁇ wall surface is reduced. Drops, the speed distribution is flattened, and the speed difference is reduced.
  • the flow rates at O-0, P-P, Q-Q, and R-R in Fig. 13 are shown as 0, p, q, and r in Fig. 18.
  • the velocity distribution n of the RR portion in FIG. 13 shown by r in FIG. 18 is the case of the conventional case
  • the velocity distribution m is the case of the present invention.
  • the raw material (protein raw material) in the molten state that has passed through the small holes 115 of the perforated plate 116 and entered the die forming section is subjected to shearing force due to a large speed, and is oriented in the direction of flow.
  • the orientation causes many reactive groups to be exposed on the oriented surface, and the exposed reactive groups promote organized bonding. Also, if there is a speed difference between the raw materials flowing through the molded part of the die, a separation phenomenon occurs in the flow direction, and the structure is destroyed.
  • the extruder die of the present invention flows near the barrel wall surface, The flow resistance is large, and the material with low fluid velocity is guided to small holes (small holes through the small-diameter die) and flows through the center of the barrel.
  • the raw material with a high fluid velocity is guided to a long hole (a hole penetrating the thick die portion), and as a result, there is almost no speed difference between the two when flowing through the die forming section.
  • the perforated plate 116 having the small holes 115 is incorporated in the die 117, but may be provided on the extruder side.
  • the extruder may be a twin-screw extruder provided with two screws other than the single-screw extruder provided with one screw 11.
  • the shape of the perforated plate 116 is not limited to the illustrated example.
  • a perforated plate 132 having a convex portion at the center of the barrel 112 may be used.
  • the barrel 112 may be concave and the die 117 may be convex.
  • a perforated plate 133 having a gradually reduced wall thickness may be used.
  • the flow velocity distribution in the die 117 it is not limited to lengthening at the center.
  • the shape, size and number of the small holes 115 vary depending on the food material used and the target extruded product, but the diameter is small and the length is within the allowable range of the pressure drop when passing through the small holes 115. Should be longer and the number should be larger. According to the experimental results, when defatted soybean powder is used as the raw material, as shown in Fig. 15, when the diameter of the small hole 115 is D «and the length is L «, the ratio between the length and the diameter (LZD) It is desirable to provide the small holes 115 so that the average flow velocity in the small holes 115 is 3 to 10 cm / sec.
  • FIG. 19 shows a fifth embodiment of the second invention.
  • 125 and 126 are dies
  • 127 and 128 are hot U-jackets
  • the small hole 115 may have a shape other than a circular cross section, for example, a slit shape (see 131) as shown in FIG. T is the width of slit 131.
  • the extruder die according to the present invention is particularly suitable for use in an extruder z o for extruding a continuous structured molded product using a protein-based food material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Formation And Processing Of Food Products (AREA)

Description

明 細 書 押出機のダイ
5 技術分野
本発明は食品加工用の押出機のダイ に係り、 特に脱脂大豆粉や 高水分率の畜肉等の蛋白系食品原料を使用して、 肉状の連続した 組織化成形製品を得ることを可能にした押出機のダイ に関する。
背景技術
1 0 押出機による食品加工の歴史は古く、 1800年後半には文献にも 現われている。 当初は脱水, 搾汁の目的に使用されたが、 次第に 加工, 成形の目的にも使用されるようになってきた。 すなわち供 給口から材料をスク リ ュへ投入し、 材料を混練, 加熱しつ ゝ前方 へ送り、 ダイから押出してその製品に特有の形状を与えるのであ
1 5
押出機は、 機構的に 1本のスク リ ュから成る一軸型押出機と、 2本のスク リ ュから成る二軸型押出機とに大別される。 また、 二 軸型押出機は、 2本のスク リ ュの嚙合の程度および回転方向によ り種々に分類される。
z o . 従来は押出機を単なる圧縮, 混練, 膨脹, 膨化機能を有する機 械としてとらえてきたが、 最近は押出機の内部で発生するあらゆ る現象、 すなわち圧縮, 混合混練, 剪断, 溶融, 殺菌, 化学反応, 膨化, 成形等を積極的に利用することが注目されている。
従来の押出機を第 21図乃至第 28図に示した。 第 21図は、 最も単 5 純な押出機を示しており、 1 が原料 20をスク リ ュ 3 に供袷するホ ッパであり、 同スク リ ュ 3 は、 駆動装置 (図示せず) により回転 され、 原料 20はバレル 2中をスク リ ュ 3によりダイ 4の孔の方向 へ混繚, 溶融されて搬送される。 原料 20の溶融は、 スク リ ュ 3が 原料 20を混練, 剪断したときの自己発熱またはバレル加 装置 ( 図示せず) による加熱により起り、 ダイ 4に達した原料はダイ 4の孔から押出物 (製品) 21として押出される。 なお、 スク リ ュ 先端 3 ' は円錐形状をなす。
また第 22図は、 バレル 7 の外阆に、 流体流路 9を有した温調ジ ャケ ッ ト 8を設けた押出機である。 同温調ジャケツ ト 8 に温度制 御された流体を流すことにより、 バレル 7 の温度を制御すること ができる。 なお第 22図において 10はスク リ ュ、 12はダイに設けた 複数個の孔、 11はスク リ ュ 10先端部で、 同先端部 11が半球形に形 成されている。
また第 23図および第 24図は、 原料を強餅的に供給するためのホ ッパ 14を有した二軸型押出機で、 互いに嚙合うスク リ ュ 15 , 15' を有している。 また 16, 16 ' がスク リ ュ 15, 15 ' の先端部であり 同先端部 16 , 16 ' が円錐状に形成されている。 なお第 23図におい て Πはダイ の孔である。
また第 25図および第 26図は、 2倔のダイ孔 39 , 39 ' を有する 2 軸型押出機であり、 35 , 35 ' が互いに嚙合うスク リ ュ、 36がバレ ル、 3"?がダイで、 同ダイ 37が 2個の円形のダイ孔 39 , 39 ' を有し ている。
なお、 第 28図に示すようなスリ トダイ 4 ' の場合には、 長方形 のダイ孔 5 ' を有することになる。 なお、 第 27図に示す Άを 「ダ ィ孔の長さ」 、 第 26図に示す dを 「ダイ孔の直 ί圣」 、 第 28図に示 す Tを 「ダイ孔の厚さ」 という こととする。
従来用いられているダイ 4 (あるいは 4 ' など) では、 ダイ孔 の長さ が、 ダイ孔の直径 dあるいはダイ孔の厚さ Τ (以下簡単 のためダイ孔の直径 dで総称する) の 10倍を越えることはない。 その理由は、 従来押出機で加工されてきた食品が殺粉を主原料 とするスナ ック類のように成形性がよいものであったため、 ダイ 孔の長さが短かく ても簡単に成形されて、 連続した製品がダィか ら出て く るか、 あるいはダイ出口で粒状の製品とするためにもと もと連繞成形化が不要であつたからである。
しかし、 最近は脱脂大豆粉を原料として肉状の連続した製品を 得よう としたり _、 二軸型押出機の材料搬送性が極めてよいことを 利用して、 高水分系食品原料の押出加工が試みられるようになつ てきた。
このような場合、 従来のようにダイ孔の長さ がダイ孔の直径 の 10倍以下のダイを用いると、 脱脂大豆粉からの加工の場合は.、 製品は連続化せず、 粉状もし く は粒状のいわゆるソボ口状でダイ から噴出する。
また高水分系原料の場合、 加工温度が水の沸点を越えることも あるが、 その場合は原料が蒸気圧により噴出し、 製品は連続しな いばかりか、 製品の組織構造の破壊にともない、 製品の組織構造 内に ト ラ ップした水分が逸散してしまう ことになる。
また、 従来の押出機は、 原料をスク リ ュにより混練, 溶融して、 ダイから押出すものであり、 この間に食品原料は様々な反応を起 こ してゆく 。 このとき、 同押出機では、 ス ク リ ュ回転数, バレル 温度, 供給量等を変え、 混練, 反応の程度を制御してダイから押 出すので、 スク リ ュ通過後の流れに大きな変化は発生しない。 し かし、 ある種の押出機ではダイ の出口通過速度をバレルおょぴダ ィ内通過速度に比べて栢当速くする場合がある。
このよう にダイ の出口通過速度をバレルおよびダイ内通過速度 より も速く するのは、 押出機内で加工されてきた食品が毂粉を主 原料とするスナ ック類のようにダイ出口での膨化を意図している か、 蛋白質を原料とする食品のようにフ レーク祅組織化物の作成 を意図しているからである。 - しかし、 このよう な構成では次の場合、 すなわち、 脱脂大豆粉,
1 o おから等の植物性蛋白質やマリ ンビーフ, 屑肉等の動物性蛋白質 を原料として繊維性を有する連繞した肉状製品を製造する場合、 充分な織維性を得られず、 組織锆合の強度も小さいという問題が あった。
本発明の第 1 の目的は、 ダイ孔を通過する脱脂大豆粉や、 高水 分率の畜肉等の原料に十分な組織変化を起させることにより連続 した肉状の組織化蛋白を得ることができる押出機のダイを提供す と D o
また本発明の第 2の目的は、 ダイ孔内の原料に流れ方向の配向 を起させることにより、 強じんな織維性を有し、 しかも組織結合
Z 0 強度の高い連続した肉状製品を押出成形できる押出機のダイを提 供することにある。
発明の開示
本発明は、 筒状をなすシリ ンダーバレルと、 同バレル内で回転 するスク リ ュと、 上記バレルの先端に取り付けられるダイ孔とを 有する押出機のダイ において、 ダイ孔の長さを、 ダイ孔の直径あ るいはダイ孔の厚さの 15倍ないし 40倍にしてある。 これにより、 脱脂大豆粉等の原料が長いダイ孔を通過する間に、 スク リ ュによ り混練, 溶融, 熱変性を受けて組織変化を起こ し、 連続して肉状 製品を形成することができる。
また本発明はダイ孔の入口部に、 厚さ方向に多数の小孔があけ られた多孔板を、 スク リ ュの蝕と直交して配設してある。 これに より、 原料に高剪断力を与えて流れ方向に配向を起させることが でき、 脱脂大豆粉, おから, マ リ ンビー フ等を主原料として織維 性を有する肉状連続製品を押岀し成形することができる。
図面の簡単な説明
第 1図は第 1 の発明の一実施例を示すダイ の概略縦断面図、 第 2図は第 2 の発明の第 1実施例を示すダイ の概略縦断面図、 第 3 図は第 2図の多孔板の正面図、 第 4図は第 2図の多孔板の小孔部 分の拡大断面図、 第 5図は第 2 の発明の第 2実施例を示すダイ の 概略縦断面図、 第 6図は多孔板の他の実施例の正面図、 第 7図は 第 2の発明の第 3実施例を示すダイ の概略縦断面図、 第 8図は第 7図の多孔板の拡大半断面図、 第 9図は第 8図の正面図、 第 10図 f , g , h , j はそれぞれ第 7図の断面 F — F, G— G , H - H , J - Jにおける原料の流速分布、 第 11図は第 2 の発明の第 4実施 例を示すダイ の概略縦断面図、 第 12図は多孔板の他の実施例の正 面図、 第 13図は第 2の発明の第 5実施例を示すダイの概略縦断面 図、 第 14図は第 13図の X IV - X IV線に沿う多孔板の正面図、 第 15 図は第 13図の多孔板の小孔の拡大断面図、 第 16図および第 17図は それぞれ多孔板の他の実施例を示す縦断側面図、 第 18図 0 , p , q , r はそれぞれ第 13図の断面 0— 0 , P — P , Q - Q , R - R における原料の流速分布、 第 19図は第 2の発明の第 5実施例を示 すダイ の概略縦断面図、 第 20図は多孔板のさらに他の実施例を示 す正面図である。
また、 第 21図および第 22図はそれぞれ従来の一軸型押出機の一 例を示す縦断側面図、 第 23図は従来の二軸型押出機の一例を示す 縦断側面図、 第 24図ば第 23図の矢視 X X W - X X IV線に沿う縦断 正面図、 第 25図は従来のニ輸型押出機のダイの他の例を示す縦断 側面図、 第 26図は第 25図の矢印 X X VI方向からみた正面図、 第 27 図は第 25図のダイの拡大断面図、 第 28図はスリ トダイ の正面図で ある。
発明を実施するための最良の形態
本発明をより詳細に説明するために、 以下添付図面に従ってこ れを説明する。
第 1図ば第 1 の発明の一実施例に係るダイを示したものであつ て、 このダイ は同図に示す如く 3つの部分からなり、 シリ ンダバ レル 41へダイホルダ 46により固定されたダイ 47と、 ダイ 47へ夫々 接続されたダイ 48 , 49とからなる。 ダイ 47は、 シ リ ンダバレル 41 のスク リ ュ 42が揷入される穴から連続して次第に小さ く なるテー バ穴 と、 それに繞く 円筒状のダイ孔 47Β とが穿けられている , ダイ 48と 49は、 ダイ孔 47Β と同一径 dで直線状に穿けられたダイ 孔 48B , 49Bを有している。
また、 夫々のダイ 47 , 48 , 49には、 ジャケッ ト 47C , 48C , 49C が設けられており、 一定に温度設定された液体が流れるようにな つている。 なお、 ダイ孔 47B , 48B , 49B の距離をダイ孔の長さ £ と呼ぶ。 さて、 図示しない供給部からバ レル 41へ供給された原料は、 ス ク リ ュ 42とバ レル 41とにより圧縮, 混合, 溶融, 熱変性を受けな がらダイ 47方向へ送られる。 各ダイ のダイ孔 47B , 48B , 49B を通 過する間に反応、 いわゆる組織化が起り、 連続した肉状製品が形 成される。 さらにダイ 49の先端部へ送られ、 冷却整形されて押出 物となり、 ダイ 49から押出される。
この時の反応にはや ^長い時間を必要とするこ と、 および反応 がはじまつてからダイ の断面形状を変えると形成された組織が破 壊される;と等から、 反応開始点からダイ出口まではほ 等しい 断面形状寸法が必要となる。
すなわち、 ダイ孔 47B 等の中を通る間に上記反応, 冷却, 整形 が行われるものであり、 必然的にダイ孔の長さ はダイ孔の径 d に比べ大きなものとなる。
本発明者は種々のダイを試作し実験を行ったが、 脱脂大豆粉 を原料として肉状組織化蛋白の押出加工をする場合、 径 dの 20倍 以上にして良好な製品を得ることが出来、 最も良好なものは 35倍 の場合であった。 また、 この時のダイ出口付近の温度は 70 'cが適 していた。
もちろん、 用いる食品原料の水分率等の組成により、 その長さ は変わるものであるから、 ダイ は実施例の如く複数のものを組合 わせた組立式として、 様々長さを調整できることが望ましい。 · 以上、 第 1 の発明につき説明したが、 次に第 2 の発明につき説 明する。 第 2図〜第 4図は第 2の発明の第 1実施例を示したもの であって、 同図において 50はスク リ ュ、 51は トービー ド、 52はバ レル、 53はバレル加熱用ヒータ、 55は配向のための小孔、 56は小 孔 55を有した多孔板、 57はダイ、 58はダイ温調媒体のためのジャ ケッ ト、 60はスク リ ュ通過直後の原料、 61は小孔 55通過直後の原 料、 62はダイ成形部 (長さ で表示) 通過中の原料、 63は押出製 品 (成形品) である。
このような装置において、 スク リ ュ 50の供給部 (図示せず) へ 供給された食品原料は、 該スク リ ュ 50およびバレル 52により圧縮, 混合, 混練され、 さらにはスク リ ュ 50の先端部に設けられた トー ピー ド 51により攪拌されてスク ひ ュ先端部へ送り出される。.その ときの原料を記号 60で示す。 バレル 52はヒータ 53により、 加熱、 温度制御されている。 もちろん原料によってはヒータ 53の代わり に冷却装置により冷却, 温度制御される場合もある。
もしも殺粉系の原料であるならば記号 60の状態ですでに最終製 品が溶融した状態になっており、 ダイにより簡単に整形されるか- ダイ出口で膨化させるかで製品として押出すことができ、 本発明 による配向のための多数の小孔を設ける必要はない。
しかし食品原料として脱脂大豆粉、 おからまたは動物蛋白とし てマリ ンビーフ, 屑肉等を用いて織維性を有する肉状の組織化蛋 白を得よう とする場合、 60の状態でダイを通しても強じんな織維 性は得られない。 すなわち、 スク リ ュ 50 , トービー ド 51およびバ レル 52とにより受けた剪断および送りによつて生じた流れの織維 性のみで、 非常に弱いものである。 また、 ダイ通過による配向も 全体として発生するが、 織維性の点では劣る。
スクリ ュ 50先端部での原料 60は、 スク リ ュ 50等により混練され ることによりある程度の反応基を表面に出した蛋白質分子が、 互 いに反応はしていない溶融状態にある。 この状態で本発明の小孔 55を通過させると蛋白質分子は大きな速度のため、 剪断力を受け て流れ方向に並ぶ現象すなわち配向を起す。 この配向により、 蛋 白質分子はその配向した表面にさらに多 く の反応基を露出させる これが 61の状態である。 この状態でダイ 57の成形部 (長さ ) に 導き、 反応させ、 整形すると、 押出製品は配向に繊維性を有する とともに、 多 ぐ露出した反応基による蛋白質分子の組織化結合に より強じんな肉状となる。
配向させるための小孔 55の形状, 寸法, 数は用いる食品原料, 目的とする押出製品により異なるが、 小孔 55を通過する際の圧力 降下が押出成形に許される範囲で直径は小さく 、 長さは長く して- 数を多 く する方がよい。
本発明者の実験によれば、 脱脂大豆粉を原料とする場合第 4図 に示すように、 小孔 45の直径を D «、 長さを L «としたとき、 長 さと直径との比 ( L Z D ) は 3 〜20、 小孔内での平均流速は 3 〜 lO cm / s ec となるような配向小孔が望ま しい。
なお、 第 2図には、 配向のための小孔 55を有した多孔板 56をダ ィ 57に組込んだ構造として図示したが、 この配向用小孔を押出機 側に設けた構造であっても何ら差しつかえない。
また、 押出機も第 2図では 1本のスク リ ュ 50を図示したが、 2 本のスク リ ュを有する二軸型押出機であってもよい。
また、 配向用小孔の形状も円筒形には限定されない。
第 5図に示す第 2 の発明の第 2実施例において、 65 , 66はダイ、 67 , 68は温調ジャケ ッ ト、 £ , はダイ成形部長さ (ダイ孔 69の直 径の 15倍〜 40倍の長さを有する) である。
このような装置において、 ダイ成形部長さ , を通過する間に、 61の状態の蛋白質分子は、 第 1実施例に比し、 さらに時間をかけ て、 完全に反応および整形され、 押出製品 70は配向性が向上した 強じんな肉状組織となる。 ·
以上の実施例に於いて小孔 55の形状としては、 円形以外でもよ く、 例えば第 6図に示すように、 スリ ッ ト隙間 (以降、 厚さと称 す。 ) が Tであるスリ ッ ト 71等でもよい。
次に第 2 の発明の第 3実施例について説明する。 第 7図〜第 9 図はこの第 3実施例を示したものであって、 同図において 80はス ク リ ュ、 81は トービー ド、 82はバ レル、 83はバ レル加熱用ヒータ、 85a , 85b , 85c は配向のための小孔であり、 複数倔で構成され、 その直径が異なる。 86は記号 85a , 85 b , 85c の小孔を有した多孔 扳、 87はダイ、 88はダイ温調媒体のためのジャケ ッ ト、 90はスク リ ュ通過直後の原料、 91は記号 85通過直後の原料、 92はダイ成形 部 (長さ で表示) 通過中の原料、 93は押出製品 (成形品) であ る。
このような装置において、 スク リ ュ 80の原料供給部 (図示せず) へ供給された食品原料は該スク リ ュ 80およびバ レル 82により圧縮, 混合, 混練され、 さらにはスク リ ュ 80の先端部に設けられた トー ビー ド 81により攪拌されてスク リ ュ 80先端部へ送り出される。 そ のときの原料を記号 90で示す。 バレル 82はヒータ 83により加熱, 温度制御されている。 もちろん原料によつてヒータ 83の替りに冷 却装置により冷却, 温度制御される場合もある。
もしも殺粉系の原料であるならば、 記号 90の状態で、 すでに最 終製品が溶融した状態になっており、 ダイ部分で冷却面化させる か、 製品によつてはダイ出口で膨化させるかして製品として押出 すことができ、 本発明に係る配向用小孔 95を設ける必要はない。 レかし、 食品原料として植物性蛋白質である脱脂大豆粉, ォカ ラおよび動物性蛋白質であるマリ ンビーフ, 屑肉等を用いて織維 性を有する肉状の組織化蛋白を得よう とする場合、 90の扰態でダ ィを通しても強じんな繊維性は得られない。
しかるに本発明についてみると、 スク リ ュ 80先端部での原料 90 はスク リ ュ 80等により混練されることによりある程度の反応基を 表面に出した蛋白質分子が、 互いに反応はしていない溶融状態に ある。 この状態で本発明の小孔 85a, 85b, 85c を通過させると、
I 0 蛋白質分子は大きな速度のため剪断力を受けて流れ方向に並ぶ現 象、 すなわち配向を起す。 この配向により、 蛋白質分子はその配 向した表面にさらに多 く の反応基を露出させる。 これが 91の状態 である。 この状態でダイ 87の成形部 (長さ ) に導き、 反応させ 整形すると、 押出製品は配向し、 繊維性を有するとともに、 多く
1 5 露出した反応基による蛋白質分子の組織化結合により強じんな肉 状組織となる。
配向させるための小孔 85a, 85b, 85c の形状, 寸法, 数は、 用 いる食品原料. 目的とする押出製品により異なるが、 小孔 85a,85b 85c を通過する際の圧力降下が、 押出成形に許される範囲で直径
Z 0 は小さ く 、 長さは長く して数を多 く する方がよい。
本発明者の実験によれば、 脱脂大豆粉を原料とする場合、 第 8 図に示すように小孔 85の直径を D «m、 長さを L «と したとき、 長 さと直径との比 ( L / D ) は 3 〜20、 小孔内での平均流速は 3 〜 lOcm/sec となるような配向小孔が望ま しいことがわかった。
なお、 第 7図には配向のための小孔 85a, 85b, 85c を有した多 孔扳 86をダイ 87に組込んだ構造として図示したが、 この配向用小 孔を押出機側に設けた構造であっても何ら差しつかえない。
また、 押岀機も第 7面では 1本のスク リ ュ 80を図示したが、 2 本のスク リ ュを有する二軸型押出機であってもよい。
配向用小孔の形状も円筒形には限定されない。
一方、 ダイ内原料の流れ直角断面の流速は、 一般的に流れの中 央で大き く、 壁面近づく につれて小さ く なる。 この流速の差は、 原料とダイ壁面との流れ抵抗が大きい程大き く なり、 従来の押出 機のダイ においては、 ダイ内で一旦組織化した蛋白質が、 この 度差により流れ方向にはく離現象を起こ し、 組織が破壌され、 引 裂かれた状態でダイ出口から押出されてしまう。
本発明は、 このはく離現象、 いわゆる組織の破壌を防止するた めの手段をも含む。
すなわち、 この組織破壊を防止するためには前述の如く 、 ダイ 内断面での原料の流速の差を小さ く することが必要である。
本発明は前記配向用小孔の偭々の断面の大きさを変えることに より流れの速度差を小さ く しょう とするものである。
例えば第 8図および第 9図に示すように、 多孔板 86に設ける小 孔を中心から外周に向って夫々 45c , 45b , 45a のようにその直径 D c , D b , D a の順に大き く して配置する。 小孔の長さ Lは同一と する。 すなわち、 ダイ断面において流れの中心に配置された小孔 の直径は小さ く、 外周すなわち壁面に近く なるに従い小孔の直径 は大き く なる。
ある流路を流れる流体の速度は流れ抵抗が大きい程小さい。 流 れ抵抗は流路壁面との摩擦 (広義の) によって生ずるので、 同一 長さ同一形状 (例えば円形として述べる) であればその直径が小 さい程大きい。 換言すれば小孔出口での速度は小孔の直径が小さ い程小さいことになる。
第 7図の断面 F — F , G - G , H — Hおよび J — Jにおける原 料の流速分布を第 10図の ί , g , hおよび j に示す。
断面 F - Fでほとんど速度差のない状態で小孔 85a , 85 b , 85c に流入した原料は小孔出口、 すなわち断面 G— Gでは前述の理由 から、 中央部に配置された小孔の直径が小さいため、 中央部でそ の流速は小さ く なる。 このような流速分布にしておく とさらに下 流である断面 H — H , G— Gに至るまでに壁面の流れ抵抗により 壁面の流速が低下し、 速度分布は平坦化し、 速度差は小さ く なる , 第 10図の j に示す速度分布 nは従来の場合のものであり、 mは本 発明の構造によるものである。
小孔の形状は円形には限定されず、 矩形の場合は例えば各辺の 長さを変える等により、 小孔の断面積を変化させることにより流 れ抵抗が変るものであればよい。 すなわち、 ダイ 内での流速分布 を断面形状寸法の異なる配向用小孔の配置によつて変化させるよ うにしたことが発明の狙いである。
第 1 1図は第 2 の発明の第 4実施例を示すもので、 同図において, 95 , 96はダイ、 97 , 98は温調ジャケ ッ ト、 £ , はダイ成形部長さ (ダイ孔 99の直径の 15倍〜 40倍の長さを有する。 ) である。
ダイ成形部長さ £ , を通過する間に、 91の状態の蛋白質分子は、 第 1具体例に比し、 さらに時間をかけて、 完全に反応および整形 され、 押出製品 100 は配向性が向上した強じんな肉状組織となる。 前述のように小孔 85a , 85b , 85c の断面形状としては、 円形以 外にス ッ ト隙間 (以降、 厚さと称す。 ) が Tであるスリ ッ ト 101a : 101 b , 101 c等でもよい。
次に第 2の発明の第 5実施例につき説明する。 第 13図〜第 15図 はこの第 5実施例を示したものであって、 同図において 110 がス ク リ ュ、 111 がト ー ビー ド、 112 がバレル、 113 がバレル加熱用 ヒータ、 116 が多孔板で、 同多孔板 116 ば、 その厚さが中央部で 厚く 、 周辺部に向い次第に薄く なつている。 また 115 が同多孔扳
116 に設けた小孔で、 その長さは多孔板 1 16 の厚さに応じて異な つている。 また 117 がダイ、 118 がダイ温調媒体のためのジャケ ッ ト、 120 がスクリ ュ通過直後の原料、 121 が小孔 115 通過直後 の原料、 122 .がダイ成形部 参照) 通過中 原料、 123 が押出 製品 (成形品) である。
第 13図および第 14図に示す押出機用ダイ にあっては、 スク リ ュ 110 の原料供給部 (図示せず) へ供給された食品原料は、 同スク リ ュ 110 およびバレル 112 により圧縮, 混合, 混練され、 さらに はスク リ ュ 110 の先端部に設けられた トービー ド 111 により攬拌 されて、 スク リ ュ 110 の前方へ送り出される。 そのときの原料を 120 により示した。 上記バレル 112 は、 ヒータ 113 により温度制 御された状態で加熱されている。 勿論、 原料によってはヒータの 替りに冷却装置により冷却される場合もある。 もしも殺粉系の原 料であるならば、 スク リ ュ 110 の前方へ送り出されたときに(120 参照) すでに溶融しており、 ダイ 117 の部分で冷却, 固化される か、 製品によってはダイ 117 の出口で膨化させるかされて、 製品 として押出されるので、 小孔 115 を設ける必要はない。
しかし、 食品原料が植物性蛋白質である脱脂大豆粉, おから等 の植物性蛋白質やマリ ンビーフ, 屑肉等の動物性蛋白質で、 織維 性を有する連続した肉状製品を製造する場合、 上記 120 の状態で ダイ 117 を通しても強じんな織維性を有する連繞した肉状製品を 得られないが、 本発明は、 ダイ 117 の入口側に、 厚さが変化し且 つ厚さの方向に複数の小孔 115 が貫通した多孔板 116 があり、 上 記製品を得られる。 すなわち、 スク リ ュ 110 先端部近傍の原料 120 は、 スク リ ュ 110 等により混練されることにより、 ある程度の反 応基を表面に出した蛋白質分子が互いに反応していない溶融状態 にある。 この状態で多孔板 116 の小孔 115 を通過すると、 蛋白質 分子は大きな速度のため、 剪断力を受けて、 流れ方向に並ぶ現象、 すなわち、 配向を起す。 この配向により、 蛋白質分子はその配向 した表面にさらに多 く の反応基を露出させる。 これが 121 の状態 である。 この状態で、 ダイ 117 の成形部 ( 参照) に導き、 反応 させて、 整形すると、 押出される製品は、 配向されるとともに、 多く露出した反応基により蛋 S質分子の組織化結合が進んで、 強 じんな繊維性を有し、 しかも組織結合強度の高い連続した肉状製 ロロに 。
また本発明では上記ダイ 117 の成形部で次の作用が行われる。 すなわち、 ダイ 117 内の原料の流れの流速は、 一般的に流れの中 央で大き く、 壁面に近づくにつれて小さ く なる。 この流速は、 原 料がダイ 117 の壁面近く を流れて、 流れ抵抗が大き く なる程小さ く なり、 従来の押出機のダイ においては、 ダイ 117 内で一旦組織 化された蛋白質は、 この速度差により、 流れ方向に剝離現象を起 こ し、 ダイ 117 の出口から組織が破壊された状態 (引裂かれた状 態) で押出される。 この組織破壊を防止するためには、 前述のよ うにダイ 117 内で原料の流速差を小さ くする必要がある。 この点、 本発明では、 多孔板 116 の小孔 115 の長さが異つており、 流れの 速度差が小さ く なる。
例えば第 13図の場合、 多孔板 116 の厚さを中央部から周辺部に 向い次第に小さ く して、 小孔 115 の長さを、 周辺部のものより も 中央部のものの長さを長く している。 流路を流れる流体の速度ば、 流れ抵抗が大きい程小さい。 この流れ抵抗は流路壁面との摩擦
(広義の) により生ずるので、 同一断面積の小孔での流れ抵抗ば、 小孔の長さに比例する。 換言すれば、 小孔出口での速度ば小孔の 長さが長い程小さい。 第 13図の 0一 O部分で殆んど速度差のない 状態で各小孔 115 に流入した原料は、 各小孔 115 の出口、 すなわ ち、 P - P部分では、 前述の理由から中央部を流れる原料の流速 は小さ く 、 壁面に近い部分を流れる原料の流速は大き く なる。
このよう に、 流路壁面側の流速を大き く しておく と、 多孔板 116 の下流側、 例えば Q - Q部分では、 ダイ 1 Π 壁面の流れ抵抗によ り壁面近く を流れる原料の流速が落ち、 速度分布が平坦化して、 速度差が小さ く なる。 第 13図の O— 0 , P — P, Q - Q , R— R 部分の流速を第 18図の 0 , p , q , rに示した。 ただし第 18図の r に示す第 13図 R— R部分の速度分布 nは、 従来の場合であり、 速度分布 mは本発明の場合である。
こう した多孔板 11·6 による配向作用と速度分布の平坦化によつ て強じんな繊維性を有し、 しかも組織結合の高い連繞した肉状製 品が押出成形される。 すなわち、 多孔板 116 の各小孔 115 を通過 して、 ダイ の成形部に入った溶融状態の原料 (蛋白質原料) は、 大きな速度のために、 剪断力を受けて、 流れの方向に並ぶ配向現 象を起し、 こ の配向により配向した表面に多 く の反応基が露出し、 この露出した反応基により組織化結合が進む。 また上記ダイの成 形部を流れる原料に速度差があると、 流れ方向に剝離現象を起し て、 組織破壊されるが、 本発明の押出機用ダイでは、 バレルの壁 面近傍を流れ、 流れ抵抗が大き く て、 流体速度の小さい原料が長 さの短かい小孔 (厚さの小さいダイ部分を貫通した小孔) へ導か れ、 バレルの中央部を流れ、 流れ抵抗が小さ く て、 流体速度の大 きい原料が長さの長い小孔 (厚さの大きいダイ部分を貫通した小 孔) へ導かれ、 この結果ダイ の成形部を流れるときの互いの速度 差が殆んどなく なり、 前記の点と相俟って強じんな繊維性を有し、 しかも組織結合強度の高い肉状製品を押出成形できる効果がある。 なお第 13図では、 小孔 115 を有した多孔板 116 をダイ 117 に組 込んでいるが、 押出機側に設けても差支えない。 また押出機も、 1本のスク リ ュ 11ひ を具えた一軸型押出機以外の 2本のス ク リ ュ を具えた二軸型押出機であってもよい。 また多孔板 116 の形状も 図示の例に限定されない。 例えば第 16図のようにバレル 112 側の 中央部に凸にした多孔板 132 でもよ く 、 第 17図のようにバレル 112 側を凹に、 ダイ 117 側を凸にして、 中央部から周辺部に向い肉厚 を次第に小さ く した多孔板 133 でもよい。 ただしダイ 117 内での 流速分布を変えられれば、 中央部で長く することには限定されな い。
また小孔 115 の形状, 寸法, 数は、 用いる食品原料, 目的とす る押出製品により異なるが、 小孔 115 を通過する際の圧力降下の 許容範囲内で、 直径については小さ く 、 長さについては長く し、 数は多くする方がよい。 実験結果によれば、 脱脂大豆粉を原料とする場合、 第 15図に示 すように小孔 115 の直径を D «、 長さを L «としたとき、 長さと 直径との比 ( L Z D ) が 3 〜20、 小孔 115 内での平均流速が 3 〜 10 cm /sec になるように小孔 115 を設けるのが望ましい。
また第 19図ば第 2の発明の第 5実施例を示しており、 同図にお いて 125 , 126がダイ、 127 , 128が温謌ジャケッ ト、 , がダイ孔 129 直径の 15倍〜 40倍の長さを有するダイ成形部の長さで、 この 部分を通過する間に 121 の状態の蛋白質分子は、 第 13図および第 14図の実施例の場合より も多く の時間をかけて反応および整形が
I 0 行われて、 配向性のさらに向上した強じんな肉状組織の押出製品
130 が得られる。 なお前記各実施例で、 小孔 115 は、 断面円形以 外の形状、 例えば第 20図に示すようにスリ ッ ト状(131参照) にし てもよい。 Tはスリ ツ ト 131 の幅である。
以上本発明を実施例について説明したが、 勿論本発明はこのよ 1 5 うな実施例にだけ局限されるものではなく 、 本発明の精神を逸脱 しない範囲内で種々の設計の改変を施しう るものである。
産業上の利用分野
以上のように、 本発明に係る押出機のダイ は、 特に蛋白系食品 原料を使用して連続した組織化成形製品を押出し加工する押出機 z o に用いて最適である。

Claims

請求の範囲
1. 筒状をなすシ リ ンダーバレルと、 上記バレル内で回転するス ク リ ュと、 上記バレルの先端に取付けられるダイ孔とを有する 押出機のダイ において、 上記ダイ孔の長さを、 ダイ孔の直径あ るいはダイ孔の厚さの 15倍ないし 40倍にしたことを特徴とする 押出機のダイ。
2. 上記ダイ孔の断面形状を、 上記ダイ孔の入口から出口にかけ てほぼ一定にしたことを特徴とする請求の範囲第 1項記載の押 出機のダイ。
3. 筒状をなすシリ ンダーバレルと、 上記バレル内で回転するス ク リ ュと、 上記バレルの先端に取付けられるダイ孔とを有する 押出機のダイ において、 上記ダイ孔の入口部に、 厚さ方向に多 数の小孔があけられた多孔板を、 上記ス ク リ ュの軸と直交して 配設したことを特徴とする押出機のダイ。
4. 上記多孔板の小孔の長さと、 その直径または厚さとの比が 3 ないし 20であることを特徴とする請求の範囲第 3項記載の押出 機のダイ。
5. 上記多孔板の小孔の各々の長さを変えることにより、 上記ダ ィ孔内における原料の流速分布を可及的に均一化するようにし たことを特徴とする請求の範囲第 3項記載の押出機のダイ。
6. 上記多孔板の小孔の長さを、 上記多孔板の中央部で最も長く . 周辺部で最も短く なるように変化させたことを特徴とする請求 の範囲第 5項記載の押出機のダイ。
7. 上記多孔板の小孔の各々の断面形状およびノまたは断面積を 変えることにより、 上記ダイ孔内における原料の流速分布を可 及的に均一化するようにしたことを特徴とする請求の範囲第 3 項記載の押出機のダイ。
8. 上記多孔板の小孔の断面積を、 上記多孔板の中央部で最も小 さ く 、 周辺部で最も大き く なるように変化させたことを特徴と する請求の範面第 7項記載の押出機のダイ。
PCT/JP1985/000287 1984-05-24 1985-05-24 Die for extruders WO1985005250A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP59/105593 1984-05-24
JP59105593A JPS60248159A (ja) 1984-05-24 1984-05-24 押出機のダイ
JP60021799A JPS61181360A (ja) 1985-02-08 1985-02-08 押出機用ダイ
JP60/021799 1985-02-08
JP60/047354 1985-03-12
JP60047354A JPS61209580A (ja) 1985-03-12 1985-03-12 押出機用ダイ
JP60052530A JPS61212268A (ja) 1985-03-18 1985-03-18 押出機用ダイ
JP60/052530 1985-03-18

Publications (1)

Publication Number Publication Date
WO1985005250A1 true WO1985005250A1 (en) 1985-12-05

Family

ID=27457641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000287 WO1985005250A1 (en) 1984-05-24 1985-05-24 Die for extruders

Country Status (2)

Country Link
EP (1) EP0213204A4 (ja)
WO (1) WO1985005250A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106174669A (zh) * 2016-08-30 2016-12-07 肇庆市嘉溢食品机械装备有限公司 片状起酥油成型机
WO2021046375A1 (en) * 2019-09-06 2021-03-11 Frito-Lay North America, Inc. Plant protein snack with meat-like texture

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288136B1 (en) * 1987-04-20 1993-04-21 Borden, Inc. Low moisture pasta process
US4790996A (en) * 1987-06-10 1988-12-13 General Foods Corporation Process for preparing cereal products
EP0366256A3 (en) * 1988-10-28 1991-07-17 Warner-Lambert Company Extruder for an edible anion exchange resin delivery system
US5333538A (en) * 1991-05-02 1994-08-02 Kabushiki Kaisha Kobe Seiko Sho Food extruder machine
FR3112669B1 (fr) * 2020-07-21 2024-07-12 Clextral Filière pour l’extrusion d’une matière riche en protéines et en eau, ainsi que machine d’extrusion comportant une telle filière

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029773A (ja) * 1973-07-05 1975-03-25
JPS5238056A (en) * 1975-09-18 1977-03-24 Nisshin Oil Mills Ltd Method of producing fibrous protein and apparatus therefor
JPS5545178B1 (ja) * 1970-06-15 1980-11-17

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1074533B (de) * 1960-02-04 Schafer Frankfurt/M -Sossenheim Winfried Mundstuck fur Hefestrangpressen
US3291032A (en) * 1962-08-22 1966-12-13 George O Graves Cereal puffing machine
CH486300A (de) * 1968-05-03 1970-02-28 Barmag Barmer Maschf Verfahren zur Homogenisierung und Temperaturvergleichmässigung des Schmelzeflusses thermoplastischer Kunststoffe einer Schneckenpresse sowie Schneckenpresse zur Durchführung des Verfahrens
US3917876A (en) * 1972-07-24 1975-11-04 Quaker Oats Co Process for production of a simulated meat product
US3953612A (en) * 1975-01-06 1976-04-27 Miles Laboratories, Inc. Process for preparing a fibrous protein product and the product thereof
US3958032A (en) * 1975-02-03 1976-05-18 The Griffith Laboratories, Inc. Method of puffing moist food products using both inert non-condensible gas and vaporized moisture
GB1508635A (en) * 1975-06-13 1978-04-26 Du Pont Method and apparatus for texturising a proteinaceous substance
SU1046113A1 (ru) * 1982-03-02 1983-10-07 Всесоюзный Научно-Исследовательский Институт Машин Для Производства Синтетических Волокон Экструдер дл переработки полимерных материалов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545178B1 (ja) * 1970-06-15 1980-11-17
JPS5029773A (ja) * 1973-07-05 1975-03-25
JPS5238056A (en) * 1975-09-18 1977-03-24 Nisshin Oil Mills Ltd Method of producing fibrous protein and apparatus therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0213204A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106174669A (zh) * 2016-08-30 2016-12-07 肇庆市嘉溢食品机械装备有限公司 片状起酥油成型机
WO2021046375A1 (en) * 2019-09-06 2021-03-11 Frito-Lay North America, Inc. Plant protein snack with meat-like texture

Also Published As

Publication number Publication date
EP0213204A4 (en) 1988-08-23
EP0213204A1 (en) 1987-03-11

Similar Documents

Publication Publication Date Title
TW307670B (ja)
US7001547B2 (en) Method and apparatus for joining sheet- or ribbon formed flows in a coextrusion process
WO1985001911A1 (en) Uniaxial kneading extruder
EP0434983A1 (en) Extrusion die assembly
JPS5818138B2 (ja) 連続混合機
US5358327A (en) Apparatus for plasticizing particulate plastic material
JPH07314529A (ja) 押出機
WO1985005250A1 (en) Die for extruders
TW201036558A (en) Extrusion die assembly for high density products
US5165949A (en) Process for producing extruded food products
JPS6249845B2 (ja)
WO1996036242A1 (en) Improvements in and relating to textured wheat gluten protein products
CN1003071B (zh) 挤压机用模具
JPS61181360A (ja) 押出機用ダイ
CLARK Texturization by extrusion
JPS61212268A (ja) 押出機用ダイ
JPS61209580A (ja) 押出機用ダイ
JP2000210931A (ja) 耐衝撃性熱可塑性樹脂の製造装置およびその方法
JPH04276421A (ja) ゴムおよび熱可塑性合成物質の加工および製造をするための押出機
US7032843B1 (en) Mixing nozzle
JPH0556942B2 (ja)
JPS6359853A (ja) イカ肉様食品の製造方法とその装置
JPH0628577B2 (ja) 押出機用ダイ
GB2406540A (en) Flow distributor for an extrudate
CA2310386A1 (en) Chopper mixing screw

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 1985902645

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1985902645

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1985902645

Country of ref document: EP