JP2563574B2 - Automatic heating device - Google Patents

Automatic heating device

Info

Publication number
JP2563574B2
JP2563574B2 JP1114710A JP11471089A JP2563574B2 JP 2563574 B2 JP2563574 B2 JP 2563574B2 JP 1114710 A JP1114710 A JP 1114710A JP 11471089 A JP11471089 A JP 11471089A JP 2563574 B2 JP2563574 B2 JP 2563574B2
Authority
JP
Japan
Prior art keywords
heating
detection element
gas
heated
heating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1114710A
Other languages
Japanese (ja)
Other versions
JPH02293529A (en
Inventor
功 笠井
公明 山口
隆 柏本
浩二 ▲吉▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1114710A priority Critical patent/JP2563574B2/en
Priority to EP90304824A priority patent/EP0397397B1/en
Priority to DE69015876T priority patent/DE69015876T2/en
Priority to US07/519,230 priority patent/US5140120A/en
Priority to AU54746/90A priority patent/AU613268B2/en
Priority to CA002016154A priority patent/CA2016154C/en
Priority to KR1019900006465A priority patent/KR940000174B1/en
Publication of JPH02293529A publication Critical patent/JPH02293529A/en
Application granted granted Critical
Publication of JP2563574B2 publication Critical patent/JP2563574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Ovens (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は被加熱物の加熱状態に応じて出てくる水蒸気
およびガスに含まれる熱気を検出して被加熱物の加熱終
了時間を適宜決定し良好な加熱状態を実現する自動加熱
装置に関するものである。
Description: TECHNICAL FIELD The present invention detects hot air contained in water vapor and gas emitted according to a heating state of an object to be heated, and appropriately determines a heating end time of the object to be heated. The present invention relates to an automatic heating device that realizes a proper heating state.

従来の技術 従来より自動加熱装置においては、被加熱物たる食品
の加熱状態を検出する検出手段が必要であり、この手段
として加熱室から機体外へ加熱室の空気を排気するため
の排気用気体通路の途中に、検出手段としてのセンサを
配置し、食品が加熱されることにより発生する水蒸気ガ
ス等の発生及び濃度変化等を検出することにより食品の
加熱具合または出来具合を間接的に知らしめるという情
報に基づいて加熱手段を切り変えたり、加熱を停止した
りする自動加熱調理を行うことになる。
2. Description of the Related Art Conventionally, in an automatic heating device, a detection means for detecting the heating state of food to be heated is required, and as this means, an exhaust gas for exhausting the air in the heating chamber from the heating chamber to the outside of the machine body. By arranging a sensor as a detection means in the middle of the passage and indirectly detecting the heating condition or the completion condition of the food by detecting the generation and concentration change of steam gas etc. generated by heating the food. Based on the information, the heating means is switched, or the heating is stopped to perform automatic cooking.

以下第4〜8図とともに従来例について説明する。 A conventional example will be described below with reference to FIGS.

第4〜5図に示すように焦電センサの検出素子3と受
熱面28とはシリコン系の接着剤29にて接着され銀材料に
よる印刷電極31と信号回路接続用のリード線32とが半田
付けの半田33により接続固定されている。そして、半田
33部と印刷電極31と検出素子3と接着剤29を覆い隠すよ
うにシリコン系のコート膜30が施されて受熱面28として
の金属板とコート膜30とリード線32の表面が露出してい
る。
As shown in FIGS. 4 to 5, the detection element 3 of the pyroelectric sensor and the heat receiving surface 28 are adhered to each other with a silicon adhesive 29, and the printed electrode 31 made of a silver material and the lead wire 32 for connecting the signal circuit are soldered. It is connected and fixed by the attached solder 33. And solder
33 parts, the printed electrode 31, the detection element 3, and the adhesive 29 are covered with a silicon-based coating film 30 to expose the surface of the metal plate as the heat receiving surface 28, the coating film 30, and the lead wire 32. There is.

このような焦電センサを備えた自動加熱装置として第
6図に示すように箱型の機体27には加熱室1には開閉自
在のドア26と、加熱手段および加熱時間および加熱方法
を選択設定したり、加熱の開始および停止の指示を入力
設定するための操作部21を機体の前面に備えている。ま
た機体27の側壁は外郭板7にて囲まれている。第7図で
は機器の構成要素を示し、第8図に要部を示している。
被加熱物13を収納した高周波加熱手段としてのマグネト
ロン11が取り付け給電結合されている。そして高電圧発
生用の高圧トランス9がマグネトロン11の傍に配置され
ている。また加熱室1内の被加熱物13を照明するランプ
10が加熱室1の側壁部に配置されている。また被加熱物
13を載せた回転台を回転させる電動機12が加熱室1の下
に配置されている。
As an automatic heating device equipped with such a pyroelectric sensor, as shown in FIG. 6, in a box-shaped machine body 27, a freely opening / closing door 26 in the heating chamber 1, a heating means, a heating time and a heating method are selectively set. An operation unit 21 for inputting and setting instructions for starting and stopping heating is provided on the front surface of the machine body. The side wall of the airframe 27 is surrounded by the outer plate 7. FIG. 7 shows the components of the equipment, and FIG. 8 shows the main parts.
A magnetron 11 as a high-frequency heating means for accommodating an object to be heated 13 is attached and power-coupled. A high voltage transformer 9 for generating a high voltage is arranged near the magnetron 11. Further, a lamp for illuminating the object 13 to be heated in the heating chamber 1.
10 is arranged on the side wall of the heating chamber 1. Also the object to be heated
An electric motor 12 for rotating a turntable on which 13 is placed is arranged below the heating chamber 1.

ここで、構成要素と動作を併せて説明する。被加熱物
13としての食品を加熱室1に置きドア26を閉じて、操作
部21の自動加熱調理のスイッチ部を選択して押し、さら
に加熱を開始させるスタートスイッチを操作する。この
スタートスイッチの操作信号が制御手段22に伝えられ、
この制御手段22からマグネトロン11、高圧トランス9、
電動機12さらに送風機8等を駆動するための駆動信号を
駆動手段23から出力する。そして、加熱が始まると送風
機8が機体外部から外郭板7に設けた孔29を通り空気を
吸い込み、マグネトロン11、高圧トランス9、ランプ10
などを空気整流壁としてのオリフィス18を生かして冷却
しながら加熱室1内へ空気を送り込んでいる。そして、
加熱室1に送り込まれた空気は被加熱物13から出てくる
水蒸気ガスを含み、加熱室1の壁面に設けられた排気孔
14とか排気孔19を経て外郭板7に設けた排出口15および
排出口20から機体27の外に排出される。
Here, the components and the operation will be described together. Object to be heated
The food item 13 is placed in the heating chamber 1, the door 26 is closed, the automatic heating and cooking switch section of the operation section 21 is selected and pressed, and the start switch for starting heating is operated. The operation signal of this start switch is transmitted to the control means 22,
From this control means 22, the magnetron 11, the high voltage transformer 9,
The drive means 23 outputs a drive signal for driving the electric motor 12 and the blower 8 and the like. Then, when heating is started, the blower 8 sucks air from the outside of the body through the hole 29 provided in the outer plate 7, and the magnetron 11, the high-voltage transformer 9, and the lamp 10 are connected.
Air is sent into the heating chamber 1 while being cooled by utilizing the orifice 18 as an air rectifying wall. And
The air sent into the heating chamber 1 contains the steam gas coming out of the object to be heated 13, and the exhaust hole provided on the wall surface of the heating chamber 1.
It is discharged to the outside of the machine body 27 from the discharge port 15 and the discharge port 20 provided in the outer shell plate 7 through the exhaust holes 14 and the exhaust holes 19.

そして、気体通路2が加熱室1の排気孔14、19から外
郭板7の排出口15、20までの間に設けられている。この
気体通路2の途中に設けた断面積の変化している部分と
しての変化部4の加熱室1側に設けた断面積の一定な範
囲としての安定部とを備え、この変化部に水蒸気および
ガスの熱気を検出する焦電センサを検出素子3を配置し
ている。
The gas passage 2 is provided between the exhaust holes 14 and 19 of the heating chamber 1 and the exhaust ports 15 and 20 of the outer plate 7. The gas passage 2 is provided with a stabilizing portion provided on the heating chamber 1 side of the changing portion 4 as a portion having a varying cross-sectional area provided in the middle of the gas passage 2 and having a constant cross-sectional area. The detection element 3 is arranged as a pyroelectric sensor that detects hot air of gas.

熱気を検出する焦電センサの検出素子3のコート膜30
に覆われた平面部が通路内面に固定され、加熱室1から
気体通路2を通り機体27へ外へ出てゆく排気空気の流れ
は変化部4で焦電センサの検出素子3のコート膜30の上
を通りながら検出素子3にコート膜30を介して熱を伝え
た後に排出される。また、この気体通路2には加熱室1
から水蒸気ガスを集める第1通路16と第1通路16で集め
た水蒸気ガスを焦電センサの検出素子3の近くまで導く
第2通路17とがあり、加熱室1に設けた排気孔14から機
体通路2の途中に設けた安定部5までの空気の流れを流
れ易くするために、第1通路16と第2通路17と安定部5
との間には通路断面積の3割以上の差異を有しない構成
としている。
Coating film 30 of detection element 3 of pyroelectric sensor for detecting hot air
The flat portion covered with the is fixed to the inner surface of the passage, and the flow of the exhaust air flowing out of the heating chamber 1 through the gas passage 2 to the airframe 27 is changed at the changing portion 4 to the coating film 30 of the detection element 3 of the pyroelectric sensor 30. The heat is transferred to the detection element 3 through the coat film 30 while passing through the above, and then discharged. In addition, the heating chamber 1 is provided in the gas passage 2.
There is a first passage 16 for collecting the steam gas from the first passage 16 and a second passage 17 for guiding the steam gas collected in the first passage 16 to the vicinity of the detection element 3 of the pyroelectric sensor. In order to facilitate the flow of air to the stabilizing portion 5 provided in the middle of the passage 2, the first passage 16, the second passage 17, and the stabilizing portion 5 are provided.
And 30% or more of the passage cross-sectional area does not differ.

気体通路2に加熱室1の排気孔14から排出される排出
量Q1は、第1通路16と第2通路17と安定部5と通路口6
を経て焦電センサの検出素子3をコートするコート膜30
の平面に当たり変化部4を過ぎて後に外郭板7の排出口
15から排気量Q2ととして排出される。
The discharge amount Q 1 discharged from the exhaust hole 14 of the heating chamber 1 to the gas passage 2 is the first passage 16, the second passage 17, the stabilizing portion 5, and the passage opening 6.
Coating film 30 for coating the detection element 3 of the pyroelectric sensor through
The discharge port of the outer shell plate 7 after passing the changing portion 4 by hitting the plane of
Exhaust volume Q 2 is emitted from 15.

このように、送風機8によって生じた空気の流れの中
に、被加熱物13の加熱が進み食品から水蒸気ガスが出て
くると気体通路2を経て焦電センサの検出素子3のコー
ト膜30に水蒸気ガスが当たり焦電センサの検出素子3は
水蒸気ガスおよび熱気に触れることによりパルス電圧信
号を発生する。この発生した電気信号はセンサ信号処理
手段24に伝えられ電圧増幅回路とか周波数フィルター回
路とか直流カット回路などを経て制御手段22に伝えられ
る。そして制御手段22の中でセンサ信号を状態を判断し
て加熱を継続するか、もしくは加熱を停止するかの選択
をして、最終的に最も望ましい加熱状態が得られた段階
で加熱を停止することになる。
In this way, when the object 13 to be heated is heated in the air flow generated by the blower 8 and steam gas comes out from the food, the coating film 30 of the detection element 3 of the pyroelectric sensor passes through the gas passage 2. The detection element 3 of the pyroelectric sensor is contacted with steam gas and hot air to generate a pulse voltage signal. The generated electric signal is transmitted to the sensor signal processing means 24 and transmitted to the control means 22 via a voltage amplification circuit, a frequency filter circuit, a direct current cut circuit and the like. Then, the control means 22 judges the state of the sensor signal and selects whether to continue heating or to stop heating, and finally stops heating when the most desirable heating state is obtained. It will be.

以上のような加熱動作を行うときの焦電センサの検出
素子3として、熱エネルギーが与えられると素子の内部
分極の平衡状態が乱れて、素子表面に設けた電極31にパ
ルス電圧を発生するという焦電性効果を持つ素子を使用
している。一般に知られている品物としては誘電体セラ
ミックスの中の圧電ブザーとか超音波振動子とか超音波
検出素子に使用される圧電セラミックスとか圧電樹脂膜
などが焦電センサの検出素子3として十分に役割を果た
す。
As the detection element 3 of the pyroelectric sensor when performing the above heating operation, when thermal energy is applied, the equilibrium state of the internal polarization of the element is disturbed and a pulse voltage is generated at the electrode 31 provided on the element surface. The element with the pyroelectric effect is used. As a generally known item, a piezoelectric buzzer in a dielectric ceramic, an ultrasonic vibrator, a piezoelectric ceramic used for an ultrasonic detecting element, a piezoelectric resin film, or the like plays a sufficient role as the detecting element 3 of the pyroelectric sensor. Fulfill

発明が解決しようとする課題 しかしながら、このような構成では、加熱室1からの
排気空気の流れが焦電センサの検出素子3のコート膜30
の上を通りながら検出素子3に熱を伝えた後に機体27の
外へ出ていくのであるが、加熱室1に発生した被加熱物
13からの水蒸気ガスが焦電センサの検出素子3に熱を伝
えるには、コート膜30に一旦熱を伝えて、さらにコート
膜30から検出素子3へ熱を伝えることになる。そのため
コート膜30の膜厚が大きければ熱が検出素子3に伝えら
れるのが遅くなる。このようなときには、被加熱物13が
加熱し過ぎになってしまうという課題がある。また、コ
ート膜30の表面は液体状のコート膜材料を塗布乾燥させ
たものであるため数多くの凹凸があり、加熱室1からの
水蒸気ガスがコート膜30に触れて、水蒸気ガスの結露し
た雫がコート膜30の凹凸に溜まるためコート膜30部での
熱容量が大きくなり、加熱室1からの水蒸気ガスの熱気
が焦電センサの検出素子に伝えられるまでの途中に熱容
量の大きくなったコート膜30があるためコート膜30での
熱伝達性能が悪くなり、水蒸気ガスの熱気が検出素子3
に伝えられるのが遅くなるこのようなときには、被加熱
物13が加熱し過ぎになってしまうという課題がある。さ
らにコート膜30には非常に小さなピンホールといわれる
孔があり、水蒸気の雫がしみこみ検出素子3の印刷電極
31に達する。このように、水蒸気の雫が電極31に到達す
ると水分と電極31とが化学反応を起こして電極31として
信号電圧を検出する面積が減少することになる。こうし
て、電極31の面積が減少すると水蒸気ガスの熱気を検出
するときの信号電圧が小さくなり、熱気を検出する感度
が低下することになる。このように熱気を検出する感度
が低下すると被加熱物13から出てくる水蒸気ガスの熱気
が多くなれば熱気の信号検出が出来なくなる。こうして
水蒸気ガスの熱気が多くなるには被加熱物13を加熱する
時間が長くなり、被加熱物13は加熱し過ぎとなる課題が
ある。
However, in such a configuration, the flow of the exhaust air from the heating chamber 1 causes the coating film 30 of the detection element 3 of the pyroelectric sensor.
After passing the heat to the detection element 3 while passing over, it goes out of the machine body 27. The object to be heated generated in the heating chamber 1
In order for the water vapor gas from 13 to transfer heat to the detection element 3 of the pyroelectric sensor, the heat is once transferred to the coat film 30, and then the heat is transferred from the coat film 30 to the detection element 3. Therefore, if the film thickness of the coat film 30 is large, the heat transfer to the detection element 3 is delayed. In such a case, there is a problem that the article to be heated 13 is overheated. Further, since the surface of the coat film 30 is formed by applying and drying a liquid coat film material, there are many irregularities, and the vapor gas from the heating chamber 1 touches the coat film 30 to cause condensation of the vapor gas. Is accumulated on the irregularities of the coat film 30, the heat capacity of the coat film 30 is large, and the heat capacity of the coat film is large during the time the hot air of the steam gas from the heating chamber 1 is transmitted to the detection element of the pyroelectric sensor. Since there is 30, the heat transfer performance of the coating film 30 is deteriorated, and the hot air of the steam gas is detected by the detection element 3
In such a case where it is slow to be transmitted to, there is a problem that the article to be heated 13 is overheated. Furthermore, the coating film 30 has very small pinholes, which are soaked with water vapor droplets.
Reaching 31. As described above, when the drop of water vapor reaches the electrode 31, a chemical reaction occurs between the water and the electrode 31, and the area where the signal voltage is detected as the electrode 31 decreases. In this way, when the area of the electrode 31 is reduced, the signal voltage at the time of detecting the hot air of the steam gas is reduced, and the sensitivity for detecting the hot air is lowered. When the sensitivity for detecting hot air decreases as described above, if the hot air of the steam gas emitted from the object to be heated 13 increases, the hot air signal cannot be detected. In this way, if the amount of hot air in the steam gas increases, it takes a longer time to heat the object to be heated 13, and the object to be heated 13 is overheated.

また、この焦電センサは検出素子3の温度平衡状態が
乱れることにより、検出素子3内の内部分極の平衡状態
が乱れて検出素子3の表面印刷電極31にパルス電圧が発
生するのであるが、被加熱物13が繰り返し連続して加熱
されると焦電センサの検出素子3の温度が水蒸気ガスの
温度とほぼ同じ温度にまで達してしまう。このように検
出素子3の温度が水蒸気ガスの温度とほぼ同じになる
と、水蒸気ガスの熱気が焦電センサのコート膜31を伝わ
り検出素子3に伝えられても、検出素子3の温度平衡状
態がほんの僅だけ変動するだけで、電極31に発生する信
号電圧もほんの僅かの小さな電圧となり、被加熱物13が
加熱されて水蒸気ガスを発生する程度に熱が行われてい
ることが検出素子3では検出出来ないことになる。その
ために被加熱物13が加熱し過ぎの状態になるという課題
がある。以上のように被加熱物13の最適な加熱状態で加
熱を停止することを目的としながら最適状態での加熱停
止が出来ないという自動加熱装置としての機能を発揮出
来ないという課題があった。
Further, in this pyroelectric sensor, the temperature equilibrium state of the detection element 3 is disturbed, so that the equilibrium state of the internal polarization in the detection element 3 is disturbed and a pulse voltage is generated at the surface printed electrode 31 of the detection element 3. When the object 13 to be heated is repeatedly and continuously heated, the temperature of the detection element 3 of the pyroelectric sensor reaches almost the same temperature as the temperature of the steam gas. Thus, when the temperature of the detection element 3 becomes almost the same as the temperature of the steam gas, even if the hot air of the steam gas is transmitted to the detection element 3 through the coat film 31 of the pyroelectric sensor, the temperature equilibrium state of the detection element 3 is maintained. With a slight variation, the signal voltage generated at the electrode 31 becomes a very small voltage, and the detection element 3 is heated to such an extent that the object 13 to be heated is heated to generate water vapor gas. It cannot be detected. Therefore, there is a problem that the object to be heated 13 is overheated. As described above, there is a problem that the function as the automatic heating device cannot be exhibited because the heating cannot be stopped in the optimum state while the heating is stopped in the optimum heating state of the object to be heated 13.

そこで、本発明では気体通路2内の焦電センサの検出
素子3に被加熱物13からの水蒸気ガスの熱気の熱エネル
ギーの変化する様子が速やかに伝達される熱伝達媒体と
しての受熱面28を提供するとともに、自動加熱動作中に
検出素子3の温度が水蒸気ガスなどの熱気によって高く
なり過ぎて水蒸気ガスの熱気温度に近付かないようにし
た自動加熱装置を提供することを目的としている。
Therefore, in the present invention, the heat receiving surface 28 as a heat transfer medium is rapidly transmitted to the detecting element 3 of the pyroelectric sensor in the gas passage 2 in which the change of the thermal energy of the hot air of the steam gas from the object to be heated 13 is rapidly transmitted. It is also an object of the present invention to provide an automatic heating device that prevents the temperature of the detection element 3 from becoming too high due to hot air such as steam gas during the automatic heating operation to approach the hot air temperature of the steam gas.

課題を解決するための手段 そこで前記目的を達成するために本発明は、被加熱物
を加熱する加熱室と、前記加熱室に高周波電力を供給す
る高周波発生手段と、加熱により前記被加熱物から発生
する水蒸気やガスを排気する気体通路と、水蒸気やガス
の熱気を検出する凹凸のない受熱面と検出素子とが密着
一体に構成された焦電センサと、前記高周波発生手段を
冷却する送風機と、前記送風機に冷気を供給するために
貫通孔を設けた機体外郭板とを備え、前記焦電センサは
その受熱面側を前記気体通路の内壁の一部とすると共
に、その検出素子側を前記貫通孔に対応して配置する構
成とするものである。
Means for Solving the Problems Therefore, in order to achieve the above object, the present invention provides a heating chamber for heating an object to be heated, a high-frequency generator for supplying high-frequency power to the heating chamber, and an object to be heated by heating A gas passage for exhausting generated steam or gas, a pyroelectric sensor in which a heat-receiving surface without unevenness for detecting hot air of steam or gas and a detection element are closely integrated, and a blower for cooling the high-frequency generating means. And a fuselage outer shell plate provided with a through hole for supplying cool air to the blower, wherein the pyroelectric sensor has a heat receiving surface side thereof as a part of an inner wall of the gas passage, and the detection element side thereof is It is arranged to correspond to the through holes.

作用 本発明の自動加熱装置は、焦電センサの受熱面として
薄く厚みの一定した、しかも凹凸のない金属板が気体通
路内壁面の一部として構成されることにより、コート膜
にて熱伝達を行ったときの膜厚みの原因による熱気検出
の遅れおよび凹凸表面の貯水原因による熱気検出の遅れ
およびピンホールの水蒸気進入での電極面積減少原因に
よる熱気検出の遅れなどが防止され、受熱面の裏側の反
対面には検出素子が配置されている構成としているた
め、受熱面と検出素子との間には非常に薄い膜の接着剤
の層があり受熱面の局部に腐食が発生しても、この接着
剤の膜が水蒸気の進入を防ぐように受熱面と接着剤との
2種類の水蒸気進入防止壁を備えることになり、水蒸気
ガスの進入による電極面積減少原因の熱気検出遅れを防
ぐ。さらに、自動加熱動作中には被加熱物からの水蒸気
ガスが受熱面に当たり検出素子には加熱室外の冷たい空
気が接しているため、水蒸気ガスからの熱気が受熱面を
経由して速やかに検出素子に伝えられて検出素子の熱平
衡状態が乱れ同時に内部分極の平衡状態も乱れて電極部
にパルス電圧が発生することになるが、熱気が伝えられ
て即座にパルス電圧が発生しても検出素子が加熱室外の
冷たい空気に触れているため、速やかに熱平衡状態に回
復することができる。そして、検出素子の温度が低く保
たれて水蒸気ガスの熱気温度との温度差が保たれるた
め、次々と受熱面に当たる水蒸気ガスの熱気を安定なパ
ルス信号電圧に変換して検出することになる。そのた
め、加熱室からの排気空気に含まれる被加熱物からの水
蒸気ガスの熱気が焦電センサの受熱面から検出素子にパ
ルス信号電圧として検出されるまでの時間は遅くならな
くなる。このことにより、水蒸気ガスの検出時間が遅く
なくなって被加熱物の加熱状態が加熱を停止させるべき
状態として、焦電センサによりこの状態検出が出来るこ
とになる。よって、被加熱物の加熱され過ぎが防止出来
るため自動加熱装置としての本来の機能が十分発揮出来
るという効果がある。
Action The automatic heating device of the present invention is a heat-receiving surface of the pyroelectric sensor, a thin metal plate having a uniform thickness and having no unevenness is configured as a part of the inner wall surface of the gas passage, so that the heat transfer is performed by the coat film. The delay of hot air detection due to the thickness of the film and the delay of hot air detection due to the storage of water on the uneven surface and the delay of hot air detection due to the reduction of the electrode area due to the entry of water vapor into the pinhole, etc. are prevented. Since the detection element is arranged on the opposite surface of, there is a very thin film adhesive layer between the heat receiving surface and the detection element, and even if corrosion occurs at the local part of the heat receiving surface, This adhesive film is provided with two kinds of water vapor entrance preventing walls, a heat receiving surface and an adhesive, so as to prevent the entrance of water vapor, and prevents the delay of hot air detection due to the decrease of the electrode area due to the entrance of water vapor gas. Further, during the automatic heating operation, the steam gas from the object to be heated hits the heat-receiving surface and the detection element is in contact with the cold air outside the heating chamber. The thermal equilibrium state of the detection element is disturbed and the equilibrium state of the internal polarization is disturbed at the same time, and a pulse voltage is generated at the electrode part.However, even if the hot air is transmitted and a pulse voltage is immediately generated, the detection element is Since it is in contact with the cold air outside the heating chamber, it is possible to quickly restore the thermal equilibrium state. Since the temperature of the detection element is kept low and the temperature difference from the hot air temperature of the steam gas is kept, the hot air of the steam gas hitting the heat receiving surface is converted into a stable pulse signal voltage for detection one after another. . Therefore, the time until hot air of the steam gas from the object to be heated contained in the exhaust air from the heating chamber is detected as a pulse signal voltage from the heat receiving surface of the pyroelectric sensor to the detection element is not delayed. This makes it possible to detect this state by the pyroelectric sensor, assuming that the detection time of the steam gas is not delayed and the heating state of the object to be heated should be stopped. Therefore, it is possible to prevent the object to be heated from being overheated, and there is an effect that the original function of the automatic heating device can be sufficiently exerted.

実施例 以下本発明の一実施例における自動加熱装置について
図面とともに説明する。
Example An automatic heating device according to an example of the present invention will be described below with reference to the drawings.

第2図に示すように被加熱物13を収納した加熱室1に
は高周波加熱手段としてのマグネトロン11が取り付けら
れ給電結合されている。そして高電圧発生用の高圧トラ
ンス9がマグネトロン11の傍に配置されている。また加
熱室1内の被加熱物13を照明するランプ10が加熱室1の
側壁部に配置されている。また被加熱物13を載せた回転
台を回転させる電動機12が加熱室1の下に配置される。
As shown in FIG. 2, a magnetron 11 as a high-frequency heating means is attached to the heating chamber 1 accommodating the object to be heated 13 and is electrically connected. A high voltage transformer 9 for generating a high voltage is arranged near the magnetron 11. Further, a lamp 10 for illuminating the object 13 to be heated in the heating chamber 1 is arranged on the side wall of the heating chamber 1. Further, an electric motor 12 for rotating a turntable on which an object to be heated 13 is placed is arranged below the heating chamber 1.

ここで、構成要素と動作を併せて説明する。被加熱物
13としての食品を加熱室1に置きドア26を閉じて、操作
部21の自動加熱調理のスイッチ部を選択して押し、さら
に加熱を開始させるスタートスイッチを操作する。この
スタートスイッチの操作信号が制御手段22に伝えられ、
この制御手段22からマグネトロン11、高圧トランス9、
電動機12さらに送風機8等を駆動するための駆動信号を
駆動手段23から出力する。そして、加熱が始まると送風
機8が機体外部から外郭板7に設けた孔29を通り空気を
吸い込み、マグネトロン11、高圧トランス9、ランプ10
などを空気整流壁としてのオリフィス18を生かして冷却
しながら加熱室1内へ空気を送り込んでいる。そして、
加熱室1に送り込まれた空気は被加熱物13から出てくる
水蒸気ガスを含み、加熱室1の壁面に設けられた排気孔
14と排気孔19を経て外郭板7に設けた排出口15および排
出口20から機体27の外に排出される。
Here, the components and the operation will be described together. Object to be heated
The food item 13 is placed in the heating chamber 1, the door 26 is closed, the automatic heating and cooking switch section of the operation section 21 is selected and pressed, and the start switch for starting heating is operated. The operation signal of this start switch is transmitted to the control means 22,
From this control means 22, the magnetron 11, the high voltage transformer 9,
The drive means 23 outputs a drive signal for driving the electric motor 12 and the blower 8 and the like. Then, when heating is started, the blower 8 sucks air from the outside of the body through the hole 29 provided in the outer plate 7, and the magnetron 11, the high-voltage transformer 9, and the lamp 10 are connected.
Air is sent into the heating chamber 1 while being cooled by utilizing the orifice 18 as an air rectifying wall. And
The air sent into the heating chamber 1 contains the steam gas coming out of the object to be heated 13, and the exhaust hole provided on the wall surface of the heating chamber 1.
The gas is discharged to the outside of the machine body 27 from the discharge port 15 and the discharge port 20 provided on the outer shell plate 7 through 14 and the exhaust hole 19.

そして、気体通路2が加熱室1の排気孔14、19から外
郭板7の排出口15、20までの間に設けられている。この
気体通路2の途中に設けた断面積の変化している部分と
しての変化部4の加熱室1側に設けた断面積の一定な範
囲としての安定部5と安定部5から変化部4に切り替わ
る境である通路口6とを備え、この変化部4に水蒸気お
よびガスの熱気を検出する焦電センサの受熱面28を配置
しこの受熱面28の気体通路2の外壁面側に検出素子3を
配置している。ここで第1図について説明を行う。気体
通路2の途中に設けた断面積の変化している部分として
の変化部4に焦電センサの受熱面28として薄く厚みの一
定した、しかも凹凸のない金属板が気体通路2内壁面と
して構成され、受熱面の裏側の反対側である気体通路2
の外壁面側に検出素子3が配置され、受熱面28と検出素
子3は非常に薄くしたシリコン系の接着剤にて接着固定
されている。そして、自動加熱動作中には送風機8の送
風により加熱室1の被加熱物13からの水蒸気ガスが受熱
面28に当たり、気体通路2の外壁面側の検出素子3は送
風機8の動作にともない機体27の外から外郭板7の孔を
経由して吸い込まれる冷たい空気の流れに触れ晒される
ことになる。このように、厚みが一定で表面に凹凸およ
びピンホールのない熱伝達の良好な薄い金属板が受熱面
28として使用されるため水蒸気の熱気が検出素子3に検
出されるのが遅くなることが防止される効果があり、検
出素子3が加熱室1の外の空気である機体27の外の冷た
い空気に触れ晒されているため、検出素子3の温度が水
蒸気ガスの温度よりも低く保てるため水蒸気ガスの熱気
を検出する検出感度が維持出来る効果がある。これらの
構成による効果により被加熱物13からの水蒸気ガスの熱
気の状態変化が速やかに焦電センサの受熱面28に伝えら
れることになる。したがって被加熱物13の加熱状態の検
出が検出素子3にて遅れて被加熱物13を加熱し過ぎると
いうことが発生しなくなる。
The gas passage 2 is provided between the exhaust holes 14 and 19 of the heating chamber 1 and the exhaust ports 15 and 20 of the outer plate 7. From the stable portion 5 and the stable portion 5 as a constant range of the cross-sectional area provided on the heating chamber 1 side of the change portion 4 as a portion where the cross-sectional area is changed provided in the middle of the gas passage 2 to the change portion 4. A passage opening 6 which is a boundary for switching is provided, and a heat receiving surface 28 of a pyroelectric sensor for detecting hot air of steam and gas is arranged in the changing portion 4, and the detecting element 3 is provided on the outer wall surface side of the gas passage 2 of the heat receiving surface 28. Are arranged. Here, FIG. 1 will be described. A metal plate having a thin and uniform thickness as the heat receiving surface 28 of the pyroelectric sensor and having no unevenness is formed as the inner wall surface of the gas passage 2 in the changing portion 4 provided in the middle of the gas passage 2 as a portion where the cross-sectional area is changed. The gas passage 2 which is the opposite side of the heat receiving surface
The detection element 3 is disposed on the outer wall surface side of the above, and the heat receiving surface 28 and the detection element 3 are bonded and fixed with a very thin silicone adhesive. Then, during the automatic heating operation, the steam gas from the article to be heated 13 in the heating chamber 1 hits the heat receiving surface 28 by the air blow of the air blower 8, and the detection element 3 on the outer wall surface side of the gas passage 2 is operated by the air blower 8 as a body. It will be exposed to the flow of cold air sucked from outside 27 through the hole of the outer shell 7. In this way, a thin metal plate with a constant thickness and good heat transfer without irregularities or pinholes on the surface is the heat receiving surface.
Since it is used as 28, it has the effect of preventing the hot air of the steam from being detected by the detection element 3 late, and the detection element 3 is the air outside the heating chamber 1 and the cold air outside the fuselage 27. Since it is exposed to, the temperature of the detection element 3 can be kept lower than the temperature of the water vapor gas, so that the detection sensitivity for detecting the hot air of the water vapor gas can be maintained. Due to the effects of these configurations, the state change of the hot air of the steam gas from the object to be heated 13 is promptly transmitted to the heat receiving surface 28 of the pyroelectric sensor. Therefore, the detection of the heating state of the object to be heated 13 is not delayed by the detection element 3 and the object 13 to be heated is not overheated.

気体通路2には加熱室1から水蒸気ガスを集める第1
通路16と第1通路16で集めた水蒸気ガスを焦電センサ3
の近くまで導く第2の通路17とがあり、加熱室1に設け
た排気孔14から機体通路2の途中に設けた安定部5まで
の空気の流れを流れ易くするために、第1通路16と第2
の通路17と安定部5との間には通路断面積の3割以上の
差異を有しない構成としている。
In the gas passage 2, first steam gas is collected from the heating chamber 1
The pyroelectric sensor 3 collects the water vapor gas collected in the passage 16 and the first passage 16.
And a second passage 17 that leads to the vicinity of the first passage 16 for facilitating the flow of air from the exhaust hole 14 provided in the heating chamber 1 to the stabilizing portion 5 provided in the middle of the body passage 2. And the second
The passage 17 and the stabilizing portion 5 are configured such that there is no difference of 30% or more in the passage cross-sectional area.

気体通路2に加熱室1の排気孔14から排出される排出
量Q1は、第1通路16と第2通路17と安定部5と通路口6
を経て焦電センサの受熱面28に当たり変化部4で冷気混
合排気通路25から送り込まれる空気Q3と混合された後に
外郭板7の排出口15から排気量Q2として排出される。
The discharge amount Q 1 discharged from the exhaust hole 14 of the heating chamber 1 to the gas passage 2 is the first passage 16, the second passage 17, the stabilizing portion 5, and the passage opening 6.
After passing through the heat-receiving surface 28 of the pyroelectric sensor and being mixed with the air Q 3 sent from the cold-air mixing exhaust passage 25 in the changing portion 4, it is exhausted as the exhaust amount Q 2 from the exhaust port 15 of the outer shell plate 7.

このように、送風機8によって生じた空気の流れとし
て機体27外から外郭板7の孔を経由して機体27の中に冷
たい空気が検出素子3に触れながら吸い込まれ、その後
に加熱室1へ入り加熱室1から送り出すという風圧によ
る押し出しの流れと冷気混合排気通路25にて作られる気
圧の低下による吸い出しによる流れの2種類の空気の流
れがあり、この排気空気の中に被加熱物13の加熱が進み
食品から水蒸気ガスが出てくると気体通路2を経て焦電
センサの受熱面28に水蒸気ガスおよび熱気が当たる。焦
電センサの検出素子3は水蒸気ガスおよび熱気の熱が伝
えられ温度平衡状態が乱れるとパルス電圧信号を発生す
る。一方検出素子3は機体27外から吸い込まれる冷たい
空気の流れに接しているため、検出素子3の温度は水蒸
気ガス程までは達しないので連続した水蒸気ガスの流れ
が焦電センサの受熱面28に当たっても安定した検出感度
が保たれる。さて、この発生した電気信号はセンサ信号
電圧処理手段24に伝えられ電圧増幅回路とか周波数フィ
ルター回路とか直流カット回路などを経て制御手段22に
伝えられる。そして制御手段22の中でセンサ信号電圧の
状態を判断して加熱を継続するか、もしくは加熱を停止
するかの選択の後、最終的に最も望ましい加熱状態が得
られた段階で加熱を停止することになる。
Thus, as the air flow generated by the blower 8, cold air is sucked into the airframe 27 from the outside of the airframe 27 through the holes of the outer shell 7 while touching the detection element 3, and then enters the heating chamber 1. There are two types of air flow, the flow of pushing by the wind pressure that is sent out from the heating chamber 1 and the flow of suction that is created by the decrease in atmospheric pressure created in the cool air mixing exhaust passage 25, and the heating target 13 is heated in this exhaust air. When steam gas comes out from the food, steam gas and hot air hit the heat receiving surface 28 of the pyroelectric sensor through the gas passage 2. The detection element 3 of the pyroelectric sensor generates a pulse voltage signal when the heat of water vapor and the heat of the hot air are transmitted and the temperature equilibrium state is disturbed. On the other hand, since the detection element 3 is in contact with the flow of cold air sucked from the outside of the machine body 27, the temperature of the detection element 3 does not reach as high as that of the steam gas, so that the continuous flow of steam gas hits the heat receiving surface 28 of the pyroelectric sensor. The stable detection sensitivity is maintained. Now, the generated electric signal is transmitted to the sensor signal voltage processing means 24 and is transmitted to the control means 22 via a voltage amplification circuit, a frequency filter circuit, a DC cut circuit and the like. Then, in the control means 22, after judging the state of the sensor signal voltage and continuing the heating or selecting whether to stop the heating, the heating is stopped when the most desirable heating state is finally obtained. It will be.

以上のような加熱動作を行うときの焦電センサの検出
素子3として、熱エネルギーが与えられると素子の温度
平衡状態が乱れてこれに伴い内部分極の平衡状態が乱れ
て、素子表面に設けた電極31部にパルス電圧が発生する
という焦電性効果の特性を備えた素子が使用されてい
る。一般に知られている品物としては誘電体セラミック
スの中の圧電ブザーとか超音波振動素子とか超音波検出
素子に使用される圧電セラミックスとか圧電樹脂膜など
が焦電センサの検出素子3として十分に役割を果たす。
As the detection element 3 of the pyroelectric sensor when performing the above heating operation, when thermal energy is applied, the temperature equilibrium state of the element is disturbed, and the equilibrium state of internal polarization is disturbed accordingly, and it is provided on the element surface. An element having a characteristic of a pyroelectric effect that a pulse voltage is generated in the electrode 31 is used. As a generally known item, a piezoelectric buzzer in a dielectric ceramic, an ultrasonic vibration element, a piezoelectric ceramic used for an ultrasonic detection element, a piezoelectric resin film, or the like plays a sufficient role as the detection element 3 of the pyroelectric sensor. Fulfill

第3図に示すように、送風機8によって機体27の外か
ら外郭板7の孔を経由して機体27の中に吸い込まれた冷
たい空気が冷気混合排気通路25に送り込まれると同時に
加熱室1に送り込まれる。加熱室1に送り込まれた空気
は被加熱物13から出てくる水蒸気ガスおよび熱気を含み
ながら気体通路2に導かれて変化部4にて焦電センサの
受熱面28として薄く厚みの一定した、しかも凹凸のない
金属板の気体通路2内壁面に当たりながら、冷気混合排
気通路25を経由して来る速い風速の冷たい空気の作る気
圧の低下に吸い出されて、冷たい空気と混合した状態に
なった後に外郭板7の排出口15から通り抜け機体27の外
へ排出されている。このように、厚みが一定で表面に凹
凸およびピンホールのない熱伝達の良好な薄い金属板が
受熱面28として使用されるため水蒸気ガスの熱気が検出
素子3に検出されるのが遅くなることが防止される効果
がある。ところで、冷気混合排気通路25を通る機体27外
部から送り込まれる冷たい空気は焦電センサの検出素子
3の表面部にて流れているため、検出素子3の温度が水
蒸気ガスの熱気の熱伝達により水蒸気ガスの熱気温度に
まで温度上昇するということが防止されているため、水
蒸気ガスの熱気を検出する検出感度が維持出来る効果が
あり、加熱室1にて発生する被加熱物13の状態変化によ
る水蒸気ガスの熱気の増加が焦電センサの検出素子3に
速やかに検出される。被加熱物13の加熱状態が遅れるこ
となく検出されるため、被加熱物13が加熱され過ぎにな
ることが防止される効果がある。
As shown in FIG. 3, the cool air sucked into the airframe 27 from the outside of the airframe 27 by the blower 8 through the holes of the outer shell 7 is sent to the cold air mixing / exhaust passage 25 and at the same time into the heating chamber 1. Sent in. The air sent to the heating chamber 1 is guided to the gas passage 2 while containing the steam gas and hot air coming out of the object to be heated 13 and is thin and uniform in thickness as the heat receiving surface 28 of the pyroelectric sensor at the changing portion 4. Moreover, while hitting the inner wall surface of the gas passage 2 made of a flat metal plate, it was sucked out by the decrease in atmospheric pressure created by the cold air with a high wind velocity passing through the cool air mixing and exhaust passage 25, and became mixed with the cold air. After that, it is discharged from the discharge port 15 of the outer shell plate 7 to the outside of the machine body 27. As described above, since a thin metal plate having a uniform thickness and good heat transfer without unevenness and pinholes on the surface is used as the heat receiving surface 28, the detection of the hot air of the steam gas by the detection element 3 is delayed. Is effectively prevented. By the way, since the cold air sent from the outside of the machine body 27 passing through the cold air mixing exhaust passage 25 flows on the surface portion of the detection element 3 of the pyroelectric sensor, the temperature of the detection element 3 is increased by the heat transfer of the hot air of the steam gas. Since the temperature is prevented from rising to the hot air temperature of the gas, there is an effect that the detection sensitivity for detecting the hot air of the steam gas can be maintained, and the steam caused by the state change of the object 13 to be heated generated in the heating chamber 1 The increase in hot air of the gas is promptly detected by the detection element 3 of the pyroelectric sensor. Since the heating state of the article to be heated 13 is detected without delay, the article 13 to be heated is prevented from being overheated.

発明の効果 以上のように本発明の請求の自動加熱装置において
は、以下の効果が得られる。
EFFECTS OF THE INVENTION As described above, the following effects are obtained in the automatic heating device claimed in the present invention.

加熱室から機体の外へ被加熱物からの水蒸気ガスが含
まれる排気空気を導く気体通路の内側壁面の一部として
焦電センサの受熱面が配置され、この受熱面の裏側の気
体通路の外側壁面側に焦電センサの検出素子が配置され
ている構成であり、自動加熱動作中には加熱室からの水
蒸気ガスが受熱面に当たるとともに、検出素子が加熱室
外の冷たい空気に接している。このような構成動作状態
であるため、検出素子の温度が水蒸気ガスの温度よりも
低い状態に保てることになり、水蒸気ガスの熱気が伝え
られるときには検出素子の熱平衡状態が乱され易い状態
が保てることになり、水蒸気ガスが連続して受熱面に当
たっても水蒸気ガスの熱気を検出する検出感度が劣化す
ることなく、検出感度が維持されるため被加熱物からの
水蒸気ガスの熱気の状態変化についての検出素子による
検出が遅くなることが無くなり、被加熱物が加熱され過
ぎにならない状態で加熱が停止されるという効果があ
る。
The heat receiving surface of the pyroelectric sensor is arranged as a part of the inner wall surface of the gas passage that guides the exhaust air containing the steam gas from the object to be heated from the heating chamber to the outside of the fuselage, and the outside of the gas passage behind this heat receiving surface. The detection element of the pyroelectric sensor is arranged on the wall surface side, and during the automatic heating operation, the steam gas from the heating chamber hits the heat receiving surface and the detection element is in contact with the cold air outside the heating chamber. Due to such a configuration operation state, the temperature of the detection element can be kept lower than the temperature of the steam gas, and the thermal equilibrium state of the detection element can be easily disturbed when the hot air of the steam gas is transmitted. Therefore, even if the steam gas continuously hits the heat receiving surface, the detection sensitivity for detecting the hot air of the steam gas does not deteriorate and the detection sensitivity is maintained. There is no delay in detection by the element, and there is an effect that heating is stopped in a state where the object to be heated is not overheated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における自動加熱装置の要部
断面図、第2図はその全体構成図、第3図は本発明の他
の実施例の要部断面図、第4図は従来の焦電センサの外
観斜視図、第5図はその断面図、第6図は従来の自動加
熱装置の外観斜視図、第7図はその全体構成図、第8図
はその要部断面図である。 1……加熱室、2……気体通路、3……検出素子、25…
…冷気混合排気通路、28……受熱面。
FIG. 1 is a sectional view of an essential part of an automatic heating apparatus according to an embodiment of the present invention, FIG. 2 is an overall configuration diagram thereof, FIG. 3 is a sectional view of an essential part of another embodiment of the present invention, and FIG. FIG. 5 is an external perspective view of a conventional pyroelectric sensor, FIG. 5 is a sectional view thereof, FIG. 6 is an external perspective view of a conventional automatic heating device, FIG. 7 is an overall configuration diagram thereof, and FIG. Is. 1 ... Heating chamber, 2 ... Gas passage, 3 ... Detection element, 25 ...
… Cold air mixture exhaust passage, 28 …… Heat receiving surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲吉▼野 浩二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−278690(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Koji Yoshino Koji, Kadoma City, Osaka Prefecture 1006, Kadoma, Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-2-278690 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被加熱物を加熱する加熱室と、前記加熱室
に高周波電力を供給する高周波発生手段と、加熱により
前記被加熱物から発生する水蒸気やガスを排気する気体
通路と、水蒸気やガスの熱気を検出する凹凸のない受熱
面と検出素子とが密着一体に構成された焦電センサと、
前記高周波発生手段を冷却する送風機と、前記送風機に
冷気を供給するために貫通孔を設けた機体外郭板とを備
え、前記焦電センサはその受熱面側を前記気体通路の内
壁の一部とすると共に、その検出素子側を前記貫通孔に
対応して配置する構成とした自動加熱装置。
1. A heating chamber for heating an object to be heated, a high-frequency generator for supplying high-frequency power to the heating chamber, a gas passage for exhausting steam or gas generated from the object to be heated by heating, steam or A pyroelectric sensor in which a heat-receiving surface having no irregularities for detecting hot air of a gas and a detection element are closely integrated with each other,
An air blower for cooling the high-frequency generating means, and an airframe outer plate provided with a through hole for supplying cold air to the air blower, wherein the pyroelectric sensor has a heat receiving surface side thereof as a part of an inner wall of the gas passage. In addition, the automatic heating device is configured such that the detection element side is arranged corresponding to the through hole.
JP1114710A 1989-05-08 1989-05-08 Automatic heating device Expired - Lifetime JP2563574B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1114710A JP2563574B2 (en) 1989-05-08 1989-05-08 Automatic heating device
DE69015876T DE69015876T2 (en) 1989-05-08 1990-05-03 Automatic heater.
US07/519,230 US5140120A (en) 1989-05-08 1990-05-03 Automatic heating apparatus having a system for sensing the temperature of heated air generated by material being heated
EP90304824A EP0397397B1 (en) 1989-05-08 1990-05-03 Automatic heating apparatus
AU54746/90A AU613268B2 (en) 1989-05-08 1990-05-04 Automatic heating apparatus
CA002016154A CA2016154C (en) 1989-05-08 1990-05-07 Automatic heating apparatus
KR1019900006465A KR940000174B1 (en) 1989-05-08 1990-05-08 Automatic heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114710A JP2563574B2 (en) 1989-05-08 1989-05-08 Automatic heating device

Publications (2)

Publication Number Publication Date
JPH02293529A JPH02293529A (en) 1990-12-04
JP2563574B2 true JP2563574B2 (en) 1996-12-11

Family

ID=14644685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114710A Expired - Lifetime JP2563574B2 (en) 1989-05-08 1989-05-08 Automatic heating device

Country Status (1)

Country Link
JP (1) JP2563574B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507037B2 (en) * 1989-04-19 1996-06-12 松下電器産業株式会社 microwave

Also Published As

Publication number Publication date
JPH02293529A (en) 1990-12-04

Similar Documents

Publication Publication Date Title
EP0397397B1 (en) Automatic heating apparatus
JP2584053B2 (en) Automatic heating device
JP2563574B2 (en) Automatic heating device
KR960007975B1 (en) A cooking apparatus
JP2512144B2 (en) Automatic heating device
JP2523870B2 (en) Automatic heating device
JP2507037B2 (en) microwave
JP2529370B2 (en) High frequency heating equipment
JP2558887B2 (en) High frequency heating equipment
JPH02293528A (en) Automatic heating device
JP2538032B2 (en) High frequency heating device with pyroelectric element sensor
JP2517076B2 (en) High frequency heating equipment
JP2558918B2 (en) Heating device
JP3349674B2 (en) rice cooker
JP2523831B2 (en) Automatic heating device
JP2002295837A (en) High-frequency heater
JPH07217898A (en) High frequency wave heating device
JPH0826994B2 (en) Automatic heating device
JP2975767B2 (en) Cooking device
KR960009621B1 (en) Microwave oven
JP2851630B2 (en) Cooker
JPH06109262A (en) Heating device
JP2001041467A (en) High frequency heater
JP2546932Y2 (en) High frequency heating equipment
JPH0159502B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13