WO1984003228A1 - Hollow fibers for use in dialysis and artificial kidney - Google Patents

Hollow fibers for use in dialysis and artificial kidney Download PDF

Info

Publication number
WO1984003228A1
WO1984003228A1 PCT/JP1984/000050 JP8400050W WO8403228A1 WO 1984003228 A1 WO1984003228 A1 WO 1984003228A1 JP 8400050 W JP8400050 W JP 8400050W WO 8403228 A1 WO8403228 A1 WO 8403228A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
dialysis
hollow fiber
fiber
artificial kidney
Prior art date
Application number
PCT/JP1984/000050
Other languages
English (en)
French (fr)
Inventor
Juuro Aoyagi
Kazuaki Takahara
Yukio Seita
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to GB08425065A priority Critical patent/GB2145938B/en
Priority to DE8484900873T priority patent/DE3477740D1/de
Publication of WO1984003228A1 publication Critical patent/WO1984003228A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes

Definitions

  • the present invention relates to a hollow fiber for dialysis and an artificial kidney using the same. More specifically, the present invention relates to a hollow fiber for dialysis used for an artificial kidney device having an excellent dialysis effect.
  • hollow fibers for dialysis include (1) a uniform wall thickness of several to 60 m over the entire weave and the entire circumference. Hollow fiber having a uniform perfect circular cross section with a diameter of 10 to several hundred TOs and continuously penetrating the entire length of the fiber oriented and stretched (Japanese Patent Publication No. 50 — 40, No. 68) (2) Regenerated copper ammonia fiber in which the component closer to the outer surface in the cross-sectional structure has a denser porous structure than the component closer to the inner surface and the intermediate portion. Hollow man-made fiber body (Japanese Patent Publication No.
  • the bundle of the hollow fiber is introduced into a tubular main body provided with an inlet pipe and an outlet pipe near both ends, respectively. After that, both ends are sealed together with both ends of the tubular body with a resin such as polyurethane, respectively.
  • a seal in a mature exchanger and an end tube are used. It has a configuration similar to that of the type device.
  • hollow fibers are manufactured by extruding an ammonia cellulose spinning stock solution into a gaseous atmosphere, allowing it to fall under its own weight, and then immersing it in a coagulation solution to coagulate and regenerate. As it falls through the gaseous atmosphere, ammonia separates to some extent and begins to solidify from the surface. Therefore, get The hollow fibers to be obtained vary in degree depending on the manufacturing method, and in any case, skin is formed on the outer surface, so that the inner and outer surfaces and the inside thereof cannot be homogeneous. For example, the measurement result by the electron micrograph of the hollow fiber according to the above ("1) is about 1,
  • a hollow fiber having a thin skin on the outer surface and a void on the inner surface is used for dialysis of blood, for example, as an artificial kidney device, Not only does the formation of blood clots easily cause formation of blood clots and blood cells, etc. due to the above-mentioned pods, and the dialysis effect is not sufficient.
  • the separation of the molecular weight components was not sufficient, and the water removal ability was not sufficient.
  • the hollow fiber was not sufficient in dialysis effect and water removal ability.
  • the film thickness had to be reduced, which had the disadvantage that the mechanical strength was further reduced.
  • Hollow fibers that have been excessively stretched during the manufacturing process do not exhibit sufficient dialysis and water removal capabilities, and are, for example, autoclay when used in the above-mentioned artificial kidney device.
  • hollow fibers fixed with potting agents at both ends of the tubular body shrink as they ripen and become tensed. In extreme cases, and in extreme cases,
  • an object of the present invention is to provide a novel hollow fiber for dialysis. Another object of the present invention is to provide an artificial kidney device having an excellent dialysis effect.
  • a hollow fiber for dialysis consisting of a copper ammonia cellulose fiber having a hollow portion continuously penetrating through the entire length of iron and irons, which is characterized by being a podless.
  • the present invention provides a steel sheet having a tensile strength of 10 to 30 kg / inffl2 (dry state: leaving steel in a room at a relative humidity of 6596 and a humidity of 20 to 8 to 24 hours for observation with an electron microscope. And the process moisture is adjusted to be 11%).
  • the present invention is a hollow fiber for dialysis, wherein the expansion and contraction ratio at a temperature of 121 and a relative humidity of 10096 is + 1.05.0%.
  • the present invention is a hollow fiber for dialysis, wherein the maximum molecular weight cut-off at 9596 is about 40,000.
  • the present invention is a dialysis hollow fiber having a wall thickness of 100 to 20 jw ni, an outer diameter of 100 to 300 ⁇ m, and a skin layer thickness of 200 A or less on the outer surface. Further, the present invention has a low tensile strength.
  • WIFO It is a hollow fiber for dialysis that is 15 to 25 kg / Dim 2 in a dry state. Furthermore, the present invention is a hollow fiber for dialysis, which has an expansion / contraction ratio of 03.096 at a temperature of 121 and a relative humidity of 100%. The present invention is the hollow fiber for dialysis, which has a binding strength of 10 to 30 kg / mm 2 in a dry state.
  • the present invention has a true circular cross section having a wall thickness of 5 to 35 Ai and an outer diameter of 50 to 500 W over the entire fiber length and the entire circumference.
  • the transmittance of the chromium G having an average molecular weight of 100 is 20 to 40% and the maximum molecular weight cutoff of 95596 is about 40,000.
  • It is a hollow fiber for dialysis consisting of copper ammonia cellulose woven having a continuous hollow space.
  • the present invention is a hollow fiber for dialysis, wherein the inner surface is substantially podless.
  • the present invention is a hollow fiber for dialysis, wherein the tensile strength of the hollow fiber is 10 to 30 kg / mm 2 in a dry state.
  • the present invention is a hollow fiber for dialysis, wherein the hollow fiber has a stretch of + 1.0-5.0% at a temperature of 12 ° and a relative humidity of 10096.
  • the present invention is also a hollow fiber for dialysis, which has a transmittance of about 30% for a titchrome C having an average molecular weight of 12,400.
  • the present invention also has a true circular cross section having a wall thickness of 5 to 25 ⁇ m and an outer diameter of 50 to 500 ⁇ m over the entire fiber length and the entire circumference,
  • the ultrafiltration amount is more than 4.2 (m £ / ⁇ g * hr * ra) and the maximum molecular weight cut-off of 95 is 96, and the molecular weight of 96 is about 40,000.
  • Continuous over the entire fiber length This is a hollow steel for permeation consisting of ammonia cellulose fiber with a hollow part.
  • the present invention is a hollow fiber for dialysis, wherein the inner surface is substantially podless.
  • the present invention is a hollow fiber for dialysis, wherein the hollow fiber has a tensile strength of 10 to 30 kg / mm 2 in a dry state.
  • the present invention is a hollow fiber for dialysis, wherein the hollow fiber has a degree of 121 and an expansion / contraction ratio at a relative humidity of 10096 is +1.05.0096.
  • the present invention has a perfect circular cross section having a wall thickness of 5 to 35 ⁇ m and an outer diameter of 50 to 5 OO ⁇ over the entire fiber length and the entire circumference,
  • the skin layer has a thickness of 300 A or less and an inner surface is substantially voidless and has a hollow portion continuously penetrating the entire fiber length.
  • Ammonia cellulose fiber A hollow fiber bundle composed of a large number of hollow fibers for dialysis is inserted into a housing having a blood inlet and a blood outlet, and both ends of the bundle are fixed to the housing with a potting agent. The blood inlet and outlet are connected to each other.
  • the present invention provides an artificial kidney in which the hollow fiber has a tensile strength of 10 to 30 kgZ ⁇ 2 in a dry state. Further, the present invention provides an artificial kidney having a hollow fiber having a temperature of 121 and an expansion / contraction rate of + 1.05.0% at a relative humidity of about 100%. The fibrils are artificial kidneys with a maximum molecular weight cut off of about 40,000 with an inhibition rate of 95%.
  • the present invention relates to a method for producing a container having a wall thickness of 10 to 20 ⁇ u, an outer diameter of 100 to 300 ⁇ ii and An artificial kidney rattan having a skin layer thickness of 200 A or less on the outer surface.
  • the present invention provides that the bow I tension strength is 15 to 2 in a dry state.
  • the hollow fibers have a degree of expansion of 121 and a stretching ratio of 0 to 1 at a relative temperature of 100%.
  • the present invention relates to an artificial kidney having a binding strength of 10 to 30 kg / mm 2 in a dry state.
  • the present invention has a total fiber length of 5 to 35 m over the entire circumference. It has a perfectly circular cross section with a wall thickness of 50 and 500-500 m
  • the maximum molecular weight cut-off of the chromatogram C having an average molecular weight of 12 and 400 is 20 to 40% and the rejection is 95%.
  • the number of hollow fibers for dialysis consisting of copper ammonia cellulose fiber having a continuous hollow portion over the entire fiber length characterized in that it is 40,000
  • the hollow fiber bundle is inserted into a housing having a blood inlet and a blood outlet near both ends, and both ends of the bundle are potted with a potting agent.
  • the present invention relates to an artificial kidney fixed to a blood vessel and communicating with the blood inlet, and the present invention is a human kidney whose inner surface is substantially voidless.
  • the present invention relates to a human kidney in which the hollow fiber has a tensile strength of 10 to 30 kg / mm 2 in a dry state.
  • the hollow fiber has a temperature of 1 2 1 and a relative humidity of 100.
  • % Is an artificial kidney having an expansion / contraction ratio of +1.0 to 5.096.
  • the present invention is a human kidney having a transmittance of about 30% of a cytochrome C having an average molecular weight of 12,400.
  • the present invention is applied to the entire head and the entire periphery.
  • a hollow woven fabric consisting of a large number of hollow fibers for transparencies made of copper ammonia cellulose having a continuous hollow part over the entire chairman, characterized by being 0,000.
  • the bundle of fibers is inserted into a housing having a blood inlet and a blood outlet near both ends, and both ends of the bundle are fixed to the housing with a potting agent, and the blood inlet and outlet are fixed.
  • This is an artificial kidney in which the parts are communicated.
  • the present invention is an artificial kidney in which the inner surface is substantially podless.
  • the present invention is an artificial kidney having a hollow fiber having a tensile strength of 10 to 30 kg / mm 2 in a dry state.
  • the hollow fiber has a temperature of ⁇ 2 1 ⁇ and a relative humidity of ⁇ 0 0
  • % Is an artificial kidney having an expansion / contraction ratio of +1.0 to 1.5,0%.
  • the housing may have any shape such as a cylinder, a square cylinder, an elliptical cylinder, and a flat cylinder, and is not limited.
  • the inlet and outlet can be used as blood port and dialysate port by changing the direction of flow.
  • FIG. 1 is a schematic sectional view showing one embodiment of a manufacturing apparatus for manufacturing a hollow fiber according to the present invention
  • FIG. 2 shows a vertical cross-sectional view of the hollow fiber according to the present invention.
  • FIG. 3 is an electron micrograph showing an inner surface of the hollow fiber according to the present invention.
  • Fig. 4 is an electron micrograph showing the structure of a longitudinal section of a conventional hollow fiber
  • Fig. 5 is an electron micrograph showing the ⁇ ⁇ of the inner surface of a conventional hollow fiber.
  • Fig. 6 is an electron micrograph showing the structure of a longitudinal section of another conventional hollow fiber.
  • Fig. 7 is an electron micrograph showing the structure of the inner surface of another conventional hollow fiber.
  • Fig. 8 is a graph showing the relationship between the permeability coefficient and the molecular weight. The best mode for carrying out the invention.
  • the hollow fiber according to the present invention has a wall thickness of 5 to 35 jwm, preferably 10 to 20 ⁇ m, and preferably 50 to 500 ⁇ m, preferably: 100-300 ⁇ m with a perfect circular cross section with an outer diameter of 300 mm, and a skin layer on the outer surface with a thickness of 300 A or less, preferably 200 A or less, and more preferably a 20,000 ⁇ electron microscope, which is substantially free of a skin layer and whose inner surface is substantially free of It is a hollow fiber for dialysis consisting of copper ammonia cellulosic fiber having a hollow portion penetrating the gun over the entire fiber length that is the resin.
  • the hollow fiber may have a dry standard of 300 A or less, preferably 200 It has a skin layer with a thickness of A or less.
  • the hollow outfit according to the present invention does not substantially have the pod.
  • the micropair structure slightly changed from the surface to the inside, and there was a layer on the surface that was thick enough to be observed under a microscope, and this was read as the skin layer.
  • the skin layer has a different property from the interior, and is a part where the S-row of the molecule is good.
  • the inside is generally called a core.
  • the pores are of a size such that the naked eye can confirm them from a microscopic size, and have a general hollow shape that is a hole contained in a polymer material.
  • the hollow fiber has a tensile strength of 10 to 30 kg / dry when dry.
  • mni2 preferably between 15 and 25 kg / mm2, in the wet state between 0.5 and 5.0 kg / min2, preferably between 1.0 and 3.0 kg
  • the hollow fiber has a maximum molecular weight cut-off of about 40,000 at an inhibition rate of 9596.
  • Knot strength is 1 0 ⁇ 3 0 kg / m 2 in a dry state, Ri good or to rather is 1 5 ⁇ 2 5 kg / mm2 der, from 0.5 to 5 in the wet state.
  • the hollow fiber has an average molecular weight of 12,400.
  • the transmittance of the thin chromium C is 20 to 40%, preferably about
  • a method for producing a hollow fiber according to the present invention will be described with reference to the drawings. That is, as shown in FIG. 1, in a bath 2 provided with a non-coagulating liquid tank 1 at the bottom, a halogenated carbonized material is formed as a lower layer in the non-coagulating liquid tank 1.
  • the non-coagulable liquid 3 which is made of hydrogen and has a lower specific gravity than the non-coagulable liquid as the upper layer, and has a lower specific gravity than the non-coagulable liquid.
  • the coagulating liquid 4 is supplied to the stock spinning solution to form a two-layer bath solution.
  • the cellulosic spinning stock solution 6 in the stock solution storage tank 5 is pumped by a pump (for example, a gear pump) 7 from a conduit 8 to a filter 9, and after being filtered, a spinneret. It is directly pushed into the lower non-coagulable liquid 3 from an annular spinning hole (not shown) provided in an upward direction of the device 25. At that time, the non-coagulable liquid 11 corresponding to the spinning dope stored in the internal liquid storage tank 10 was supplied as an internal liquid to the flow meter 12 by a natural head. The liquid is supplied to the spinneret device 25 from a conduit 13, introduced into the central part of the annularly extruded stock solution for circular spinning 14, and discharged.
  • a pump for example, a gear pump
  • the linear spinning dope 14 extruded through the circular spinning hole proceeds upward in the lower non-coagulating liquid 3 without coagulating without containing the non-coagulating liquid 11 therein.
  • the head pressure of the non-coagulable liquid 3 and the coagulable liquid 4 above the circular spinning hole is received, and the linear spinning stock solution 14 is further affected by the specific gravity difference from the non-coagulable liquid. Receive buoyancy
  • the constant temperature circulating liquid 19 is supplied to the bathtub 2 from the supply bath 18 and discharged from the discharge port 20 so that the coagulating liquid 4 has a predetermined humidity.
  • the clotting liquid 3 is discharged from the discharge port 21 through the valve 22.
  • the coagulating liquid 4 is discharged from the discharge port 23 through the valve 24 after use or during liquid exchange.
  • the cellulose-based spinning solution used in the method of the present invention is a metal ammonia cellulose such as copper ammonia cellulose.
  • a metal ammonia cellulose such as copper ammonia cellulose.
  • Various types of cellulose can be used, and for example, those having an average degree of polymerization of 500 to 250 are preferably used.
  • the copper ammonia cellulose solution is prepared by a conventional method. For example, first, an aqueous solution of copper ammonia is prepared by mixing aqueous ammonia, an aqueous solution of basic copper sulfate and water, and an antioxidant (for example, sodium sulfite) is added thereto.
  • an antioxidant for example, sodium sulfite
  • the raw material cellulose is charged and dissolved by stirring, and furthermore, an aqueous solution of sodium hydroxide is added to completely dissolve the undissolved cellulose and the copper ammonia cellulose is dissolved. Obtain a solution to this copper ammonium cellulose solution. May be further coordinated by mixing a permeation control agent.
  • Such a spinning stock solution usually has a specific gravity of 1.05 to 1.5, preferably 1.06 to 1.10. However, since the non-coagulable liquid is filled in the linear spinning solution extruded from the spinning hole as described later, the specific gravity is usually smaller than that of the spinning solution. And it is from 1.00 to 1.08, preferably from 1.01 to 1.04.
  • the non-coagulable liquid for the cellulose-based spinning liquid used as the base is the bulk specific gravity of the linear spinning liquid [the spinning liquid containing the non-coagulating liquid (internal liquid)]. It is a halogenated hydrocarbon that has a higher specific gravity than coagulating liquid, has low solubility in water, and has low surface tension, and its specific gravity is usually 1. 3 or more, preferably from 1.4 to 1.7.
  • carbon tetrachloride (d 1.632, water solubility 0.089 ⁇ 20 ⁇ -100 ⁇ ), surface tension (25 ° C) 26.
  • non-coagulable liquids include, for example, tetrachlorethylene, trichlorethylene, and the like.
  • the non-coagulating liquid height No.
  • the distance L! In FIG. 1 differs depending on the spinning speed, but is usually 50 to 250 mm, preferably 100 to 200 mm.
  • the selection of the non-coagulable liquid (internal liquid) to be introduced and filled into the linear filament stock solution has a great effect on the maintenance of the hollow portion of the hollow fiber or the presence or absence of irregularities on the hollow fiber wall surface. That is, when the non-coagulable liquid filled in the hollow portion suddenly goes outside through the membrane during drying of the hollow portion, the inside of the hollow portion is decompressed, and the hollow portion collapses, or the hollow portion is formed. Produces irregularities. And used
  • the coagulating liquid is selected from liquids having low permeability and low specific gravity when dried. That is, the specific gravity of the cellulosic spinning stock solution is usually "1.05 to 1.15, for example, about 1.08 in the case of copper ammonia cellulose spinning stock solution, so that the non-coagulable liquid is included.
  • the non-coagulable liquid has a bulk specific gravity of 1.00 to 1.08, preferably 1.01 to 1.04, for example, about 1.02.
  • the specific gravity should be chosen, usually between 0.65 and 1.00, preferably between 0.70 and
  • isopropyl oil, kerosene, benzene, tolene, xylene, styrene, and ethylbenzene.
  • the coagulating liquid for the cellulose-based spinning dope has a lower specific gravity than the non-coagulating liquid in the lower layer as described above, and usually has a specific gravity of 1.03 to 1.10.
  • This is an alkaline aqueous solution.
  • the distance from the interface with the liquid to the end of the deflecting rod (the distance 2 in FIG. 2) is usually 5 to 30 mm, preferably 10 to 20 mm.
  • a spinning speed of about 3 Om / min or more, in particular, a water solubility of less than 100 for 0.05 g of Z21 and about 20 dyne / cm or less If a non-coagulating liquid having a surface tension of the above is used, a spinning speed of about 38 m min or more, especially about 55 m / min or more can be obtained.
  • the hollow fiber thus coagulated and regenerated is washed with water to remove the coagulating liquid adhering thereto, and then remains in the hollow steel if necessary.
  • OMPI to remove metals such as copper It is treated with metal and then washed with water.
  • the metal removal treatment is usually performed by immersing in a dilute sulfuric acid solution or a nitric acid solution having a degree of oxidation of 3 to 30%.
  • the hollow steel removes the controlling agent in the alcoholic coagulating solution and removes the controlling agent.
  • micropores corresponding to the molecular weight of the used polymer are formed on the hollow fiber tube wall.
  • the hollow steel after the water washing or after the removal of the permeation control agent may be treated with warm water at 35 to 100, preferably 50 to 80, as necessary.
  • it is plasticized using an aqueous solution of glycerin having a concentration of 1 to 10 and 96, preferably 2 to 5% by weight, and the remaining copper, medium and low molecular weight cellulose, etc. Is removed, dried, and then wound up to obtain a desired hollow space.
  • a 5% aqueous ammonia solution was prepared by suspending 540 g of basic copper sulfate in 2,5549 aqueous ammonia solution, and a 10% aqueous sodium sulfite solution was added thereto. 690 g was added.
  • OMPI (R 0) Add 2100 g of water and dissolve the mixture by stirring, then add 10% sodium hydroxide aqueous solution 1 and 2339 and add copper ammonia cellulosic solution. An aqueous solution (specific gravity 1.0 Og) was prepared and used as a spinning stock solution.
  • 1,1,1-trichloroethane is supplied as a non-coagulating liquid 3 to a non-coagulating liquid tank 1 of a bathtub 2. Then, a lower layer was formed, and then an aqueous sodium hydroxide solution having a concentration of 503 / i was supplied as a coagulating liquid to form an upper layer.
  • the spinning solution 6 is fed from the stock solution storage tank 5 through a filter 9 to a spinneret device 25 equipped with an annular spinning hole facing upward. The spinning solution is fed through the spinning hole at a nitrogen pressure of 5 kgZcm 2 .
  • the liquid was directly discharged into the non-coagulating liquid 3 having a liquid temperature of 20 ⁇ 2 C in the lower layer.
  • the hole diameter of the spinning hole is 3.8 mm, and the discharge rate of the spinning stock solution (cel 7.8%, 1. OOP (vise) (20 "C>) is 5.864 Z minutes.
  • isopropyl myristate (specific gravity 0.854) was introduced from the noncoagulable liquid introduction pipe 13 attached to the spinneret 25, and the wire was introduced.
  • the diameter of the steam inlet tube was 1.2 mm, and the discharge rate of isopropyl myristate was 1.5 TOJ3 ⁇ 4 / min.
  • the discharge stock solution (containing a non-coagulable liquid) 14 (specific gravity 1.026) is raised to 1,1,1-trichlorotriethanol.
  • the hollow fiber obtained in this way had a wall thickness of about 12.5 and an outer diameter of about 22.5 ⁇ m.
  • Fig. 2 shows a photograph of a cross section of this hollow fiber taken with a scanning electron microscope-735FC (manufactured by JEOL Ltd.) at a magnification of 200,000. The outer surface was virtually skinless. Further, a photograph of the inner surface of this hollow fiber taken at a magnification of 20,000 by the scanning electron microscope was substantially voidless as shown in FIG. Further, the tensile strength of the hollow fiber according to JISL 1770 is 16 kg / mm 2 in a dry state, 1.9 kg / ram 2 in a wet state, and the knot strength is 1 kg in a dry state. in 6 ⁇ mm 2, 1 in the wet state.
  • a hollow fiber was obtained at 180 m / min.
  • the hollow steel obtained in this way has a wall thickness of about 13.5.
  • the outer diameter is about 250 ⁇ , and the scanning electrons on the outer surface
  • the tensile strength is 1 in the dry state.
  • the weight was 9 kg / mm 2 and the weight was 2.5 kg / mni 2 in a wet state.
  • the nodule strength is 19 mm 2 in the dry state and wet
  • the expansion ratio was _0.8%.
  • the draft ratio was 98.
  • the wall thickness was 11 Tit
  • the outer diameter was 200 ⁇ TO
  • the effective membrane was
  • the thickness of the skin was about 420 A.
  • a commercial artificial kidney using hollow fibers (trade name: AM-10 (H) manufactured by Asahi Medical Co., Ltd.) was tested by the same method as in Example 1. , Wall thickness 15 ⁇ , outer diameter
  • Example 1 The hollow fiber obtained in Example 1 and 7,600 pieces of commercially available hollow fiber (approximately 165 mm) were used as a tubular piece of polycarbonate resin.
  • Vitamin B 16 0 Direct absorbance method
  • the degree of roughness was increased.
  • the average value was taken as the measured value.
  • the measurement of the excess amount is performed under a steady state filter.
  • the liquid was collected by a measuring cylinder and measured.
  • Filtrate is a solution of circulating fluid
  • An artificial kidney was manufactured by incorporating it into the body and filling both ends with a polymer potting agent and fixing it. That is, an artificial kidney prepared using Example 1 and Comparative Examples 1 and 2, and a commercially available artificial kidney (AM-10, AM-80) prepared using a hollow fiber. Were added as Comparative Examples 3 to 4 to prepare a total of 5 types. After sterilizing these artificial kidneys with ethylene oxide gas, the rejection and permeation of each solute were measured. .
  • OMPI Table 2 shows the results, and the rejection was as shown in Table 3 according to the following definitions.
  • curve A represents the hollow fiber of Example 1
  • curve B represents the comparative example 1
  • curve C represents the comparative example 2
  • curve D represents the comparative example 3
  • curve E represents the hollow fiber of comparative example 4, respectively.
  • Comparative Example 4 6.2 X0 The hollow woven fabric according to the present invention has a higher transmittance to inulin and cytochrome G than the hollow fibers of Comparative Examples 1 to 4, and has a weight average molecular weight. 5,000 to 200,000 substances are easily permeated. It is considered that the transmittance of the photochromic C is preferably around 30%, that is, 20 to 40%. 3 sufficient 'rather than a ⁇ is less than 0%, or 4 0% over the Ri average pore size of Na greater of the total, it is ZJ 1 5 which risk is that albumin is transmitted.
  • the amount of ultrafiltration [UFR (.LMtraFiI trationRate)] was determined.
  • Comparative Example 43.6 The product of the present invention is the most excellent in water removal ability. The fifth
  • the UFR is 4.2 at the lowest, and if it is 4.2 or more, water is removed.
  • the present invention can be applied to the whole steel and all around.
  • the inner surface should be substantially podless.
  • a hollow fiber for dialysis consisting of ammonia cellulose cellulose
  • the hollow fiber of the present invention has a tensile strength of 10 to 30 kg / mm2, the wall thickness can be reduced, and the permeation effect is also increased in this respect. It can be done. Furthermore, since the hollow steel of the present invention has an elongation of + 1.0.5.0% at a temperature of 121 G and a relative humidity of 100%, the heat trap sterilization is performed. Can be performed. Further, since the hollow fiber of the present invention has a maximum molecular weight cutoff of about 40,000 at a rejection ratio of 9596, it can transmit even relatively high molecular weight substances such as cytochrome C. And go out.
  • the present invention also provides a perfect circular cross-section of a wall of 5 to 35 ⁇ m and an outer diameter of 50 to 500 ⁇ ⁇ over the entire length and the entire circumference.
  • Surface, and the skin layer on the outer surface has a thickness of 30 OA or less, and the inner surface is substantially a podless material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • External Artificial Organs (AREA)

Description

明 細 透析用 中空繊雜お よ び人工腎臓 技術分野
本発明 は、 透析用 中空繊雜お よ びそれを用 いた人工腎贜 に 関 するも のである 。 詳 し く 述べ る と 、 透析効果に優れた 人工 腎臓装置等に 使用 さ れる透析用 中空繊維に 関するちの である 。
先行技術
最近、 浸透作用 、 限外遽過作用等を利用 する人工 腎贜装 置の発展はめざま し く 、 医療界に おいて広 く 使用 さ れて い る 。 し か し て 、 こ の よ う な人工 腎朦装置 に お い て は極め て 細い透析用 中空繊維が最も重要な部材 と な っ て いる 。
透析用 中空耩維の代表的なも の と し て は 、 ( 1 ) 全織維 長な らびに全周囲 に わ た っ て数 ^ ない し 6 0 ^ mの均一 な壁厚およ び外径 1 0 ない し数百 TOの均一 な真円形 の横断面を有 し 、 かつ延伸配向さ れて なる全繊維長にわた つ て連統貫通 し た 中空糸 ( 特公昭 5 0 — 4 0 , 6 8号 ) ( 2 ) 断面構造 に おい て外表面に近い構成部分が内面に近 い構成部分お よ び中間部分 に比べて密な多孔構造に耝成さ れて なる銅 アンモニ ア再生繊維素か ら なる 中空人造繊維体 〈 特公昭 5 5 — 1 , 3 6 3号 ) 、 ( 3 ) 中空 コ アを有する 銅 ア ンモニ ア再生セル ロ ー ス管状体の湿潤時に おける電子 顕微鏡的観察において 、 横断面な らびに縦断面の全体が大 きく とも 2 0 0 A 以下の微細間隙を有する実質上均質かつ 截密な多孔構造体からな り 内外表面ともスキン レスで平滑 な表面性状を有する銅 アンモニア再生セルロ ースからなる 透析用中空幾維 ( 特鬨昭 4 9 一 1 3 4 , 9 2 0号) 等があ る。 しか し て、 これらの中空鐵維は、 いずれも親 アンモニ ァセルロ ース紡糸原液を環状紡杀孔から空気中 に押出 し、 その下方に自重落下させ、 その際、 線状に紡出される紡糸 原液の内部中央部に該紡糸原液に対する非凝固性液体を導 入充填し て吐出させ、 それから自重落下によ り充分延伸 し たのち 、 希硫酸溶液中に浸潰 し凝固再生を行なう こ とによ り製造さ れている。
これら の中空鐵維を用いて人工腎臓装置等のよう な透析 装置を作るに は、 例えば両端部付近に入口管および出口管 をそれぞれ設けてなる管状本体に 、 前記中空纖維の束を掙 入したのち 、 その両端をポ リ ウ レタ .ン等の樹脂で前記管状 本体の両端部と ともにそれぞれシールするこ と に よ り行な われ、 例えば熟交換器におけるシ I ル ♦ アン ド · チュ ーブ 式装置に類似 した構成のもの とされている。
しか しなが ら 、 これらの中空織維は、 いずれも鋦アンモ ニァセルロ ース紡糸原液をガス状雰囲気中に押出 して自重 落下させたのち に、 凝固液中に浸漬して凝固再生 して製造 されるので、 ガス状雰囲気中を落下する間にアンモニアが ある程度分離して表面から凝固 し始める。 したが っ て、 得 ら れる中空锇維はその製法に よ っ て程度の差 こそ あれ、 い ずれも外側表面に ス キ ンが生成する ので 、 内外両表面部お よび内部が均質なもの は得 ら れない 。 例えば前記 ( "1 ) に よ る中空繊維の電子顕微鏡写真に よ る測定結果 は 、 約 1 ,
3 0 0 A 程度のポイ ドの生成も認め ら れる 。 こ の よ う なポ イ ド生成の原因 は正確 に は不明であ るが、 恐 ら く ガス状雰 囲気落下中 に生成する前記スキ ンの た め に ア ン モニ アの均 一な揮散が困難に な り 、 1 種の突沸 に よ り 前記ポ イ ドが生 成するもの と思われる 。
し かる に 、 こ の よ う な外側表面に薄いスキ ンお よ び内側 表面にポ イ ド を有 ^る中空繊維を 、 例えぱ人 工腎臓装置 と し て血液の透析を行な う と 、 血栓を生 じや す く かっ血球等 の有形成分が前記ポィ ドの た め に 損傷を受けや す く な る ば か り でな く 、 透析効果も溝足すべき もので はな く 、 中分子 量成分の分離が充分でな く 、 ま た 除水能も充分で なか っ た 例 え ば、 前記中空繊維 は透析効果お よ び除水能が篛足すべ きもので は な い た め 、 膜厚を薄 く する必要が あ り 、 こ の た め さ ら に機械的強度が低下す る と い う 欠点が あ っ た 。 製造 過程に お い て過度の延伸を受け た 中空繊維は 、 充分な透析 効果お よ び除水能を示さ ず 、 ま た例え ば前記人工 腎臓装置 に使用 し た場合に オ ー ト ク レ ープ滅菌を行な う と 、 管状本 体の両端に おいて ポ ッ テ ィ ング剤で 固定 さ れて いる 中空鐵 維は熟に よ り 収縮するので緊張 し 、 こ れが透析液の チ ャ ン ネ リ ングの一因 と もな り 、 極端な場合に は前記ポ ッ テ ィ ン
_ O PI く^ ¾ ^ 牛 グ剤が中心部に向う に したが っ て湾曲 し、 これが残血の原 因となる場合もある。
したが っ て、 本発明の目的は、 新規な透析用中空鐵維を 提供するこ と にある。 本発明の他の目的は、 透析効果に優 れた人工腎贜装置を提供するこ と にある。
発明の開示
これらの諸目 的は、 全鐵雜長な らびに全周囲にわた っ て、
5〜 3 5 ^饥の壁厚および 5 0〜 50 0 の外径の真円 形横断面を有し、 かつ外部表面のスキン層はその厚さが 3 00 A以下で、 内部表面は実質的にポィ ド レスであるこ と を特徴とする全鐵雑長にわた っ て連読貫通 した中空部を有 する銅アンモニアセルロ ース織維よ り なる透析用中空織維 に よ り達成される。
また 、 本発明は、 引張り強度が 1 0〜 3 0 kg/ inffl2 (乾 燥状態 : 電子顕微鏡で見るため に鐵維を相対湿度 6 596、 湿度 2 0での室内に 8〜 2 4時間放置 し、 工程水分率が 1 1 %となる よ う に調整) である透析用中空繊維である。 さ ら に、 本発明は温度 1 2 1 で 、 相対湿度 1 0 096における 伸縮率が + 1 . 0 5 . 0 %である透析用中空繊維であ る。 また 、 本発明は、 阻止率 9 596の最大分画分子量が約 4 0 , 0 00である透析用中空織維である。
本発明は壁厚が 1 0〜 2 0 jw ni 、 外径が 1 00〜 3 00 ^ m でかつ外部表面のスキン層の厚さが 200 A以下である 透析用中空截維である。 ま た、 本発明は、 引張り強度が乾
O PI
、 WIFO 燥状態で 1 5〜 2 5 kg/ Dim2 である透析用 中空耩維であ る 。 さ ら に 、 本発明 は 、 温度 1 2 1 で 、 相対湿度 1 0 0 %に お ける伸縮率が 0 3 . 096である透析用 中空纖雜である 。 本発明 は 、 結束強度が乾燥状態で 1 0〜 3 0 kg/ mm2 であ る透析用 中空繊維であ る 。
本発明 は 、 全纖雜長な ら びに全周 囲 に わた っ て 5〜 3 5 Ai の壁厚お よび 5 0〜 5 0 0 W 外径の真円形横断面を 有 し 、 1 2 , 4 0 0の平均分子量を有する チ 卜 ク ロ ム Gの 透過率が 2 0〜 4 0 %でかつ 阻止率 9 5 96の最大分画分子 量が約 4 0 , 0 0 0で ある全繊維長に わた っ て連続 し た 中 空部を有する銅 ア ン モ ニ ア セル ロ ー ス繊雑に よ り なる透析 用 中空織維である 。 ま た 、 本発明 は 、 内部表面が実質的に ポィ ド レスである透析用中空鐵維であ る 。 さ ら に 、 本発明 は 、 中空繊維 はそ の 引 張 り 強度が乾燥状態で 1 0〜 3 0 kg / mm2 である透析用中空繊雑である。 本発明 は、 中空繊雑 は湄度 1 2 Ό , 相対湿度 1 0 096に おけ る伸縮率が + 1 . 0 — 5 . 0 %である透析用 中空繊維である 。 本発明 は、 ま た 1 2 , 4 0 0の平均分子量を有す る チ 卜 ク ロ ム Cの透過 率が約 3 0 %である透析用 中空繊維であ る 。
ま た 、 本発明 は 、 全繊維長な らびに全周囲 にわた っ て 5 〜 2 5 ^ m の壁厚お よ び 5 0〜 5 0 0 ^ m の外径の真円形 断面を有 し 、 限外瀘過量が 4 . 2 ( m £ / πιιπΗ g * hr * ra ) 以上であ っ て かつ 阻止率 9 5 の 96最大分画分子量が約 4 0 , 0 0 0て あ る こ と を特徴 と する全繊維長にわ た っ て連続 し た中空部を有する鋦アンモニアセルロ ース織維よ り なる透 析用中空鐵雜である。 さ ら に、 本発明は内部表面が実質的 にポィ ド レスである透析用中空纖雜である。 ま た本発明は 中空耩雜はその引張り強度が乾燥状態で 1 0〜 3 0 kg/ mm2 である透析用中空纖維である。 本発明は、 中空鎪維は 溫度 1 2 1 で 、 相対湿度 1 0096における伸縮率が + 1 . 0 5. 096である透析用中空截維である。
本発明は、 全繊雜長な らびに全周囲にわた っ て、 5〜 3 5 ^ mの壁厚および 5 0〜 5 O O ^ の外径の真円形横断 面を有し 、 かつ外部表面のスキン層はその厚さが 3 00 A 以下で、 内部表面は実質的にボイ ド レスであるこ とを特徴 とする全纖維長にわた っ て連続貫通 した中空部を有する鋦 アンモニアセルロ ース纖雜よ り なる透析用中空鐵維の多数 本からなる中空繊維の束を血液入口部および血液出口部を 有するハウジングに挿入し 、 かつ該束の両端をポ ッ テ ィ ン グ剤で前記ハウジングに固定 して該血液入口部 と 出口部 と を連通させた人工賢贜である。
ま た、 本発明は、 中空纖維はその引張り強度が乾燥状態 で 1 0〜 3 0 kgZ ηιιπ2 である人工腎臟である。 さ ら に、 本 発明は、 中空截維は温度 1 2 1 で、 相対湿度 Ί 0 0 %にお ける伸縮率が + 1 . 0 5. 0 %である人工腎藏である 本発明は、 中空截維は阻止率 9 5 %の最大分画分子量が約 40, 000である人工腎藏である。 ま た 、 本発明は、 壁 厚が 1 0〜 20 ^u 、 外径が 1 00〜 3 00 ^ii でかつ外 - 部表面のスキ ン層の厚さ が 2 0 0 A 以下で ある人工 腎籐で あ-る 。 さ ら に 、 本発明 は 、 弓 I張強度が乾燥状態で 1 5〜 2
5 kg/ mm2 であ る人工腎職で ある 。 本発明 は 、 中空繊雑は 溫度 1 2 1 で 、 相対温度 1 0 0 % に おける伸縮率が 0〜一
3 . 0 %であ る人工腎臓で ある 。 本発明 は、 結束強度が乾 燥状態で 1 0〜 3 0 kg / mm2 である人工 腎藏である 本 3¾ 明は、 全繊維長な ら びに 全周囲 にわ た っ て 5〜 3 5 m の 壁厚お よび 5 0〜 5 0 0 〃 m の外径の真円形橫断面を有 し
1 2 , 4 0 0 の平均分子量を有する チ 卜 ク ロ ム C の透過率 が 2 0〜 4 0 %でかつ 阻止率 9 5 %の最大分画分子量が約
4 0 , 0 0 0 である と を特徴 と する全繊維長に わ た つ て 連続 し た 中空部を有す る銅 ア ンモニ ァ セル ロ ー ス纖維 よ り なる透析用 中空繊維の多数本か ら なる中空繊雑の束を両端 部付近 に血液入口部お よ ぴ血液出口部を有するハ ウ ジ ング に挿入 し 、 該束の両端部をポ ッ テ ィ ング剤で前記ハ ウ ジ ン グに 固定 し て 該血液入口部 と を連通さ せ た 人工腎臓であ る ま た 、 本発明 は 、 内部表面が実質的 に ボ イ ド レスであ る人 ェ 腎臓である 。 さ ら に 、 本発明 は 、 中空鐵維 はそ の引 張 り 強度が乾燥状態で 1 0〜 3 0 kg / m m 2 であ る人 ェ 腎臓であ る 。 本発明 は 、 中空繊維 は温度 1 2 1 相対湿度 1 0 0
% における伸縮率が + 1 . 0〜一 5 . 0 96であ る人工 腎藏 である 。 ま た 、 本発明 は、 1 2, 4 0 0 の平均分子量を有 する チ 卜 ク ロ ム C の透過率が約 3 0 %であ る人 ェ 腎臓で あ る
RE ^
― O PI く ¾ ¾ ま た、 本発明は全耩雜長な らびに全周囲にわた っ て 5〜
2 5 m の壁厚おょぴ 5 0〜 5 0 0 ^ m の外径の真円形新 面を有し 、 限外 ¾過量が 4. 2 ( m J2 / raniH g · hr - ra 2 ) 以上であ っ て、 かつ阻止率 9 5 %の最大分画分子量が約 4
0 , 000であるこ とを特徴と する全議雜長にわ た っ て連 続 した中空部を有する銅アンモニアセルロ ース議雜よ り な る透折用中空縝維の多数本からなる中空織維の束を、 両端 部付近に血液入口部および血液出口部を有するハウジング に挿入 し、 該束の両端部をポ ッ テ ィ ング剤で前記ハウジ ン グに固定 して該血液入口部と出口部を連通させた人工腎贜 である。 さ ら に本発明は、 内部表面が実質的にポィ ド レス である人工腎臓である。 また、 本発明は中空議維はその引 張り強度が乾燥状態で 1 0〜 3 0 kg/ mm2 の人工腎贜であ る。 本発明は、 中空纖維は温度 Ί 2 1 Ό、 相対湿度 Ί 0 0
%における伸縮率が + 1 . 0〜一 5 , 0 %である人工腎隳 である。
前記ハウジングは、 円筒, 角筒, 楕円筒, 扁平筒等いか なる形状でもよ く 、 限定されるもので はない。 ま た、 入口 部おょぴ出口部は流れの方向を変える こ と に よ り血液甩ロ にもまた透析液用口にも使用できる。
図面の簡単な説明
第 1 図は本発明による中空耩維を製造するための製造装 置の一実施例を示す概略断面図、
第 2図は本発明に よる中空籍維の縦断面図の钽縝を示す
OMPI WIPO , 3 電子顕微鏡写真、
第 3図 は本発明 に よ る中空繊維の内部表面の耝鑌を示す 電子顕微鏡写真、
第 4 図 は従来の中空截維の縦断面の組織を示す電子顕微 鏡写真、
第 5 図 は従来の中空繊雑の 内部表面の耝耩を示す電子顕 微鏡写真、
第 6図 は他の従来の中空織維の縦断面の組耩を示す電子 顕微鏡写真、
第 7図 は他の従来の 中空纖維の内部表面の組織を示す電 子顕微鏡写真であ り 、 ま た
第 8 図 は透過係数 と 分子量 と の関係を示す グラ フで あ る 発明を実施する た め の最良の形態
本発明 に よ る 中空繊維 は 、 全鐵維長な ら びに全周囲 に わ た っ て 5〜 3 5 jw m 、 好 ま し く は 1 0〜 2 0 ^ m の壁厚お よび 5 0〜 5 0 0 ^ m 、 好 ま し く は : 1 0 0〜 3 0 0 ^ m の 外径の真円形の横断面を有 し 、 かつ外部表面の ス キ ン層 は その厚さ が 3 0 0 A 以下 、 好 ま し く は 2 0 0 A以下で 、 さ ら に好 ま し く は 2万倍の電子顕微鏡で実質的に ス キ ン層 が な く 、 内部表面 は実質的に ポ ィ ド レ スで あ る全繊維長 に わ た っ て連銃貫通 し た 中空部を有す る銅 ア ン モニ ア セルロ ー ス耩維よ り なる透析用 中空繊維であ る 。
該中空镞維は 、 例えばその縦断面を電子顕微鏡で測定 し た場合に 、 ドライ 基準で 3 0 0 A以下、 好 ま し く は 2 0 0 A以下の厚みのスキ ン層 を有するもので 、 実質的に はスキ
ン レスである 。 ま た 、 少な く と もその内部表面 ( 血液 と接
触する表面 ) は電子顕微鏡で測定 した場合に 、 ドラ イ 基準 で、 従来品であれば 1 2 に 直径約 2 0 0〜 7 0 0 A の ポイ ドが約 5〜 5 0個存在 していた が 、 本発明 に よ る中空 艤維は前記ポィ ドを実質的に有 し ていない 。
耩雜の断面に は表面から 内部へ微対構造が多少変化 し、 顕微鏡で認め ら れる程度の厚さ の層が表面に あ り 、 こ れを スキン層 と読んでいる 。 スキン層 は内部 と は性質が異な り 、 分子の S列が良い部分である 。 内部は、 一般に コ ア と呼ぱ れる。 ポイ ド と は 、 顕微鏡的な大きさ から 肉眼が確認でき る程度の大きさ まであ り 、 高分子材料に 含 ま れる空孔であ る一般的窪み状 と なる 。
該中空繊維は 、 引張り 強度が乾燥扰態で 1 0〜 3 0 kg/
mni2 、 好 ま し く は 1 5〜 2 5 kg/ mm2 であ り 、 湿潤状態で は 0 . 5〜 5 . 0 kg/ min2 、 好ま し く は 1 . 0〜 3 . 0 kg
/in in2 、 ま た 才 一 卜 ク レープ滅菌時 ( 温度 1 2 1 で 、 相対 湿度 1 0 096、 時間 2 0分 ) の伸び率が + 1 . 0 5 .
0 %、 好ま し く は 0 3 . 096である 。 ま た 、 前記中空 繊雜は、 阻止率 9 5 96の最大分画分子量が約 4 0 , 0 0 0 である 。 結節強度は乾燥状態で 1 0〜 3 0 kg/ m 2 、 好 ま し く は 1 5〜 2 5 kg/ mm2 であ り 、 湿潤状態で 0. 5〜 5 .
0 kg/ uim2 、 好 ま し く は . ひ〜 3 . 0 kg/ mm2 である 。
さ ら に 、 前記中空繊維は 、 1 2 , 4 0 0の平均分子量を有
REACT
O PI
. IPO す る チ 卜 ク ロ ム C の透過率が ; 2 0 〜 4 0 % 、 好 ま し く は約
3 0 96であ る 。
つぎに 、 図面を参照 し なが ら 、 本発明 に よる中空截維の 製造方法を説明 する 。 すなわ ち 、 第 1 図に示す よ う に 、 底 部に 非凝固性液槽 1 を設け た浴槽 2 に お い て 、 前記非凝固 性液槽 1 に 下層 と し てハ ロ ゲ ン化炭化水素よ り な り かつ 前 記セル ロ ー ス系紡糸原液 に対す る非凝固性液 3 を 、 ま た上 層 と し て 前記非凝固性液よ り も比重が小さ く かつ 前記セル ロ ー ス系紡糸原液 に 対す る凝固性液 4 を供給 し て 二層か ら なる浴液を形成さ せる 。
原液貯槽 5 内の セルロ ー ス系紡糸原液 6 をポ ンプ ( 例え ぱギ ヤポ ン プ ) 7 に よ り 導管 8 よ り フ ィ ルタ ー 9 に圧送 し 、 濂過 し た の ち 、 紡糸口金装置 2 5 の上向き に 設け ら れた環 状紡糸孔 ( 図示せず ) か ら 前記下層の非凝固性液 3 中 に直 接押す 。 そ の際、 内部液貯槽 1 0 内 に 貯蔵さ れて いる前記 紡糸原液に対す る非凝固性液 1 1 を内部液 と し て 自然落差 に よ り 流量計 1 2 に供給 し た の ち 、 導管 1 3 よ り 前記紡糸 口金装置 2 5 に供給 し 、 前記環状 に 押出 さ れた 環状紡糸原 液 1 4 の内部中央部 に導入 し て吐出さ れる 。 環状紡糸孔 ょ り押出 さ れた線状紡糸原液 1 4 は 、 内部に 非凝固性液 1 1 を含んだま ま なん ら 凝固する こ と な く 下層 の非凝固性液 3 中を上方へ進む。 こ の場合、 環状紡糸孔よ り 上部の非凝固 性液 3 および凝固性液 4 の水頭圧を受け 、 さ ら に線状紡糸 原液 1 4 は前記非凝固性液 と の比重差に よ り その浮力 を受
OMPI WIPO けながら 細 く な り なが ら上昇する 。 つ いで、 こ の篛状紡糸 原液 1 4 は上雇の凝固性液 4 中 に上昇するので 、 これを該 凝固性液 4 中 に設け ら れた変向棒 1 5 によ り 変向させて前 記凝固性液 4 中を充分通過させた のち 、 ロ ール 1 6 に よ り 引上げたのち、 次工程へ送る 。
なお 、 こ の場合 、 前記浴槽 2 に は供给ロ 1 8 よ り 恒温循 環液 1 9 を供給 し 、 かつ排出口 2 0 よ り 痱出させる こ と に よ り 凝固性液 4 を所定 の湿度、 例 えば 2 0 ± 2 での湿度に 保持さ せる こ とができる 。 使用後あるい は液交換時に は穽 凝固性液 3 は'排出口 2 1 よ り弁 2 2 を介 し て排出される 。 周時に 、 使用後あるい は液交換時に は凝固性液 4 は排出口 2 3 よ り 弁 2 4 を介 して排出される 。
本発明方法 に おい て使用 さ れる セルロ ー ス系紡糸原液と して は、 銅 ア ンモニ アセル ロ ース等の金属アンモニアセル ロ ースであ る。 セルロ ース と し て は種々 のものが使用でき るが 、 一例を挙げる と 、 例えば平均重合度 5 0 0 〜 2 5 0 0 のもの が好 ま し く 使用 さ れる 。 し か し て 、 銅 ア ン モ ニ ア セルロ ース溶液は常法に よ り 調製さ れる 。 例えば、 ま ず ァ ン モニ ァ水、 塩基性硫酸銅水溶液および水を混合 し て銅 ァ ンモニ ァ水溶液を調製 し 、 これに酸化防止剤 ( 例えば亜硫 酸ナ ト リ ウ ム 〉 を加え、 ついで原料セル ロ ー ス を投入 し て 攙拌溶解を行ない 、 さ ら に水酸化ナ リ 卜 ゥ ム水溶液を添加 し て未溶解セルロ ースを完全に溶解させて銅 ア ン モニ アセ ル ロ ー ス溶液を得る 。 こ の銅 アンモニ アセルロ ー ス溶液に は 、 さ ら に透過性能制御剤を混合 し て 配位結合さ せて も よ い
こ の よ う な紡系原液 は 、 通常比重が 1 . 0 5〜 1 . 5 であ り 、 好 ま し く は 1 . 0 6〜 1 . 1 0である 。 し か し な が ら 、 後述す る よ う に紡糸孔か ら押 出さ れる線状紡糸原液 の内部に は非凝固性液が充塡 さ れて いるので 、 通常 は紡糸 原液 よ り 比重は小さ く 、 1 . 0 0〜 1 . 0 8であ り 、 好 ま し く は 1 . 0 1 〜 1 . 0 4であ る 。
下曆 と し て 用 い ら れる セル ロ ー ス系紡糸原液 に対す る非 凝固性液は 、 前記線状紡糸原液 [ 非凝固性液 ( 内部液 ) を 内包 す る紡糸原液 ] の嵩比重お よ び凝固性液よ り もそ の比 重が大き く 、 水 に対す る溶解性が低 く 、 かつ 表面張力 が小 さ いハ ロ ゲ ン 化炭化水素で あ り 、 そ の比重 は通常 1 . 3以 上であ り 、 好 ま し く は 1 . 4〜 1 . 7で ある 。 一例を挙げ る と 、 例え ば四塩化炭素 ( d = 1 . 6 3 2 、 水溶解度 0 . 089 Ζ 2 0 Ό — 1 0 0 ^ 、 表面張力 ( 2 5 °C ) 2 6 .
8 dyne/ cm) 、 1 , 1 , 1 -卜 リ ク ロ ルェ タ ン ( d 4 = 1 . 3 4 9 ) 、 1,1,2 -卜 リ ク ロ ルェ タ ン ( d 4 = 1 . 4 4 2 ) 、 卜 リ ク ロ ルエ チ レ ン ( d 4 = 1 . 4 4 0 、 水溶解度 0 . 1 1
9 2 5で ー 1 0 0 77 、 表面張カ ( 2 5 0 ) 3 1 . 6 dy ne/ cm) 、 テ 卜 ラ ク ロ ルェ タ ン ( d = 1 . 5 4 2 ) 、 テ 卜 ラ ク ロ ルエ チ レ ン ( (T = 1 . 6 5 6 、 水不溶性 ) 、 卜
^5- リ ク ロ ル ト リ フノレ才ルェ タ ン ( d 1 . 5 6 5 、 水溶解 度 0. 0 0 9 g 2 1 で — 1 0 0 、 表面張力 ( 2 5 Ό )
OMPI
, > w ο 9 . 0 dyne/ cm) 等がある。 これらのう ちでも特に水に 対する溶解度が 0. 0 5 g Z 2 1 で— 1 00 ^ 以下でか つ表面張力 ( 2 5で ) が 2 0 dyne/ cm以下のものを使用す る と紡糸性が極めて良好となる。 このよ う な非凝固性液と しては、 例えばテ 卜 ラク ロルエチレ ン、 卜 リ ク ロル 卜 リ フ ル才ルェタ ン等がある。 しかして 、 非凝固性液屬高さ (第
1 図における距離 L ! ) は紡糸速度によ っ ても異なるが、 通常 5 0〜 2 5 0 mmであ り 、 好ま し く は 1 00〜 2 00
ある o
また 、 線状钫糸原液中に導入充現される非凝固性液 ( 内 部液) の選択は、 中空糸の中空部の維持あるいは中空糸壁 面の凹凸の有無に大きく 影響する。 すなわち 、 中空杀の乾 燥時に中空部に充塡されている非凝固性液が膜を通 し て急 激に外部に出る と、 中空部内 は減圧とな り 中空潰れを発生 させ、 あるいは内壁に凹凸を生じる。 そ し て、 用い られる
凝固性液は、 乾燥時に透過性の低く かつ比重が小さい液 体から選ばれる。 すなわち 、 セルロ ー ス系紡糸原液の比重 は通常 " 1 . 0 5〜 1 . 1 5、 例えば銅アンモニアセルロ ー ス紡糸原液の場合約 1 . 0 8であるので、 前記非凝固性液 体を内包する線状紡杀原液の嵩比重が 1 . 00〜 1 . 0 8 、 好ま し く は 1 . 0 1 〜 1 . 0 4、 例えば約 1 . 0 2 となる よう な範囲から前記非凝固性液体の比重は選択されるべき であ り 、 通常 0. 6 5〜 1 . 00、 好ま し く は 0. 7 0〜
0 · 9 0、 倒えぱ約 0. 8 5である。 好適な非凝固性液と
ΟΜΡΙ WIPO
、 0 し て は 、 一例を挙げる と 、 例え ば n-へキサン 、 n-ヘプタ ン 、 n -オ ク タ ン 、 n-デカ ン 、 n-ドデカ ン 、 流動パ ラ フ ィ ン 、 ミ リ ス チン酸イ ソプ ロ ピル、 轻油 、 灯油 、 ベ ンゼ ン 、 卜 ルェ ン 、 キ シ レ ン 、 ス チ レ ン 、 ェ チルベ ンゼ ン等が あ る 。
セル ロ ー ス系紡糸原液に対す る凝固性液 は 、 前記の ご と き下層の非凝固性液よ り もそ の比重が小さ く 、 通常 1 . 0 3〜 1 . 1 0の比重を有す る アルカ リ 水溶液である 。 アル カ リ と し て は 、 水酸化ナ ト リ ウ ム 、 水酸化カ リ ウ ム 、 水酸 化 リ チウ ム 、 水酸化 ア ンモニ ゥ厶等があ り 、 好 ま し く は水 酸化ナ ト リ ウ ムで あ る 。 そ の濂度は水酸化ナ ト リ ウ ム換算 で 3 0〜 "! 5 0 g-N a 0 H / 、 好 ま し く は 3 5〜 8 0 g- N a 0 i 最も好 ま し く は 4 0〜 6 0 g-N a Ο Η Ζϋ であ り 、 特に約 5 09 - N a O H / ί ( 約 4 . 8重量 96、 d = . 0 5 5 ) である 。 し か し て 、 前記非凝固性液 と の 界面か ら 変向棒端ま での距離 ( 第 Ί 図 に おける距離 し 2 ) は 、 通常 5〜 3 0 mm、 好 ま し く は 1 0〜 2 0 mmで あ る 。
前記の方法を行な う こ と に-よ り 約 3 O m ノ分以上の紡糸 速度、 特 に 0 . 0 5 g Z 2 1 で一 1 0 0 以下の水溶解度 お よ ぴ 20dyneノ cm以下の表面張力 を有す る非凝固性液を使 用 すれば約 3 8 m 分以上 、 特 に約 5 5 m /分以上の紡糸 速度が得 ら れる 。
こ の よ う に して 凝固再生 さ れた 中空鐵維 は 、 水洗を行な つ て付着 し て いる凝固性液を 除去 し た の ち 、 必要に よ り 該 中空鐵雜中 に残存 し て いる銅等の金属を除去す るため に 脱 一 OMPI く 金属処理を施 し 、 つ いで水洗さ れる 。 脱金属処理は 、 通常 濂度 3〜 3 0 %の希硫酸溶液あるい は硝酸溶液に浸漬 し て 行なわれる 。 しか して 、 紡糸原液が前記の ご と き透過性能 制御剤を含有 し ている場合に は、 こ の中空鐵雜は前記 アル 力 リ 性凝固液中で該制御剤 が除去さ れ、 こ れに よ り 使用 し た重合体の分子量に相当する微細孔が中空鐵維の管壁に形 成される 。
前記水洗後のま た は透過性能制御剤除去後の中空鐵雜は 、 さ ら に必要に よ り 3 5〜 1 00で 、 好ま し く は 5 0〜 8 0 で の温水で処理するか、 ま た は 1 〜 1 0 量 96、 好ま し く は 2〜 5重量%濃度のグ リ セ リ ン水溶液を用 いて可塑化 し て 、 なお残存 し ている銅 、 中低分子量セル ロ ース等を除去 し 、 ついで乾燥 し たの ち巻取 り を行な っ て所望の中空縝雜 を得る 。
つぎに 、 実施例を挙げて本発明をさ ら に詳細 に説明する 。 なお 、 下記実施例 におい てパ ー セ ン ト は、 特に こ と わ ら な い限 り すベて重量に よる。
実施例 1
2 5 %ア ンモニ ア水溶液 2 , 3 5 49 に塩基性硫酸銅 5 40 g を懸濁 させて鋦 ア ン モニ ア水溶液を調製 し 、 こ れに 1 0 %亜硫酸ナ ト リ ウ ム水溶液 1 , 69 0 g を添加 した 。
この溶液に重合度約 1 , 0 0 0 ( ± 1 00 ) の コ ッ ト ン リ ン タ ーパルプを湿式粉碎 し 、 脱水 した含水 リ ン タ ー ( 含水 率 69. 796 ) 2 , 2 73 g を投入し て濃度調整用逆滲透
OMPI { R 0 ) 水 2 1 0 g を添加 し て攬拌溶解を行な い 、 つ いで 1 0 %水酸化ナ 卜 リ ウ ム水溶液 1 , 2 3 39 を添加 し て銅 ア ン モニ ア セル ロ ー ス水溶液 ( 比重 1 . O g ) を調製 し て 紡系原液 と し た 。
一方、 第 1 図 に示す よ う な装置を用 いて 、 浴槽 2の非凝 固性液槽 1 に 非凝固性液 3 と し て 1,1,1-卜 リ ク ロ ルェ タ ン を供給 して下層を形成さ せ 、 つ いで凝固性液 と し て 5 03 / i の濃度の水酸化 ナ 卜 リ ゥ ム水溶液を供給 し て 上層 を形 成させ た 。 前記紡糸原液 6を原液貯槽 5 よ り フ ィ ル タ ー 9 を経て 、 環状紡糸孔を上向 き に 装着 し た紡糸 口 金装置 2 5 に導き 、 5 kgZcm2 の窒素圧で紡糸孔よ り 前記下層の液温 2 0 ± 2 Cの 非凝固性液 3中 に 直接吐出せ さ た 。 紡糸孔の 孔径 は 3 . 8 mmで あ り 、 紡糸原液 ( cel l 7 . 8 %、 1 . O O P ( ボ イ ズ ) ( 2 0 "C〉 ) の吐出量は 5 . 8 6 4 Z 分 と し た 。 一方、 紡糸口金装置 2 5 に装着 し た 非凝固性液 の導入管 1 3 よ り ミ リ ス チ ン 酸イ ソ プ ロ ピル ( 比重 0 . 8 5 4 ) を導入 し 、 前記線状吐出原液 に 内包さ せ て吐出 さ せ た 。 蒸気導入管の管径 は 1 . 2 mmであ り 、 ミ リ ス チ ン酸ィ ソプロ ピルの吐出量は 1 . 5 0 TOJ¾ /分 と し た 。 つ いで 、 吐出原液 ( 非凝固性液を内包 ) 1 4 ( 比重 1 . 0 2 6 ) を 1,1,1-卜 リ ク ロ ル 卜 リ フル才 ロ ェ タ ン中 に上昇さ せ 、 さ ら に上層の水酸化ナ 卜 リ ウ 厶水溶液 < 2 0 ± 2 ) 中を上昇 させた の ち 、 変向棒 1 5 に よ り 水平方向 に走行さ せた 。 こ の と きの非凝固性液の層髙 L , は 2 00 moiであ り 、 界面か ら変向棒 1 5の上端までの距離 し 2 は 1 5 . 0 であ り 、 紡糸速度 60 m ノ分、 卜 ラパースワイ ン ド 8 0、 走行距離 4. 4 mであ っ た。 この浴槽から引上げたのち 、 さ ら に 1 2 %水酸化ナ 卜 リ ゥム水溶液を相当時閽接触させて充分凝 面させ、 水洗処理 し、 5 %硫酸に よる再生処理を し 、 さ ら に水洗処理を し、 その後 1 0 0〜 1 4 0でで乾燥するとい う 工程を走行させるに必要な張力以外は極力テンシ ョ ンを 押えて連続的に行ない、 中空纖維を得た。
このよ う に して得られた中空織維は、 壁厚約 1 2. 5 、 外径約 2 2 5 ^ mであ っ た 。 この中空繊維の截断面'を 日本電子株式会社製の走査型電子顕微鏡- 7 3 5 F C ) に よ り 倍率 2 0, 0 0 0倍で撮影 した写真は第 2図 に示す とお りであ り 、 外部表面は実質的にスキン レスであ つ た。 ま た 、 この中空鐵維の内部表面を前記走査型電子顕 微鏡によ り倍率 20 , 000倍で撮影 し た写真は第 3図に 示す とお り 実質的にボイ ド レスであ っ た 。 また 、 この中空 繊維の J I S L 1 0 7 0に よる引張り強度は乾燥状態 で 1 6 kg/ mm2 で、 湿潤状態で 1 . 9 kg/ ram2 であ り 、 ま た結節強度は乾燥状態で 1 6 Π mm2 で、 湿潤状態で 1 .
9 kg/ D1IB2 であ っ た。 さら に 、 オー ト ク レープ滅菌後 ( 温 度 1 2 1 °C、 相対湿度 1 0 096、 時間 2 0分間 ) の伸縮率 は一 0. 4 %であ っ た 。 また ドラフ 卜比は 8 1 であ っ た。
実施例 2
実施例 1 と周様な方法において、 菲凝固性液 3 と して 1,1,
OMPI 13
1-ト リ ク ロ ルェ タ ン 、 凝固性液 と して 4 6 g ノ の濃度の
水酸化ナ ト リ ウ ム水溶液を使用 し 、 紡糸原液 ( cel ls . 7
%、 2 , 6 7 0 P ( 2 0で ) ) を 6 . 4 7 m ノ分の吐出
量で吐出 さ せ 、 ミ リ ス チ ン酸イ ソ プ ロ ピル ( 比重 0 . 8 5
4 》 を導入 し て 2 . 6 4 2 分の吐出量で前記線状紡糸
原液に 内包さ せ た 以外は周様な方法を行な っ て 、 紡系速度
一 8 0 m /分で中空糸を得た 。
こ の よ う に し て得 ら れた 中空鐵維は 、 壁厚約 1 3 . 5
n、 外径約 2 5 0 ^ であ り 、 そ の外部表面の走査型電子
顕微鏡写真 に よ る撮影結果 は実質的に ス キ ン レ ス であ り 、
ま た 内部表面 はポ イ ド レスで あ っ た 。 ま た 、 こ の中空鐵維
の J I S し 1 0 7 0 に よ ^ 引張 り 強度は乾燥状態で 1
9 kg/ mm2 であ り 、 湿潤状態で 2 . 5 kg / mni2 で あ っ た 。
ま た結節強度 は乾燥状態で 1 9 mm2 で あ り 、 湿潤状態
で 2 . 5 kg rams であ っ た 。 さ ら に 、 オ ー ト ク レ ープ滅菌
後 ( 濁度 1 2 1 で 、 相対湿度 1 0 0 % 、 時閭 2 0分間 ) の
伸縮率 は _ 0 . 8 %であ っ た 。 ま た 、 ド ラ フ 卜 比 は 9 8で
め っ た 。
比較例 1
市販の中空繊維 ( E N K A G lanzatoff A G ( 西 ド
イ ツ製 〉 商品名 : C 1 ) に つ い て実施例 1 と周様な方法で
試験 し た と こ ろ 、 壁厚 1 1 Tit、 外径 2 0 0 ^ TO 、 有効膜
面積 1 . O m2 、 縦断面の走査型電子顕微鏡写真 は第 4 図
に示す と お り であ り 、 スキ ンの厚さ は約 4 2 0 Aであ っ た ,
— OMPI
WIFO . ま た、 内部表面の顕微鏡写真は第 5 図 に示す と お り であ り 、 Λ fi TIL 2 当 り 約 3 2 0〜 5 8 0 A のポイ ドが約 6個あ っ た 。 ま た 引張 り 強度は乾燥状態で 2 5 . 2 kg/ mm2 であ り 、 湿 潤状態で 3 . 7 kgZ mm2 であ っ た。 ま た結節強度は乾燥状 態で 2 7 . 4 kgXini2 であ り 、 湿潤状態で 4 . 1 kgZ mm2 であ づ た 。 さ ら にオー ト ク レ ープ滅菌後 ( 温度 1 2 1 で 、 相対湿度 1 0 0 %、 時間 2 0分 ) の伸縮率は一 1 . 0 96で あ っ た。
比較例 2
中空鑌雑を使用 し た市販の人工腎藏 ( アサ ヒ メ ディ カ ル 社製 商品名 : A M — 1 0 ( H ) ) につ い て実施例 1 と周 様な方法で試験 し た と ころ 、 壁厚 1 5 ^ 、 外径
m、 有効膜面積 1 . 1 2 、 縱断面の走査型電子顕微鏡写 真は第 6図 に示す と お り であ り 、 スキ ンの厚さ は約 1 , 3 0 0 A であ っ た 。 ま た 、 内部表面の顕微鏡写真は第 7 図 に 示す と お りであ り 、 l i m2 当 り に約 2 0 0 〜 7 0 0 A の ポイ ドが約 4 0個あ っ た。 ま た 引張 り 強度は乾燥状態で 1 3 . 9 kg/ mni2 であ り 、 湿潤状態では 3 . 3 kg/ mm2 であ つ た。 ま た結節強度は乾燥状態で 1 3 . 9 kg/ mm2 であ り 、 湿潤状態で 3 . 2 kg/ mm2 であ っ た 。 さ ら に オー ト ク レー プ滅菌後 ( 温度 1 2 1 で 、 相対湿度 1 0 0 96、 時間 2 0分 ) の伸縮率は一 0 . 5 %であ っ た 。 実施例 3
実施例 1 で得ら れた 中空纖維お よび市販中空縝雑 ( 約 1 6 5 mm) 7 , 6 0 0本をポ リ カ ーボネー 卜樹脂製の管状本
O PI WIPO 第 1 表
溶液濃度
指標物質 ( mg d j ) 定量方 1
ク レ ア チニ ン 6 0 J affe法
ビ タ ミ ン B 1 6 0 直接吸光度法
( 3 6 0 nm )
ィ ヌ リ ン 6 0 チ才パル
ビ ツ ー ル法
牛アルブ ミ ン 3 0 0 * B C G法
¾ 透過率が小さ いので定量性を上げるた め
濂度を高 く し た 。
流速 2 0 0 m Ζ πΗπ 、 Τ M P ( 限外瀘過圧 ) ( 注 1 〉
2 0 0 mmH g の条件で室溫下 ( 2 3 , 5 ± 2 °G ) で循環実
験を行な っ た 。 分画分子量の測定で は 、 定常状態下 ( 注 2 ) の濾液 4 TO J¾ を 2 点以上 ( 3 0 分間 隔 ) サ ンプ リ ング し 、
平均値を測定値 と し た 。 嫿過量の測定 は 、 定常状態下の瀘
液をメ ス シ リ ンダで集め て 計測 し た 。 瀘液 は 、 循環液の溶
質漉度が髙 く な ら ない よ う 随時溶液槽へ返 し た 。
( 注 1 ) ( P i + P o 〉 Z 2 = 2 0 0 mmH g
( 注 2 ) 予め経時的なサンプ リ ングを行な い 、
測定値が一定 と な つ た 時点か ら 定常
状態下 に あ る と し た o 各種溶質の透過率は 、 つ ぎの定義に よ り 、 その結果 は第
_ C'MFI ノ 4 "ΛΊΡΟ ,
"ΠΟ
、、〜 一 体に 内蔵させ 、 両端部を高分子ポ ッ テ ィ ング剤を充填 し て 固定 し て人工腎臓を製作 し た 。 つ ま り 実施例 1 お よ び比較 例 1 〜 2を用いて製作 した人工腎臟 と 、 中空鎪維を用 いて 製作 し た市販の人工腎臓 ( A M— 1 0 ( し ) 、 A M— 8 0 ) を比较例 3〜 4 と して加え 、 合計 5種類準備 し た 。 こ れら の人工腎臓をエ チ レ ンオキサイ ドガスで滅菌 し た の ち 、 各 溶質の阻止率お よび透過率を測定 した 。 .
ま ず、 第 1 表に示すよ う な 2指標物質をそれぞれ生理食塩
1
水に溶解 し 、 単成分系で実験を行な っ た 。
( 以下余白 〉
OMPI く 2 表に示す と お り であ り 、 ま た 阻止率 は 、 つ ぎの定義 に よ り 、 そ の結果は第 3 表の と お り であ っ た 。
透過率 ( T ) = ( C f / C ) 100 ( % ) 透過係数 ( T r ) = C f / C ί
阻止率 ( R ) = ( C i - C f ) 100ノ C i ( % ) 阻止係数 ( 」 ) = ( 0 1 — 〇 ) 0 |
C i : 入口側の溶質濂度 ( ノ d i )
C f : 濂液側の溶質濃度 ( mgZ d SL )
( 以下余 白 )
2表 (%) クレアチニン ビタ ン81 ィヌリン チ卜クロム G アルブミン 試 料 (Mw^ 113) (MW 12,400) (MW 66,000) 実施例 1 >99.9 93.7 46.7土 0.8 30.2 0 比較例 1 >99.9 90.2 22, 3土 0.7 1.1 0 比較例 2 >99.9 93.8 41.2+ 1.9 17.9 0 比較例 3 >99.9 90.6 28.3土 1.6 4.4 0 比较例 4 >99.9 91.7 34.5土 2.4 10.0 0 第 3表 (%) 試 料 クレアチニン ビタミン Bi ィヌリン チ卜クロム C アルブミン 実施例 1 < 0.1 6.3 53.3 69.8 100 比較例 1 < 0.1 9.8 77.3 98.9 100 比較例 2 < 0.1 6.2 58.8 82.1 100 比較例 3 < 0.1 9.4 71.7 95.6 100 比較例 4 < 0.1 8.3 75.5 90,0 100
* Mw :分子璗
透過係数 と分子量 と の関係は 、 第 8 図 に示す と お り であ
つ た 。 なお 、 周図 に お い て 曲線 A は実施例 1 、 曲線 B は比 較例 1 、 曲線 C は比較例 2 、 曲線 D は比較例 3 、 曲線 E は 比較例 4 の中空繊維をそれぞれ表わ す 。
第 8 図か ら推測 し た各人工 腎臓の阻止率 9 5 %の分画分
子躉は 、 第 4 表 に 示す と お り であ っ た 。
第 4 表
分 画 —分 一子 実施例 1 4 0 , 0 0 0
比較例 1 9 , 6 0 0
比較例 2 3 0 , 0 0 0
比較例 3 1 2 , 0 0 0
比較例 4 2 0 , 0 0 0
ま た 、 平均據過量は 、 第 5 表の と お り であ っ た
_OMPI
' 第 5 表 平 均 ¾ 過 量
試 料 ( 7ji i / min— · cm2 _ mmH g_ ) 実施例 6. 7 1 0
比較例 1 5 . 5 X 0
比較例 2 6. 1 X 1 0
比較例 3 3 . 0 x 1 0
比較例 4 6. 2 X 0 本発明による中空繊雑は、 比較例 1 〜 4の中空鐵維と比 ベてィ ヌ リ ンおよびチ 卜 ク ロ ム Gへの透過率が高く 、 重量 平均分子量 5 , 000〜 2 0 , 0 00の物質が透過 しやす く な つ て いる。 そ して 、 チ 卜 ク ロ ム Cの透過率を 3 0 %前 後、 すなわち 2 0〜 4 0 %が好ま しい と考え ら れる。 3 0 %未満では充分な '逮過ではな く 、 ま た 4 0 %を越える と全 体の平均孔径が大きく な り 、 アルブミ ンが透過するおそれ がある ZJ15である 。
第 6 ¾_ 分 子 量 分子径 ( A ) ク レ ア チニ ン 1 1 3 6. 4
ビ タ ミ ン B i 1 , 3 5 0 4 . 7
ィ ヌ リ ン 5 , 2 0 0 2 3 . 1
チ 卜 ク ロ ム G 2 , 4 0 0 3 0. 8
アルブ ミ ン 6 6 , 0 0 0 5 3 . 8 第 6表 に示す分子径の値を用 いて正規確率紙 に各溶質阻 止率をプ ロ ッ 卜 する と 、 比較例 1 お よ び 3 につ い て は直線 性が得 ら れ、 孔が正規分布 し て いる こ と が推測 さ れ、 平均 孔径 はそれぞれ 2 0 Aお よ び 2 1 Aであ っ た 。 本発明の 中 空繊維 は 、 2 2〜 4 0 Aの孔が比較例 1 お よ び 3のも の よ り も多 く 存在 し 、 孔は正規分布 し て い な か っ た 。
ま た 、 本発明の実施例 お よ び比較例の 除水能を調べる た め に 限外瀘過量 [ U F R ( .LMtra F i I trat ion R ate )
] を測定 し た 。 結果を第 7表 に示す 。
一 OMPI 0 、 0 第 7 表
料 U F R— ( m A ZmmH g · r♦ m 2 ) 実施例 1 4. 7
比較例 1 3 . 5
比較例 2 3 . 9
比較例 3
比較例 4 3 . 6 本発明の ものが除水能でも最も優れて いる 。 なお 、 第 5
表の平均瀘過量を求める に は内部に溶質を有する溶液を流
し て お り 、 ま た第 7表の U F Rの測定で は内部 に水を流 し
てお り 両者の結果は必ず し も比例 しないもの と思われる 。
上記第 7表で は一実施例を示 し た が他の実施例 に おい ても 、 低 く ても U F Rは 4 . 2で あ り 、 4 . 2以上であ れば除水
能と し て は充分である と 考える 。
産業上の利用可能性
以上述ベ た よ う に 、 本発明 は全鐵維長な ら び に全周囲 に
わた っ て 、 5〜 3 5 ^ 壁厚ぉ ょぴ 5 0〜 5 0 0 ?71の真
円形横断面を有 し 、 活外部表面の ス キ ン層その厚さ が 2 0
O A以下で 、 内部表面 は実質的に ポ ィ ド レスであるこ と を
特徴と する全鎪維長にわ た っ て連続貫通 し た中空部を有す
る鋦 アンモニ アセル ロ ー ス鐵維よ り なる透析用 中空纖維で
あるか ら 、 平均濾遏量が大き く 、 かつ 9 5 %の最大分画分
ΟΜΡΓ
'、、 'ン 子量が大きい と い う 利点が あ る 。
ま た 、 本発明 の 中空截維は 、 そ の 引張 り 強度が 1 0〜 3 0 kg/ mm2 であるので、 壁厚を薄 く する こ と ができ 、 こ の 点か ら も透過効果を増大させる こ と ができる 。 さ ら に 、 本 発明の中空鐵雑は温度 1 2 1 G、 相対湿度 1 0 0 %に お け る伸び率が + 1 . 0 5 . 0 %で あ るので 才 ー 卜 ク レ ー プ滅菌を行な う こ と ができ る 。 ま た本発明の中空繊維は 、 阻止率 9 596の最大分画分子量が約 4 0 , 00 0である の で 、 チ 卜 ク ロ ム C等の比較的分子量の大きな も の をも透過 させる こ と がでぎる 。
ま た 、 本発明 は 、 全繊雑長な ら びに全周囲 に わ た っ て 5〜 3 5 ^ m の壁厚お よ び 5 0〜 5 0 0 ^ ιη の の外径の真円 形 横断面を有 し 、 かつ外部表面のス キ ン層 はそ の厚さ が 3 0 O A以下で 、 内部表面は実質的に ポ ィ ド レ スで あ る こ と を 特徴 と する全纖雑長 に わた っ て連続貫通 し た 中空部を有す る銅 ア ン モ ニ ア セル ロ ー ス繊維よ り なる透析用 中空繊維の 多数本か ら な る 中空鐵維の束を 、 両端部付近に 血液入口部 お よ び血液出 口 部を有する管状本休に 挿入 し 、 かつ 両端を ポ ッ テ ィ ング剤で前記管状本体の両端部 に 固定 し た人工 腎 臓であ る か ら 、 平均濾過量が大き く 、 かつ 9 5 %の最大分 画分子量が大き く 、 例え ばチ 卜 ク ロ ム C等の ご と ぎ比較的 分子量の大き な ものも透過 さ せる こ と がで き る 。
CWPI
/ t WIPO

Claims

請 求 の 範 囲
1. 全鐵維長な らぴに全周 囲 にわた っ て 、 5〜35 の壁 厚お よび 50〜 500jW の外径の真円形横断面を有 し 、 かつ 外部表面のスキン層 はその厚さ が 300 A 以下で 、 内部表面 は実質的に ポィ ド レスであ る こ と を特徴 と する全織雜長に わた っ て連続貫通 し た 中空部を有する銅 ア ンモニ アセル 口 一ス鐵雜よ り なる透析用 中空織維。
2. 中空鐵維はその引張 り 強度が乾燥状態で 10〜 30kgZ mm2 である請求の範囲第 1 項に記載の透析用 中空纖雜。
3. 中空鐵維は温度 121で 、 相対湿度 100% に おける伸縮 率が + 1.0 5.0%であ る請求の範囲第 1 項ま た は第 2 項 に記載の透析用 中空鐵維。
4. 中空鐡維は阻止率 95% の最大分画分子量が約 40, 000で ある請求の 範囲第 1 項ない し第 3 項のいずれか一つ に記載 の透析用 中空鐵雜。
5. 壁厚が 10〜20 m 、 外径が 100〜 300 ^ m でかつ 外部 表面の ス キ ン層の厚さ が 200 A 以下であ る請求の範囲第 2 項に 記載の透析用 中空鐵維。
6. 引張り 強度が乾燥状態で 15〜 25kgZ mm2 である請求の 範囲第 5 項に記載の透析用 中空繊維。
7. 中空鐵維は温度 121X) 、 相対温度 100% に おける伸縮 率が 0〜一 3.0%である請求の範囲第 6 項に記載の透析用 中空鐵雜。
8. 結束強度が乾燥状態で 10〜 30kgZ mm2 であ る請求の範 囲第 1 項に記載の透析用 繊維。
9. 全繊雑長さ な ら びに 全周囲 にわ た っ て 5〜35 m の壁 厚お よび 50〜 500 C m の外径の真円形横断面を有 し 、 12, 4 00の平均分子量を有する チ 卜 ク ロ ム Cの透過率が 20〜 40%
でかつ ¾止率 95% の最大分画分子量が約 40, 000で ある こ と を特徴と す る全繊雑長に わ た っ て 連続 し た 中空部を有す る 銅 ア ンモニ アセル ロ ー ス繊維よ り な る透析用 中空織維。
10. 内部表面が実質的に ボ イ ド レ スであ る請求の範囲第 9 項に記載の透析用 中空織維。
11. 中空繊維 はそ の引張 り 強 '度が乾燥状態で 10〜 30kgZ
mm2 であ る請求の範囲第 9 項に記載の透析用 中空繊維 。
12. 中空繊維は温度 121X3 、 相対湿度 10096 に お け る伸縮 率が + 1.0〜一 5.096であ る請求の範囲第 9 項な い し第 1
1 項のいず れか一つ に 記載の透析用 中空繊維 。
13. 12, 400の平均分子量を有す る チ 卜 ク ロ ム C の透過率が 約 30% で あ る 請求の 範囲第 9 項 ま た は第 1 0 項に 記載の透 析用 中空繊維 。
14. 全織維長な ら びに 全周囲 にわ た っ て 5〜25〃 m の壁厚 お よ び 50〜 500^ m の外径の真円形断面を有 し 、 限外濾過 量が 4.2 ( m j¾ Z mniH g · hr · m 2 ) 以上で あ っ て かつ 阻 止率 95% の最大分画分子量が約 40, 000で あ る こ と を特徴 と する全鐵維長に わ た っ て連続 し た 中空部を有す る銅 ア ン モ ニ ァセル ロ ー ス粱維 よ り な る透析用 中空縝維。
CMFI
/? ΝΛΤΙΟ
15. 内部表面が実質的にボイ ドレスである請求の範囲第 1 4項に記載の透析用中空鑌維。
16. 中空議維はその引張り強度が乾燥状態で 10〜 30kgZ IHB12 である請求の範囲第 1 4 項に記載の透析用中空鐵維。
17. 中空議維は温度 121 、 相対湿度 100%における伸縮 率が + 1.0 5.0%である請求の範囲第 1 4項ない し第
6項にいずれか一つ に記載の透析用中空織維。
18. 全繊維長な らびに全周囲にわた っ て、 5〜35^ ηι の壁 厚および 50〜 500 ^ m の外径の真円形横断面を有し、 かつ 外部表面のスキン雇はその厚さが 300 A 以下で、 内部表面 は実質的にわた っ て連続貫通 した中空部を有する銅アンモ ニァセルロ ース纖維よ り なる透析用中空繊維の多数本から なる中空繊維の束を、 両端部付近に ώ液入口部および血液 出口部を有するハウジングに揷入 し、 かつ該束の両端をポ ッ ティ ング剤で前記ハウジングに固定 し て該血液入口部と 出口部とを連通させた人工腎臓。
19. 中空繊維はその引張り強度が乾燥状態で 10〜 30kgZ ram2 である請求の範囲第 1 8項に記載の人工腎贜。
20. 中空鐵維は温度 121で 、 相対温度 100%における伸縮 率が + 1.0 5.0%である請求の範囲第 1 8 項または第
1 9 項に記載の人工腎臓。
21. 中空鐵維は阻止率 95%の最大分画分子量が約 40 , 000 である請求の範囲第 1 8 項ない し第 2 0項のいずれか一つ に記載の人工腎贜。 '
22. 壁厚が 10〜20〃 m 、 外径が 100〜 300 m で かつ 外径 表面のスキ ン雇の厚さ が 200 A 以下で あ る請求の範囲第 " 1 8 項の記載の人工腎藏。
23. 引張 り 強度が乾燥状態で 15〜 25kgZ mm2 であ る請求の 範囲第 1 9 項に 記載の人 工 腎臓。 -
24. 中空繊維 は湿度 121°C 、 相対湿度 100% に おけ る伸縮 率が 0〜一 3 . 0 % である 請求の範囲第 2 0 項に 記載の人 ェ腎臓 。
25. 結束強度が乾燥状態で 10〜 30kgZ mm2 である請求の範 囲第 1 8 項に 記載の人工腎臓。
26. 全鐵維長な ら ぴに全周囲 に わ た っ て 5〜35^ m の壁厚 お よ び 50〜 500 m の外径の真円形横断面を有 し 、 12, 400 の平均分子量を有するチ 卜 ク ロ ム C の透過率が 20〜 40%で かつ 阻止率 95% の最大分画分子量が約 40, 000であ る こ と を 特徵 と す る全繊維長 に わた っ て 連続 し た 中空部を有す る銅 ア ン モニ ア セル ロ ー ス鐵雜よ り なる 透析用 中空繊維の多数 本か ら なる 中空繊維の束を 、 両端部付近 に 血液入口 部お よ び血液出 口 部を有す るハ ウ ジ ン グ に 挿入 し 、 該束の両端部 をポ ッ テ ィ ング剤 で前記ハ ウ ジ ン グ に 固定 し て 該血液入口 部 と 出口 部 と を連通 さ せ た人 工 腎臓 。
27. 内部表面が実質的 に ポ ィ ド レ ス で あ る請求の 範囲第 2 6 項に 記載の人工 腎藏。
28. 中空鐵維はそ の 引 張 り 強度が乾燥状態で 10〜 30kgノ mm2 である請求の範囲第 2 6 項 に 記載の人工 腎贜。
OMPI く
29. 中空織維は温度 121で 、 相対湿度 100% に おける伸縮 率が + 1.0 5.0%である請求の範囲第 2 6 項ない し第
2 8項のいず れか一つ に記載の人工腎臓。
30. 12, 400の平均分子量を有するチ 卜 ク ロ ム C の透過率が 約 30%であ る請求の範囲第 2 6 項ま た は第 2 項に記載の人 ェ腎臓。
31. 全鐵錐長な ら びに全周囲 にわた っ て 5〜 25^ m の壁厚 お よび 50〜 500 m の ^径の真円形断面を有 し 、 隈外麄遏 量が 4.2 ( m Z m m H g ♦ h r♦ m 2 ) 以上であ っ て 、 かつ 阻止率 95% の最大分画分子量が約 40, 000であ る こ と を特徴 と する全繊維長にわ た っ て連続 し た中空部を有する銅ア ン モニ ァ セル ロ ー ス織雑よ り なる透析用 中空繊維の多数本か ら なる中空纖維の束を両端部付近に血液入口部お よび血液 出口部を有するハウ ジ ングに 挿入 し 、 該束の両端部をポ ッ テ ィ ング剤で前記ハ ウ ジ ングに 固定 し て該血液入口部 と 出 口部を連通さ せた人工腎臓。
32. 内部表面が実質的 に ボイ ド レスで ある請求の範囲第 3 1 項に記載の人工腎臓。
33. 中空纖維はその 引張 り 強度が乾燥状態で 10〜 30kgZ mm2 である請求の範囲第 3 1 項に 記載の人工腎臓。
34. 中空鐵雜は湿度 121で 、 相対湿度 100% に おける伸縮 率が + 1.0 5.0%である請求の範囲第 3 1 項ない し 第
3 3項のいずれか一つ に記載の人工腎贜。
PCT/JP1984/000050 1983-02-18 1984-02-17 Hollow fibers for use in dialysis and artificial kidney WO1984003228A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB08425065A GB2145938B (en) 1983-02-18 1984-02-17 Hollow fibers for use in dialysis and artificial kidney
DE8484900873T DE3477740D1 (en) 1983-02-18 1984-02-17 Hollow fibers for use in dialysis and artificial kidney

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024832A JPS59150501A (ja) 1983-02-18 1983-02-18 透析用中空繊維

Publications (1)

Publication Number Publication Date
WO1984003228A1 true WO1984003228A1 (en) 1984-08-30

Family

ID=12149165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000050 WO1984003228A1 (en) 1983-02-18 1984-02-17 Hollow fibers for use in dialysis and artificial kidney

Country Status (7)

Country Link
US (1) US4609464A (ja)
EP (1) EP0135593B1 (ja)
JP (1) JPS59150501A (ja)
DE (1) DE3477740D1 (ja)
GB (1) GB2145938B (ja)
IT (1) IT1173312B (ja)
WO (1) WO1984003228A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157204A (ja) * 1984-08-27 1986-03-24 Terumo Corp 透析用中空糸及びその製造方法
US5084349A (en) * 1988-09-07 1992-01-28 Terumo Kabushiki Kaisha Hollow cellulose fibers, method for making, and fluid processing apparatus using same
GB8920990D0 (en) * 1989-09-15 1989-11-01 British Petroleum Co Plc Membrane fabrication
DE4038247A1 (de) * 1990-11-30 1992-06-04 Akzo Gmbh Cellulosedialysehohlfaden
ES2083757T3 (es) * 1991-08-17 1996-04-16 Akzo Nobel Nv Filamento hueco para dialisis.
US5961834A (en) * 1996-12-23 1999-10-05 Bio-Rad Laboratories, Inc. Simple micro method for concentration and desalting utilizing a hollow fiber, with special reference to capillary electrophoresis
EP1027899B1 (en) * 1998-08-27 2013-03-06 Toray Industries, Inc. Blood processing device
US6797169B1 (en) * 1999-08-20 2004-09-28 Asahi Kasei Pharma Corporation Filter membranes for physiologically active substances
KR101157244B1 (ko) * 2002-08-21 2012-06-15 도레이 카부시키가이샤 개질 기재의 제조 방법 및 분리막 시스템의 개질 방법
CN103498206B (zh) * 2013-10-18 2015-10-28 天津膜天膜科技股份有限公司 一种中空纤维膜喷丝组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913424A (ja) * 1972-06-02 1974-02-05
JPS49134920A (ja) * 1973-05-09 1974-12-25
JPS5059518A (ja) * 1973-10-03 1975-05-22
JPS54151616A (en) * 1978-05-20 1979-11-29 Nippon Zeon Co Ltd Production of hollow fibers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888771A (en) * 1972-06-02 1975-06-10 Asahi Chemical Ind Hollow fibers of cuprammonium cellulose and a process of the manufacture of same
FR2226258B1 (ja) * 1973-04-23 1977-10-07 Union Carbide Corp
FR2380362A2 (fr) * 1976-02-13 1978-09-08 Baxter Travenol Lab Faisceau de filaments creux, et procede et appareil d'enroulement de filaments creux
JPS6017844B2 (ja) * 1978-03-30 1985-05-07 旭化成工業株式会社 アクリル系繊維の製造法
DE2823985C2 (de) * 1978-06-01 1986-01-02 Akzo Gmbh, 5600 Wuppertal Dialysemembran
NL7907214A (nl) * 1978-10-02 1980-06-25 Akzo Nv Dunwandige holle-vezel-membraan voor dialyse.
JPS55116813A (en) * 1979-03-05 1980-09-08 Eizo Hirota Hollow fiber for dialysis
JPS569417A (en) * 1979-06-27 1981-01-30 Nippon Zeon Co Ltd Production of cellulosic hollow fiber
JPS5771411A (en) * 1980-10-20 1982-05-04 Terumo Corp Preparation of hollow fiber
JPS57199808A (en) * 1981-06-01 1982-12-07 Terumo Corp Production of hollow fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913424A (ja) * 1972-06-02 1974-02-05
JPS49134920A (ja) * 1973-05-09 1974-12-25
JPS5059518A (ja) * 1973-10-03 1975-05-22
JPS54151616A (en) * 1978-05-20 1979-11-29 Nippon Zeon Co Ltd Production of hollow fibers

Also Published As

Publication number Publication date
EP0135593A1 (en) 1985-04-03
GB2145938A (en) 1985-04-11
DE3477740D1 (en) 1989-05-24
GB8425065D0 (en) 1984-11-07
US4609464A (en) 1986-09-02
EP0135593B1 (en) 1989-04-19
JPS59150501A (ja) 1984-08-28
GB2145938B (en) 1987-02-11
IT8419706A0 (it) 1984-02-20
EP0135593A4 (en) 1985-04-24
IT1173312B (it) 1987-06-24

Similar Documents

Publication Publication Date Title
TW474835B (en) Polysulfone hollow fiber semipermeable membrane
US4874522A (en) Polysulfone hollow fiber membrane and process for making the same
US5063009A (en) Process for preparation of hollow fibers for fluid separator construction
US5232601A (en) High flux hollow fiber membrane
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
US4604326A (en) Porous regenerated cellulose hollow fiber and process for preparation thereof
CS226188B2 (en) Dialysing diaphragm in the form of flat foil,tubular foil or hollow filament made of cellulose regenerated by using cuoxam process
JPH05137982A (ja) ポリスルホン多孔質中空糸
WO1984003228A1 (en) Hollow fibers for use in dialysis and artificial kidney
CN112236217B (zh) 半透复合膜及其制造方法、以及半透复合膜元件
JPS6157204A (ja) 透析用中空糸及びその製造方法
JPH025132B2 (ja)
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JPH0194902A (ja) ポリスルホン中空繊維膜およびその製法
JPS6160165B2 (ja)
WO1996035504A1 (fr) Membrane fibre creuse a base de polymere de polysulfone et son procede de production
WO2016182015A1 (ja) 多孔質中空糸膜及びその製造方法
JPH09308685A (ja) 血液浄化用中空糸膜及び血液浄化器
JPH10165774A (ja) 選択透過性中空糸膜
JPS6110724Y2 (ja)
JP2000210544A (ja) 半透膜の製造方法
JP2005065725A (ja) 中空糸型血液浄化膜
JPS59209611A (ja) 中空糸状膜及びその製造方法
JP2710710B2 (ja) 流体分離器
JP2001000843A (ja) 複合半透膜および複合半透膜モジュ−ル

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): GB US

AL Designated countries for regional patents

Designated state(s): BE DE FR NL SE

WWE Wipo information: entry into national phase

Ref document number: 1984900873

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1984900873

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1984900873

Country of ref document: EP