WO1985003600A1 - Generateur electrochimique a element nickel-cadmium - Google Patents

Generateur electrochimique a element nickel-cadmium Download PDF

Info

Publication number
WO1985003600A1
WO1985003600A1 PCT/FR1985/000022 FR8500022W WO8503600A1 WO 1985003600 A1 WO1985003600 A1 WO 1985003600A1 FR 8500022 W FR8500022 W FR 8500022W WO 8503600 A1 WO8503600 A1 WO 8503600A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
nickel
cadmium
electrode
negative electrode
Prior art date
Application number
PCT/FR1985/000022
Other languages
English (en)
Inventor
Bernard Bugnet
Jean-Claude Pivot
Original Assignee
Application Des Gaz S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Application Des Gaz S.A. filed Critical Application Des Gaz S.A.
Publication of WO1985003600A1 publication Critical patent/WO1985003600A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrochemical generator comprising at least one nickel-cadmium galvanic element, of the type closed with respect to the atmosphere, the electrolyte of which is in the free state or retained in any suitable support, for example a separator disposed between the electrodes.
  • each electrode has a plate-shaped substrate, permeable to gases and liquids, having a relatively large internal developed surface compared to the apparent surface, and the total surface of the substrate, both external and internal, is coated with at least an outer thin layer of metallic nickel, which due to its small thickness preserves the void structure of said substrate - a liquid alkaline electrolyte, contained in the housing, in contact with the two electrodes.
  • the substrate metallized by the thin layer of nickel is coated over its entire surface, both internal and external, by a thin deposit of the electrochemically active material, namely hydroxide of nickel, for example by electrolysis; this deposit, due to its small thickness, also preserves the structure with voids of the substrate.
  • the electrochemically active material namely hydroxide of nickel
  • a separator permeable to gases, chemically inert, and ensuring the retention of the electrolyte, is disposed between the positive electrode and the negative electrode;
  • the two electrodes are for example offset relative to each other, in the direction of the width of the plates or the height of the housing;
  • the electrode-separator assembly is wound on itself, the negative electrode being for example placed outside, and the winding thus obtained is placed in the housing;
  • the metal case for example made of nickel-plated steel, of cylindrical shape, is closed in a sealed manner.
  • watertight closure is meant the fact that, during normal operation, the interior of the accumulator is completely isolated from the exterior. However, there may exist on the accumulator a calibrated valve, capable of evacuating any significant gas overpressure, to then return to its closed state; these overpressures can be generated for example by an excessive overload, and accidental of the accumulator.
  • the oxygen production at the positive electrode, and minor hydrogen production at the negative electrode, during charging, in competition with the oxidation of nickel hydroxide and the reduction of cadmium hydroxide respectively, constitute parasitic electrochemical reactions, affecting the lifespan of the products in question.
  • they cause a gaseous overpressure in the sealed accumulator, which is evacuated outside, with possibly fine droplets of liquid electrolyte, by the safety valve, hence an irreversible degradation and / or depletion of electrochemical medium.
  • a negative electrode placed in a sealed accumulator, and comprising: - a substrate permeable to gases and liquids, having a relatively large internal developed surface compared to the apparent surface, the total surface of said substrate being coated with at least one thin outer layer of metallic nickel, preserving the void structure of said substrate
  • a paste supported by the substrate comprising, when the corresponding electrochemical material is activated, of cadmium and a plasticizing agent, the invention consists in leveling and eliminating the excess paste, so as to release, on the apparent surface of the 'electrode, free sites of nickel, which will be subsequently in contact with the electrolyte.
  • the invention provides an additional advantage, relating to tolerances in terms of volume of electrolyte introduced by sealed accumulator.
  • the useful area as defined above is found to be substantially enlarged.
  • FIG. 1 shows an exploded view of a cadmium-nickel accumulator, waterproof, of small dimensions, which can be substituted for a disposable battery of the same format, of the type carbon-zinc or alkaline
  • - Figure 2 represents the evolution of the pressure pm, the ohmic drop ⁇ U, the capacity Cp, as defined below, as a function of the volume V of electrolyte, for the accumulators according to the prior art, tested according to tests 1 to 4,
  • FIG. 3 represents the same evolution, for accumulators according to the invention, tested according to tests 5 to 8,
  • a safety valve (4) consisting of a valve (5), closing a vent orifice (7), a spring (6) pushing back the valve (5), and an evacuation orifice (8) located on the cover (2) - an assembly (9) wound on itself in a spiral, comprising a positive electrode (10), a negative electrode (11), and a separator (12) disposed between the electrodes, all of rectangular shape; the negative electrode and the positive electrode are offset with respect to each other, in the direction of the width of the rectangles, or height of the housing (1), on either side of the separator (12); the separator (12) is intended to retain the electrolyte.
  • the negative electrode (11) can be placed outside the winding, so that the last turn is in electrical contact with the inside of the housing, the latter constituting with its bottom the negative terminal of the accumulator
  • the positive electrode (10) can be coated with nickel hydroxide, as described below, so that the upper edge of the corresponding plate is preserved any electrochemical deposit; this border will then collect the electrical current, and it will suffice to provide an electrical connection (13) between this border and the cover.
  • the two electrodes are obtained by a procedure as described in detail in the documents identified in the preamble to this description.
  • This operating mode comprises the following stages: a)
  • a basic material in the form of a rectangular plate, having an essentially empty structure, that is to say of which the internal developed surface is very much greater than that apparent , whose different interstices communicate with each other, so that in total the plate is permeable to gases and liquids.
  • It can be a material organic, such as a plastic material such as a polyamide or an inorganic material such as alumina fibers.
  • the material in question can be porous or made up of unorganized fibers such as a felt, or organized in the form of fabric.
  • the material in question has a void proportion at least equal to 90%, and therefore has a relatively large internal developed surface compared to the apparent surface.
  • the entire surface of the base material, both internal and external, is coated with metallic nickel.
  • the latter can be provided, first by chemical means, for example, by the Kanigenn process and then secondly, by electrochemical means, for example by electrolysis of a nickel salt.
  • electrochemical means for example by electrolysis of a nickel salt.
  • the operating conditions are chosen so that each layer remains thin, of the order of 5 to 20 microns, and the structure with voids of the base material is thus preserved, c)
  • the base material when it is organic, it can be removed by calcination in an inert medium.
  • d) At this stage, there is a metallized substrate, with the same proportion of voids as that previously defined, e)
  • a layer of nickel hydroxide is deposited, for example by electrochemical reduction the substrate.
  • the operating conditions are chosen in such a way that the nickel hydroxide layer remains extremely thin, and the structure with voids of the substrate is thus preserved.
  • an aqueous suspension comprising cadmium oxide, a plasticizing agent such as a polytetrafluoroethylene, abbreviated to "PTFE", and optionally a consistency agent such as methyl- cellulose; for example, such mixture comprises by weight, relative to cadmium oxide (CdO), 3% of PTFE and 1% of methyl cellulose.
  • PTFE polytetrafluoroethylene
  • a consistency agent such as methyl- cellulose
  • a suitable alkaline aqueous solution comprising for example 5N potassium hydroxide, and 10 g / l of lithine.
  • various fabrics or nonwovens are used, synthetic, permeable to gases and liquids, chemically inert, with respect to the chemical agents present in the accumulator, for example made of polyamide.
  • the electrodes thus prepared, between which the separator is placed, are offset with respect to each other, wound on themselves, and arranged in a box, as shown in FIG. 1.
  • This box of cylindrical shape, reproduces the shape and dimensions of a standard format stack (international standard IEC) R6; consequently, such a box has the following internal and useful dimensions:
  • CL this is the capacity in Ah of the accumulator, for a constant discharge current of 150mA, and for a stop voltage of 1.1 V, the electrolyte being in excess and in open medium
  • P it is the weight of the spiral associating the two electrodes and the separator, before introduction into the housing, and impregnation with the electrolyte; this weight is expressed in g.
  • s designates the nature of the substrate, the letter M being used for an open cell foam, and the letter F being used for a felt: the indices n and c denote the nickel electrode and the cadmium electrode respectively.
  • V expresses the volume of electrolyte introduced into the accumulator, expressed in ml.
  • pm expresses, when the accumulator is closed, the equilibrium pressure reached in the latter, for a constant charging current of 1 A; this pressure is expressed in relative bars; this pressure does not stabilize in all tests.
  • po expresses, still when the accumulator is closed, the pressure reached in the latter 15 min after having stopped charging as previously defined; this pressure is expressed in relative bars.
  • pd expresses, still when the accumulator is closed, the pressure reached in the latter, at the end of a complete discharge in Cl / 2 regime; this pressure is expressed in relative bars.
  • Cc designates the capacity of the cadmium electrode, in Ah, for a constant discharge current of 250 mA, and for a stop voltage of - 850 mV with respect to a reference electrode Hg / HgO; this voltage is measured with excess electrolyte, in an open environment.
  • Um expresses the maximum voltage observed at the terminals of the accumulator, for a charge under constant current of 1 A; this voltage is expressed in volts.
  • Cp expresses the capacity of the closed accumulator, in Ah, for a constant discharge current of 250 mA, with a stop voltage 1.1 V.
  • U expresses the average voltage observed at the terminals of the closed accumulator, in V, for a constant discharge current of 250 mA.
  • ⁇ U expresses the ohmic drop of the accumulator; when the latter is discharged under a constant current of 250 mA, and when this discharge is interrupted, an instantaneous rise in voltage is observed, which, expressed in mV, reflects the internal resistance, purely ohmic, of the accumulator.
  • Dp expresses the pore diameter of the substrate of the cadmium electrode, when the latter is obtained from a foam; this diameter is expressed in mm.
  • ds is the surface density of the substrate of the cadmium electrode, expressed in mg / cm2.
  • the length, width, and thickness of the substrate of the nickel electrode are respectively 60, 41 and 1 mm
  • the length, width, and thickness of the substrate of the cadmium electrode are respectively 80, 41 and 0.55 mm;
  • the surface density of the substrate of the cadmium electrode is 50 mg / cm2 - the thickness of the separator is 0.15 mm, and its permeability is such that an air flow rate of 1000 l / s per m2 of material causes a pressure difference of 1 mbar between the faces of the separator
  • the weight of cadmium oxide deposited on the negative electrode is 110 mg / cm2
  • the thickness of at least the negative electrode is between 0.5 and 1 mm, so as to allow its winding in the form of spiral.
  • Tests 1 to 4 relate to an accumulator in accordance with the prior art.
  • the substrate of the negative electrode consists of a perforated sheet of nickel-plated steel, having a surface density of 50 mg / cm 2, and of thickness 0.15 mm. This substrate is coated on both sides with the paste based on cadmium oxide and PTFE.
  • FIG. 2 makes it possible to evaluate the useful area, as defined above, with regard to the volume of electrolyte introduced into the accumulator. Quantitatively, this useful area is determined as follows:
  • Tests 5 to 8 relate to an accumulator according to the invention.
  • FIG. 3 makes it possible to evaluate the same useful area, according to the invention.
  • Tests 9 to 11 relate to an accumulator according to the invention, for which the pore diameter of the nickel-plated foam constituting the substrate of the cadmium electrode is varied.
  • Test 12 was carried out with a felt, as a substrate for the cadmium electrode. More precisely, a nickel-plated felt as previously indicated, 1.5 mm thick, having a surface density of 25 mg / cm 2, was coated with 55 mg / cm 2 of cadmium oxide. Then two sheets thus prepared are superimposed and compacted, which makes it possible to obtain a cadmium electrode comparable to that of tests 5 to 11.
  • the volume of electrolyte introduced into the accumulator was varied, in accordance with FIGS. 4 to 7, respectively, so as to determine the useful zone of volume of electrolyte. All the other electrochemical parameters remained otherwise identical.
  • the useful zones determined according to FIGS. 3 to 6, and expressed in tolerances on the volume of electrolyte, ie ⁇ V in ml, are reported as a function of the pore diameter, Dp in mm. It can thus be determined that the average pore diameter is optimally between 0.45 and 3 mm, and preferably equal to 1.5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Le substrat qui constitue l'electrode négative (11) est perméable aux gaz et aux liquides, a une surface développée interne relativement importante par rapport à la surface apparente, la surface totale dudit substrat étant revêtu d'au moins une couche externe et mince de nickel métallique, présevant la structure avec vides dudit substrat, et d'autre part ledit substrat supporte une pâte comprenant, lorsque la matière électrochimique correspondante est activée du cadmium et un agent plastifiant. Alimentation d'appareils électriques portatifs.

Description

Générateur êlectrochimique à élément nickel-cadmium
La présente invention concerne un générateur électrochimique comportant au moins un élément galvanique nickel- cadmium, de type fermé par rapport à l'atmosphère, dont l'electrolyte est à l'état libre ou retenu dans tout support approprié, par exemple un séparateur disposé entre les électrodes.
Divers brevets antérieurs, parmi lesquels on peut citer le brevet américain 2 834 825, le certificat d'utilité français 2 232 839, le brevet suisse 385 308, le brevet allemand 1 071 788, le brevet français 1 235 236, et plus récemment la demande de brevet français 2 472 842 ont décrit l'obtention d'un générateur électrochimique du type nickel-cadmium comprenant :
- un boîtier ;
- au moins deux électrodes de polarités différentes, disposées dans ce boîtier, supportant les matières électrochimiquement actives, dans le cas de l'électrode négative à base d'hydroxyde de cadmium, et dans le cas de l'électrode positive à base d'hydroxyde de nickel ; chaque électrode a un substrat en forme de plaque, perméable aux gaz et aux liquides, ayant une surface développée interne relativement importante par rapport à la surface apparente, et la surface totale du substrat, tant externe qu'interne, est revêtue d'au moins une couche externe et mince de nickel métallique, laquelle du fait de sa faible épaisseur préserve la structure avec vides dudit substrat - un electrolyte alcalin liquide, contenu dans le boîtier, au contact des deux électrodes. Préfêrentiellement, mais non exclusivement, pour l'électrode positive, le substrat métallisé par la couche mince de nickel est revêtu sur toute sa surface, tant interne qu'externe, par un dépôt mince de la matière électrochimiquement active, à savoir l'hydroxyde de nickel, par exemple par électrolyse ; ce dépôt, du fait de sa faible épaisseur, préserve également la structure avec vides du substrat. Selon la demande de brevet japonais 57-96463 du 05.12.80 et le brevet français 1 560 924 et plus récemment la demande de brevet français 83 10718, on a proposé d'améliorer la tenue mécanique de l'électrode négative, en apportant la matière électrochimiquement active, à savoir le cadmium, sur le substrat métallisé, sous la forme d'une pâte comprenant de l'oxyde de cadmium et un agent plastifiant, par exemple une résine fluorée.
Le problème technique à la base de la présente invention est maintenant explicité par rapport aux petits accumulateurs êtanches nickel-cadmium, fabriqués et commercialisés depuis de nombreuses années, en substitution des piles sèches non rechargeables. Toutefois, il doit être entendu qu'un tel problème peut exister pour d'autres types d'accumulateurs nickel-cadmium, dès lors qu'ils sont fermés par rapport à l'atmosphère ambiante.
Les petits accumulateurs en question se distinguent de la définition générale précédente, par le fait que :
- un séparateur, perméable aux gaz, chimiquement inerte, et assurant la rétention de l'electrolyte, est disposé entre l'électrode positive et l'électrode négative ;
- les deux électrodes sont par exemple décalées l'une par rapport à l'autre, dans le sens de la largeur des plaques ou de la hauteur du boîtier ; - l'ensemble électrodes-séparateur est enroulé sur lui-même, l'électrode négative étant par exemple disposée à l'extérieur, et l'enroulement ainsi obtenu est disposé dans le boîtier ;
- le boîtier métallique, par exemple en acier nickelé, de forme cylindrique, est fermé de manière étanche.
Par fermeture étanche, il faut entendre le fait que, en fonctionnement normal, l'intérieur de l'accumulateur est totalement isolé de l'extérieur. Toutefois, il peut exister sur l'accumulateur une soupape calibrée, susceptible d'êvacuer toute surpression gazeuse importante, pour revenir ensuite à son état fermé ; ces surpressions peuvent être générées par exemple par une surcharge trop importante, et accidentelle de l'accumulateur.
Pour le type d'accumulateurs précédemment définis, la production d'oxygène à l'électrode positive, et celle mineure d'hydrogène à l'électrode négative, pendant la charge, en concurrence de l'oxydation de l'hydroxyde de nickel et de la réduction de l'hydroxyde de cadmium respectivement, constituent des réactions électrochimiques parasites, affectant la durée de vie des produits en question. En effet, elles entraînent dans l'accumulateur étanche une surpression gazeuse, laquelle est évacuée à l'extérieur, avec éventuellement de fines gouttelettes d' electrolyte liquide, par la soupape de sécurité, d'où une dégradation et/ou un appauvrissement irréversibles du milieu électrochimique.
Ces réactions électrochimiques parasites constituent un obstacle à certaines applications ou utilisations des accumulateurs nickel-cadmium, par exemple pour lesquelles on procède à une charge accélérée, donc sous forte intensité, ou pour lesquelles on doit maintenir l'accumulateur en charge lente et permanente. Dans ces applications ou utilisations, toute surcharge peut conduire à la surpression gazeuse que l'on veut éviter.
S'agissant de l'oxygène généré de manière parasite, en particulier à la fin de la charge de l'accumulateur, il est usuel de surdimensionner la capacité de l'électrode négative par rapport à la capacité de l'électrode positive de manière à pouvoir réduire l'oxygène à l'électrode négative. Un rôle essentiel se trouve ainsi dévolu à l'électrode négative.
Diverses solutions ont été proposées antérieurement à l'invention pour améliorer l'efficacité de l'électrode négative, vis-à-vis de la recombinaison de l'oxygène libéré à l'électrode positive. Certaines consistent à apporter sur l'électrode négative, sous diverses formes, divers métaux plus êlectropositifs que le cadmium, par exemple du nickel ou de l'argent. Ces apports peuvent être obtenus, par exemple en incorporant des particules du métal choisi dans l'électrode positive (brevet américain 3 877 985 et demande de brevet japonais 57 38 568), ou en appliquant un support recouvert du métal électropositif retenu sur l'électrode négative, notamment sous la forme d'une grille ou d'un substrat métallisé tel que défini précédemment (brevets français 1 461 369 et 1 482 820 et demande de brevet allemand 2 907 262).
Toutes ces solutions recherchent un effet catalytique vis-à-vis de la recombinaison de l'oxygène libéré à l'électrode positive. Aucune de ces solutions antérieures n'apparaît être réellement efficace vis-à-vis du problème technique exposé précédemment. Beaucoup sont d'une mise en oeuvre complexe, renchérissant le prix de revient industriel des accumulateurs êtanches nickel-cadmium. Pour un accumulateur étanche, la présente invention se propose d'améliorer l'efficacité de l'électrode négative, vis-à-vis de la recombinaison de l'oxygène libéré à l'électrode positive, et ce de manière particulièrement simple.
Pour une électrode négative, disposée dans un accumulateur étanche, et comportant : - un substrat perméable aux gaz et aux liquides, ayant une surface développée interne relativement importante par rapport à la surface apparente, la surface totale dudit substrat étant revêtue d'au moins une couche externe et mince de nickel métallique, préservant la structure avec vides dudit substrat
- une pâte supportée par le substrat, comprenant, lorsque la matière électrochimique correspondante est activée, du cadmium et un agent plastifiant, l'invention consiste à araser et à éliminer la pâte en excès, de manière à dégager, sur la surface apparente de l'électrode, des sites libres de nickel, lesquels seront ultérieurement au contact de l'electrolyte.
Selon le protocole expérimental décrit ci-après, on a mis en évidence que l'invention apporte un avantage supplémentaire, relatif aux tolérances en matière de volume d'electrolyte introduit par accumulateur étanche.
Pour tout accumulateur du type nickel-cadmium, fermé, il existe en effet une zone utile, c'est-à-dire optimum, pour le volume d'electrolyte introduit : en deçà d'un seuil minimum, les performances êlectrochimiques de l'accumulateur se dégradent notablement, notamment la capacité et la résistance interne
- au-delà d'un seuil maximum, la pression dans l'accumu lateur, en particulier du fait de l'oxygène produit de manière parasite, s'accroît notablement ; l'oxygène gazeux a de plus en plus de mal a atteindre l'électrode négative. Selon l'art antérieur, cette zone utile est assez étroite, entraînant l'exigence d'un dosage relativement précis de l'electrolyte introduit dans l'accumulateur.
Selon l'invention, du fait de la meilleure recombinaison de l'oxygène gazeux, et donc de l'évolution moins rapide de la pression gazeuse en fonction du volume d'électrolyte, la zone utile telle que définie précédemment, se trouve substantiellement élargie.
La présente invention est maintenant décrite par référence aux dessins annexés, dans lesquels : - la figure 1 représente une vue éclatée d'un accumulateur cadmium-nickel, étanche, de petites dimensions, pouvant être substitué à une pile jetable du même format, de type charbon-zinc ou alcaline, - la figure 2 représente l'évolution de la pression pm, de la chute ohmique ΔU, de la capacité Cp, telles que définies ci-après, en fonction du volume V d'électrolyte, pour les accumulateurs selon l'art antérieur, expérimentés selon les essais 1 à 4,
- la figure 3 représente la même évolution, pour des accumulateurs selon l'invention, expérimentés selon les essais 5 à 8,
- les figures 4 à 7 représentent la même évolution, pour des accumulateurs selon les essais 9 à 12, - la figure 8, à partir des figures 3 à 7 permet de déterminer le diamètre optimum de pore pour le substrat du type mousse de l'électrode négative.
Conformément à la figure 1, un générateur êlectrochimique, de type étanche, conforme à l'invention comprend : un boîtier (1) en acier nickelé, de forme cylindrique, ayant un diamètre intérieur au plus égal à 3,5 cm un système de fermeture étanche, consistant en un couvercle (2) serti de manière étanche sur le boîtier
(1), avec un joint d'êtanchéitê (3) une soupape de sécurité (4) consistant en un clapet (5), obturant un orifice d'évent (7), un ressort (6) repoussant le clapet (5), et un orifice d'évacuation (8) situé sur le couvercle (2) - un ensemble (9) enroulé sur lui-même en spirale, comportant une électrode positive (10), une électrode négative (11), et un séparateur (12) disposé entre les électrodes, tous de forme rectangulaire ; l'électrode négative et l'électrode positive sont décalées l'une par rapport à l'autre, dans le sens de la largeur des rectangles, ou hauteur du boîtier (1), de part et d'autre du séparateur (12) ; le séparateur (12) est destiné à retenir l'électrolyte.
Pour collecter le courant électrique, diverses solutions peuvent être utilisées : - l'électrode négative (11) peut être disposée à l'extérieur de l'enroulement, de telle sorte que la dernière spire est en contact électrique avec l'intérieur du boîtier, ce dernier constituant avec son fond la borne négative de l'accumulateur - l'électrode positive (10) peut être revêtue avec l'hydroxyde de nickel, comme décrit ci-après, de telle manière que la bordure supérieure de la plaque correspondante soit préservée de tout dépôt êlectrochimique ; cette bordure assurera ensuite la collecte du courant électrique, et il suffira de prévoir une liaison électrique (13) entre cette bordure et le couvercle
(2), ce dernier constituant la borne positive de l'accumulateur.
Les deux électrodes sont obtenues par un mode opératoire tel que décrit en détail dans les documents identifiés dans le préambule de la présente description. Ce mode opératoire comprend les étapes suivantes : a) On part d'un matériau de base, en forme de plaque rectangulaire, ayant une structure essentiellement vide, c'est-à-dire dont la surface développée interne est très largement supérieure à celle apparente, dont les différents interstices communiquent entre eux, de telle manière qu'au total la plaque est perméable aux gaz et aux liquides. Il peut s'agir d'un matériau organique, tel qu'une matière plastique comme une polyamide ou d'un matériau minéral tel que des fibres d'alumine. Le matériau en question peut être poreux ou constitué par des fibres inorganisées comme un feutre, ou organisées sous forme de tissu. L'essentiel est que le matériau en question ait une proportion de vides au moins égale à 90 %, et donc ait une surface développée interne relativement importante par rapport à la surface apparente. b) On revêt la surface totale du matériau de base, tant interne qu'externe, avec du nickel métallique. Ce dernier peut être apporté, dans un premier temps par voie chimique, par exemple, par le procédé Kanigenn puis dans un deuxième temps, par voie électrochimique, par exemple par électrolyse d'un sel de nickel. Ainsi, on forme une première couche interne de nickel, au contact du matériau de base, puis une deuxième couche externe de nickel. Les conditions opératoires sont choisies de telle manière que chaque couche demeure mince, de l'ordre de 5 à 20 microns, et que la structure avec vides du matériau de base soit ainsi préservée, c) Eventuellement, lorsque le matériau de base est organique, on peut éliminer celui-ci par calcination en milieu inerte. d) A ce stade, on dispose d'un substrat métallisé, avec la même proportion de vides que celle précédemment définie, e) Pour l'électrode positive, on dépose, par exemple par réduction êlectrochimique, une couche d'hydroxyde de nickel sur le substrat. Là encore, les conditions opératoires sont choisies de telle manière que la couche d'hydroxyde de nickel demeure extrêmement mince, et que la structure avec vides du substrat soit ainsi préservée. f) S'agissant de l'électrode négative, on prépare une suspension aqueuse comprenant de l'oxyde de cadmium, un agent plastifiant tel qu'un polytétrafluoroéthylène, en abrégé "PTFE", et éventuellement un agent de consistance tel que la méthyl-cellulose ; par exemple, un tel mélange comprend en poids, par rapport à l'oxyde de cadmium (CdO), 3 % de PTFE et 1 % de mêthyl-cellulose. La pâte ainsi préparée est déposée sur le substrat nickelé, tel qu'obtenu prêdêdemment, par tous moyens appropriés, L'excès de pâte est ensuite éliminé et l'électrode arasée, par tous moyens appropriés de telle manière qu'au moins sur la surface apparente de l'électrode de nombreux sites de nickel soient ainsi dégagés. L'électrode ainsi préparée est ensuite séchée. La capacité théorique visée pour l'électrode de cadmium est de 1, 5 Ah. g) S'agissant de l' electrolyte, on utilise une solution aqueuse alcaline appropriée, comportant par exemple de la potasse 5N, et 10 g/l de lithine. h) S'agissant du séparateur, on utilise divers tissus ou non tissés, synthétiques, perméables aux gaz et aux liquides, inertes chimiquement, par rapport aux agents chimiques présents dans l'accumulateur, par exemple en polyamide. Les électrodes ainsi préparées, entre lesquelles le séparateur est disposé, sont décalées l'une par rapport à l'autre, enroulées sur elles-mêmes, et disposées dans un boîtier, comme indiqué à la figure 1. Ce boîtier, de forme cylindrique, reproduit la forme et les dimensions d'une pile de format normalisé (norme internationale CEI) R6 ; en conséquence, un tel boîtier a les dimensions internes et utiles suivantes :
- hauteur : 45,5 mm
- diamètre : 13 mm.
Divers accumulateurs sont ainsi préparés conformément au tableau ci-après, et expérimentés au plan de leurs performances électro-chimiques, selon le même tableau.
Concernant les abréviations utilisées dans ce tableau, les précisions suivantes sont données :
CL:il s'agit de la capacité en Ah de l'accumulateur, pour un courant constant de décharge de 150mA, et pour une tension d'arrêt de 1,1 V, l'electrolyte étant en excès et en milieu ouvert P:il s'agit du poids de la spirale associant les deux électrodes et le séparateur, avant introduction dans le boîtier, et imprégnation avec l'electrolyte ; ce poids est exprimé en g . s:désigne la nature du substrat, la lettre M étant employée pour une mousse à cellules ouvertes, et la lettre F étant employée pour un feutre : les indices n et c désignent respectivement l'électrode de nickel et l'électrode de cadmium . V: exprime le volume d'electrolyte introduit dans l'accumulateur, exprimé en ml . pm: exprime, lorsque 1 ' accumulateur est fermé, la pression d'équilibre atteinte dans ce dernier, pour un courant de charge constant de 1 A ; cette pression est exprimée en bars relatifs ; cette pression ne se stabilise pas dans tous les essais . po:exprime, toujours lorsque l'accumulateur est fermé, la pression atteinte dans ce dernier 15 mn après avoir cessé la charge telle que précédemment définie ; cette pression est exprimée en bars relatifs . pd:exprime, toujours lorsque l'accumulateur est fermé, la pression atteinte dans ce dernier, à la fin d'une décharge complète en régime Cl/2 ; cette pression est exprimée en bars relatifs . Cc: désigne la capacité de l'électrode de cadmium, en Ah, pour un courant de décharge constant de 250 mA, et pour une tension d'arrêt de - 850 mV par rapport à une électrode de référence Hg/HgO ; cette tension est mesurée avec excès d' electrolyte, en milieu ouvert . Um: exprime la tension maximum observée aux bornes de l'accumulateur, pour une charge sous courant constant de 1 A ; cette tension est exprimée en volts . Cp: exprime la capacité de l'accumulateur fermé, en Ah, pour un courant de décharge constant de 250 mA, avec une tension d'arrêt 1,1 V . U: exprime la tension moyenne observée aux bornes de l'accumulateur fermé, en V, pour un courant de décharge constant de 250 mA . ΔU:exprime la chute ohmique de l'accumulateur ; lorsque ce dernier est en décharge sous un courant constant de 250 mA, et qu'on interrompt cette décharge, on observe une remontée instantanée de la tension, qui exprimée en mV, traduit la résistance interne, purement ohmique, de l'accumulateur . Dp:exprime le diamètre de pore du substrat de l'électrode de cadmium, lorsque celle-ci est obtenue à partir d'une mousse ; ce diamètre est exprimé en mm . ds:est la densité surfacique du substrat de l'électrode de cadmium, exprimée en mg/cm2. Les conditions expérimentales, constantes d'un essai à l'autre, sont les suivantes :
- la longueur, la largeur, et l'épaisseur du substrat de l'électrode de nickel sont respectivement de 60, 41 et 1 mm - la longueur, la largeur, et l'épaisseur du substrat de l'électrode de cadmium sont respectivement de 80, 41 et 0, 55 mm ;
- la densité surfacique du substrat de l'électrode de cadmium est de 50 mg/cm2 - l'épaisseur du séparateur est de 0,15 mm, et sa perméabilité est telle qu'un débit d'air de 1 000 l/s par m2 de matériau entraîne une différence de pression de 1 mbar entre les faces du séparateur
- le poids d'oxyde de cadmium déposé sur l'électrode négative est de 110 mg/cm2
- la capacité surfacique théorique, visée pour l'électrode de cadmium est de 0,046 Ah/cm2 Préférentiellement, l'épaisseur d'au moins l'électrode négative est comprise entre 0,5 et 1 mm, de manière à permettre son enroulement sous forme de spirale.
Les essais 1 à 4 concernent un accumulateur conforme à l'art antérieur. Le substrat de l'électrode négative consiste en une tôle perforée en acier nickelé, ayant une densité surfacique de 50 mg/cm2, et d'épaisseur 0,15 mm. Ce substrat est revêtu, sur ses deux faces, de la pâte à base d'oxyde de cadmium et de PTFE.
La figure 2 permet d'évaluer la zone utile, telle que définie précédemment, en ce qui concerne le volume d' electrolyte introduit dans l'accumulateur. Quantitativement, cette zone utile est déterminée de la manière suivante :
- Cp ≥ Cpmax X 0,9
- ΔU ≤ 15 mV
- pm ≤ 5bars Les essais 5 à 8 concernent un accumulateur selon l'invention. La figure 3 permet d'évaluer la même zone utile, selon l'invention. Les essais 9 à 11 concernent un accumulateur selon l'invention, pour lequel on fait varier le diamètre de pores de la mousse nickelée constituant le substrat de l'électrode de cadmium.
L'essai 12 a été conduit avec un feutre, comme substrat de l'électrode de cadmium. Plus exactement, un feutre nickelé comme précédemment indiqué, de 1,5 mm d'épaisseur, ayant une densité surfacique de 25 mg/cm2, a été enduit avec 55 mg/cm2 d'oxyde de cadmium. Puis deux feuilles ainsi préparées sont superposées et compactées, ce qui permet d'obtenir une électrode de cadmium comparable à celle des essais 5 à 11.
A partir des essais 9 à 12, on a fait varier le volume d'electrolyte introduit dans l'accumulateur, conformément aux figures 4 à 7, respectivement, de manière à déterminer la zone utile de volume d'électrolyte. Tous les autres paramètres êlectrochimiques sont restés par ailleurs identiques. En figure 8, les zones utiles déterminées selon les figures 3 à 6, et exprimées en tolérances sur le volume d' electrolyte, soit Δ V en ml, sont reportées en fonction du diamètre de pore, Dp en mm. On peut ainsi déterminer que le diamètre moyen des pores est de manière optimum compris entre 0,45 et 3 mm, et préférablement égal à 1,5 mm.
Conformément au tableau, on peut effectuer les constations suivantes : a) la pression d'équilibre pm, atteinte selon l'invention se situe bien en deçà de celle atteinte selon l'art antérieur b) selon l'invention, cette pression régresse d'elle-même, dès lors que l'on cesse la charge ;cf pression po c) de toute manière, au cours de la décharge, la surpression gazeuse disparaît complètement. Ces constations expérimentales sont extrêmement favorables pour un accumulateur nickel-cadmium de type étanche.
Par ailleurs, si l'on compare les figures 3 à 7 à la figure 2, on constate que l'invention apporte une plus grande souplesse en ce qui concerne le dosage de l'électrolyte. Là encore, il s'agit d'une constatation expérimentale favorable aux accumulateurs nickel-cadmium de type étanche.
Figure imgf000015_0001

Claims

R E VE N D I C A T I O N S
1. Générateur électrochimique, comportant au moins un élément galvanique nickel-cadmium, lequel comprend : - un boîtier métallique (1), fermé de manière étanche
- au moins deux électrodes de polaritésdifférentes (10, 11) disposées dans ledit boîtier, supportant les matières électrochimiquement actives et respectivement différentes, ayant un substrat en forme de plaque
- un electrolyte alcalin liquide, contenu dans ledit boîtier, au contact des deux électrodes et selon lequel, d'une part le substrat de l'électrode négative (11) est perméable aux gaz et aux liquides, a une surface développée interne relativement importante par rapport à la surface apparente, la surface totale dudit substrat étant revêtue d'au moins une couche externe et mince de nickel métallique, préservant la structure avec vides dudit substrat, et d'autre part ledit substrat supporte une pâte comprenant, lorsque la matière électrochimique correspondante est activée, du cadmium et un agent plastifiant, caractérisé en ce que des sites libres de nickel affleurent de la surface apparente de l'électrode de cadmium au contact de l'électrolyte.
2. Générateur selon la revendication 1, caractérisé en ce que le substrat consiste en une mousse de nickel à cellules ouvertes, dont le diamètre moyen des pores est compris entre 0,45 et 3 mm, et est prêfêrablement égal à 1,5 mm.
3. Générateur selon l'une quelconque des revendications 1 et 2, caractérisé en ce que :
- le boîtier (1) est de forme cylindrique, et a un diamètre intérieur au plus égal à 3,5 cm - un séparateur (12) perméable aux gaz chimiquement inerte, assurant la rétention de l'electrolyte, est disposé entre l'électrode positive (10) et l'électrode négative (11).
- l'ensemble électrodes-séparateur est enroulé sur lui-même.
4. Générateur selon la revendication 3, caractérisé en ce que l'épaisseur d'au moins l'électrode négative (11) est comprise entre 0,5 et 1 mm.
PCT/FR1985/000022 1984-02-10 1985-02-08 Generateur electrochimique a element nickel-cadmium WO1985003600A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR84/02474 1984-02-10
FR8402474A FR2559622B1 (fr) 1984-02-10 1984-02-10 Generateur electrochimique a element nickel-cadmium

Publications (1)

Publication Number Publication Date
WO1985003600A1 true WO1985003600A1 (fr) 1985-08-15

Family

ID=9301157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1985/000022 WO1985003600A1 (fr) 1984-02-10 1985-02-08 Generateur electrochimique a element nickel-cadmium

Country Status (2)

Country Link
FR (1) FR2559622B1 (fr)
WO (1) WO1985003600A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647268A1 (fr) * 1989-05-16 1990-11-23 Accumulateurs Fixes Accumulateur nickel-cadmium a maintenance reduite
US5128217A (en) * 1989-05-16 1992-07-07 Saft Reduced maintenance nickel-cadmium storage cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1560924A (fr) * 1967-05-05 1969-03-21
DE1814650A1 (de) * 1967-12-14 1969-07-03 Matsushita Electric Ind Co Ltd Alkalische Batteriezelle
US3630781A (en) * 1968-07-03 1971-12-28 Gen Electric Process of forming rechargeable electrodes utilizing unsintered fluorocarbon binder
US4217939A (en) * 1977-10-20 1980-08-19 Matsushita Electric Industrial Co., Ltd. Method for manufacturing electrode for battery
DE2907262A1 (de) * 1979-02-24 1980-09-04 Deutsche Automobilgesellsch Geschlossene wartungsfreie zelle bzw. batterie
EP0022409A2 (fr) * 1979-07-06 1981-01-14 SORAPEC SA Société de Recherches et d'Applications Electrochimiques Structure d'électrodes pour générateur électrochimique
FR2548459A1 (fr) * 1983-06-29 1985-01-04 Rech Applic Electrochimique Electrode plastifiee de cadmium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170818A (en) * 1960-10-14 1965-02-23 Varta Ag Sealed miniature storage battery
JPS53142630A (en) * 1977-05-18 1978-12-12 Sanyo Electric Co Method of manufacturing cadmium electrode for alkaline battery
JPS5738568A (en) * 1980-08-20 1982-03-03 Matsushita Electric Ind Co Ltd Air-tight alkali storage battery
JPS5796463A (en) * 1980-12-05 1982-06-15 Matsushita Electric Ind Co Ltd Manufacture of cadmium electrode for sealed alkaline storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1560924A (fr) * 1967-05-05 1969-03-21
DE1814650A1 (de) * 1967-12-14 1969-07-03 Matsushita Electric Ind Co Ltd Alkalische Batteriezelle
US3630781A (en) * 1968-07-03 1971-12-28 Gen Electric Process of forming rechargeable electrodes utilizing unsintered fluorocarbon binder
US4217939A (en) * 1977-10-20 1980-08-19 Matsushita Electric Industrial Co., Ltd. Method for manufacturing electrode for battery
DE2907262A1 (de) * 1979-02-24 1980-09-04 Deutsche Automobilgesellsch Geschlossene wartungsfreie zelle bzw. batterie
EP0022409A2 (fr) * 1979-07-06 1981-01-14 SORAPEC SA Société de Recherches et d'Applications Electrochimiques Structure d'électrodes pour générateur électrochimique
FR2548459A1 (fr) * 1983-06-29 1985-01-04 Rech Applic Electrochimique Electrode plastifiee de cadmium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647268A1 (fr) * 1989-05-16 1990-11-23 Accumulateurs Fixes Accumulateur nickel-cadmium a maintenance reduite
US5128217A (en) * 1989-05-16 1992-07-07 Saft Reduced maintenance nickel-cadmium storage cell

Also Published As

Publication number Publication date
FR2559622B1 (fr) 1986-09-12
FR2559622A1 (fr) 1985-08-16

Similar Documents

Publication Publication Date Title
CH615298A5 (fr)
EP0666608B1 (fr) Générateur électrochimique secondaire à électrolyte aqueux sans maintenance
EP3072175B1 (fr) Batterie à électrode à air extractible
FR2504735A1 (fr) Dispositif de contact pour pile galvanique
EP1846980B1 (fr) Dispositif de recombinaison catalytique des gaz pour accumulateurs alcalins à anode de zinc abrege
EP0063982B1 (fr) Générateur électrochimique comprenant une électrode mince à gaz
AU6142890A (en) Rechargeable nickel electrode containing electrochemical cell and method
FR2715774A1 (fr) Elément accumulateur électrochimique.
US5752987A (en) Method for producing improved electrolyte-retention bipolar cells and batteries
FR2652950A1 (fr) Batterie secondaire alcaline etanche.
WO1985003600A1 (fr) Generateur electrochimique a element nickel-cadmium
EP0884791B1 (fr) Electrode de nickel empatée.
FR2727572A1 (fr) Batterie au lithium non aqueuse rechargeable ayant des elements electrochimiques empiles
EP1100137A1 (fr) Electrode non-frittée à support-tridimensionnel pour générateur électrochimique secondaire à électrolyte alcalin
FR3093380A1 (fr) Électrode pour dispositif de stockage de l’énergie rechargeable
FR2766973A1 (fr) Accumulateur ouvert de type industriel sans maintenance
FR2734950A1 (fr) Procede pour fabriquer l'electrode negative d'une batterie secondaire et batterie en resultant.
FR2858464A1 (fr) Dispositif de recombinaison catalytique des gaz pour accumulateurs alcalins a anode de zinc
JPH0325863A (ja) 内部積層形電池
EP1255313A1 (fr) Electrode non-frittée au nickel
JPH02253573A (ja) 空気電池
FR2749195A1 (fr) Procede pour fabriquer une plaque hydrophobe
FR2663162A1 (fr) Electrode rechargeable pour generateur electrochimique.
CH719130A2 (fr) Support pour une électrode d'une pile bouton et pile dotée de celui-ci.
WO2019043076A1 (fr) Électrode à réseau multiple de collecte de courant

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DE GB JP US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642