WO1984002345A1 - Hardenable and cationic modifying agents for epoxy resins, produ ction process and utilization thereof - Google Patents

Hardenable and cationic modifying agents for epoxy resins, produ ction process and utilization thereof Download PDF

Info

Publication number
WO1984002345A1
WO1984002345A1 PCT/EP1983/000333 EP8300333W WO8402345A1 WO 1984002345 A1 WO1984002345 A1 WO 1984002345A1 EP 8300333 W EP8300333 W EP 8300333W WO 8402345 A1 WO8402345 A1 WO 8402345A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
primary
contain
epoxy
resins
Prior art date
Application number
PCT/EP1983/000333
Other languages
English (en)
French (fr)
Inventor
Wolfgang Hesse
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of WO1984002345A1 publication Critical patent/WO1984002345A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4057Carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • C09D5/4434Polyepoxides characterised by the nature of the epoxy binder
    • C09D5/4442Binder characterised by functional groups
    • C09D5/4446Aliphatic groups, e.g. ester

Definitions

  • the invention relates to curable, cationic modification products of epoxy resins which, as the crosslinking principle, contain ⁇ -hydroxyalkyl carbamide esters and optionally also tertiary amine groups, are made water-soluble and can also be used in cataphoretic dip coating.
  • Cationic epoxy resin derivatives contain amine groups in the cone which, after protonation, enable them to be converted into an aqueous phase.
  • Such resins can be deposited from the aqueous solutions in cataphoretic dip coating by applying direct current to electrically conductive substrates. Amines and free carboxylic acids cannot be used to crosslink them, but certain polyfunctional carboxylic acid esters can be used.
  • Melamine resins, phenolic resins and urea resins can also be used, but are generally used as pre-condensates. Although this embodiment eliminates paint technical caking parts, it leads to high molecular weights and thus to a viscosity increase that is often undesirable.
  • Self-crosslinking epoxy resin derivatives are also produced by partially adding polyisocyanates to the hydroxyl groups or reactive amine groups of the epoxy resin modification product and then capping them. Alcohols or substances with amine groups are generally used as capping agents. It is also possible to react amine-free epoxy resins or their derivatives with polyisocyanates and / or cationic groups, which also act as encapsulations serve means on isocyanate groups, for. B. add the remaining ones.
  • Toluene diisoeyanate the isocyanate groups of which have different reactivities.
  • the more reactive isocyanate group reacts with the epoxy resin, the more inert one remains, so that molecular enlargements are avoided in this way.
  • This in turn increases the disadvantage of the baking temperatures being too high, since the urethanes or substituted ureas produced from the less reactive isocyanate group naturally cut off at even higher temperatures, so that even higher crosslinking temperatures have to be used for curing the paint.
  • the reaction of the epoxy resins with diisocyanates consumes hydroxyl groups of the epoxy resin, which are then no longer available for the crosslinking reaction.
  • the invention relates to curable, cationic modification products of epoxy resins which are characterized by a content of ⁇ -hydroxyalkyl carbarnide ester groups, the amide group of which is derived from a polyamine with at least two primary and / or secondary amino groups, and optionally additionally tertiary amino groups, two of whose nitrogen bonds are occupied by hydrocarbon radicals, the resins being present as such or in a form protonized by acid, dissolved in water or aqueous-organic systems and optionally containing customary additives, and at least 70% of the epoxy groups being reacted are.
  • the invention also relates to a process for producing such modification products, which is characterized in that polyamines having at least two primary and / or secondary amino groups are partially reacted with cyclic alkylene carbonates to give ⁇ -hydroxyalkyl carbamide esters in such a way that at least one primary or secondary amino group is retained , and then the remaining amine functions are added to epoxy resins or that amine-functional derivatives of epoxy resins which contain primary and / or secondary amine functions are reacted with cyclic alkylene carbonates to give ⁇ -hydroxyalkyl carbamate ester group-containing resins, the epoxy groups optionally also before, during or after their reactions with polyaraines, which contain a tertiary and also contain at least one primary or secondary amino group.
  • the invention relates to the use of the aforementioned modification products, in particular those which contain either tertiary amino groups and / or curing catalysts, for the production of forked bodies, in particular surface coatings.
  • cyclic alkylene carbonates e.g. As ethylene arbonate, propylene carbonate or butylene carbonate, which are derivatives of 1,2-glycols, add ammonia, primary or secondary arena to the corresponding ß-hydroxyalkyl carbamide esters.
  • polyamines preferably those which have at least two primary and / or contain secondary amine functions, but preferably at least one primary, and selects the proportions such that at least one amine function, usually a secondary one, remains, these adducts can be added to the epoxy groups of epoxy resins. It is Z. B. but also possible, first by reaction of epoxy resins with the above-mentioned polyamines to form synthetic resins which contain at least secondary and optionally primary amine functions, and then add the cyclic alkylene carbonates.
  • epoxy resins which contain at least one epoxy group per molecule can be used as epoxy resins.
  • polyethers with epoxy groups in particular those with a molecular weight of 250 to 2500, as obtained by etherifying a dihydric alcohol or diphenol with epihalohydrins or dihalohydrins, e.g. with dichlorohydrin and preferably with epichlorohydrin in the presence of alkali.
  • These compounds can differ from glycols, such as ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propanediol,
  • 1,4-butanediol Derive pentanediol-1,5, hexanediol 1,6 and in particular from diphenols such as resorcinol, pyrocatechol, hydroquinone, 1,4-dihydroxynaphthalene.
  • Other suitable epoxy resins are those made by epoxidation of double bonds, e.g. by epoxidation of unsaturated fatty oils or unsaturated hydrocarbons.
  • polyamines with hydrocarbon radicals of 2 to 8 carbon atoms such as ethylene, propylene, butylene and hexylenediamine, also dipropylenetriamine, tripropylenetetramine, dibutylenetri- amine, dihexylenetriamine, aromatic araine with aliphatically bound NH 2 groups, such as xylylenediamine and its hydrogenation products, the various cyclohexylenediamines, but preferably dialkylenetriamines and / or trialkylenetetramines, the alkylene radical of which each contains 2 to 6 carbon atoms, in particular diethylenetriamine and / or triethylentetramine Mixtures of these amines are used. It is possible to mask part of the primary amine functions. This is conveniently done by reaction with ketones
  • the epoxy resin- ⁇ -hydroxyalkyl-carbamide ester adducts thus produced are already cationic resins and can be converted into a water-soluble form using acids.
  • the base strength of the amine groups contained in these resins is generally weak. In order to reinforce the cationic character, it may therefore be advisable to incorporate stronger amine functions. For this purpose, it is advantageous not to react all of the epoxy groups with the alkylene carbonate adducts, but to reserve a portion for further reaction with those amines and / or alkanolamines which, in addition to the primary and / or secondary amine function, contain a tertiary amine function.
  • dialkylaminoalkylamines especially dimethylaminopropylamine
  • N, N-dialkylamino (N'-alkyl) alkylamines or N, N-dialkylamino (N'-alkanol) alkylamines e.g. B.
  • N, N-dimethylamino (N'-hydroxyethyl) propylamine N, N-dimethylamino (N'-hydroxyethyl) propylamine. These amines can also be substituted in the main chain, such as the z. B is the case with N, N-dimethylamino (N'-methylamino) 2-hydroxypropylarain. In this way, modification products are obtained which additionally contain tertiary amino groups, two of whose nitrogen bonds are occupied by hydrocarbon radicals.
  • Another possibility for increasing the cationic properties is to react the ⁇ -hydroxyalkyl carbamide ester groups with compounds which, in addition to at least one tertiary amino group, contain at least one primary and / or secondary amino group and / or hydroxyl group. hold. In this way, urea and / or urethane groups are obtained from the p-hydroxyalkyl carbamide ester groups with an increase in the size of the column and the elimination of glycols.
  • the polyamines listed above are suitable for this. However, it is also possible to use compounds which, apart from at least one tertiary amino group, contain only hydroxyl groups as functional groups.
  • N, N-dialkylamino (N ', N'-dialkanol) alkylamines or polyethers which are obtained by reaction of amines which contain at least one primary and / or secondary amino group in addition to at least one tertiary amino group with alkylene oxides, preferably propylene oxide.
  • those amine adducts of monofunctional epoxy compounds which also contain at least one primary or secondary amino group can also be incorporated into the resin.
  • Such amine adducts can e.g. by reacting polyamines which contain at least two non-tertiary, preferably two primary amino groups in the molecule, with a) glycidyl esters of saturated and / or olefinically unsaturated fatty acids and / or b) optionally substituted alkylene oxides, such as aryl or alkyl glycidyl ethers.
  • polyaminoamides can be chemically or physically incorporated into the resin that contain at least one primary and / or secondary amine function.
  • These polyaminoamides can be prepared by saturated or olefinically unsaturated mono- or polycarboxylic acids with polyfunctional amines, e.g. B. the above, implemented.
  • the reaction between cyclic alkyl encarbonate and arain can be carried out in substance or in organic or aqueous solution. It already runs at room temperature, but then takes several days. It is preferable to work at elevated temperature, preferably at 40 to 120 ° C and especially between 60 and 100 ° C. At the higher temperatures temperatures, the reaction is usually complete after half an hour to about 5 hours; the same applies to the reaction of the reaction products obtained with the epoxy resins and the reaction which may be carried out with additional aminic and / or epoxidic compounds. The latter can be carried out in solvents. Mono- or polyhydric alcohols, ketones, esters, ethers, partial or complete glycoethers, acetals or mixtures thereof can be used as solvents.
  • polyamines which contain at least two amino groups, at least one of which is tertiary and the others are primary or secondary, or those compounds which, except at least one primary secondary and / or tertiary amine function still contain one or more hydroxyl groups, partially reacted with polyisocyanates and the remaining isocyanate groups are further reacted in a second stage with the OH groups or any primary or secondary amino groups of the modified epoxy resin which may still be present.
  • Suitable polyisocyanates are e.g. B. 2,4- or 2,6-tolylene diisocyanate, xylylene diisocyanate, diphenylmetbane-4,4'-diisocyanate, triphenylmethane-4, 4 ', 4 "triisocyanate, polyphenylpolymethylene isocyanates, isophorone diisocyanate, hexamethylene diisocyanate, 2,2,4 (2, 4,4) trimethyl hexamethylene diisocyanate, ethylcyclohexyl diisocyanate, dicyclohexyl methyl diisocyanate,
  • the weight ratios between epoxy resin, ß-hydroxyalkyl carbamide ester derivative and optionally the other compounds can be varied within wide limits. At least 80% and particularly advantageously at least 90 or at least 95% of the epoxy groups are preferably reacted in the products according to the invention.
  • the resins according to the invention must be protonized in order to convert them into a water-soluble form.
  • the choice of the acid used is basically indifferent; however, it is preferred to use low molecular weight organic mono- or polycarboxylic acids which may also contain hydroxyl groups. Are called z. B. formic acid, acetic acid, propionic acid, lactic acid, gluconic acid, oxalic acid. Phosphoric acids, especially orthophosphoric acid and its acidic esters, can also be used. The acids can be added before, during or after resin formation.
  • the cationic resins according to the invention are self-crosslinking. They are crosslinked at temperatures of at least 110 ° C., preferably above 120 ° C., provided that these resins are strongly basic, as is the case especially after the incorporation of tertiary amino groups.
  • the crosslinking rate can be accelerated with these resins by using catalysts.
  • Metal salts such as the salts of lead, tin, iron, manganese, cobalt, calcium or barium with monocarboxylic acids, e.g. B. octoate, neodecanoate, laurate, oleate, stearate and naphthenate.
  • Resins only crosslink at higher temperatures, around 180oC, and require crosslinking at lower ones Temperatures, e.g. B. from 110 ° C or from 120 ° C, mandatory the addition of catalysts, for. B. the above.
  • the resins are preferably used in such a way that they contain either tertiary amino groups and / or curing catalysts.
  • the resins of the invention are usually solid, but are sometimes viscous. You can in substance, the solid z. B. in powder mixtures, or from organic solvents for the production of forked bodies, especially sheet-like such as bonds and coatings, but also for impregnation and are highly elastic and chemically resistant after crosslinking.
  • the particular advantage of the resins is that, after the addition of acids, they can be converted into a water-soluble form and used as aqueous or organic-aqueous colloid systems.
  • the application can be carried out according to the methods customary in coating technology by brushing on, rolling on, knife coating, spraying on.
  • the aqueous or aqueous-organic synthetic resin solutions can, however, also be used in cataphoretic dip coating and can be separated by electric current.
  • the resins according to the invention for the use of the resins according to the invention as lacquer, that is to say for the production of coatings, the resins present in bulk, as solutions, aqueous colloidal solutions or dispersions can be provided with pigments, fillers or other customary additives.
  • Additives are to be understood in particular as those organic substances and synthetic resins which are used in paint technology to improve the paint properties. These are e.g. B. epoxy resins, epoxy resin dispersions, ester resins, polyglycol ethers, non-volatile or low-volatile solvents. These substances may themselves have cationic properties, but this is not mandatory.
  • the resins according to the invention are used in the production of coatings on any substrates, provided that these have a thermal stability that is above the crosslinking temperature.
  • Percentages by weight The viscosity is determined in the form at 20 ° C according to DIN 53015.
  • the specimens had an impact resistance of over 70 inches. 1b and resisted in parallel try two hours of 2% acetic acid at 100 ° C and two hours of 2% sodium hydroxide solution at 80 ° C.
  • aqueous colloidal solution III had a pH of 8.8 and a conductivity of 463 ⁇ S (microsiemens) (both values measured at 20 ° C).
  • the bath was adjusted to a conductivity of 1200 ⁇ S and a pH of 7.9 by adding 1.3 T acetic acid.
  • a cataphoresis cell a degreased steel sheet was attached as the anode and a phosphated steel sheet as the cathode.
  • the cataphoretic coating was carried out at 25 ° C. with a voltage of 280 volts and lasted 1.5 minutes.
  • the sheet connected as the cathode was removed from the cell and rinsed with water. After the sheet had been dried with an air jet, the Coated at 130oC for 20 minutes in a forced air oven. A hard, shiny, tough and elastic coating with a layer thickness of 21 ⁇ m was formed on the front and back. The baked film was resistant to organic solvents and withstood the acetone test.
  • 720 T of solution III were rubbed with 108 T of titanium dioxide and 8.6 T of lead silicate on a three-roller and diluted with 3000 T of deionized water.
  • the aqueous colloidal solution had a pH of 8.9 and a conductivity of 830 ⁇ S (both values measured at 20 ° C).
  • a pH of 7.5 and a conductivity of 1250 ⁇ S were set by adding 0.9 T acetic acid.
  • the pigmented resin solution was deposited in a cataphoresis cell at 25 ° C in the same manner as above at 230 volts. After the catapnoretically coated sheet was rinsed and dried with compressed air, it was baked in a forced-air drying cabinet at 135 ° C. for 20 minutes. The layer thickness on the front and back was 19 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

Härtbare, kationische Modifizierungsprodukte von Epoxidharzen, Verfahren zu ihrer Herstellung und ihre Verwendung
Die Erfindung bezieht sich auf härtbare, kationische Modifizierungsprodukte von Epoxidharzen, die als vernetzendes Prinzip ß-Hydroxyalkyl-Carbamidester und gegebenenfalls zusätzlich tertiäre Amingruppen enthalten, wasserlöslich gemacht und auch bei der kataphoretischen Tauchlackierung angewendet werden können.
Es ist bekannt, Epoxidharze mit Aminen, Polyaminoamiden, Carbonsäuren, Melaminharzen, Phenolharzen, HarnStoffharzen, den Umsetzungsprodukten von Carbamiden mit Carbonsäuren oder Dicarbonsäuren und anderen mehr zu vernetzen. Kationische Epoxidharzabkömmlinge enthalten in der Kegel Amingruppen, die nach Protonisierung eine Überführung in eine wäßrige Phase ermöglichen. Solche Harze können aus den wäßrigen Lösungen bei der kataphoretischen Tauchlackierung durch Anlegen von Gleichstrom auf elektrisch leitenden Substraten abgeschieden werden. Zu ihrer Vernetzung können zwar nicht Amine und freie Carbonsäuren, wohl aber bestimmte polyfunktionelle Carbonsäureester angewendet werden. Auch Melaminharze, Phenolharze und Harnstoffharze sind brauchbar, werden aber in der Regel als Fräkondensate angewendet. Diese Ausführungsform beseitigt zwar lacktechnische Kachteile, führt aber zu hohen Molckularmassen und damit zu einer vielfach nicht erwünschten Viskositätserhöhung.
Selbstvernetzende Epoxidharzabkömmlinge stellt man auch dadurch her, daß Polyisocyanate an die Hydroxylgruppen oder reaktiven Amingruppen des Epoxidharz-Modifizierungsprcdukts partiell addiert und anschließend verkappt werden. Als Verkappungsmittel dienen in der Regel Alkohole oder Stoffe mit Amingruppen. Es ist auch möglich, aminfreie Epoxidharze oder deren Abkömmlinge mit Polyisocyanaten umzusetzen und/oder kationische Gruppen, die zugleich als Verkappυngs mittel dienen, an Isocyanatgruppen, z. B. die übriggebliebenen, zu addieren.
Bei diesen technisch durchgeführten Verfahren ergeben sich Nachteile wegen der schlechten Handhabbarkeit der Isocyanate. Diese Verbindungen sind stark giftig und gegen Wasser und Hydroxylgruppen enthaltende Verbindungen empfindlich. In Gegenwart starker Basen tendieren die Isocyanatgruppen außerdem zur Polymerisation. Der Hauptnachteil der so hergestellten Harze liegt aber in der hohen Entkappungsteraperatur; Vernetzungen unter Praxisbedingungen sind in der Regel ab 170°C, meist aber erst bei noch höheren Temperaturen möglich. Um bei der Addition des Isocyanates an das Epoxidharz unerwünschte Molekülvergrößerungen zu vermeiden, verwendet man in der Regel solche Di isocyanate, z. B.
Toluylendiisoeyanat, deren Isocyanatgruppen unterschiedlich hohe Reakivitäten aufweisen. Die reaktivere Isocyanatgruppe reagiert mit dem Epoxidharz, die trägere bleibt übrig, so daß auf diese Weise Molekülvergrößerungen vermieden werden. Daraus resultiert wiederum eine Verstärkung des Nachteils der zu hohen Einbrenntemperaturen, denn die aus der reaktionsträgeren Isocyanatgruppe hergestellten Urethane bzw. substituierten Harnstoffe entkappen natürlich bei noch höheren Temperaturen, so daß nochmals höhere Vernetzungstemperaturen bei der Härtung des Lacks angewendet werden müssen. Außerdem werden bei der Reaktion der Epoxidharze mit Diisocyanaten Hydroxylgruppen des Epoxidharzes verbraucht, die dann für die Vernetzungsreaktion nicht mehr zur Verfügung stehen.
Es wurde nun überraschend gefunden, daß man diese Nachteile durch die Erfindung verneidet. Gegenstand der Erfindung sind härtbare, kationische Modifizierungsprodukte von Epoxidharzen, die durch einen Gehalt an ß-Hydroxyalkyl carbarnidestergruppen gekennzeichnet sind, wobei sich deren Amidgruppe von einen Polyamin mit wenigstens zwei primären und/oder sekundären Aminogruppen ableitet, und gegebenenfalls zusätzlich tertiären Aminogruppen, von deren Stickstoffbindungen zwei durch Kohlenwasserstoffreste besetzt sind, wobei die Harze als solche oder in einer durch Säure protonisierten, in Wasser oder wäßrig-organischen Systemen gelösten Form vorliegen und gegebenenfalls übliche Zusätze enthalten, und wobei mindestens 70 % der Epoxidgruppen zur Umsetzung gebracht sind.
Gegenstand der Erfindung ist auch ein Verfahren zur HerStellung solcher Modifizierungsprodukte, das dadurch gekennzeichnet ist, daß Polyamine mit wenigstens zwei primären und/oder sekundären Aminogruppen teilweise so weit mit cyclischen Alkylencarbonaten zu ß-Hydroxyalkylcarbamidestern umgesetzt werden, daß mindestens eine primäre oder sekundäre Aminogruppe erhalten bleibt, und anschließend die verbliebenen Aminfunktionen an Epoxydharze addiert oder daß aminfunktionelle Abkömmlinge von Epoxydharzen, die primäre und/oder sekundäre Aminfunktionen enthalten, mit cyclischen Alkylencarbonaten zu ß-Hydroxyalkylcarbamidestergruppen enthaltenden Kunstharzen umgesetzt werden, wobei die Epoxydgruppen gegebenenfalls auch vor, während oder nach ihren Umsetzungen zusätzlich mit Polyarainen, die eine tertiäre und außerdem mindestens eine primäre oder sekundäre Aminogruppe enthalten, umgesetzt werden.
Gegenstand der Erfindung ist schließlich die Verwendung der vorgenannten Modifizierungsprodukte, insbesondere solcher, die entweder tertiäre Aminogruppen und/oder Härtungskatalysatoren enthalten, zur Herstellung von Forrakörpern, insbesondere Flächenbeschichtungen.
Es ist bekannt, daß sich cyclische Alkylencarbonate, z. B. Äthylenearbonat, Propylencarbonat oder Butylencarbonat, die Abkömmlinge von 1,2-Glykolen sind, an Ammoniak, primäre oder sekundäre Araine glatt zu den entsprechenden ß-Hydroxyalkyl-Carbamidestern anlagern. Verwendet man Polyamine, vorzugsweise solche, die mindestens zwei primäre und/oder sekundäre Aminfunktionen enthalten, vorzugsweise aber mindestens eine primäre, und wählt die Mengenverhältnisse so, daß mindestens eine Aminfunktion, in der Regel ist es eine sekundäre, übrigbleibt, kann man diese Addukte an die Epoxidgruppen von Epoxidharzen addieren. Es ist z. B. aber auch möglich, zunächst durch Umsetzung von Epoxidharzen mit den oben genannten Polyaminen Kunstharze zu bilden, die wenigstens sekundäre und gegebenenfalls primäre Aminfunktionen enthalten, und dann die cyclischen Alkylencarbonate zu addieren.
Als Epoxidharze können sämtliche Epoxidharze verwendet werden , die mindestens eine Epoxidgruppe pro Molekül enthalten. Am besten aeeignet sind Polyäther mit Epoxydgruppen, insfoesondere solche mit einem Molekulargewicht von 250 bis 2500, wie sie durch Verätherung eines zweiwertigen Alkohols oder Diphenols mit Epihalogenhydrinen oder Dihalogenhydrinen, z.B. mit Dichlorhydrin und vorzugsweise mit Epichlorhydrin in Gegenwart von Alkali, erhalten v/erden. Diese Verbindungen können sich von Glykolen, wie Äthylenglykol, Diäthylenglykol Triäthylenglykol, Propylenglykol-1,2, Propandiol-1,3,
Butandiol-1,4,. Pentandiol-1,5, Hexandiol1,6 und insbesondere von Diphenolen, wie Resorcin, Brenzkatechin, Hydrochinon, 1 , 4-Dihydroxynaphthalin ableiten. Besonders bevorzugt sind Epoxydharze, die aus Diphenylolalkanen wie Bis-(4-hydroxyphenyl)-methyl-phenylmethan, Bis-(4-hydroxyphenyl)-tolylmethan, 4, 4'-Dihydroxydiphenyl und insbesondere 2,2-Bis(4-hydroxyphenyl)-propan und/oder Bis (4-hydroxyphenyl)methan, oder höheren Poliphenyiolalkanen wie Novolaken hergestellt werden. Andere geeignete Epoxidharze sind die, die durch Epoxidierung von Doppelbindungen, z.B. durch Epoxidierung von ungesättigten fetten Ölen oder ungesättigten Kohlenwasserstoffen, hergestellt werden.
Für die Herstellung der ß-Hydroxyalkyl-Carbamidester worden z. B. Polyamine mit Kohlenwasserstoffresten von 2 bis 8 C-Atomer wie Äthylen-, Propylen-, Butylen- und Hexylendiamin, ferner Dipropylentriamin, Tripropylentetramin, Dibutylentri- amin, Dihexylentriamin, aromatische Araine mit aliphatisch gebundenen NH2-Gruppen, wie Xylylendiamin und seine Hydrierungsprodukte, die verschiedenen Cyclohexylendiamine, vorzugsweise aber Dialkylentriamine und/oder Trialkylentetramine, deren Alkylenrest jeweils 2 bis 6 C-Atome enthält, insbesondere Diäthylentriamin und/oder Triäthylentetramin oder Mischungen aus diesen Aminen eingesetzt. Es ist möglich, einen Teil der primären Aminfunktionen zu maskieren. Das geschieht zweckmäßig durch Umsetzung mit Ketonen zu
Schiff sehen Basen.
Die so hergestellten Epoxidharz-ß--Hydroxyalkyl-Carbamidester-Addukte sind bereits kationische Harze und können mit Säuren in eine wasserlösliche Form übergeführt werden.
Die Basenstärke der in diesen Harzen enthaltenen Amingruppierungen ist aber in der Regel schwach. Um den kationische Charakter zu verstärken, kann es daher zweckmäßig sein, stärkere Aminfunktionen einzubauen. Dazu ist es vorteilhaft, nicht sämtliche Epoxidgruppen mit den Alkylencarbonat-Addukten umzusetzen, sondern einen Teil für eine weitere Umsetzung mit solchen Aminen und/oder Alkanolaminen zu reservieren, die außer der primären und/oder sekundären Aminfunktion eine tertiäre Aminfunktion enthalten. Das sind beispielsweise Dialkylaminoalkylamine, besonders Dimethylaminopropylamin; N,N-Dialkylamino-(N'-Alkyl-) Alkylamine oder N,N-Dialkylamino-(N'-Alkanol-)Alkylamine, z. B.
N, N-Dimethylamino-(N'-Hydroxyäthyl-)Propylamin. Diese Amine können außerdem in der Hauptkette substituiert sein, wie das z. B beim N,N-Dimethylamino-(N'-Methylamino-)2-Hydroxypropylarain der Fall ist. Auf diese Weise erhält man Modifizierungsprodukte, die zusätzlich tertiäre Aminogruppen enthalten, von deren Stickstoffbindungen zwei durch Kohlenwasserstoffreste besetzt sind.
Eine andere Möglichkeit zur Erhöhung der kationischen Eigenschaften besteht darin, die ß-Hydroxyalkyl-Carbamidestergruppen mit solchen Verbindungen umzusetzen, die außer mindestens einer tertiären Aminogruppe mindestens eine primäre und/oder sekundäre Aminogruppe und/oder Hydroxylgruppe ent- halten. Auf diese Weise erhält man aus den p-HydroxyalkylCarbamidestergruppen unter Kolekülvergrößerung und Abspaltung von Glykolen Harnstoff- und/oder ύrethangruppierungen. Dazu eignen sich unter anderem die obenaufgeführten Polyamine. Es ist aber auch möglich, solche Verbindungen einzusetzen, die außer mindestens einer tertiären Aminogruppe als funktioneile Gruppen nur Hydroxylgruppen enthalten. Beispiele für solche Verbindungen sind N,N-Dialkylamino-(N',N'-Dialkanol)-Alkylamine oder Polyäther, die durch Reaktion von Aminen, die außer mindestens einer tertiären Aminogruppe mindestens eine primäre und/oder sekundäre Aminogruppe enthalten, mit Alkylenoxiden, vorzugsweise Propylenoxid hergestellt werden.
Zur Veränderung der Löseeigenschaften und zur Steuerung des richtigen Maßes an Hydrophylie bzw. Hydrophobie können außerdem solche Aminaddukte von monofύnktionellen Epoxidverbindungen in das Harz eingebaut werden, die noch mindestens eine primäre oder sekundäre Aminogruppe enthalten. Solche Aminaddukte können z.B. durchUnsetzung von Polyaminen, die mindestens zwei nicht-tertiäre, vorzugsweise zwei primäre Aminogruppen im Molekül enthalten, mit a) Glycidylestern von gesättigten und/oder olefinisch ungesättigten Fettsäuren und/ oder b) gegebenenfalls substituierten Alkylenoxiden, wie Aryl- oder Alkylglycidyläthern hergestellt werden.
Zum gleichen Zwecke können Polyaminoamide in das Harz chemisch oder physikalisc eingebaut werden , di e mi ndestens eine primäre und/oder sekundäre Aminfunkt ion enthalten . Di ese Polyaminoamide können hergestellt werden , indem gesättigte oder olefi ni sch ungesät tigte Mono- oder Polycarbonsäuren mit pol yfunktionellen Aminen , z. B . den oben genannten , umgesetzt v/erden .
Die Reaktion zwischen cyclischen Alkyl encarbonat und Arain kann in Subs tanz oder in organi scher oder wäßriger Lösung erfolgen . Sie l äuft schon bei Raunt emperatur ab , braucht dann aber mehrere Tage . Es ist vorzuziehen , bei erhöhter Temperatur , vorzugswei se bei 40 bis 120°C und besonders zwi schen 60 und 100°C zu arbeiten . Bei den höheren Tem- peraturen ist die Reaktion meist nach einer halben bis etwa 5 Stunden abgeschlossen; das gleiche gilt für die Reaktion der erhaltenen Umsetzungsprodukte mit den Epoxidharzen und die gegebenenfalls durchgeführte Umsetzung mit zusätzlichen aminischen und/oder epoxidischen Verbindungen. Letztere kann in Lösemitteln durchgeführt v/erden. Als Lösemittel können dabei verwendet werden ein- oder mehrwertige Alkohole, Ketone, Ester, Äther, partielle oder vollständige Glykoiäther, Acetale oder Gemische davon.
Zur Erhöhung der kationischen Eigenschaften der erfindungsgemäßen Harze ist es möglich, zusätzlich Aminogruppen in das Harz einzuführen, indem in erster Stufe Polyamine, die mindestens zwei Aminogruppen enthalten, von denen wenigstens eine tertiär und die anderen primär oder sekundär sind, oder solche Verbindungen, die außer mindestens einer primären sekundären und/oder tertiären Aminfunktion noch eine oder mehrere Hydroxylgruppen enthalten, teilweise mit Polyisocyanaten umgesetzt und die restlichen Isocyanatgruppen in zweiter Stufe mit den OH-Gruppen oder eventuell noch vorhandenen primären oder sekundären Aminogruppen des modifizierten Epoxidharzes weiter reagiert werden.
Geeignete Polyisocyanate sind z. B. 2,4- oder 2,6-Toluylendiisocyanat, Xylylendiisocyanat, Diphenylmetban-4,4'-diisocyanat, Triphenylmethan-4, 4',4"-triisocyanat, Polyphenylpolymethylenisocyanate, Isophorondiisocyanat, Hexamethylendiisocyanat, 2,2,4(2,4,4)-Trimethylhexamcthylendiisocyanat, Hethylcyclohexyldiisocyanat, Dicyclohexylmethyldiisocyanat,
Bis-(3-Methyl-4-isocyanatocyclohexyl-)methan, 2, 2-Bis-(4-isocyanatocyclohexyl-)propan, der Methylester des Lysindiisocyanats, das Biuret des Hexamethylendiisocyanats, Diisocyanate dimerer Säuren, 1-Methylbenzol-2,4,5-triisocyanat, Biphenyl-2,4,4'-triisocyanat, das Triisocyanat aus 3 Mol Hexamethylendiisocyanat und 1 Mol Wasser mit 16 % NCO-Gehalt und weitere wenigstens zwei NCOGruppen pro Molekül enthaltende Verbindungen. Außerdem ist es möglich, zusätzlich Aminogruppen in Form von teilweisen oder vollständigen Umsetzungsprodukten von Polyepoxiden, z. B. Diepoxiden, einerseits und Polyaminen andererseits, die sowohl tertiäre als auch sekundäre und/oder primäre Aminfunktionen enthalten, über im Harzmolekül noch vorhandene primäre und/oder sekundäre Aminogruppen einzuführen.
Die Gewichtsverhältnisse zwischen Epoxidharz, ß-HydroxyalkylCarbamidester-Derivat und gegebenenfalls den übrigen Verbindüngen sind in weiten Grenzen variierbar. Vorzugsweise sind in den erfindungsgemäßen Produkten mindestens 80 % und besonders vorteilhaft mindestens 90 oder mindestens 95 % der Epoxidgruppen zur Umsetzung gebracht.
Zur Überführung in eine wasserlösliche Form müssen die erfindungsgemäßen Harze protonisiert werden. Die Auswahl der verwendeten Säure ist grundsätzlich gleichgültig; es ist jedoch bevorzugt, niedrigmolekulare organische Mono- oder Polycarbonsäuren zu verwenden, die gegebenenfalls noch Hydroxylgruppen enthalten. Genannt werden z. B. Ameisensäure, Essigsäure, Propionsäure, Milchsäure, Glukonsäure, Oxalsäure. Phosphorsäuren, besonders Orthophosphorsäure und deren saure Ester, können gleichfalls verwendet werden. Die Säuren können vor, während oder nach der Harzbildung zugegeben werden.
Die erfindungsgernäßen kationischen Harze sind im Prinzip selbstvernetzend. Ihre Vernetzung erfolgt bei Temperaturen von mindestens 110ºC, vorzugsweise ab 120°C, sofern diese Harze stark basisch sind, wie es besonders nach dem Einbau von tertiären Aminogruppen der Fall ist. Die Vernetzungsgeschwindigkeit kann bei diesen Harzen durch Verwendung von Katalysatoren beschleunigt werden. Besonders eignen sich Metallsalze wie die Salze des Bleis, Zinns, Eisens, Mangans, Kobalts, Calciums oder Bariums mit Monocarbonsäuren, z. B. Octoate , Neodecanoate , Laurate , Oleate , Stearate und Naphthenate . Die schwächer basischen erfindungsgemäßen
Harze vernetzen erst bei höheren Temperaturen, etwa ab 180ºC, und bedürfen zur Vernetzung bei niedrigeren Temperaturen, z. B. ab 110°C oder ab 120°C, zwingend des Zusatzes von Katalysatoren, z. B. der genannten. Bevorzugt werden die Harze also in der Form eingesetzt, daß sie entweder tertiäre Aminogruppen und/oder Härtungskatalysatoren enthalten.
Die erfindungsgemäßen Harze sind gewöhnlich fest, zuweilen aber zähflüssig. Sie können in Substanz, die festen z. B. in Pulvermischungen, oder aus organischen Lösemitteln zur Herstellung von Forrakörpern, vor allem flächenförmigen wie Verklebungen und Beschichtungen, aber auch für Imprägnierungen angewendet werden und sind nach der Vernetzung hochelastisch und chemisch widerstandsfähig. Der besondere Vorteil der Harze besteht darin, daß sie nach Zugabe von Säuren in eine wasserlösliche Form übergeführt und als wäßrige oder organisch-wäßrige kolloide Systeme angewendet werden können. Die Anwendung kann nach den in der Lacktechnik üblichen Methoden durch Aufstreichen, Aufwalzen, Aufrakeln, Aufspritzen erfolgen. Die wäßrigen bzw. wäßrigorganischen Kunstharzlösungen können aber auch bei der kataphoretischen Tauchlackierung angewendet und durch elektrischen Strom abgeschieden werden.
Für die Anwendung der erfindungsgemäßen Harze als Lack, also zur Herstellung von Überzügen, können die in Substanz, als Lösungen, wäßrig-kolloide Lösungen oder Dispersionen vorliegenden Harze mit Pigmenten, Füllstoffen oder anderen üblichen Zusätzen versehen werden. Unter Zusätzen sind besonders solche organischen Substanzen und Kunstharze zu verstehen, die in d e r Lacktechnik zur Verbesserung der lacktechnischen Eigenschaften verwendet werden. Das sind z. B. Epoxidharze, Epoxidharzdispersionen, Esterharze, Polyglykoläther, nicht-flüchtige oder schwerflüchtige Lösemittel. Diese Substanzen konneh selbst kationische Eigenschaften besitzen, jedoch ist das nicht zwingend.
Die erfindungsgemäßen Harze werden bei der Herstellung von Überzügen auf beliebigen Substraten verwendet, sofern diese eine thermische Stabilität haben, die über der Vernetzungstemperatur liegt. Bei der Verwendung für kataphoretische
Tauchlackierungen müssen die Substrate elektrisch leitfähig sein z. B. bestehen sie aus Metall. In den folgenden Beispielen bedeuten T Gewichtsteile und %
Gewichtsprozente. Die Viskosität wird in der anfallenden Form bei 20°C nach DIN 53015 bestimmt.
Beispiele
1. 332,4 T eines aus Diphenylolpropan und Epichlorhydrin aufgebauten Epoxidharzes mit einem Epoxidäquivalentgewicht von 475 wurden in 221,6 T Methyläthylketon gelöst. In einem anderen
Gefäß wurden 77,3 T Diäthylentriamin in 225 T Essigester gelös t und zu der auf 40ºC temperierten Lösung 76,5 T Propylencarbonat gegeben. Der Ansatz erwärmte sich infolge der exothermen Reaktion auf etwa 80°C. Diese Temperatur wurde drei Stunden gehalten. Anschließend wurde die Reaktionslösung aus diesem zweiten Reaktionsgefäß in das erste Reaktionsgefäß gegeben und das Gemisch drei Stunden bei 80°C gerührt. Es fielen 933 T einer 60%igen Harzlösung an, die eine Viskosität von 15 000 mPa.s aufwies.
100 T dieser Harzlösung wurden mit 2 T einer Bl eicctoatLösung , d ie 27 % Blei enthielt , vermengt und dieser Lack mit einer Naßfilmstärke von 100 μm auf fünf Glasplatten aufgezogen . Diese wurden nach 30min ütige m Ablüften je 30 min bei 130 , 140 , 150 , 160 bzw. 170°C im Trockenschrank erwärmt . Sämtliche Lackfilme erwiesen sich bei dem Schneiden mit dem Messer als zäh und elastisch und waren lösenrlttelbeständig.
Sie hielten den Acetcntest(100 Dppelwischungen mit einem mit Aceton getränkten Wattebausch) aus .
100 T der mit Bleioctoat versetzten Lacklösung wurden mit Methyläthylketon auf eine Vi skosität von 15 DIN-s verdünnt und verzinkte Eisenbleche damit tauchlackiert . Die 20 min bei 130ºC in Trockenschrank erhitzten Filme waren zäh und elastisch , hatten eine Schlagfestigkeit von über 70 Zoll-lb und wid erstanden in Parailelversυchen 30 min lang 80°C heißer 2%iger Natronlauge sowie 100°C heißer 2 %iger Essigsaure . 2. 380 T eines Epoxidharzes auf Basis von Diphenylolpropan und Epichlorhydrin mit einem Epoxidäcruivalentgewicht von 950 wurden in 253,2 T Essigester gelöst. In einem anderen Reaktionsgefäß wurden 20,6 T Diäthylentriamin in 40.8 T Essigester gelöst und zu der bei Raumtemperatur befindlichen Mischung 40,7 T Propylencarbonat gegeben. Unter Ausnutzung der exothermen Reaktion wurde auf 80°C geheizt und diese Temperatur drei Stunden gehalten. Dann wurde die Reaktiόnsmischung aus dem zweiten Reaktionsgefäß in das erste Reaktionsgefäß gegeben und das Gemisch drei Stunden bei 80ºC gerührt. Dann kühlte man auf 40°C ab und gab 16,8 T N,N-Dimethylamino-(N'-Hydroxyäthyl-)Propylamin zu und rührte bei 60°C, bis der Ansatz eine Viskosität von 130 000 rmPa.s erreicht hatte. Das dauerte vier Stunden. Die Lösung wurde mit 150 T Methyläthylketon auf 50 % verdünnt. Diese Lösung hatte eine Viskosität von 13 000 mPa.s.
200 T der 50%igen Lösung wurden mit 5 g 50%iger Essigsäure versetzt und mit 240 T Wasser verdünnt. Es entstand eine kolloide Lösung, die eine Viskosität von 230 mPa.s aufwies. Diese Lacklösung wurde durch Walzlackieren auf entfettetes, verzinntes Stahlblech aufgetragen und 20 Minuten bei 130°C vernetzt. Die Dicke des eingebrannten Lackfilmes betrug 8 μm.
Die Prüflinge hatten eine Schlagfestigkeit von über 70 Zoll . 1b und widerstanden in Parallel versuchen zwei Stunden einer 2%igen Essigsäure bei 100°C und zwei Stunden 2%iger Natronlauge bei 80°C.
3. In einem mit Rührer und Thermometer versehenen Reaktionsgefäß wurden 206 T Diäthylentriamin in 409 T Diäthylenglykoldimethyläther gelöst und bei 50°C 408 T Propylenearbonat zugegeben. Die Temperatur stieg auf 80°C an und wurde drei Stunden bei 80ºC gehalten. Dann war die Umsetzung beendet. Es fielen 1023 T einer Lösung I an, die einen Feststoffgehalt von 60 % (1 h/135°C) besaß.
396 T des Glycidylesters der Isononansäure wurden in 60 T Diäthylenglykoldimethyläther gelöst, 140 T Hexamethylendiamin zugegeben und in einem mit Thermometer und Rührer versehenen Reaktionsgefäß zwei Stunden auf 140ºC erhitzt. Dann wurde abgekühlt. Es fielen 596 T einer 90 %igen Lösung II an (Rückstand: 1 h/135°C).
760 T eines Epoxidharzes auf Basis von Diphenylolpropan und Epichlorhydrin mit einen Epoxidäquivalentgewicht von 475 wurden in einem mit Rührer und Thermometer versehenen Reaktionsgefäß in einer Mischung aus gleichen Teilen 1,2Propylenglykol, Methylisoaraylketon und Diäthylbenzol gelöst und auf 80ºC gebracht. Dann wurden 272 T der Lösung I und 159 T der Lösung II zugegeben und das Gemisch drei Stunden bei 80ºC gerührt. Dann gab man 334 T Methylisoamylketon, 15,4 T Essigsäure und 24,5 T Dimethylaminopropylamin zu und rührte weitere zwei Stunden bei 80°C. Nach dem Abkühlen auf 20ºC erhielt man eine 60 %ige Lösung III eines wasserverdünnbaren Kunstharzes mit einer Viskosität von 22 000 mPa.s.
Zur Herstellung eines Kataphorescbades verdünnte man unter Rühren 200 T der Lösung III mit 800 T entionisiertem Wasser. Die wäßrig-kolloide Lösung hatte ein pH von 8,8 und eine Leitfähigkeit von 463 μS (Mikrosiemens) (beide Werte bei 20ºC gemessen). Durch Zugabe von 1,3 T Essigsäure stellte man das Bad auf eine Leitfähigkeit von 1 200 μS und ein pH von 7,9 ein. In einer Kataphoresezelle wurden als Anode ein entfettetes Stahlblech und als Kathode ein phosphatiertes Stahlblech angebracht. Die kataphoretische Beschichtung wurde bei 25ºC mit einer "Spannung von 280 Volt durchgeführt und dauerte 1,5 Minuten. Das als Kathode geschaltete Blech wurde aus der Zelle genommen und mit Wasser abgespült. Nach Abtrocknen des Bleches mit einem Luftstrahl wurde die Beschichtung bei 130ºC 20 Minuten in einem Umlufttrockenschrank eingebrannt. Es bildete sich ein harter, glänzender, zäher und elastischer Überzug mit einer Schichtdicke von 21 μm auf der Vorder- und Rückseite. Der eingebrannte Film war beständig gegen organische Lösemittel und widerstand dem Acetontest.
720 T Lösung III wurden mit 108 T Titandioxid und 8,6 T Bleisilikat auf einer Dreiwalze abgerieben und mit 3000 T entionisiertem Wasser verdünnt. Die wäßrig-kolloide Lösung hatte ein pH von 8,9 und eine Leitfähigkeit von 830 μS (beide Werte bei 20ºC gemessen). Durch Zugabe von 0,9 T Essigsäure wurde ein pH von 7,5 und eine Leitfähigkeit von 1250 μS eingestellt. Die pigmentierte Harzlösung wurde in einer Kataphoresezelle bei 25ºC in gleicher Weise wie oben bei einer Spannung von 230 Volt abgeschieden. Nach Spülen des katapnoretisch beschichteten Bleches und Trocknen mit Preßluft wurde 20 Minuten in einem Umlufttrockenschrank bei 135ºC eingebrannt. Die Schichtstärke auf der Vorder- und Rückseite betrug 19 μm.
Die Erichsentiefung nach DIN 53156 ergab einen Wert von 5,8 mm und die Schlagfestigkeit nach ASTM-D-2794 einen Wert von 25 Zoll.1b. Beim Salzsprühtest nach ASTM-B-117-64/ 5%ige Kochsalzlösung bei 35°C zeigten die Prufbleche nach 500 und 1000 Stunden Belastungsdauer weder an der Kante noch am Kreuzschnitt Unterrostungserscheinungen. Der Blasengrad der Prüfbleche nach DIN 53209 zeigte den bestmöglichen Wert M O G O.

Claims

PATENTANSPRÜCHE:
1. Härtbare, kationische Modifizierungsprodukte von Epoxydharzen, gekennzeichnet durch einen Gehalt an ß-Hydroxyalkylcarbamidestergruppen, wobei sich deren Amidgruppe von einem Polyamin mit wenigstens zwei primären und/oder sekundären Aminogruppen ableitet, und gegebenenfalls zusätzlich tertiären Aminogruppen, von deren Stickstoffbindungen zwei durch Kohlenwasserstoffreste besetzt sind, wobei die Harze gegebenenfalls noch Einheiten enthalten, die a) durch Umsetzung der vorgenannten Polyamine mit monofunktionellen Epoxidverbindungen in der Weise gebildet sind, daß noch mindestens eine primäre oder sekundäre Aminogruppe erhalten bleibt, oder b) durch Umsetzung von Polyaminoamiden, die wenigstens eine primäre und/oder sekundäre Aminfunktion enthalten, mit Epoxydgruppen gebildet sind und/oder c) chemisch und/oder physikalisch durch Verbindungen, die außer mindestens einer tertiären Aminogruppe mindestens eine primäre und/oder sekundäre Aminogruppe enthalten, und/oder c2) durch Verbindungen, die außer mindestens einer Arαinfunktion Hydroxylgruppen enthalten, weiter modifiziert sind, als solche oder in einer durch Säure protonisierten, in
Wasser oder wäßrig-organischen Systemen gelösten Form vorliegen und gegebenenfalls übliche Zusätze enthalten und wobei mindestens 70 % der Epoxydgruppen zur Umsetzung gebracht sind.
2. Kodifizierungsprodukte nach Anspruch 1, dadurch gekennzeichnet, daß sich die Amidgruppe der ß-Hydroxyalkylcarbamidestergruppen von Dialkylentriamin und/oder Trialkylentetramin ableitet, wobei der Alkylenrest jeweils 2 bis 6 C-Atome enthält.
3. Modifizierungsprodukte nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie tertiäre Aminogruppen enthalten.
4. Modifizierungsprodukte nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Hydroxylgruppen oder noch vorhandene primäre und/oder sekundäre Aminogruppen durch Polyisocyanate und/oder Epoxydverbindungen modifiziert sind.
5. Modifizierungsprodukte nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie noch Härtungskatalysatoren enthalten.
6. Modifizierungsprodukte nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß mindestens 80, vorzugsweise 90 bis 95 % der Epoxydgruppen zur Umsetzung gebracht sind.
7. Verfahren zur Herstellung von härtbaren, kationischen Modifizierungsprodukten von Epoxydharzen gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß Polyamine mit wenigstens zwei primären und/oder sekundären Aminogruppen teilweise soweit mit cyclischen Alkylencarbonaten zu ß-Hydroxyalkylcarbamidestern umgesetzt werden, daß mindestens eine primäre oder sekundäre Aminogruppe erhalten bleibt, und anschließend die verbliebenen Aminfunktionen an Epoxydharze addiert oder daß aminfunktionelle Abkömmlinge von Epoxydharzen, die primäre und/oder sekundäre
Aminfunktionen enthalten, mit cyclischen Alkylencarbonaten zu ß-Hydroxyalkylcarbamidestergruppen enthaltenden Kunstharzen umgesetzt werden, wobei gegebenenfalls auch eine Modifikation a) durch Umsetzung der vorgenannten Polyamine mit monofunktionellen Epoxydverbindungen in der Weise erfolgen kann, daß noch mindestens eine primäre oder sekundäre Aminogruppe erhalten bleibt, oder b) durch Umsetzung von Polyaminoamiden, die wenigstens eine primäre und/oder sekundäre Aminfunktion enthalten, mit Epoxydgruppen, oder c) durch chemischen und/oder physikalischen Einbau von c1) Verbindungen, die außer mindestens einer tertiären Aminogruppe mindestens eine primäre und/oder sekurdäre Aminogruppe enthalten und/oder c2) Verbindungen, die außer mindestens einer Aminfunktion Hydroxylgruppen enthalten, wobei mindestens 70 % derEpoxydgruppen zur Umsetzung gebracht sind.
8. Verfahren nach Anspruch 7 , dadurch gekennzeichnet, daß Produkte, die gemäß c2) modifiziert sind, noch weiter mit Polyisocyanaten umgesetzt werden, wobei die restlichen Isocyanatgruppen in zweiter Stufe mit den OH-Gruppen oder etwa noch vorhandenen primären oder sekundären Aminogruppen des modifizierten Epoxydharzes weiter reagiert werden.
9. Verwendung der Modifizierungsprodukte nach einem oder mehreren der Ansprüche 1 bis 6, insbesondere solcher, die entweder tertiäre Aminogruppen und/oder Härtungskatalysatoren enthalten, zur Herstellung von Formkörpern, insbesondere Fläehenbeschichtungen.
PCT/EP1983/000333 1982-12-17 1983-12-14 Hardenable and cationic modifying agents for epoxy resins, produ ction process and utilization thereof WO1984002345A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19823246812 DE3246812A1 (de) 1982-12-17 1982-12-17 Haertbare, kationische modifizierungsprodukte von epoxidharzen, verfahren zu ihrer herstellung und ihre verwendung

Publications (1)

Publication Number Publication Date
WO1984002345A1 true WO1984002345A1 (en) 1984-06-21

Family

ID=6180996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1983/000333 WO1984002345A1 (en) 1982-12-17 1983-12-14 Hardenable and cationic modifying agents for epoxy resins, produ ction process and utilization thereof

Country Status (11)

Country Link
JP (1) JPS59120618A (de)
KR (1) KR920002771B1 (de)
AU (1) AU2343884A (de)
CA (1) CA1247288A (de)
DE (1) DE3246812A1 (de)
ES (1) ES528065A0 (de)
GR (1) GR79481B (de)
IT (1) IT1170261B (de)
MX (1) MX164075B (de)
WO (1) WO1984002345A1 (de)
ZA (1) ZA839327B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172685A2 (de) * 1984-07-30 1986-02-26 Kansai Paint Co., Ltd. Härtungsmittel für Überzugsmittel, bestehend aus wärmehärtbaren Harzen
EP0680988A2 (de) * 1984-02-17 1995-11-08 Cytec Technology Corp. Carbamidsäureester-Derivate und diese enthaltende Beschichtungsmassen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624454A1 (de) * 1986-02-13 1987-08-20 Hoechst Ag Aminourethane, verfahren zu ihrer herstellung und ihre verwendung
AT392284B (de) * 1987-09-03 1991-02-25 Vianova Kunstharz Ag Verfahren zur herstellung kationischer lackbindemittel und deren verwendung
US5235007A (en) * 1991-10-03 1993-08-10 Texaco Chemical Company Epoxy curing agents
US6372108B1 (en) 2000-05-16 2002-04-16 E. I. Du Pont De Nemours And Company Binders for use in cathodic electrodeposition coatings, process for their preparation and cathodic electrodeposition coating compositions containing same
US7459504B2 (en) * 2005-04-08 2008-12-02 Ppg Industries Ohio, Inc. Reaction product of polyamine and acyclic carbonate
US20150353683A1 (en) * 2014-06-05 2015-12-10 Polymate, Ltd. Hybrid epoxy-amine hydroxyurethane-grafted polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU238151A1 (ru) * Институт химии высокомолекул рных соединений Академии наук УССР Способ получения полиуретанов
DE2033770A1 (de) * 1969-07-10 1971-02-04 Ppg Industries Inc Verfahren zur Herstellung von Über zügen durch elektrische Ablagerung und Zubereitungen hierfür
US4122069A (en) * 1977-04-11 1978-10-24 Texaco Development Corporation Polyether dihydroxyalkyl carbamate epoxy additive for epoxy resins
DE2733188A1 (de) * 1977-07-22 1979-02-01 Kansai Paint Co Ltd Verfahren zur herstellung kationischer elektrophoretischer ueberzugsmassen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760944A (en) * 1952-03-17 1956-08-28 Devoe & Raynolds Co Amino-amide-epoxy compositions
US4122068A (en) * 1977-04-11 1978-10-24 Texaco Development Corporation Polyether dihydroxyalkyl carbamate epoxy additive for epoxy resins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU238151A1 (ru) * Институт химии высокомолекул рных соединений Академии наук УССР Способ получения полиуретанов
DE2033770A1 (de) * 1969-07-10 1971-02-04 Ppg Industries Inc Verfahren zur Herstellung von Über zügen durch elektrische Ablagerung und Zubereitungen hierfür
US4122069A (en) * 1977-04-11 1978-10-24 Texaco Development Corporation Polyether dihydroxyalkyl carbamate epoxy additive for epoxy resins
DE2733188A1 (de) * 1977-07-22 1979-02-01 Kansai Paint Co Ltd Verfahren zur herstellung kationischer elektrophoretischer ueberzugsmassen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical Abstracts, volume 71, number 7, 06 October 1969, Columbus, Ohio (US) page 22, abstract 61990 k; & SU-A-238 151 (INSTITUTE OF CHEMISTRY OF HIGH-MOLECULAR-WEIGHT COMPOUNDS, Academy of Sciences, Ukrainiam S.S.R.) 20 February 1969 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680988A2 (de) * 1984-02-17 1995-11-08 Cytec Technology Corp. Carbamidsäureester-Derivate und diese enthaltende Beschichtungsmassen
EP0680988A3 (de) * 1984-02-17 1996-05-22 Cytec Tech Corp Carbamidsäureester-Derivate und diese enthaltende Beschichtungsmassen.
EP0172685A2 (de) * 1984-07-30 1986-02-26 Kansai Paint Co., Ltd. Härtungsmittel für Überzugsmittel, bestehend aus wärmehärtbaren Harzen
EP0172685A3 (en) * 1984-07-30 1987-06-03 Kansai Paint Co. Ltd. Curing agent for thermosetting resin paints

Also Published As

Publication number Publication date
ES8504221A1 (es) 1984-08-01
GR79481B (de) 1984-10-30
DE3246812C2 (de) 1990-05-10
CA1247288A (en) 1988-12-20
ZA839327B (en) 1984-08-29
KR920002771B1 (ko) 1992-04-03
JPS6333770B2 (de) 1988-07-06
JPS59120618A (ja) 1984-07-12
ES528065A0 (es) 1984-08-01
IT8324150A0 (it) 1983-12-13
KR840007236A (ko) 1984-12-06
IT1170261B (it) 1987-06-03
IT8324150A1 (it) 1985-06-13
MX164075B (es) 1992-07-13
AU2343884A (en) 1984-07-05
DE3246812A1 (de) 1984-06-20

Similar Documents

Publication Publication Date Title
EP0120466B2 (de) Hitzehärtbare Überzugsmittel und deren Verwendung
EP0310971B1 (de) Kathodisch adscheidbares wässriges Elektrotauchlack-überzugsmittel und dessen Verwendung
EP0961797B1 (de) Wässrige bindemitteldispersion für kationische elektrotauchlacke
US4017438A (en) Ketimine-blocked primary amine group-containing cationic electrodepositable resins
DE3040419C2 (de) Harzartiger Binder und seine Verwendung zur kationischen elektrophoretischen Abscheidung
EP0121837A1 (de) In der Hitze selbstvernetzende Lackbindemittel, ihre Herstellung und Verwendung
DE4423139A1 (de) Härtung von kataphoretischen Tauchlacken mit Wismutkatalysatoren
DE3711947A1 (de) Haertungskomponente fuer kunstharze und deren verwendung
EP0134983B1 (de) Stickstoffbasische Gruppen tragendes Kunstharz, dessen Herstellung und Verwendung
WO1984002714A1 (en) Water dispersible binders for cationic electrophoretic lacquers and production method thereof
EP0380009B1 (de) Hitzehärtbares Überzugsmittel für die kathodische Elektrotauchlackierung
DE3246812C2 (de)
US4515911A (en) Self-crosslinkable electrocoat resins prepared by room temperature reactions by epoxy resins and polyamines containing primary and tertiary amine groups
DE4227030A1 (de) Als Bindemittel geeignete Polymere
EP0154775B1 (de) Wasserdispergierbare Bindemittel auf der Basis von modifizierten Epoxid-Amin-Addukten, deren Herstellung und Verwendung
KR970002662B1 (ko) 염기성 질소 그룹을 갖는 합성 수지, 및 이들의 제조 방법 및 사용 방법
EP0334284B1 (de) Härter für Kunstharze, diesen enthaltende härtbare Mischungen sowie dessen Verwendung
EP0184152B1 (de) Stickstoffbasische Gruppen tragendes Kunstharz, dessen Herstellung und Verwendung
EP0272427B1 (de) Durch Protonierung mit Säure wasserverdünnbare Bindemittel
DE3720955A1 (de) Stickstoffbasische gruppen tragendes kunstharz, dessen herstellung und verwendung
DE3419744C2 (de) Kationisch ablagerbare Überzugsmasse
DE2265195C3 (de) Verfahren zum Herstellen einer wäßrigen Überzugsmasse mit einem kathodisch abscheidbaren Kunstharz
EP0179273B1 (de) Verfahren zur Herstellung von Harnstoffkondensationsprodukten und deren Verwendung
DE3328455A1 (de) Verwendung von aminosaeure-salzaddukten, die urethanisierte aminogruppen enthalten, und deren umsetzungsprodukten mit epoxydgruppenhaltigen verbindungen als vernetzer von hydroxyl-und/oder epoxydgruppenhaltigen verbindungen, diese addukte und umsetzungsprodukte sowie verahren zu deren herstellung
EP0568908A2 (de) Mehrwertige Epoxidverbindungen

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU BR RO SU

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB LU NL SE

WA Withdrawal of international application