JPH02293528A - Automatic heating device - Google Patents

Automatic heating device

Info

Publication number
JPH02293528A
JPH02293528A JP11470989A JP11470989A JPH02293528A JP H02293528 A JPH02293528 A JP H02293528A JP 11470989 A JP11470989 A JP 11470989A JP 11470989 A JP11470989 A JP 11470989A JP H02293528 A JPH02293528 A JP H02293528A
Authority
JP
Japan
Prior art keywords
air
passage
heating chamber
gas
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11470989A
Other languages
Japanese (ja)
Inventor
Isao Kasai
笠井 功
Masaaki Yamaguchi
公明 山口
Susumu Murakami
進 村上
Masato Yota
正人 要田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11470989A priority Critical patent/JPH02293528A/en
Publication of JPH02293528A publication Critical patent/JPH02293528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Ovens (AREA)

Abstract

PURPOSE:To prevent an over-heating of a heated item by a method wherein a cold air mixing and discharging passage is provided, an aeration air discharging speed is made fast, a gas pressure is partially reduced and the evacuated air in the gas passage connected to the heating chamber is sucked out. CONSTITUTION:A varying part 4 acting as a part varying a sectional area arranged in the midway of a gas passage 2 is provided with a cold air mixing and discharging passage 25 for use in mixing and discharging the cold air from an air blower 8 so as to make an air speed within the passage 25 fast to decrease an air pressure and an aeration port of the gas passage 2 connected to the heating chamber 1 is arranged at a position where the gas pressure is reduced. In simultaneous with an application of air pressure to the heating chamber 1 through an air blowing of the air pressure to the heating chamber 1 through an air blowing of the air blower 8 during heating of the heated item 13, an aeration air speed in the cold air mixing and discharging passage 25 is made fast, the gas pressure is locally reduced, the pressure may suck up the discharged air from the heating chamber 1. A variation in state of hot gas of the water vapor gas from the heated item 13 is rapidly transmitted to a heat receiving surface 28 of the pyroelectric sensor 3, the heated condition of the heated item 13 is detected and so the heated item 13 is not over-heated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は被加熱物の加熱状態に応じて出て《る水蒸気お
よびガスに含まれる熱気を検出して被加熱物の加熱終了
時間を適宜決定し良好な加熱状態を実現する自動加熱装
置に関するものであ名.従来の技術 従来より自動加熱装置においては、被加熱物たる食品の
加熱状態を検出する検出手段が必要であり、この手段と
して加熱室から機体外へ加熱室の空気を排気するための
排気用気体通路の途中に、検出手段としてのセンサを配
置し、食品が加熱されることにより発生する水蒸気ガス
等の発生及び濃度変化等を検出することにより食品の加
熱具合または出来具合を間接的に知らしめるという情報
に基づいて加熱手段を切り変えたり、加熱を停止したり
する自動加熱調理を行うことになる.以下第4〜6図と
ともに従来例について説明する. 第4図に示すように箱型の機体27には加熱室1の開口
には開閉自在のドア26と、加熱手段および加熱時間お
よび加熱方法を選択設定したり、加熱の開始および停止
の指示を入力設定するための操作部2lを機体27の前
面に備えている.また機体27の側壁は外郭板7にて囲
まれている.第5図では機器の構成要素を示している.
被加熱物l3を収納した加熱室lには高周波加熱手段と
してのマグネトロン11が取り付け給電結合されている
.そして高電圧発生用の高圧トランス9がマグネトロン
11の傍に配置されている.また加熱室1内の被加熱吻
l3を照明するランプlOが加熱室lの側壁部に配置さ
れている.また被加熱物13を載せた回転台を回転させ
る電動機12が加熱室lの下に配置されている. ここで、構成要素と動作を併せて説明する.被加熱物l
3としての食品を加熱室1に置きドア26を閉じて、操
作部21の自動加熱調理のスイッチ部を選択して押し、
さらに加熱を開始させるスタートスイッチを操作する.
このスタートスイッチの操作信号が制御手段22に伝え
られ、この制御手段22からマグネトロン1l、高圧ト
ランス9、電動機12さらに送風機8等を駆動するため
の駆動信号を駆動手段23から出力する.そして、加熱
が始まると送風機8が機体外部から外郭板7に設けた孔
29を通り空気を吸い込み、マグネトロン11、高圧ト
ランス9、ランプlOなどを空気整流壁としてのオリフ
ィスl8を生かして冷却しながら加熱室l内へ空気を送
り込んでいる。そして、加熱室lに送り込まれた空気は
被加熱物13かと出てくる水蒸気ガスを含み、加熱室l
の壁面に設けられた排気孔l4とか排気孔19を経て外
郭板7に設けた排出口l5および排出口20から機体2
7の外に排出される.そして、気体通路2が加熱室lの
排気孔14、19から外郭板7の排出口l5、20まで
の間に設けられている.この気体通路2の途中に設けた
断面積の変化している部分としての変化部4の加熱室i
側に設けた断面積の一定な範囲としての安定部とを備え
、この変化部に水蒸気およびガスの熱気を検出する焦電
センサ3を配置している. 熱気を検出する焦電センサ3の受熱面28の平面部が通
路内面に固定され、加熱室lから気体通路2を通り機体
27の外へ出てゆく排気空気の流れは変化部4で焦電セ
ンサ3の受熱面28の上を通りながら受熱面に触れた後
に排出される.また、この気体通路2には加熱室1から
水蒸気ガスを集める第1通路16と第1通路16で集め
た水蒸気ガスを焦電センサ3の近くまで導く第2通路1
7とがあり、加熱室1に設けた排気孔14から気体通路
2の途中に設けた安定部5までの空気の流れを流れ易く
するために、第1通路16と第2通路17と安定部5と
の間には通路断面積の3割以上の差異を有しない構成と
しているー. 気体通路2の加熱室1の排気孔14から排出される排気
量Q,は、第1通路16と第2通路l7と安定部5と通
路口6を経て焦電センサ3の受熱面28に当たり変化部
4を過ぎて後に外郭板7の排出口l5から排気量Qtと
して排出される. このように、送風機8によって生じた空気の流れの中に
、被加熱物13の加熱が進み食品から水蒸気ガスが出て
くると気体通路2を経て焦電センサ3の受熱面28に水
蒸気ガスが当たる一焦電センサ3は水蒸気ガスおよび熱
気に触れることによりパルス電圧信号を発生する.この
発生した電気信号はセンサ信号処理手段24に伝えられ
電圧増幅回路とか周波数フィルター回路とか直流カット
回路などを経て制御手段22に伝えられる.そして制御
手段22の中でセンサ信号電圧の状態を判断して加熱を
継続するか、もしくは加熱を停止するかの選択をして、
最終的に最も望ましい加熱状態が得られた段階で加熱を
停止することになる. 以上のような加熱動作を行うときの焦電センサ3として
、熱エネルギーが与えられると素子の内部分極の平衡状
態が乱れて、素子表面に設けた電極部にパルス電圧を発
生するという焦電性効果を持つ素子を使用している.一
般に知られている品物としては誘電体セラミックスの中
の圧電ブザーとか超音波振動素子とか超音波検出素子に
使用される圧電セラミックスとか圧電樹脂膜などが焦電
センサとして十分に役割を果たす. 発明が解決しようとする課題 しかしながら上記のような構成では、加熱室1からの排
気空気の流れが焦電センサ3の受熱面28の上を通りな
がら受熱面28に触れた後に機体27の外へ出ていくの
であるが、加熱室1に発生した被加熱物13からの水蒸
気ガスが焦電センサ3の受熱面28に到着するには、送
風機8の作り出す風圧によって加熱室lから第1通路1
6、第2通路l7、安定部5、通路口6そして変化部4
の焦電センサ3まで送り届けられるのであるが、加熱室
1に送り込まれる空気は排気孔14と排気孔1902個
所と更にドア26と加熱室lとの隙間などから排気され
るため加熱室lに発生する水蒸気ガスの一部分しか気体
通路2を経て焦電センサ3に届けられない.そのため、
加熱室1にて被加熱物13が加熱されて水蒸気ガスが出
てきても、送風4lIlBの風圧にだけ軸って気体通路
2の長い経路を経て焦電センサ3の受熱面に到達するま
での時間が長くなったりすることが多く、被加熱物13
の加熱状態を速やかに検出することが出来ないため被加
熱物13の加熱し過ぎの状態になり、自動加熱装置とし
て被加熱物13の最適な加熱状態で加熱を停止するべき
でありながら最適状態での加熱停止が出来ないという自
動加熱装置としての本来のll能を発揮出来な《なると
いう課題があうた. そこで、本発明では気体通路2内の焦電センサ3を収め
た変化部に送風機からの冷気を混合し徘出するための冷
気混合排気通路を設けて、通気排気風速を速くして部分
的に気圧を低くして加熱室1に連結された気体通路2の
排気空気を吸い出すように構成配置することで、被加熱
物13を加熱し過ぎることのない自動加熱装置を提供す
ることを目的としている. 課題を解決するための手段 そこで前記目的を達成するために本発明は、変化部に送
風機からの冷気を混合し排出するための冷気混合排気通
路を設けて、通気排気風速を速くして部分的に気圧を低
くして加熱室に連結された気体通路の排気空気を吸い出
すように構成配置するものである. 作用 本発明の自動加熱装置は焦電センサを収めた変化部に送
風機からの冷気を混合し排出するための冷気混合排気通
路を設けて、この混合排気通路の通気排気風速を速くし
て部分的に気圧を低くし、この気圧の低くなる位置に、
加熱室から連結された気体通路の排出口が配置されるこ
とにより、加熱室の水蒸気ガスの含まれる排気空気が吸
い出されることになる.そのため、加熱室からの排気空
気に含まれる被加熱物からの水蒸気ガスの熱気が焦電セ
ンサの受熱面に検出されるまでの時間は長くならな《な
る.このことにより、水蒸気ガスの検出時間が遅くなく
なって被加熱物の加熱状態が加熱を停止させるべき状態
として、焦電センサによりこの状態検出が出来ることに
なる.よって、被加熱物の加熱され過ぎが防止出来るた
め自動加熱装置としての本来の機能が十分発揮出来ると
いう効果がある. 実施例 以下、本発明の一実施例における自動加熱装置について
図面とともに説明する. 第2図に示すように被加熱物13を収納した加熱室lに
は高周波加熱手段としてのマグネトロン11が取り付け
給電結合されている.そして高電圧発生用の高圧トラン
ス9がマグネトロン1lの傍に配置されている.また加
熱室l内の被加熱物13を照明するランプlOが加熱室
lの側壁部に配置されている.また被加熱物l3を載せ
た回転台を回転させる電動機l2が加熱室1の下に配置
されている.ここで、構成要素と動作を併せて説明する
.被加熱物13としての食品を加熱室1に置きド,ア2
6を閉じて、操作部2lの自動加熱調理のスイッチ部を
選択して押し、さらに加熱を開始させるスタートスイッ
チを操作する.このスタートスイッチの操作信号が制御
手段22に伝えられ、この制御手段22からマグネトロ
ン11,高圧トランス9、電動機l2さらに送風機8等
を駆動するための駆動信号が駆動手段23から出力され
る.そして、加熱が始まると送風機8が機体外部から外
郭板7に設けた孔29を通り空気を吸い込み、マグネト
ロン11、高圧トランス9、ランプ10などを空気整流
壁としてのオリフィスl8を生かして冷却しながら加熱
室1内へ空気を送り込んでいる.そして、加熱室1に送
り込まれた空気は被加熱物l3から出てくる水蒸気ガス
を含み、加熱室1の壁面に設けられた排気孔14と排気
孔l9を経て外郭板7に設けた排出口15および排出口
20から機体27の外に排出される.そして、気体通路
2が加熱室lの排気孔14、19から外郭板7の排出口
l5、20までの間に設けられている.この気体通路2
の途中に設けた断面積の変化している部分としての変化
部4の加熱室1側に設けた断面積の一定な範囲としての
安定部5と安定部5から変化部4に切り替わる境である
通路口6とを備え、この変化部4に水蒸気およびガスの
熱気を検出する焦電センサ3を配置している.ここで第
1図について説明を行う.気体通路2の途中で設けた断
面積の変化している部分としての変化部4に送風llB
からの冷気を混合し排出するための冷気混合排気通路2
5を設けて、この冷気混合排気通路25内の通気排気風
速を速くして部分的に気圧を低くし、この気圧の低くな
る位置に加熱室lに連結された気体通路2の通気口が配
置される構成であり、被加熱物13の加熱時に送風機8
の送風により加熱室1に風圧が加えられると同時に冷気
混合排気通路25の通気風速が速くなり、風速が速くな
るのに応じて気圧が少し局部的に低下して、気体通路2
を通じて加熱室lからの排気空気を吸い出すことになっ
て、被加熱物13からの水蒸気ガスの熱気の状態変化が
速やかに焦電センサ3の受熱面28に伝えられることに
なる.したがって被加熱物l3の加熱状態の検出が遅れ
て被加熱物13を加熱し過ぎるということが発生しなく
なる.気体通路2には加熱室lから水蒸気ガスを集める
第1通路l6と第1通路l6で集めた水蒸気ガスを焦電
センサ3の近くまで導く第2の通路l7とがあり、加熱
室1に設けた排気孔14から気体通路2の途中に設けた
安定部5までの空気の流れを流れ易くするために、第1
通路16と第2通路17と安定部5との間には通路断面
積の3割以上の差異を有しない構成としている. 気体通路2に加熱室1の排気孔14から排出される排気
量Q.は、第1通路16と第2通路l7と安定部5と通
路口6を経て焦電センサ3の受熱面28に当たり変化部
4で冷気混合排気通路25から送り込まれる空気Q,と
混合された後に外郭板7の排出口15から排気量Q8と
して排出される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention detects hot air contained in steam and gas emitted according to the heating state of the object to appropriately determine the heating end time of the object to be heated. It is related to an automatic heating device that achieves good heating conditions. Conventional technology Conventionally, automatic heating devices require detection means to detect the heating state of the food to be heated, and this means uses exhaust gas to exhaust air from the heating chamber to the outside of the machine. A sensor is placed as a detection means in the middle of the passage, and by detecting the generation and concentration change of water vapor gas etc. generated when the food is heated, it indirectly informs the heating condition or doneness of the food. Based on this information, automatic cooking will be performed by switching the heating method or stopping heating. A conventional example will be explained below with reference to Figures 4 to 6. As shown in FIG. 4, the box-shaped body 27 has a door 26 that can be opened and closed at the opening of the heating chamber 1, and a door 26 for selecting and setting the heating means, heating time, and heating method, and instructions for starting and stopping heating. An operating section 2l for input settings is provided on the front of the aircraft body 27. Further, the side wall of the fuselage 27 is surrounded by an outer shell plate 7. Figure 5 shows the components of the equipment.
A magnetron 11 as a high-frequency heating means is attached and connected to the heating chamber 1 in which the object to be heated 13 is housed. A high voltage transformer 9 for generating high voltage is placed near the magnetron 11. Further, a lamp lO for illuminating the heated proboscis l3 in the heating chamber 1 is arranged on the side wall of the heating chamber l. Further, an electric motor 12 for rotating a rotary table on which an object to be heated 13 is placed is arranged below the heating chamber l. Here, we will explain the components and operations. Heated object l
Place the food No. 3 in the heating chamber 1, close the door 26, select and press the automatic cooking switch on the operation section 21,
Furthermore, operate the start switch to start heating.
The operation signal of this start switch is transmitted to the control means 22, and the control means 22 outputs a drive signal from the drive means 23 to drive the magnetron 1l, the high voltage transformer 9, the electric motor 12, the blower 8, etc. When heating starts, the blower 8 sucks air from outside the fuselage through the hole 29 provided in the outer shell plate 7, and cools the magnetron 11, high voltage transformer 9, lamp lO, etc. by making use of the orifice l8 as an air rectifying wall. Air is sent into the heating chamber l. The air sent into the heating chamber 1 contains the object to be heated 13 and the water vapor gas coming out of the heating chamber 1.
Aircraft 2 from the exhaust port 15 and exhaust port 20 provided on the outer shell plate 7 through the exhaust hole 14 and exhaust hole 19 provided on the wall of the aircraft.
7 is discharged outside. A gas passage 2 is provided between the exhaust holes 14 and 19 of the heating chamber l and the exhaust ports l5 and 20 of the outer shell plate 7. A heating chamber i of a changing section 4, which is a portion having a changing cross-sectional area, provided in the middle of this gas passage 2.
It has a stable part as a constant range of cross-sectional area provided on the side, and a pyroelectric sensor 3 for detecting hot water vapor and gas is arranged in this changing part. The flat part of the heat receiving surface 28 of the pyroelectric sensor 3 that detects hot air is fixed to the inner surface of the passage, and the flow of exhaust air from the heating chamber l through the gas passage 2 and out of the fuselage 27 is pyroelectrically After passing over the heat receiving surface 28 of the sensor 3 and touching the heat receiving surface, it is discharged. Further, this gas passage 2 includes a first passage 16 that collects water vapor gas from the heating chamber 1 and a second passage 1 that guides the water vapor gas collected in the first passage 16 to the vicinity of the pyroelectric sensor 3.
7, and in order to facilitate the flow of air from the exhaust hole 14 provided in the heating chamber 1 to the stable part 5 provided in the middle of the gas passage 2, there are a first passage 16, a second passage 17, and a stable part. The configuration is such that there is no difference of more than 30% in the cross-sectional area of the passage between the The amount of exhaust gas discharged from the exhaust hole 14 of the heating chamber 1 of the gas passage 2 passes through the first passage 16, the second passage 17, the stable part 5, and the passage opening 6, and changes as it hits the heat receiving surface 28 of the pyroelectric sensor 3. After passing through the section 4, it is discharged from the discharge port l5 of the outer shell plate 7 as a displacement Qt. In this way, as the object to be heated 13 is heated and water vapor gas comes out from the food in the air flow generated by the blower 8, the water vapor gas passes through the gas passage 2 and reaches the heat receiving surface 28 of the pyroelectric sensor 3. One pyroelectric sensor 3 generates a pulse voltage signal when it comes in contact with water vapor gas and hot air. This generated electrical signal is transmitted to the sensor signal processing means 24 and then transmitted to the control means 22 via a voltage amplification circuit, a frequency filter circuit, a DC cut circuit, etc. Then, the control means 22 determines the state of the sensor signal voltage and selects whether to continue heating or stop heating,
Heating is ultimately stopped when the most desirable heating state is achieved. The pyroelectric sensor 3 used in the heating operation described above is a pyroelectric sensor in which when thermal energy is applied, the equilibrium state of the internal polarization of the element is disturbed and a pulse voltage is generated at the electrode section provided on the element surface. It uses elements that have an effect. Generally known products such as piezoelectric buzzers in dielectric ceramics, ultrasonic vibrating elements, piezoelectric ceramics used in ultrasonic detection elements, and piezoelectric resin films play a sufficient role as pyroelectric sensors. Problems to be Solved by the Invention However, in the above configuration, the flow of exhaust air from the heating chamber 1 passes over the heat receiving surface 28 of the pyroelectric sensor 3 and, after touching the heat receiving surface 28, flows out of the fuselage 27. However, in order for the water vapor gas from the object to be heated 13 generated in the heating chamber 1 to reach the heat receiving surface 28 of the pyroelectric sensor 3, it must be moved from the heating chamber 1 to the first passage 1 by the wind pressure generated by the blower 8.
6, second passage l7, stable part 5, passage opening 6 and changing part 4
However, since the air sent into the heating chamber 1 is exhausted from the exhaust hole 14, 1902 exhaust holes, and the gap between the door 26 and the heating chamber 1, air is generated in the heating chamber 1. Only a portion of the water vapor gas is delivered to the pyroelectric sensor 3 via the gas passage 2. Therefore,
Even when the object to be heated 13 is heated in the heating chamber 1 and water vapor gas comes out, the water vapor gas flows through the long path of the gas passage 2 based only on the wind pressure of the air blower 4lIlB until it reaches the heat receiving surface of the pyroelectric sensor 3. It often takes a long time to heat the heated object 13.
Since the heating state of the heated object 13 cannot be detected promptly, the heated object 13 becomes overheated, and even though the automatic heating device should stop heating the heated object 13 at the optimum heating state, it is not in the optimum state. The problem was that the automatic heating device could not perform its original function of being unable to stop the heating. Therefore, in the present invention, a cold air mixing exhaust passage is provided in the change section in which the pyroelectric sensor 3 is housed in the gas passage 2 for mixing and discharging the cold air from the blower, and the ventilation exhaust air speed is increased to partially discharge the cold air. The purpose of the present invention is to provide an automatic heating device that does not overheat an object to be heated 13 by lowering the atmospheric pressure and arranging the device so as to suck out exhaust air from a gas passage 2 connected to a heating chamber 1. .. Means for Solving the Problems Therefore, in order to achieve the above object, the present invention provides a cold air mixing exhaust passage for mixing and discharging cold air from the blower in the changing section, and increases the ventilation exhaust air speed to partially exhaust the cold air. It is constructed and arranged so that the air pressure is lowered and the exhaust air from the gas passage connected to the heating chamber is sucked out. Function: The automatic heating device of the present invention has a cold air mixing exhaust passage for mixing and discharging cold air from the blower in the changing section that houses the pyroelectric sensor, and increases the ventilation/exhaust air speed of this mixing exhaust passage to partially heat the air. At the position where the atmospheric pressure is lower,
By arranging the exhaust port of the gas passage connected from the heating chamber, the exhaust air containing water vapor gas from the heating chamber is sucked out. Therefore, the time it takes for the heat of the steam gas from the object to be heated contained in the exhaust air from the heating chamber to be detected by the heat receiving surface of the pyroelectric sensor does not become long. As a result, the detection time of water vapor gas becomes slow, and the heating state of the object to be heated can be detected by the pyroelectric sensor as a state in which heating should be stopped. Therefore, it is possible to prevent the object to be heated from being overheated, so that the automatic heating device can fully perform its original function. EXAMPLE Below, an automatic heating device according to an example of the present invention will be explained with reference to the drawings. As shown in FIG. 2, a magnetron 11 as a high-frequency heating means is attached and connected to a heating chamber l in which an object to be heated 13 is housed. A high voltage transformer 9 for generating high voltage is placed near the magnetron 1l. Further, a lamp lO for illuminating the object to be heated 13 in the heating chamber l is arranged on the side wall of the heating chamber l. Further, an electric motor 12 that rotates a rotary table on which an object to be heated 13 is placed is arranged below the heating chamber 1. Here, we will explain the components and operations. Place the food as the object to be heated 13 in the heating chamber 1 and
6, select and press the automatic heating cooking switch on the operating section 2l, and then operate the start switch to start heating. The operation signal of this start switch is transmitted to the control means 22, and from the control means 22, a drive signal for driving the magnetron 11, the high voltage transformer 9, the electric motor 12, the blower 8, etc. is outputted from the drive means 23. When heating starts, the blower 8 sucks air from outside the fuselage through the hole 29 provided in the outer shell plate 7, and cools the magnetron 11, high-voltage transformer 9, lamp 10, etc. by utilizing the orifice l8 as an air rectifying wall. Air is sent into heating chamber 1. The air sent into the heating chamber 1 contains water vapor gas coming out from the object to be heated l3, and passes through the exhaust hole 14 and the exhaust hole l9 provided on the wall of the heating chamber 1, and then through the exhaust port provided on the outer shell plate 7. 15 and discharge port 20 to the outside of the aircraft body 27. A gas passage 2 is provided between the exhaust holes 14 and 19 of the heating chamber l and the exhaust ports l5 and 20 of the outer shell plate 7. This gas passage 2
The stable part 5 is a constant range of cross-sectional area provided on the heating chamber 1 side of the changing part 4, which is a part where the cross-sectional area is changing, and the boundary where the stable part 5 switches to the changing part 4. A pyroelectric sensor 3 for detecting water vapor and hot gas is disposed in the changing section 4. Here, we will explain Figure 1. Air is blown to a changing part 4, which is a part where the cross-sectional area changes, provided in the middle of the gas passage 2.
Cold air mixing exhaust passage 2 for mixing and discharging cold air from
5 is provided to increase the speed of ventilation exhaust air in this cold air mixing exhaust passage 25 to partially lower the atmospheric pressure, and the vent of the gas passage 2 connected to the heating chamber 1 is arranged at a position where the atmospheric pressure is lowered. When heating the object 13 to be heated, the blower 8
Wind pressure is applied to the heating chamber 1 by the air blowing, and at the same time, the ventilation air speed in the cold air mixing exhaust passage 25 increases, and as the wind speed increases, the air pressure locally decreases a little, and the gas passage 2
As a result, a change in the state of the hot water vapor gas from the object to be heated 13 is quickly transmitted to the heat receiving surface 28 of the pyroelectric sensor 3. Therefore, the detection of the heating state of the object to be heated 13 is delayed and the object to be heated 13 is not overheated. The gas passage 2 includes a first passage l6 that collects water vapor gas from the heating chamber l and a second passage l7 that guides the water vapor gas collected in the first passage l6 to the vicinity of the pyroelectric sensor 3. In order to facilitate the flow of air from the exhaust hole 14 provided in the gas passage 2 to the stable part 5 provided in the middle of the gas passage 2, the first
The passage 16, the second passage 17, and the stable portion 5 are configured so that there is no difference of more than 30% in the cross-sectional area of the passage. The amount of gas discharged from the exhaust hole 14 of the heating chamber 1 into the gas passage 2 is Q. After passing through the first passage 16, the second passage 17, the stable part 5, and the passage opening 6, it hits the heat receiving surface 28 of the pyroelectric sensor 3, and is mixed with the air Q sent from the cold air mixing exhaust passage 25 in the changing part 4. It is discharged from the discharge port 15 of the outer shell plate 7 as a displacement amount Q8.

このように、送風機8によって生じた空気の流れとして
加熱室1から送り出す風圧による流れと冷気混合排気通
路25にて作られる気圧の低下による吸い出しによる流
れの2種類の空気の流れがあり、この排気空気の中に被
加熱物l3の加熱が進み食品から水蒸気ガスが出てくる
と気体通路2を経て焦電センサ3の受熱面28に水蒸気
ガスが当たる.焦電センサ3は水蒸気ガスおよび熱気に
触れることによりパルス電圧信号を発玉する.この発生
した電気信号はセンサ信号電圧処理手段24に伝えられ
電圧増幅回路とか周波数フィルター回路とか直流カット
回路などを経て制御手段22に伝えられる.そして制御
手段22の中でセンサ信号電圧の状態を判断して加熱を
継続するか、,もし《は加熱を停止するかの選択をして
、最終的に最も望ましい加熱状態が得られた段階で加熱
を停止することになる.以上のような加熱動作を行うと
きの焦電センサ3として、熱エネルギーが与えられると
素子の内部分極の平衡状態が乱れて、素子表面に設けた
電極部にパルス電圧を発生するという焦電性効果を持つ
素子を使用している.一般に知られている品物としては
誘電体セラミックスの中の圧電ブザーとか超音波振動素
子とか超音波検出素子に使用される圧電セラミックスと
か圧電樹脂膜などが焦電センサ3として十分に役割を果
たす. 次に第3図により、本発明の他の実施例を説明する. 第3図に示すように、冷気混合排気通路25に送風機8
によって機体27の外から吸い込まれた冷気が送り込ま
れて勢い良く変化部4を通り過ぎて排出口15を通り機
体27の外へ排出される.このとき流入した空気の流れ
が速いため気体通路2の安定部5の端である通路口6で
の気圧が低下して、加熱室1からの排気空気が吸い出さ
れることになって、加熱室lからの排気空気に含まれる
水蒸気ガスが焦電センサの下の受熱面28に触れた後に
、上方へ流れてから外郭板7の排出口15に向かい排出
口15から機体27の外へ出ていくことになる.このよ
うに排気空気の流れが冷気混合されるときの気圧低下に
より吸い出されて水蒸気ガスが焦電センサ3の受熱面2
8にふれるため、加熱室lにて発生する被加熱物13の
状態変化による水蒸気ガス熱気の増加が焦電センサ3に
速やかに検出される.被加熱物l3の加熱状態が遅れる
ことなく検出されるため、被加熱物l3が加熱され過ぎ
になることが防止される効果がある. 次に第7図により、本発明の他の実施例を説明する. 第7図に示すように、冷気混合排気通路25に送風機8
によって機体27の外から吸い込まれた冷気が送り込ま
れて勢い良く変化部4を通り過ぎて排出口l5を通り機
体27の外へ排出される.このとき流入した空気の流れ
が速いため気体通路2の変化部4の排出口15側での気
圧が低下して、加熱室lからの排気空気が吸い出される
ことになって、加熱室1からの排気空気に含まれる水蒸
気ガスが焦電センサの下の受熱面28に触れた後に、上
方へ流れてから外郭板7の排出口l5に向かい排出口l
5から機体27の外へ出ていくことになる.このように
排気空気の流れが冷気混合されるときの気圧低下により
吸い出されて水蒸気ガスが焦電センサ3の受熱面28に
ふれるため、加熱室lにて発生する被加熱物l3の状態
変化による水蒸気ガス熱気の増加が焦電センサ3に速や
かに検出される.被加熱物13の加熱状態が遅れること
なく検出されるため、被加熱物13が加熱され過ぎにな
ることが防止される効果がある. 発明の効果 以上のように本発明の自動加熱装置によれば次の効果が
得られる. 冷気混合排気通路に送風機によって機体の外から吸い込
まれた冷気が送り込まれて勢い良《変化部を通り過ぎて
排出口を通り機体の外へ排出される.このとき流入した
空気の流れが速いため気体通路の変化部の周囲での気圧
が低下して、加熱室からの排気空気が吸い出されること
になって、加熱室からの排気空気に含まれる水蒸気ガス
が焦電センサの下の受熱面に触れた後に、外郭板の排出
口に向かい排出口から機体の外へ出ていることになる.
このように排気空気の流れが冷気混合されるときの変化
部での気圧低下により吸い出されて水蒸気ガスが焦電セ
ンサの受熱面にふれるため、加熱室にて発生する被加熱
物の状態変化による水蒸気ガス熱気の増加が焦電センサ
に速やかに検出される.被加熱物の加熱状態が遅れるこ
となく検出されるため、被加熱物が加熱され過ぎになる
ことが防止される効果がある.
As described above, there are two types of air flows generated by the blower 8: a flow due to the wind pressure sent out from the heating chamber 1, and a flow due to the drop in air pressure created in the cold air mixing exhaust passage 25. As the heating of the object l3 in the air progresses and steam gas comes out from the food, the steam gas passes through the gas passage 2 and hits the heat receiving surface 28 of the pyroelectric sensor 3. The pyroelectric sensor 3 emits a pulse voltage signal when it comes into contact with water vapor gas and hot air. This generated electric signal is transmitted to the sensor signal voltage processing means 24, and is transmitted to the control means 22 through a voltage amplification circuit, a frequency filter circuit, a DC cut circuit, etc. Then, the control means 22 determines the state of the sensor signal voltage and selects whether to continue heating or, if it is, to stop heating, and finally at the stage when the most desirable heating state is obtained. This will stop heating. The pyroelectric sensor 3 used in the heating operation described above is a pyroelectric sensor in which when thermal energy is applied, the equilibrium state of the internal polarization of the element is disturbed and a pulse voltage is generated at the electrode section provided on the element surface. It uses elements that have an effect. Generally known products such as piezoelectric buzzers in dielectric ceramics, ultrasonic vibration elements, piezoelectric ceramics used in ultrasonic detection elements, and piezoelectric resin films play a sufficient role as the pyroelectric sensor 3. Next, another embodiment of the present invention will be explained with reference to FIG. As shown in FIG. 3, a blower 8 is installed in the cold air mixing exhaust passage 25.
The cold air sucked in from outside the fuselage 27 is sent in, passes through the changing part 4, passes through the exhaust port 15, and is discharged to the outside of the fuselage 27. At this time, since the flow of the incoming air is fast, the air pressure at the passage opening 6, which is the end of the stable part 5 of the gas passage 2, decreases, and the exhaust air from the heating chamber 1 is sucked out, so that the heating chamber After the water vapor gas contained in the exhaust air from l comes into contact with the heat receiving surface 28 below the pyroelectric sensor, it flows upward and then toward the exhaust port 15 of the outer shell plate 7 and exits from the exhaust port 15 to the outside of the fuselage 27. I'm going to go. In this way, when the flow of exhaust air is mixed with cold air, the pressure decreases, and water vapor gas is sucked out and is transferred to the heat receiving surface 2 of the pyroelectric sensor 3.
8, the pyroelectric sensor 3 quickly detects an increase in the steam gas heat due to a change in the state of the heated object 13 occurring in the heating chamber 1. Since the heating state of the object to be heated 13 is detected without delay, there is an effect that the object to be heated 13 is prevented from being overheated. Next, another embodiment of the present invention will be explained with reference to FIG. As shown in FIG. 7, a blower 8 is installed in the cold air mixing exhaust passage 25.
The cold air sucked in from outside the fuselage 27 is sent in, passes through the changing part 4, passes through the exhaust port 15, and is discharged to the outside of the fuselage 27. At this time, since the flow of the incoming air is fast, the air pressure on the side of the outlet 15 of the transition part 4 of the gas passage 2 decreases, and the exhaust air from the heating chamber l is sucked out. After the water vapor gas contained in the exhaust air touches the heat-receiving surface 28 below the pyroelectric sensor, it flows upward and then heads toward the exhaust port l5 of the outer shell plate 7.
5 and will exit the aircraft 27. In this way, the water vapor gas that is sucked out due to the pressure drop when the exhaust air is mixed with cold air and touches the heat receiving surface 28 of the pyroelectric sensor 3 causes a change in the state of the heated object l3 that occurs in the heating chamber l. The pyroelectric sensor 3 quickly detects the increase in hot water vapor gas due to Since the heating state of the object to be heated 13 is detected without delay, there is an effect that the object to be heated 13 is prevented from being overheated. Effects of the Invention As described above, the automatic heating device of the present invention provides the following effects. Cold air sucked in from outside the aircraft by a blower is sent into the cold air mixing exhaust passage, and is rapidly discharged from the aircraft through the transition area, the exhaust port, and the exhaust port. At this time, the flow of the incoming air is fast, so the air pressure around the changing part of the gas passage decreases, and the exhaust air from the heating chamber is sucked out, causing the water vapor contained in the exhaust air from the heating chamber to drop. After the gas touches the heat-receiving surface under the pyroelectric sensor, it heads toward the exhaust port on the outer shell plate and exits the aircraft through the exhaust port.
In this way, when the flow of exhaust air is mixed with cold air, water vapor gas is sucked out due to the drop in pressure at the changing part and comes into contact with the heat receiving surface of the pyroelectric sensor, causing a change in the state of the heated object that occurs in the heating chamber. The pyroelectric sensor quickly detects the increase in water vapor and hot air caused by the pyroelectric sensor. Since the heating state of the heated object is detected without delay, it is effective in preventing the heated object from being overheated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における自動加熱装置の要部
断面図、第2図はその全体構成図、第3図は本発明の他
の実施例の要部断面図、第4図は従来の自動加熱装置の
外観斜視図、第5図はその全体構成図、第6図はその要
部断面図、第7図は本発明の他の実施例の要部断面図で
ある.1・・・・・・加熱室、2・・・・・・気体通路
、3・・・・・・焦電センサ、4・・・・・・変化部、
5・・・・・・安定部、6・・・・・・通路口、25・
・・・・・冷気混合排気通路、28・・・・・・受熱部
.代理人の氏名 弁理士 粟野重孝 はか1名第 図 2l 第 図 z/ 第 図 第 図 嬉 図
Fig. 1 is a sectional view of the main parts of an automatic heating device according to an embodiment of the present invention, Fig. 2 is a diagram of its overall configuration, Fig. 3 is a sectional view of main parts of another embodiment of the invention, and Fig. FIG. 5 is a perspective view of the appearance of a conventional automatic heating device, FIG. 5 is an overall configuration diagram thereof, FIG. 6 is a sectional view of a main part thereof, and FIG. 7 is a sectional view of a main part of another embodiment of the present invention. 1... Heating chamber, 2... Gas passage, 3... Pyroelectric sensor, 4... Changing section,
5... Stable part, 6... Passageway entrance, 25.
...Cold air mixing exhaust passage, 28...Heat receiving section. Name of agent: Patent attorney Shigetaka Awano (1 person) Figure 2l Figure z/ Figure 4

Claims (1)

【特許請求の範囲】[Claims] 被加熱物を載置する加熱室と、この加熱室に発生する前
記被加熱物からの水蒸気やガスを排気するための気体通
路と、前記水蒸気やガスの熱気を検出する焦電センサと
、前記気体通路内壁面の一部となる前記焦電センサの受
熱面と、前記気体通路の中で前記焦電センサよりも前記
加熱室側の安定部と、前記気体通路の中で前記焦電セン
サの範囲である変化部と、前記変化部に冷気を混合し排
出するための冷気混合排気通路とからなる自動加熱装置
a heating chamber for placing an object to be heated; a gas passage for exhausting water vapor and gas from the object to be heated generated in the heating chamber; a pyroelectric sensor for detecting hot air of the vapor and gas; a heat-receiving surface of the pyroelectric sensor that becomes a part of the inner wall surface of the gas passage; a stable part of the pyroelectric sensor in the gas passage that is closer to the heating chamber than the pyroelectric sensor; An automatic heating device comprising a changing section, which is a range, and a cold air mixing exhaust passage for mixing cold air into the changing section and discharging the mixture.
JP11470989A 1989-05-08 1989-05-08 Automatic heating device Pending JPH02293528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11470989A JPH02293528A (en) 1989-05-08 1989-05-08 Automatic heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11470989A JPH02293528A (en) 1989-05-08 1989-05-08 Automatic heating device

Publications (1)

Publication Number Publication Date
JPH02293528A true JPH02293528A (en) 1990-12-04

Family

ID=14644661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11470989A Pending JPH02293528A (en) 1989-05-08 1989-05-08 Automatic heating device

Country Status (1)

Country Link
JP (1) JPH02293528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500508A (en) * 1992-11-16 1996-03-19 Bosch-Siemens Hausgeraete Gmbh Oven, particularly with an apparatus for pyroltic self cleaning
JP2010071615A (en) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp Heating cooker
CN113751420A (en) * 2021-09-29 2021-12-07 江苏徐工工程机械研究院有限公司 Fused salt ultrasonic cleaning machine and fused salt ultrasonic cleaning method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278690A (en) * 1989-04-19 1990-11-14 Matsushita Electric Ind Co Ltd Microwave oven

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278690A (en) * 1989-04-19 1990-11-14 Matsushita Electric Ind Co Ltd Microwave oven

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500508A (en) * 1992-11-16 1996-03-19 Bosch-Siemens Hausgeraete Gmbh Oven, particularly with an apparatus for pyroltic self cleaning
JP2010071615A (en) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp Heating cooker
CN113751420A (en) * 2021-09-29 2021-12-07 江苏徐工工程机械研究院有限公司 Fused salt ultrasonic cleaning machine and fused salt ultrasonic cleaning method
CN113751420B (en) * 2021-09-29 2022-10-14 江苏徐工工程机械研究院有限公司 Fused salt ultrasonic cleaning machine and fused salt ultrasonic cleaning method
US11964308B2 (en) 2021-09-29 2024-04-23 Jiangsu Xcmg Construction Machinery Research Institute Ltd. Molten salt ultrasonic cleaning machine, and molten salt ultrasonic cleaning method

Similar Documents

Publication Publication Date Title
KR940000174B1 (en) Automatic heating apparatus
US7022958B2 (en) High frequency heating apparatus
KR930010263B1 (en) Oven
JP2000046345A (en) Wall mounting microwave oven and control method therefor
US6093922A (en) Wall mounted microwave oven and control method therefor
JPH02293528A (en) Automatic heating device
JPH02293527A (en) Automatic heating device
JPH02293526A (en) Automatic heating device
JPH02143025A (en) Automatic heater
JP2563574B2 (en) Automatic heating device
JPH08130087A (en) Microwave oven
JPS58181293A (en) High frequency heater
JPH02122122A (en) Automatic heating device
KR0118054Y1 (en) Safety device of microwave oven
KR0139166B1 (en) Automatic cooking device of microwave oven
KR0133441B1 (en) Cooking device of microwave oven
JPH0221691Y2 (en)
KR100286039B1 (en) Wall-mounted microwave oven and control method
JPH0387522A (en) Microwave oven
JP2003176919A (en) Microwave oven
JPS61285320A (en) Compound heating cooking equipment
JPH07217898A (en) High frequency wave heating device
JP2001132943A (en) Combustor
JPH07217899A (en) High frequency wave heating device
JPS60256728A (en) High-frequency heating cooker