WO1983002818A1 - Cooking device - Google Patents

Cooking device Download PDF

Info

Publication number
WO1983002818A1
WO1983002818A1 PCT/JP1983/000028 JP8300028W WO8302818A1 WO 1983002818 A1 WO1983002818 A1 WO 1983002818A1 JP 8300028 W JP8300028 W JP 8300028W WO 8302818 A1 WO8302818 A1 WO 8302818A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
sensor
output
cooking
time
Prior art date
Application number
PCT/JP1983/000028
Other languages
French (fr)
Japanese (ja)
Inventor
Ltd. Matsushita Electric Industrial Co.
Original Assignee
Watanabe, Kenji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Watanabe, Kenji filed Critical Watanabe, Kenji
Publication of WO1983002818A1 publication Critical patent/WO1983002818A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/642Cooling of the microwave components and related air circulation systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6458Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using humidity or vapor sensors

Definitions

  • the present invention relates to an automatic heater, and more particularly to a heating cooker that automatically controls heating using sensor means that is sensitive to water vapor emitted from an object to be heated.
  • conventional microwave ovens generally have a relative humidity detection sensor that is sensitive to water vapor coming out of the object 2 to be heated and that comes out of ⁇ . Since 12 is mounted in the heating chamber 1 or the exhaust duct 11 If used for a long period of time, splashes from the heated object 2, splashes of volatile substances, oily fumes, etc. will contaminate Sen 1-2, and the initial performance and sensitivity will be reduced during use. is there. Therefore sensor element 1 3 of the second 5 power sale to Coil Le heater 1 4 by FIG disposed near the periphery, immediately after the start cooking energized co I le Heater 1 4, the sensor element 1 3 Heating to more than 400 ° C to burn off adhering dirt. A cleaning method that always keeps good performance and sensitivity is considered. O has been used for electronic range, etc.
  • the relative humidity change RH is detected from point D, and the output of magnetine sigma 3 is automatically controlled to control heating.
  • FIG. 3d shows another conventional example. During the predetermined time t is then heated at a low power P L, Ru Te better expression of heating is switched to high output '.
  • FIG. 3 e There is also a conventional example shown in Figure 3 e.
  • This is a method that is a predetermined time 1 ⁇ time on, tau 2 hours after heating at intermittent operation off ⁇ 'switched to continuous operation at high power.
  • the elements of the low outputs P l , t, t, 1 ⁇ , and ⁇ 2 need to be determined for the object 2 to be heated. That is, the output is determined so that a large amount of water vapor is emitted from the object 2 to be heated. But not, the energy absorption in the object to be heated 2 between from the start of cooking to t c - since a large amount of water vapor exceeds the predetermined level or more occurs, the conventional example shown in FIG. 3 c The time efficiency can only be improved to a degree.
  • the present invention cleans the humidity sensor element within the time required from the input of the input signal of the start of cooking to the return of the humidity sensor means to the sensing state, and activates the heating means only for a predetermined time. Immediately before returning to the state where the humidity sensor means can be sensed, the heating output of the heating means is low or stopped immediately before the humidity sensor means returns to the sensing state, and the exhaust air containing the amount of water vapor or gas generated from the heated object is discharged. Or by forcibly discharging, or by temporarily bypassing the passage provided with the sensor means, and then increasing the heating output after the humidity sensor means returns to a sensible state. It is a heating cooker.
  • the heating output is stopped or reduced immediately before returning to the detectable state. Since the output is used, the amount of generated steam or gas is reduced, and it is almost the same as the state immediately after the start of heating.After the sensor means returns to the sensible state, no heating is performed as before. It operates as if it were, and can accurately detect the heating status of the object to be heated. Therefore, in the past, only a small amount of heating could be performed so that a large amount of water vapor or gas was not generated before the sensor means returned to the sensing state, but with the above-described configuration, the cooking state could be accurately detected.
  • FIG. 1 is a side sectional view of the heating cooker according to an embodiment of the present invention
  • Figure 2 is an enlarged perspective view of a sensor portion of the vessel
  • Figure 3 a ⁇ e is the traditional cooking device characteristic diagram showing changes and heating patterns of relative humidity
  • embodiment a is the cooker of the water vapor amount characteristic diagram showing the change of the present invention
  • Figure 4 b is FIG. 4 is a characteristic diagram showing a heating pattern of the same unit
  • FIG. 4 d is a characteristic diagram showing a heating pattern in the third embodiment of the present invention
  • FIG. 5 is a first embodiment of the present invention.
  • FIG. 6 is another electric circuit diagram of the first embodiment
  • FIG. 6 is another electric circuit diagram of the first embodiment
  • FIG. 6 is another electric circuit diagram of the first embodiment
  • FIG. 6 is an electric circuit diagram of the second embodiment
  • FIGS. 8a and 8b are fourth embodiment of the present invention.
  • Fig. 9a, ⁇ is a characteristic diagram showing changes in the heating pattern, the amount of water vapor, and the relative humidity of the cooking device in the example.
  • reference numeral 1 denotes a heating chamber, which heats an object to be heated 2 with high-frequency energy oscillated from a magnetron 3.
  • 4 is a fan motor], and cools the magnetron 3 and the like, and sends ventilation air into the heating room through the wind, duct 5 and air outlet 6.
  • Exhaust air 9 containing steam 8 exiting the heated object 2 is discharged exhaust ports "1 0 through connexion exhaust duct 1 1.1 2 relative exhaust air 9 in sensor means for detecting the humidity Sensitivity to humidity.
  • Figure 2 shows the relative humidity
  • VvTPO — ⁇ Sensor means (hereinafter simply referred to as sensor) 1 Shows an enlarged version of 2 .
  • 13 is a sensor element
  • 14 is a coil heater provided near the periphery of the sensor element 13
  • 15 is a support made of ceramic material ⁇ ) ⁇
  • the heating was stopped at the same time high output cooking ⁇ until time t c which sensors 1 2 for detecting the heating and then the humidity returns to a steady state until the predetermined time t 2, after reaching the time t a Restart heating at high power again o
  • That change in water vapor content of the heating chamber 1 ⁇ is up o cooking zone water vapor chi 0 of Hajimeji time t 2 to 3 cooking start is determined by the environment placed the microwave oven shown in Figure 4 a 15 amount of water vapor by the heating by the high output increases to x 2.
  • the time t 2 or. Al Sen ⁇ 5 Sa 1 2 sensible state becomes time to t c is zero and output 3 ⁇ 4 Tsutei because, during this time is not generated steam, also the vapor in the heating chamber 1 is full By the motor 4), the gas is exhausted out of the heating chamber 1, and the amount of water vapor in the heating chamber 1 is equal to the initial water vapor amount z.
  • FIG. 5 shows an embodiment of such an electric circuit.
  • Reference numeral 16 denotes a commercial power supply
  • reference numeral 17 denotes a contact inserted into the main circuit, which is turned on when cooking is started, and applies a voltage to the fan motor 4 .
  • 1 9 high pressure door lance, 2 ⁇ high-pressure capacitor, 2 1 scan data Tsu crushed Saiichi Dodea, and has a positive power supply to the magnetic collected by filtration down 3.
  • . 2 3 in contact of the high-pressure re one drill rate, anode voltage on-to magnetic preparative port down 3, Control This setup off City 3 ⁇ 40 2 2, including a microphone port computers in its co I le It is controlled by the nozzle 18.
  • FIG. 6 shows another embodiment of the electric circuit.
  • Reference numeral 25 denotes a relay
  • reference numeral 24 denotes a coil thereof, which is controlled by a control opening part 18.
  • the relay 25 and its coil 24 can also be implemented in a triac.
  • FIG. 4C shows another embodiment.
  • heating to a predetermined time the start of cooking at the same time as high power then sensor 1 2 performs heating at a low output until time to return to a steady state, heating is switched to high output after t c. Since the amount of water vapor generated from the heated object 2 is determined by the amount of heat applied to the heated object 2, As described in the above-mentioned embodiment of Fig. 4b, it is possible to return the low output Pi to the same environmental conditions as at the start of the preparation at t c , as described in the embodiment of Fig. 4b. You.
  • FIG. 7 shows an electric circuit for realizing this embodiment.
  • Reference numeral 28 denotes a power switching relay contact when the first high-voltage capacitor 20 and the second capacitor 26 are connected in parallel, so that the combined capacity is large and the magnetron 3
  • the high frequency oscillated from is high output and ⁇ power when off.
  • the second end is driven by a signal from the control unit 18 with the coil of the part relay.
  • Fig. 4d shows still another embodiment.
  • the electric circuit for realizing this embodiment is as shown in FIGS. 5 and 6 described above.
  • Figure 8 a illustrates another embodiment et al of the present invention to b.
  • reference numeral 1 denotes a heating chamber, which heats food 2 placed therein with high-frequency energy oscillated from a magnetron 3. 4 is over
  • Exhaust duct 1 1 by the partition plate 2 9] -? It has been part divided into up and down. Sensor 1 2 is mounted on the upper portion of the exhaust duct 1 1, which is 2 minutes split part. The exhaust duct 11 and the blow duct are connected. A valve 30 is formed in the exhaust duct, and is driven by a solenoid 31 . The air blown to the sensor 12 is switched between the air from the blower duct and the exhaust from the heating chamber.
  • valve 3 O is snapped to the position shown in Fig. 8a, and only the cooling air of the magnetron 3 is blown to the sensor 12 and the sensor 12 returns to the sensing state.
  • the valve 3 O moves to the position shown in FIG. 8B, and only the exhaust gas from the heating chamber is blown to the sensor 12.
  • the high-frequency energy is applied Remind as in FIG. 9 a, the status of generation of water vapor is the change in Figure 9 b, sensors 1.2 vicinity of the relative humidity are shown in Figure 9 0.
  • Amount of steam by the heat from the cooking start to t c is increased to x 0 or et x c, contrast changes in relative humidity by the initial relative humidity RHQ to click rie two ring sensor 1 2 J?
  • the relative humidity gradually decreases with the temperature rise of the exhaust air.
  • the relative humidity R ⁇ ; ⁇ at the point where the rise of 5 ° C in relative humidity due to water vapor exceeds the temperature rise is set to the minimum value, and then the relative humidity HH increases due to a sudden increase in water vapor, and an increase in RH from R is detected. Control heating automatically.
  • the following effects can be obtained in a microwave oven, an electric oven, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

In a cooking device such as a microwave oven which cooks automatically by detecting steam (8) produced from an article (2) being heated with a humidity sensor (12) with a cleaning means, the sensor (12) is cleaned after a cook-start signal is input, the time required until the sensor (12) returns to the operative state is used as the substantial heating time of the article (2), thereby shortening the cooking time. Heating means (3) is operated simultaneously upon the input of the cook-start signal, the heat is stopped or is reduced to a low output immediately before the cleaning of the sensor (12) is completed and the sensor is returned to the operative state, exhaust air (9) containing the steam (8) from the article (2) is forced out, and automatic cooking is then performed with the sensor (12) now in the operative state. Heating continues from the start of cooking, and the air (9) is not supplied to the sensor (12) until the sensor (12) returns to the operative state.

Description

明 細 書  Specification
発明の名称  Title of invention
加熱調理器  Cooker
技 術 分 野  Technical field
5 この発明は自動加熱器に関し、 特に被加熱物から出る水蒸気 に感応するセ ンサ手段を用いて自動的に加熱調理を制御する加 熱調理器に関するものである。 ― 背 景 技 術  5 The present invention relates to an automatic heater, and more particularly to a heating cooker that automatically controls heating using sensor means that is sensitive to water vapor emitted from an object to be heated. ― Background technology
従来一般に電子レンジには第 1 図に示すよ うに被加熱物 2か ί θ ら出る水蒸気に感応する相対湿度検知セ ンサ.1 2は加熱室 1 又 は排気ダク 卜 1 1 内に取付けられるため長時間使用すると被加 熱物 2から出た飛沫や、 攆発性物質 , 油煙等によ つてセン 1Μ2 が汚染され、 使用する う ちに初期の性能 , 感度が得られる く る る という問題がある。 そこでセ ンサ素子 1 3の周囲近傍に第2 5 図に示すよ う にコ イ ル ヒータ 1 4を設けて、 調理開始直後にコ ィ ル ヒ ー タ 1 4に通電し、 センサ素子 1 3を 4 0 0 °C以上に加 熱 して、 付着した汚れを焼き切 性能 · 感度を常に良好に保つ ク リ —ニ ング方式が考えられ電子レン ジ等に実施されてきてい る OConventionally, as shown in Fig. 1, conventional microwave ovens generally have a relative humidity detection sensor that is sensitive to water vapor coming out of the object 2 to be heated and that comes out of ίθ. Since 12 is mounted in the heating chamber 1 or the exhaust duct 11 If used for a long period of time, splashes from the heated object 2, splashes of volatile substances, oily fumes, etc. will contaminate Sen 1-2, and the initial performance and sensitivity will be reduced during use. is there. Therefore sensor element 1 3 of the second 5 power sale to Coil Le heater 1 4 by FIG disposed near the periphery, immediately after the start cooking energized co I le Heater 1 4, the sensor element 1 3 Heating to more than 400 ° C to burn off adhering dirt. A cleaning method that always keeps good performance and sensitivity is considered. O has been used for electronic range, etc.
0 と ころで、 このセンサ 1 2 のク リ ーニングが終了し、 コ イ ル ヒ ータ 1 4への通電を停止した後、 セ ンサ 1 2はすぐには安定 した良好な検知性能を得ることはでき るい。 この理由を第 3図 a に基づき説明する。 第 3図 aは横軸に時間、 縦軸に相対湿度 をとつたもので、 加熱を開始してからの排気ダク ト 1 内の相5 対湿度の変化を表わしたものである。 A点から加熱開始するわ At about 0, after the cleaning of this sensor 12 is completed and power supply to the coil heater 14 is stopped, the sensor 12 immediately obtains stable and good detection performance. I can do it. The reason is explained based on Fig. 3a. In Fig. 3a, the horizontal axis shows time and the vertical axis shows relative humidity, showing the change in the phase 5 relative humidity in the exhaust duct 1 since the start of heating. Start heating from point A
_ OMPI WIPO けである ^、 同時にセンサ 1 2のク リ ーニ ングも開始されるの 、 センサ 1 2の周囲温度はコ イ ル ヒ ータ 1 4の加熱によ 温 度が急激に上昇し、 相対湿度は B点に向ってどんどん下ってゆ く。 B点はセンサ 1 2部が所定の温度に達し、 ク リ —ニングが_ OMPI WIPO Only is ^, at the same time the click rie two ring sensor 1 2 is also started, the ambient temperature of the sensor 1 2 Coil le by temperature for heating the Heater 1 4 rises rapidly, relative humidity Goes down to point B. At point B, when the temperature of the sensor 12 reaches the specified temperature,
5 終了した点である。 B点でコ イ ル ヒータ 1 4の通電が終了する ため若干のオーバ— シュ ー トはある も のの、 今度はセンサ 1 2 が排気風によって冷却され、 徐々に常温に戻ってゆくため相対 湿度は C点に向って上昇してゆく。 C点に達しセ ン サ 1 2が 定常抉態に戻った後は加熱の進行によつて排気風の温度が徐々5 This is the end point. At point B, there is a slight overshoot due to the termination of energization of the coil heater 14 , but this time the sensor 12 is cooled by the exhaust air and gradually returns to room temperature, so the relative humidity Rises toward point C. The temperature is gradually of'll go-between exhaust air to the progress of the heating after the cell down by 1 2 reached the point C has returned to steady Egutai
T O にではあるが上昇してゆく ため、 D点に向って下ってゆ く。 こ の : D点は被加熱物 2から出る水蒸気による相対湿度の上昇分が 排気風の温度上昇による相対湿度の下降分を上まわる点であ!)、 この後被加熱物 2からの水蒸気量が増えるため相対湿度は E点,Although rising at T O, it descends toward point D. This is the point where the rise in relative humidity due to water vapor from the heated object 2 exceeds the fall in relative humidity due to the rise in temperature of the exhaust air! ), After that, the relative humidity becomes point E,
F点と上昇して く。 It rises to point F.
1 5 一般に D点から相対湿度変化量 R Hを検知して自動的にマ グネ σ ン 3の出力を制御し、 加熱を コ ン ト 口 ー ルしている。 1 5 In general, the relative humidity change RH is detected from point D, and the output of magnetine sigma 3 is automatically controlled to control heating.
ところでこの相対湿度変化量 Hはク リ ー二 ングが終了し て定常状態に戻るまでの B点から C点の間においても生ずるこ とが第 3図 a よ 明白であるがこの間の相対湿度の変化は被加 0 熱物 2から大量に出た蒸気によ るものではないので、 加熱の検 知に利用することはできない。 従ってセンサ 1 2による検知は 時間 t e だけ待つ必要がある。 By the way, it is clear from Fig. 3a that the relative humidity change H occurs between the points B and C until the cleaning ends and returns to the steady state. Since the change is not due to a large amount of steam emitted from the heated object 2, it cannot be used for detecting heating. Therefore, the detection by the sensor 12 needs to wait for the time t e .
ところで、 今仮に加熱開始から高出力で加熱を始めたとする と、 被加熱物 2が小さいも のの場合にはセンサ 1 2が定常状態 5 に戻るまでの時間、 す ¾わち時間 t a に達するまでに相対湿度 By the way, if heating is started at a high output from the start of heating, if the object to be heated 2 is small, the time required for the sensor 12 to return to the steady state 5, that is, the time t a Relative humidity to reach
OMPI が 1 0 0 %に到達し、 時間 tc に達した時には相対湿度変化量 Δ Η Ηが得られないよ うる'状態になって しま う ことが考えられ る。 そこで第 3図 bに示すよ うに調理を開始してから時間 tc までは零出力でゆき tc 後に高出力にする方式がある。 OMPI When the temperature reaches 100% and reaches the time t c , the relative humidity change Δ 変 化 Η may not be obtained. So until the third panel b time from the start of the by Uni cooking shown in t c has the method in which the high output after snow t c at zero output.
ところが上記の方式では加熱を開始してから tc までの間は 実際には加熱を全ぐ行っていないので加熱に要する時間はまる まる tc だけ余計にかかることにな ])時間効率が惡ぐなるとい う欠点があった。 そこで、 従来、 第3図 cに示すよ うに、 時間 tc に達する前の時間 t _j から高出力で加熱し始め ( tc - t^) だけ時間効率を良くする手段があった。 ところ力 、 t 1 を決定 するに当っては実際に加熱される被加熱物2等から時間 ( - )の間の高出力加熱によ つて大量の水蒸気が出るいよ うに注 意して決定しなければ ら い。 従って時間 ( tc一 )は 1 O 秒程度しか取れないのが現状であ D、 時間効率は良ぐ ¾るとは いう ものの大幅な時間効率の向上には至ってい いという問題 が つ o However Do it according to the additional only round t c between the to fit the actual time required for heating because it does not go all the ingredients of the heating from the start of heating in the above manner until t c]) time efficiency惡Gu There was a disadvantage. Therefore, conventionally, by shown in FIG. 3 c urchin, it began heating at high power from the previous time t _j reaching time t c - there is means to improve only time efficient (t c t ^). Tokoro force, t 1 time from the heated object 2 mag actually heated hitting To determine the (-) be Iyo Unichu meaning by connexion leaving a large amount of water vapor in the high output heating determined between Good. Therefore, at present, the time (t c- 1) can only be about 1 O second. D. Although the time efficiency is good, there is a problem that the time efficiency has not been greatly improved.
さらに第 3図 dに他の従来例を示す。 所定時間 t の間は低 出力 PL で加熱しその後、 高出力に切換えて加熱するという方 式て ' る。 FIG. 3d shows another conventional example. During the predetermined time t is then heated at a low power P L, Ru Te better expression of heating is switched to high output '.
また、 第3図 eに示す従来例もある。 これは、 所定の時間 の間は 1^ 時間はオン , τ2時間はオフの断続運転で加熱し ^ '後は高出力で連続運転に切換えるという方式である。 この 場合も、 前述の従来例と同様に低出力 Pl , t , t , 1^, τ2の 各要素は被加熱物 2を対象に'决定しなければなら¾い。 つま 、 被加熱物 2から大量の水蒸気が出 いよ うに、 出力を決定する わけであるが、 調理開始から t c までの間に被加熱物 2に吸 されるエネルギ—が所定のレベル以上を越えると大量の水蒸気 が発生するため、 第3図 cに示す従来例と同程度にしか時間効 率を改善することはでき い。 There is also a conventional example shown in Figure 3 e. This is a method that is a predetermined time 1 ^ time on, tau 2 hours after heating at intermittent operation off ^ 'switched to continuous operation at high power. Also in this case, similarly to the above-described conventional example, the elements of the low outputs P l , t, t, 1 ^, and τ 2 need to be determined for the object 2 to be heated. That is, the output is determined so that a large amount of water vapor is emitted from the object 2 to be heated. But not, the energy absorption in the object to be heated 2 between from the start of cooking to t c - since a large amount of water vapor exceeds the predetermined level or more occurs, the the conventional example shown in FIG. 3 c The time efficiency can only be improved to a degree.
発明の開示 Disclosure of the invention
この発明は調理開始の入力信号が入力されてから湿度センサ 手段が感知可能状態に戻るまでに要する時間内に、 湿度センサ 素子のク リ —ニングを行い、 かつ、 加熱する手段を所定の時間 だけ作動する構成とするとともに湿度センサ手段が感知可能状 態に戻る直前には加熱する手段の加熱出力を低出力ある は停 止し、 被加熱物から発生する水蒸気量あるいはガス量を含む排 気風を、 強制的に排出した ]?あるいはセ ンサ手段を設けた通路 からバイパスさせた することによつて一時的に低減し湿度セ ンサ手段が感知可能状態に戻つた後、 加熱出力.を増大する構成 とした加熱調理器である。  The present invention cleans the humidity sensor element within the time required from the input of the input signal of the start of cooking to the return of the humidity sensor means to the sensing state, and activates the heating means only for a predetermined time. Immediately before returning to the state where the humidity sensor means can be sensed, the heating output of the heating means is low or stopped immediately before the humidity sensor means returns to the sensing state, and the exhaust air containing the amount of water vapor or gas generated from the heated object is discharged. Or by forcibly discharging, or by temporarily bypassing the passage provided with the sensor means, and then increasing the heating output after the humidity sensor means returns to a sensible state. It is a heating cooker.
このようにすると、 センサ手段が感知可能状態に戻る前に被 加熱物を充分に加熱して大量に水蒸気やガスが発生しても、感 知可能状態に戻る直前には加熱出力を停止あるいは低出力とし ているため、 発生した水蒸気量あるいはガス量は低減し、 加熱 開始直後の状態とほぼ同等とな 、 セ ンサ手段が感知可能状態 に戻った後は、 あたかもそれ以前には全く加熱しなかったかの ように動作し、 被加熱物の加熱状況を正確に検知することがで きる。 したがって従来は、 センサ手段が感知可能に戻る前には 大量の水蒸気やガスが発生し いよう にわずかる加熱 しかでき なかつたが前述のよ う 構成では正確に調理状況を検知するこ  In this way, even if the object to be heated is sufficiently heated before the sensor means returns to the detectable state and a large amount of water vapor or gas is generated, the heating output is stopped or reduced immediately before returning to the detectable state. Since the output is used, the amount of generated steam or gas is reduced, and it is almost the same as the state immediately after the start of heating.After the sensor means returns to the sensible state, no heating is performed as before. It operates as if it were, and can accurately detect the heating status of the object to be heated. Therefore, in the past, only a small amount of heating could be performed so that a large amount of water vapor or gas was not generated before the sensor means returned to the sensing state, but with the above-described configuration, the cooking state could be accurately detected.
, O PI とができ るため充分に加熱することができ 、 時間効率が大幅に 改善された加熱調理器を提供する こ とができる。 , O PI As a result, it is possible to provide a heating cooker that can be sufficiently heated and has greatly improved time efficiency.
図面の簡単 ¾説明  Brief description of drawings
第 1 図は本発明の一実施例である加熱調理器の側面断面図、 第 2図は同器のセ ンサ部の拡大外観斜視図、 第 3図 a 〜 e は従 来の加熱調理器の相対湿度の変化および加熱パタ ー ンを示す特 性図、 第 4図 aは本発明の第 1 .実施例である加熱調理器の水蒸 気量の変化を示す特性図、 第 4図 bは同器の加熱パタ —ンを示 す特性図、 第4図。 は本'発明の第 2実施例における加熱パタ― ンを示す特性図、 第 4図 d は本発明の第3実施例における加熱 バターンを示す特性図、 第 5図は本発明の第 1 実施例における 電気回路図、 第 6図は同第 1 実施例 'における他の電気 0路図、 第了図は同第 2実施例における電気回路図、 第 8図 a , bは本 発明の第 4実施例における加熱調理器の側面断面図、 第 9図 a , σは同器の加熱パター ン、 水蒸気量および相対湿度の変化 を示す特性図である。 Figure 1 is a side sectional view of the heating cooker according to an embodiment of the present invention, Figure 2 is an enlarged perspective view of a sensor portion of the vessel, in Figure 3 a ~ e is the traditional cooking device characteristic diagram showing changes and heating patterns of relative humidity, Figure 4 a first. embodiment a is the cooker of the water vapor amount characteristic diagram showing the change of the present invention, Figure 4 b is FIG. 4 is a characteristic diagram showing a heating pattern of the same unit, and FIG. Is a characteristic diagram showing a heating pattern in the second embodiment of the present invention, FIG. 4 d is a characteristic diagram showing a heating pattern in the third embodiment of the present invention, and FIG. 5 is a first embodiment of the present invention. FIG. 6 is another electric circuit diagram of the first embodiment, FIG. 6 is an electric circuit diagram of the second embodiment, and FIGS. 8a and 8b are fourth embodiment of the present invention. Fig. 9a, σ is a characteristic diagram showing changes in the heating pattern, the amount of water vapor, and the relative humidity of the cooking device in the example.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(第 1 実施例 )  (First embodiment)
第 1 図において 1 は加熱室で、 中に入れた被加熱物 2 をマグ ネ ト ロ ン 3から発振された高周波エネルギーで加熱する。 4は フ ァ ンモータであ ]? 、 マグネ ト ロ ン 3等を冷却する と と もに、 風,ダク ト 5 ,送風口 6を通つて換気風マを加熱室内に送風す る。被加熱物 2から出た水蒸気 8 を含んだ排気風 9 は排気口 "1 0 を通つて排気ダク ト 1 1に排出される。 1 2は湿度を検知するセン サ手段で排気風 9の相対湿度に感応する 。第 2図に相対湿度の In FIG. 1, reference numeral 1 denotes a heating chamber, which heats an object to be heated 2 with high-frequency energy oscillated from a magnetron 3. 4 is a fan motor], and cools the magnetron 3 and the like, and sends ventilation air into the heating room through the wind, duct 5 and air outlet 6. Exhaust air 9 containing steam 8 exiting the heated object 2 is discharged exhaust ports "1 0 through connexion exhaust duct 1 1.1 2 relative exhaust air 9 in sensor means for detecting the humidity Sensitivity to humidity.Figure 2 shows the relative humidity
0 0
VvTPO — ό — センサ手段 (以下、 単にセンサ と呼ぶ ) 1 2の拡大したものを 示す。 1 3はセンサ素子、 1 4はセンサ素子 1 3の周固近傍に 設けられたコ イ ル ヒータ、 1 5はセ ラ ミ ッ ク材から成る支持部 ¾) ο VvTPO — Ό — Sensor means (hereinafter simply referred to as sensor) 1 Shows an enlarged version of 2 . 13 is a sensor element, 14 is a coil heater provided near the periphery of the sensor element 13 , and 15 is a support made of ceramic material 材) ο
5 次に本発明の特徵である加熱パヮ 一のコ ン ト ロ ールを第 4図 a , b に基づき説明する。 5 then co emissions collected by filtration Lumpur is FEATURE: heating Pawa aspect of the present invention Figure 4 a, on the basis of b will be described.
図に いて、 調理辭始と同時に高出力で所定の時間 t2 まで 加熱しその後湿度を検知するセ ンサ 1 2が定常状態に戻る時間 tc まで加熱を停止し、 時間 ta に達した後再び高出力で加熱を再 る o And are in the figure, the heating was stopped at the same time high output cooking辭始until time t c which sensors 1 2 for detecting the heating and then the humidity returns to a steady state until the predetermined time t 2, after reaching the time t a Restart heating at high power again o
すなわち加熱室 1 內の水蒸気量の変化は第 4図 aに示される o 調理圏始時の水蒸気量 Χ0 は電子レンジの置かれた環境によ 決定される3 調理開始から時間 t2 までの高出力による加熱に よ 15水蒸気量は x2 まで増加する。 しかし、 時間 t2 か.らセン ί5 サ 1 2が感知可能状態になる時間 tc までは零出力と ¾つてい るため、 この間は蒸気が発生せず、 また加熱室 1 内の蒸気はフ ア ンモータ 4によ ]?加熱室 1 の外に排気され、 従って、 加熱室 1 内の水蒸気量は初期の水蒸気量 z。 に戻るので、 調理開始か ら時間 t2 までの加熱は相対湿度の検知にはなんら影響を及ぼ - さ い。 しかも、 調理開始から時間 t£ までの加熱によ ]?大量 の水蒸気量が発生しても時間 t2 から ta までの間に、 ほぼ初 期の環境条件に戻すことができ るため、 調理開始から t2 まで の間に充分にエネルギーを加えることができ る o 従って t の 時間だけ加熱時間が短ぐ な D、 時間効率が良く なるという も の 5 である。 That change in water vapor content of the heating chamber 1內is up o cooking zone water vapor chi 0 of Hajimeji time t 2 to 3 cooking start is determined by the environment placed the microwave oven shown in Figure 4 a 15 amount of water vapor by the heating by the high output increases to x 2. However, the time t 2 or. Al Sen ί5 Sa 1 2 sensible state becomes time to t c is zero and output ¾ Tsutei because, during this time is not generated steam, also the vapor in the heating chamber 1 is full By the motor 4), the gas is exhausted out of the heating chamber 1, and the amount of water vapor in the heating chamber 1 is equal to the initial water vapor amount z. Since return to, the heating to the cooking start or found time t 2 to detection of the relative humidity any affecting - is not. Moreover, between by the heat from the cooking start up time t £]? From a large amount of even the amount of water vapor is generated and the time t 2 to t a, because it is possible to return to almost the initial environmental conditions, cooking sufficiently by the heating time period of o Therefore t is Ru can be added to energy tongue D between the start to t 2, a 5 also that the time efficiency is improved.
ΟΖνίΡΙ WIFO 第 5図にこのよ う 電気回路の実施例を示す。 1 6は商用電 源、 1 7は主回路に揷入された接点で、 調理開始と共にオンし、 ファンモ一タ 4に電圧を印加する。 1 9は高圧 ト ラ ンス、 2 〇 は高圧コ ンデンサ、 2 1 はス タ ッ クダイ 才一 ドであ 、 マグネ ト ロ ン 3への陽極電源となっている。. 2 3は高圧リ 一 ドリ レー の接点で、 マグネ ト 口 ン 3への陽極電圧をオ ン , オ フ してぃ¾0 2 2はそのコ ィ ルでマ イク 口 コ ンピュータを含むコ ン ト ノレ 部 1 8によって制御されている。 ΟΖνίΡΙ WIFO FIG. 5 shows an embodiment of such an electric circuit. Reference numeral 16 denotes a commercial power supply, and reference numeral 17 denotes a contact inserted into the main circuit, which is turned on when cooking is started, and applies a voltage to the fan motor 4 . 1 9 high pressure door lance, 2 〇 high-pressure capacitor, 2 1 scan data Tsu crushed Saiichi Dodea, and has a positive power supply to the magnetic collected by filtration down 3. . 2 3 in contact of the high-pressure re one drill rate, anode voltage on-to magnetic preparative port down 3, Control This setup off City ¾0 2 2, including a microphone port computers in its co I le It is controlled by the nozzle 18.
また第 6図には上記電気回路の他の実施例を示す。 2 5はリ レ—であ 2 4はそのコ イ ルで、 コン ト 口 一ソレ部 1 8によって 制御されている。 また、 リ レー 2 5 とそのコイル 2 4は ト ライ アツクでも実施可能である。 FIG. 6 shows another embodiment of the electric circuit. Reference numeral 25 denotes a relay, and reference numeral 24 denotes a coil thereof, which is controlled by a control opening part 18. The relay 25 and its coil 24 can also be implemented in a triac.
上記第 4図および第 5図に示す回路構成によ j 調理開始した 後 t 2 までは第4図では高圧リ ー ド リ レー 2 3、 第5図ではリ レ一 2 5をオン して、 マグネ ト ロ ン 3を発振させ、 t 2 後オフ して発振停止状態にし、 t c 後再度オ ンしてマグネ ト ロ ン 3を 発振させ高出力にて加熱することができる。 上記第 5図の回路 ではリ レ一 2 5が高圧 ト ラ ンス 1 9の一次側である低圧側にあ るので、 特殊 リ レー スィ ツチが要らず経済的であるといえる。 (第 2実施例 ) The Figure 4 and by up to t 2 after starting j cooked to the circuit configuration shown in Fig. 5 pressure rie de Relay 2 3 in FIG. 4, in the FIG. 5 by turning on the re les one 2 5, to oscillate the magnetic collected by filtration down 3, the oscillation stop state off after t 2, may be heated at high power to oscillate the magnetic collected by filtration down 3 again on-after t c. In the circuit shown in FIG. 5, the relay 25 is located on the low pressure side, which is the primary side of the high voltage transformer 19, so that it can be said that it is economical because no special relay switch is required. (Second embodiment)
第 4図 Cに他の実施例を示す。 この実施例では調理開始と同 時に高出力で所定の時間 まで加熱し、 その後、 セ ンサ 1 2 が定常状態に戻る時間 まで低出力 で加熱を行い、 t c後 高出力に切換えて加熱する。 被加熱物 2から発生する水蒸気量 は被加熱物 2に加わる熱量によ D決定されるものであるから、 低出力 Pi を水蒸気がほとんど発生しないよ う ¾岀力とすれ 前述の第 4図 bの実施例で説明したのと同様に、 tc 時には調 理開始直後と同等の環境条件に戻すことができ る。 この実施例 を実現する電気回路を第 7図に示す。 2 8はパワ ー切換リ レ ー の接点で才ン時は第 1 の高圧コ ンデンサ 20 と第 2のコ ンデン サ 2 6が並列に接続されるので合成容量が大き く 、 マグネ ト ロ ン 3から発振される高周波が高出力と 、 オフ時 ≤ 力 と ¾る。 2 了はパヮ 一 リ レ一切換 リ レーのコ イ ルでコ ン ト コ —ル部 1 8からの信号で駆動される。 FIG. 4C shows another embodiment. In this embodiment heating to a predetermined time the start of cooking at the same time as high power, then sensor 1 2 performs heating at a low output until time to return to a steady state, heating is switched to high output after t c. Since the amount of water vapor generated from the heated object 2 is determined by the amount of heat applied to the heated object 2, As described in the above-mentioned embodiment of Fig. 4b, it is possible to return the low output Pi to the same environmental conditions as at the start of the preparation at t c , as described in the embodiment of Fig. 4b. You. FIG. 7 shows an electric circuit for realizing this embodiment. Reference numeral 28 denotes a power switching relay contact when the first high-voltage capacitor 20 and the second capacitor 26 are connected in parallel, so that the combined capacity is large and the magnetron 3 The high frequency oscillated from is high output and ≤ power when off. The second end is driven by a signal from the control unit 18 with the coil of the part relay.
( 第 3実施例 )  (Third embodiment)
第 4図 dにさ らに他の実施例を示す。 調理開始と同時に高 力で所定の時間 ま 加熱 し、 その後、 tc まで τ3時間はォ フ、 τ4 時間はオンの新続違転で加熱し tc後高出力に切換える ものである。 t2' から taまでは実質的に低出力であ ]9、 時間 T53 Τ4 を決定するにあたっては前述の第 4図 c に示す実 ½例 の低出力 と同じにする必要がある。 この実施例を実現する ための電気回路は前述の第 5図および第 6図に示される もので よ Fig. 4d shows still another embodiment. Cooking start and a predetermined time or heated at a high force at the same time, then, until t c tau 3 hours O off, tau 4 hours is intended to switch the heating t c after high output at the new connection違転on. From t 2 'to t a substantially low power der] 9, is in determining the time T 53 T 4 should be the same as the low output of the real ½ example shown in FIG. 4 c above. The electric circuit for realizing this embodiment is as shown in FIGS. 5 and 6 described above.
上述の第 1 〜第 3実施例で明 らかなよ うに、 から tc お よび t2 ' から tc までの間に実質的に低出力で加熱すること に よ 、 いっそうの調理時間効率の向上が図れる。 Improving by the heating at substantially low power during the first to third embodiments in light et kana by Uni above, from t c Contact and t 2 'from to t c, further cooking time efficiency Can be achieved.
( 第 4実施例 )  (Fourth embodiment)
8図 a , bに本発明のさ らに他の実施例を示す。 Figure 8 a, illustrates another embodiment et al of the present invention to b.
同図 a にお て 1 は加熱室で、 中に入れた食品 2をマグネ ト ロ ン 3から発振された高周波ェネルギーで加熱する。 4はフ了  In Fig. A, reference numeral 1 denotes a heating chamber, which heats food 2 placed therein with high-frequency energy oscillated from a magnetron 3. 4 is over
,R, R
02νί?Ι ンモータ であ ]? マグネ ト ロ ン 3を冷却すると と も に送風ダク ト 5を通 ]?、 一方は送風口 6を通 加熱室 1 内に送風 し、 棑出口 1 Oを通 ] 排気ダク ト 1 1 に排出される。 他の一方は、 送風ダ ク ト 5 を通 ]3排気ダク ト 1 1 に向 う。 排気ダク ト 1 1 は仕切板 2 9によ ]?—部上下に分割されている。 センサ 1 2は一部 2分 割された排気ダク ト 1 1 の上部に取付けられている。 排気ダク ト 1 1 と送風ダク トは連通されている。 排気ダク ト内には弁 3 0が構成され、 ソ レノ ィ ド 3 1 によ 駆動される。 弁 3 0に よ ]? センサ 1 2に送風される空気は送風ダク トカ らの空気と加 熱室からの排気とに切換えられる。 02νί? Ι Cools the magnetron 3 and passes through the ventilation duct 5], while the other blows through the ventilation port 6 into the heating chamber 1 and passes through the outlet 1 O] Exhaust duct Exhausted to 1 1 Other hand, intends toward the blower Da click preparative 5 through] a third exhaust duct 1 1. Exhaust duct 1 1 by the partition plate 2 9] -? It has been part divided into up and down. Sensor 1 2 is mounted on the upper portion of the exhaust duct 1 1, which is 2 minutes split part. The exhaust duct 11 and the blow duct are connected. A valve 30 is formed in the exhaust duct, and is driven by a solenoid 31 . The air blown to the sensor 12 is switched between the air from the blower duct and the exhaust from the heating chamber.
- 上記構成に いて、 次に述べる動作を行な う。  -The following operation is performed in the above configuration.
調理開始時は弁 3 Oは第 8図 a に示す位置に擘かれ、 セ ンサ .1 2にはマグネ ト ロ ン 3の冷却風のみが送風され、 センサ 1 2 が感知可能状態に戻った後、 弁 3 Oは第 8図 bの位置に移動し センサ 1 2には加熱室の排気のみが送風される。 この時、 高周 波エネルギーは第 9図 a に示すよ うに加えられ、 水蒸気の発生 の状況は第 9図 b、 セ ンサ 1.2近傍の相対湿度の変化は第 9図 0 に示す。 調理開始から tc までの加熱によ 水蒸気量は x0か ら xc に増加し、 これに対し相対湿度の変化は初期の相対湿度 RHQ からセンサ 1 2 のク リ ーニ ングによ J?—旦は低湿側に向 うが送風ダク ト 5からの送風によ セ ンサ 1 2は冷却され、 tc 時にはほぼ初期の相対湿度 RH〇 に戻る。 その後、 弁 3 0が切 換えられ、 センサ 1 2 には加熱室 1 からの排気風が送られる。 従って、 tc 時に発生していた水蒸気 xc によ 相対湿度 RHC に増加する。 も し、 (RHC - RH〇) が所定の相対湿度変化量 At the start of cooking, the valve 3 O is snapped to the position shown in Fig. 8a, and only the cooling air of the magnetron 3 is blown to the sensor 12 and the sensor 12 returns to the sensing state. The valve 3 O moves to the position shown in FIG. 8B, and only the exhaust gas from the heating chamber is blown to the sensor 12. At this time, the high-frequency energy is applied Remind as in FIG. 9 a, the status of generation of water vapor is the change in Figure 9 b, sensors 1.2 vicinity of the relative humidity are shown in Figure 9 0. Amount of steam by the heat from the cooking start to t c is increased to x 0 or et x c, contrast changes in relative humidity by the initial relative humidity RHQ to click rie two ring sensor 1 2 J? —Head to low humidity side, but sensor 12 is cooled by air from air duct 5 and returns to almost the initial relative humidity RH〇 at t c . Thereafter, the valve 30 is switched, and the exhaust air from the heating chamber 1 is sent to the sensor 12. Therefore, the relative humidity RH C increases due to the water vapor x c generated at t c . If (RH C -RH〇) is the specified relative humidity change
ΟΜ?Ι一 A R Hに達していれば、 被加熱物 2がある調理状態に達したも のと判断し自動的に加熱をコ ン ト ロ ー ルする o も し A R Hに達 していなければ第 9図 cに示すよ うに、 排気風の温度上昇によ 徐々にではあるが相対湿度は下降する。 水蒸気による相対湿 5 度の上昇分が温度上昇を上まわる点の相対湿度 R Η;Ώ を最低値 とし、 その後急激な水蒸気の増加によ 相対湿度 H Hは増加し R から R Hの増加を検知して自動的に加熱をコン ト 口 — ルする。 このよ うに、 セ ンサ 1 2が感知可能状態に戻つた後拚 気風にさらし、 それまでは、 初期とほぼ同等の雰囲気中にさら ίθ して く ことによ ]?、 te 以前に大量の水蒸気が発生しても、 センサ 1 2は常に tc 時には初期の環境を一旦検知した後、 排 気風の検知を行うため、 te 以前の水蒸気の発生も検知するこ - とができる。 また 以後に大量の水蒸気が発生した場合にも、 前述の第 1 実施例と同様に相対湿度の検知を行う ことができ ¾oΟΜ? Ι 一 If the ARH has been reached, it is judged that the object to be heated 2 has reached a certain cooking state, and the heating is automatically controlled.o If the ARH has not been reached, see Fig. 9c. As shown in the figure, the relative humidity gradually decreases with the temperature rise of the exhaust air. The relative humidity R Η; Ώ at the point where the rise of 5 ° C in relative humidity due to water vapor exceeds the temperature rise is set to the minimum value, and then the relative humidity HH increases due to a sudden increase in water vapor, and an increase in RH from R is detected. Control heating automatically. This good sea urchin, exposed to拚ethos after sensor 1 2 was Modotsu to the sensitive state, up to the initial and almost go by in particular to further ίθ in the equivalent of the atmosphere] ?, t e previous to the large amount of it Even if water vapor is generated, the sensor 12 always detects the initial environment at the time of t c and then detects the exhaust air, so that the generation of water vapor before t e can be detected. Further, even when a large amount of steam is generated thereafter, the relative humidity can be detected in the same manner as in the first embodiment.
15 このよ うな構成とすることによ ]?、 調理開始から tc 、 またそ の後も違続して加熱することができるため、 時間効率が全く損 ¾われ いという効杲がある o 15 This good UNA due to a configuration] ?, cooking start from t c, because that can be heated by違続even after the Mataso, there is an effect杲that time efficiency is not us at all loss ¾ o
産業上の利用可能性  Industrial applicability
本発明によれば、 電子レンジ , 電気オーブン等において次の 0 ような効果を得ることができる。  According to the present invention, the following effects can be obtained in a microwave oven, an electric oven, and the like.
(1) 本発明によ ] 9調理開始時にセ ンサ素子をク リ 一二 ングする ので、 常に安定した検知性能が得られ、 しかもセンサが感知 可能状態に戻るまで待たずに加熱しているため、 時間効率が 良い。 (1) According to the present invention] 9.Since the sensor element is cleaned at the start of cooking, stable detection performance is always obtained, and heating is performed without waiting for the sensor to return to a detectable state. , Time efficient.
5 (2) センサが感知可能状態に戻る直前には常に調理開始直後の 環境条件とほぼ同等と るよ うに構成しているため、 センサ が感知可能状態に戻つた後の検知は、 従来例で示した検知と 同様の正確 ¾検知ができ、 しかも、 センサが感知可能状態に 戻る前に大量のエネルギーを加えることができ るため大幅な 加熱調理時間の短縮が可能である。 5 (2) Immediately before the sensor returns to the detectable state, Since the sensor is configured to be almost equivalent to the environmental conditions, detection after the sensor returns to the sensible state can perform the same accurate detection as the detection shown in the conventional example, and the sensor can be detected. Since a large amount of energy can be added before returning to, cooking time can be significantly reduced.

Claims

SB 求 の SB request
1 . 被加熱物を収納する加熱室と、 前記加熱室内を加熱する手 段と、 前記加熱室内を換気する送風手段と、 前記加熱室内に連 通する排気部と、 前記排気部に設けられ前記加熱室内に発生す る水蒸気およびガスに感応するセンサ素子および前記センサ素 子をク リ ーニングする手段とを有するセンサ手段と、 前記セン サ素子からの信号によって前記加熱する手段の加熱出力を制御 する制御装置とを備え、 調理開始の入力信号が入力されてから 前記センサ手段が感知可能状態に戻るまでに要する時間内に前 記センサ素子のク リ 一二ングを行ないかつ前記加熱する手段を 所定の時間だけ作動す.る構成とすると と もに前記センサ手段が 感知可能状態に戻る直前には前記加 する手段の加熱出力を低 出力あるい^:停止し前記被加熱物から発生する水蒸気量あるい はガス量を一時的に低減し前記センサ手段が感知可能状態に戻 つた後前記加熱出力を増大する構成と した加熱調理器。  1. A heating chamber for storing an object to be heated, a means for heating the heating chamber, a blowing means for ventilating the heating chamber, an exhaust unit communicating with the heating chamber, and the exhaust unit provided in the exhaust unit. A sensor unit having a sensor element sensitive to water vapor and gas generated in the heating chamber and a unit for cleaning the sensor element; and a heating output of the heating unit controlled by a signal from the sensor element. A control device, wherein the cleaning of the sensor element and the heating means are performed within a time required from when the input signal of the start of cooking is input to when the sensor means returns to the detectable state. Immediately before the sensor means returns to the detectable state, the heating output of the adding means is low or ^: stopped and generated from the object to be heated. A heating cooker configured to temporarily reduce the amount of steam or gas to be generated, and to increase the heating output after the sensor unit returns to the sensing state.
2 . 請求の範囲第 1 項において、 調理開始の入力信号が入力さ れてからセンサ手段が感知可能状態に戻るまでに要する時間内 に加熱出力を所定の時間だけ高出力と しかつ前記所定の時間が 経過してから前記センサ手段が感知可能状態に戻るまでの間を 零出力と したことを特徵とする加熱調理器。  2. The heating device according to claim 1, wherein the heating output is set to a high output for a predetermined time within a time required from when the input signal of the start of cooking is input to when the sensor means returns to the sensible state, and A heating cooker characterized in that the output from the time until the sensor means returns to the detectable state is zero output.
3 . 請求の範囲第 1 項において、 調理開始の入力信号が入力さ れてからセンサ手段が感知可能に戻るまでに要する時間内に加 熱出力を所定の時間だけ高出力と しかつ前記所定の時間が経過 してから前記センサ手段が感知可能状態に戻るまでの間を実質 的に低出力としたこ とを特徵とする加熱調理器。  3. The heating device according to claim 1, wherein the heating output is set to a high output for a predetermined time within a time required from when the input signal of the start of cooking is input to when the sensor means returns to be detectable, and A heating cooker characterized in that the output is substantially low during a period from a lapse of time until the sensor means returns to a detectable state.
ι?ο ι? ο
4 . 請求の範囲第 T項において、 調理開始の入力信号が入力さ れてからセンサ手段が感知可能状態に戻るまでに要する時間内 は前記セ ンサ手段の検出部への排気風の供給を停止しかつ連続 して加熱するとともに前記センサ手段が感知可能状態に戻った 後は前記排気風を前記セ ンサ手段の検出部へ供給することを特 徵とする加熱調理器。 4. In claim T, the supply of the exhaust air to the detection unit of the sensor means is stopped within a time required from when the input signal of the start of cooking is input to when the sensor means returns to the detectable state. A heating cooker that continuously heats and supplies the exhaust air to a detection unit of the sensor means after the sensor means returns to a state where it can be sensed.
PCT/JP1983/000028 1982-02-15 1983-01-31 Cooking device WO1983002818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57/22330820215 1982-02-15
JP2233082A JPS58140521A (en) 1982-02-15 1982-02-15 Heating cooker

Publications (1)

Publication Number Publication Date
WO1983002818A1 true WO1983002818A1 (en) 1983-08-18

Family

ID=12079691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1983/000028 WO1983002818A1 (en) 1982-02-15 1983-01-31 Cooking device

Country Status (4)

Country Link
JP (1) JPS58140521A (en)
AU (1) AU549194B2 (en)
CA (1) CA1212406A (en)
WO (1) WO1983002818A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870875B2 (en) * 1989-10-27 1999-03-17 松下電器産業株式会社 Heating device with sensor
JP2661581B2 (en) * 1995-03-02 1997-10-08 ソニー株式会社 Objective lens drive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120438A (en) * 1978-03-10 1979-09-19 Matsushita Electric Ind Co Ltd Heating apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120438A (en) * 1978-03-10 1979-09-19 Matsushita Electric Ind Co Ltd Heating apparatus

Also Published As

Publication number Publication date
CA1212406A (en) 1986-10-07
AU549194B2 (en) 1986-01-16
JPS58140521A (en) 1983-08-20
AU1153683A (en) 1983-08-25
JPH0228767B2 (en) 1990-06-26

Similar Documents

Publication Publication Date Title
CA1138938A (en) Combined microwave and electric heating oven selectively controlled by gas sensor output and thermistor output
JPS6228554B2 (en)
JP2004184060A (en) Microwave oven and method of controlling the same
WO1983002818A1 (en) Cooking device
GB2243461A (en) Microwave oven control
JPS5856059B2 (en) Heater
JP2561535Y2 (en) Cooker
JPS594839B2 (en) Heater
JPS5927129A (en) Heating cooker
JPS5918319A (en) Heat-cooking utensil
JPH0138217B2 (en)
KR100248781B1 (en) A controller for operating microwave oven
JPH0785949A (en) Electric heater apparatus
JPH0157255B2 (en)
JPS5956389A (en) High frequency heater
JPH05312326A (en) Heat cooker
JPS58200936A (en) Electronic range
KR0139166B1 (en) Automatic cooking device of microwave oven
KR100284089B1 (en) Tepestry type microwave oven and controlling method thereof
JP2563574B2 (en) Automatic heating device
WO1983001674A1 (en) High frequency heating device
JP2005241128A (en) Cooker
JP2538032B2 (en) High frequency heating device with pyroelectric element sensor
JP2931378B2 (en) Cooking device
JPS5921923A (en) Electronic cooking oven

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU US

AL Designated countries for regional patents

Designated state(s): DE FR GB SE