JPH0387522A - Microwave oven - Google Patents

Microwave oven

Info

Publication number
JPH0387522A
JPH0387522A JP22352589A JP22352589A JPH0387522A JP H0387522 A JPH0387522 A JP H0387522A JP 22352589 A JP22352589 A JP 22352589A JP 22352589 A JP22352589 A JP 22352589A JP H0387522 A JPH0387522 A JP H0387522A
Authority
JP
Japan
Prior art keywords
sensor
pyroelectric sensor
heat
duct
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22352589A
Other languages
Japanese (ja)
Other versions
JP2558887B2 (en
Inventor
Kouji Kanzaki
神埼 浩二
Masato Yota
正人 要田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1223525A priority Critical patent/JP2558887B2/en
Publication of JPH0387522A publication Critical patent/JPH0387522A/en
Application granted granted Critical
Publication of JP2558887B2 publication Critical patent/JP2558887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To ensure efficient transfer of heat to a pyroelectric sensor and enhance detection performance, by a construction wherein a guide passage having a flow passage area smaller than the area of a heat-receiving surface of the pyroelectric sensor is provided in a duct above the sensor, facing the same, and the spacing between the guide passage and the sensor is set in a specified relationship with the inside size of the guide passage. CONSTITUTION:A material to be heated 6 placed in a heating chamber 7 is dielectrically heated with the result of a temperature rise, and a vapor generated by the heating passes through a vent hole 3 in the ceiling of the chamber 7, a first duct 9, a duct 2 and a guide passage 5 to make contact with a pyroelectric sensor 1. The spacing (d) between the sensor 1 and the lower end guide passages 5 disposed above the sensor 1 and facing the of the same is made to be about 1/10 of the inside diameter gamma of the flow passage of the duct 2. Even when the vapor guided through the duct 2 has a low flow pressure, the sensitivity of detection is prevented from being lowered, because the vapor is caused to flow through the restricted space. The flow passage area of the guide passage 5 is set smaller than the area of a heat- receiving surface of the sensor so that the vapor flows between the passage 5 and the sensor 1 without fail.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、被加熱物の加熱状態に応して出てくる水蒸気
およびガスに含まれる熱気を検出して、被加熱物の加熱
終了時間を適宜決定し、良好な加熱状態を実現する高周
波加熱装置の自動調理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention detects hot air contained in steam and gas that come out depending on the heating state of the object to be heated, and determines the end time of heating the object as appropriate. This invention relates to automatic cooking using a high-frequency heating device that determines and achieves a good heating state.

従来の技術 従来より高周波加熱装置の自動調理においては、被加熱
物たる食品の加熱状態を検出する検出手段が必要であり
、この手段として加熱室から機体外へ加熱室の空気を排
気するための排気用気体通路の途中に、検出手段として
のセンサを配置し、食品が加熱されることにより発生す
る水蒸気ガス等の発生及び濃度変化等を検出することに
より、食品の加熱具合または出来具合を間接的に知らし
めるという情報に基づいて加熱手段を切り変えたり、加
熱を停止したりする自動加熱調理を行うことになる。
Conventional technology Conventionally, automatic cooking using high-frequency heating equipment requires a detection means to detect the heating state of the food to be heated. A sensor is placed as a detection means in the middle of the exhaust gas passage, and by detecting the generation and concentration changes of water vapor gas etc. generated when food is heated, it is possible to indirectly determine the heating condition or doneness of food. This means that automatic heating cooking will be performed, such as switching the heating means or stopping heating based on the information provided.

この方式の検知システムとして焦電素子を利用したもの
が検討されているが、このシステムは焦電素子を利用し
ているにもかかわらずチョッパーなとの複雑な構成を必
要とせず、しかも光学系を利用していないので汚れにも
強く、また視野角の問題もないなど非常に使い勝手がよ
くしかも安価なtX威が可能といった多くの長所がある
A detection system using a pyroelectric element is being considered as a detection system for this method, but although this system uses a pyroelectric element, it does not require a complicated configuration such as a chopper, and it does not require an optical system. It has many advantages, such as being resistant to dirt because it does not utilize tX, and being very easy to use, such as having no problems with viewing angles, and being able to use tX at a low cost.

以下第4図とともに従来例を説明する0図に示すように
加熱室7内に置かれた被加熱物6はマグネトロンlOで
発生した2450 M Hzのマイクロ波により誘電加
熱される。加熱された被加熱物6の温度が上昇し、被加
熱物6に多量に含まれる水の沸点近くに達すると、多量
の高温蒸気が発生しこの蒸気は加熱室7の天井に向かっ
て上昇する。この蒸気は、加熱室7の天井に設けられた
通気口3を通過し、気体通路2に導かれて焦電センサ1
に当り、焦電センサ1の表面で結露して焦電センサ1に
潜熱を主体とした多量のエネルギーを与える。この結果
、焦電センサ1は温度上昇し焦電効果により電圧を発生
するので、これを検出して被加熱物6の仕上がり状態を
判定することができる。
As shown in FIG. 0, which will explain a conventional example together with FIG. 4, an object to be heated 6 placed in a heating chamber 7 is dielectrically heated by 2450 MHz microwaves generated by a magnetron 1O. When the temperature of the heated object 6 rises and reaches near the boiling point of water contained in a large amount in the object 6, a large amount of high-temperature steam is generated and this steam rises toward the ceiling of the heating chamber 7. . This steam passes through the vent 3 provided on the ceiling of the heating chamber 7, is guided to the gas passage 2, and is directed to the pyroelectric sensor 1.
At this time, dew condenses on the surface of the pyroelectric sensor 1, giving the pyroelectric sensor 1 a large amount of energy mainly consisting of latent heat. As a result, the temperature of the pyroelectric sensor 1 rises and a voltage is generated due to the pyroelectric effect, so that the finished state of the heated object 6 can be determined by detecting this.

発明が解決しようとする!!l!題 しかしながら上記のような構成では、加熱室7で発生し
た被加熱物6からの水蒸気が焦電センサlまで送り届け
られるのであるが、加熱室7に送り込まれる空気は排気
孔3と排気孔11の2個所から排気されるため加熱室7
に発生する水蒸気ガスの一部分しか気体通路2を経て焦
電センサ1に届けられない、そのため、加熱室7にて被
加熱物6が加熱されて水蒸気ガスが出てきても、送風1
18の風圧にだけ頼って気体通路2の長い経路を経て焦
電センサ1の受熱面に到達するまでの時間が長くなった
りすることが多く、被加熱物6の加熱状態を速やかに検
出することが出来ないため被加熱物6の加熱し過ぎの状
態になり、自動加熱装置としての被加熱物6の最適な加
熱状態で加熱を停止するべきでありながら最適状態での
加熱停止が出来ないという、自動加熱装置としての本来
の機能を発揮出来なくなるという課題があった。
Invention tries to solve! ! l! However, in the above configuration, the water vapor from the object to be heated 6 generated in the heating chamber 7 is delivered to the pyroelectric sensor l, but the air sent into the heating chamber 7 is passed through the exhaust hole 3 and the exhaust hole 11. Heating chamber 7 as exhaust is exhausted from two places.
Only a portion of the water vapor gas generated in
In many cases, it takes a long time for the gas to reach the heat-receiving surface of the pyroelectric sensor 1 through the long path of the gas passage 2 depending only on the wind pressure of 18, so it is difficult to quickly detect the heating state of the heated object 6. As a result, the object to be heated 6 becomes overheated, and heating should be stopped at the optimum heating state of the object to be heated 6 as an automatic heating device, but heating cannot be stopped in the optimum state. However, there was a problem that the automatic heating device could not perform its original function.

また繰り返し被熱物6の加熱をおこなうと焦電センサ受
熱面で水蒸気の雫が付着する。このようにして焦電セン
サ受熱面に覆われると、加熱室1からの排気空気に含ま
れる熱気の状態変化を検出するのが鈍くなり本来の機能
を発揮できなくなるという!IHIもあった。
Furthermore, when the heated object 6 is repeatedly heated, water vapor drops adhere to the heat receiving surface of the pyroelectric sensor. If the pyroelectric sensor is covered with the heat-receiving surface in this way, it will become less able to detect changes in the state of the hot air contained in the exhaust air from the heating chamber 1, and will no longer be able to perform its original function! There was also IHI.

そこで本発明はこれらの課題の解消をはかるために、加
熱室から蒸気を導くための通気路の下方に誘導路と焦電
センサを対向して配置し、焦電センサと誘導路との位置
関係を工夫することにより焦電センサへの熱の伝達が効
率的におなわれる構成を提供し、風圧が弱い場合でも焦
電センサの受熱面に直接また効率良く蒸気を当て、検知
性能の高い自動調理機能を有する高周波加熱装置を提供
することを目的とする。
Therefore, in order to solve these problems, the present invention arranges a guiding path and a pyroelectric sensor facing each other below the ventilation path for guiding steam from the heating chamber, and improves the positional relationship between the pyroelectric sensor and the guiding path. By devising the following, we provide a configuration that efficiently transfers heat to the pyroelectric sensor, and even when wind pressure is weak, steam is applied directly and efficiently to the heat receiving surface of the pyroelectric sensor, allowing automatic detection with high detection performance. An object of the present invention is to provide a high-frequency heating device having a cooking function.

vanを解決するための手段 そこで前記目的を達成するために、本発明は気体通路に
焦電センサ受熱面より小さい面積の誘導路を焦電センサ
上方に対向して設け、誘導路と焦電センサ受熱面のすき
ま、焦電センサの受熱面と誘導路の流路の内径寸法との
相互関係を焦電センサへの熱の伝達が効率的におこなわ
れるように設定するものである。
In order to achieve the above-mentioned object, the present invention provides a guiding path having an area smaller than the heat-receiving surface of the pyroelectric sensor in the gas passage and facing above the pyroelectric sensor, so that the guiding path and the pyroelectric sensor The interrelationship between the gap between the heat receiving surfaces and the inner diameter of the heat receiving surface of the pyroelectric sensor and the flow path of the guide path is set so that heat is efficiently transferred to the pyroelectric sensor.

作用 本発明の高周波加熱装置は、加熱室に発生する被加熱物
からの水蒸気やガスを検出する焦電センサを、水蒸気や
ガスを焦電センサに導く誘導路と対向して配置し、誘導
路の波路の面積を焦電センサ受熱面の面積よりも小さい
構成にすることにより、誘導路から噴出される蒸気は焦
電センサ受熱面に沿って流れるため焦電センサに効率良
く蒸気を当てることができる。更に、対向する焦電セン
サと誘導路との間隔を誘導路の流路の約1/10に設定
することで、誘導路から導かれた蒸気の風圧が弱い場合
でも、焦電センサと誘導路の狭い空間を流れるため、よ
り蒸気がセンサ受熱面近くを流れ検知の感度が下がるこ
とはなくなる。また誘導路の流路の内径に対して、焦電
センサと誘導路の間隔が極端に小さくなっているため風
速が速くなり、焦電センサへの熱エネルギーの伝達が安
定したものになるだけでなく、焦電センサ受熱面での風
速が速くなるので、蒸気の雫が付着しにくくなり、雫に
より熱気の状態変化の検出が鈍くなるのを防ぐことがで
きる。
Function The high-frequency heating device of the present invention has a pyroelectric sensor that detects water vapor and gas from an object to be heated generated in a heating chamber, arranged opposite to a guide path that guides water vapor and gas to the pyroelectric sensor. By making the area of the wave path smaller than the area of the pyroelectric sensor heat receiving surface, the steam ejected from the guideway flows along the pyroelectric sensor heat receiving surface, making it possible to efficiently apply steam to the pyroelectric sensor. can. Furthermore, by setting the distance between the opposing pyroelectric sensor and the taxiway to approximately 1/10 of the flow path of the taxiway, even when the wind pressure of the steam guided from the taxiway is weak, the pyroelectric sensor and the taxiway can be easily Since the steam flows through a narrow space, the steam flows closer to the sensor's heat-receiving surface and the detection sensitivity does not decrease. In addition, the distance between the pyroelectric sensor and the guideway is extremely small compared to the inner diameter of the guideway, which increases the wind speed and stabilizes the transfer of thermal energy to the pyroelectric sensor. Since the wind speed on the heat-receiving surface of the pyroelectric sensor becomes faster, droplets of steam are less likely to adhere to the pyroelectric sensor, and detection of changes in the state of hot air can be prevented from being slowed down by drops.

実施例 以下、本発明の一実施例における高周波加熱装置につい
て図面とともに説明する。
EXAMPLE Hereinafter, a high-frequency heating device according to an example of the present invention will be explained with reference to the drawings.

高周波加熱装置全体の説明に入る前に、まず高周波加熱
装置の検知素子である焦電センサ1の構成とその動作を
説明する。第3図(a)は焦電センサ1の詳細説明図で
、焦電効果を有する平板状のセラミック板14とその両
面に形成された電極15、電極16およびその一方の面
に接着されたステンレス鋼等の金属板17とからなって
いる。蒸気等の高温気体がこの金属板17側に当たると
、この金属板17を介してセラミック板14に熱がつた
わり、セラミック板14が焦電効果により電圧を発生す
る。従って本図の構成の場合、金属板17の表面が受熱
面となる。又第3図い)に示した焦電センサ1の断面図
の場合、金属板17に接着される側の電極16は、セラ
ミック板14の周端の一部を通って反対側の面まで一部
延長されており、電極15.16からのリード!111
8の引出しを、金属板17に接着されない面のみで可能
な構成になっている。
Before entering into an explanation of the entire high-frequency heating device, first, the configuration and operation of the pyroelectric sensor 1, which is a detection element of the high-frequency heating device, will be explained. FIG. 3(a) is a detailed explanatory diagram of the pyroelectric sensor 1, showing a flat ceramic plate 14 having a pyroelectric effect, electrodes 15 and 16 formed on both sides of the plate, and a stainless steel plate bonded to one side of the plate. It consists of a metal plate 17 made of steel or the like. When high-temperature gas such as steam hits this metal plate 17 side, heat is transferred to the ceramic plate 14 via this metal plate 17, and the ceramic plate 14 generates a voltage due to the pyroelectric effect. Therefore, in the configuration shown in this figure, the surface of the metal plate 17 becomes the heat receiving surface. In the case of the cross-sectional view of the pyroelectric sensor 1 shown in Fig. 3), the electrode 16 on the side to be bonded to the metal plate 17 passes through a part of the circumferential edge of the ceramic plate 14 to the opposite surface. The lead from electrode 15.16 is extended! 111
8 can be drawn out only on the surface that is not bonded to the metal plate 17.

例えばセラミック板14には、PZT(ジルコン酸チタ
ン酸鉛)等が考えられる。
For example, the ceramic plate 14 may be made of PZT (lead zirconate titanate) or the like.

第1図は本発明よりなる高周波加熱装置の概略断面図で
ある。第1図に示すように加熱室7内に置かれた被加熱
物6(食品)は、マグネトロン10で発生した2450
 M 1(zのマイクロ波(高周波)により誘電加熱さ
れる。加熱と共に被加熱物6の温度が上昇し、被加熱物
6に含まれる水が沸点近い温度に達すると、多量の蒸気
が発生し、この蒸気は加熱室7の天井に設けられた通気
口3を通過し、第一の通気路9に導かれ、気体通路2、
誘導路5通り焦電センサ1に当たる、焦電センサlに当
たった蒸気は、焦電センサ1表面で結露して焦電センサ
1に潜熱を主体とした多量の熱エネルギーを与えるため
、焦電センサ1は温度が上昇し焦電電圧を発生する。
FIG. 1 is a schematic cross-sectional view of a high-frequency heating device according to the present invention. As shown in FIG. 1, the object to be heated 6 (food) placed in the heating chamber 7 is
Dielectric heating is performed by the microwave (high frequency) of M 1 (z. The temperature of the object to be heated 6 rises with the heating, and when the water contained in the object to be heated 6 reaches a temperature close to the boiling point, a large amount of steam is generated. , this steam passes through the vent 3 provided in the ceiling of the heating chamber 7, is led to the first ventilation passage 9, and is led to the gas passage 2,
The steam that hits the pyroelectric sensor 1 through the five guiding paths condenses on the surface of the pyroelectric sensor 1 and gives the pyroelectric sensor 1 a large amount of thermal energy mainly consisting of latent heat. 1, the temperature rises and a pyroelectric voltage is generated.

気体通路2に誘導路5を接続し、焦電センサIの上方に
対向して配置し、誘導路5の下端と焦電センサ1との間
隔を通気路2の流路の内径寸法より極端に小さくするこ
とにより、通気B2で導かれた蒸気は風圧が弱い場合で
も誘導路5と焦電センサlの狭い空間を流れることにな
り検知の感度が下がることはなくなる。また、誘導路5
の流路の面積は焦電センサ1の受熱面の面積よりも小さ
くなっているので、誘導路5の内側から外側に流れよう
とする蒸気はかならず誘導路5と焦電センサ1の間を流
れることになる。第2図(a)に誘導路5と焦電センサ
1の位置関係を表す詳細図を示す。
A guiding path 5 is connected to the gas passage 2 and is placed above and facing the pyroelectric sensor I, with the distance between the lower end of the guiding path 5 and the pyroelectric sensor 1 being set to be more extreme than the inner diameter of the flow path of the ventilation path 2. By making the size small, the steam guided by the ventilation B2 will flow through the narrow space between the guide path 5 and the pyroelectric sensor 1 even when the wind pressure is weak, and the detection sensitivity will not decrease. In addition, taxiway 5
Since the area of the flow path is smaller than the area of the heat-receiving surface of the pyroelectric sensor 1, steam attempting to flow from the inside of the guide path 5 to the outside always flows between the guide path 5 and the pyroelectric sensor 1. It turns out. FIG. 2(a) shows a detailed diagram showing the positional relationship between the guideway 5 and the pyroelectric sensor 1.

ここで誘導路5の中を通る蒸気の量が一定と仮定した場
合、誘導路5と焦電センサlのすきまdを誘導路5の流
路の内径寸法rよりも小くしていくことにより、すきま
dを流れる蒸気の風速が速くなり焦電センサlへの熱の
伝達が良くなる。第2図中)にすきまdと誘導路5の流
路の内径寸法rの比率による焦電センサの電圧レベルの
変化を表わしているが、d / rが小さくなるとある
比率から電圧レベルは急激に変化し、すなわち焦電セン
サへの熱の伝搬が効率的におこなわれることになる。
Here, assuming that the amount of steam passing through the guideway 5 is constant, by making the gap d between the guideway 5 and the pyroelectric sensor l smaller than the inner diameter dimension r of the flow path of the guideway 5, The wind speed of the steam flowing through the gap d increases, and heat transfer to the pyroelectric sensor l improves. (in Fig. 2) shows the change in the voltage level of the pyroelectric sensor depending on the ratio of the gap d to the inner diameter dimension r of the flow path of the guiding path 5. As d/r becomes smaller, the voltage level suddenly changes from a certain ratio. In other words, heat is efficiently transmitted to the pyroelectric sensor.

センサの検知レベルは任意に設定することができるが、
すきまdと誘導路5の流路の内径寸法rとの比率を約1
71O程度に設定することで有効な電圧レベルを得るこ
とができる。また誘導路5の流路の内径寸法rと焦電セ
ンサlの受熱面の径寸法1との比率によるすきまdと電
圧レベルの変化では、誘導路5の流路の内径寸法rと焦
電センサlの受熱面の径寸法1の比率1 / rが1の
場合、つまり同寸法の場合すきまdを小さくしても急激
な電圧レベルの変化は得られないが、1 / rを0.
6程度に設定することで蒸気の熱が効率良く焦電センサ
へ伝搬され、所定のレベルを得ることができる。
The detection level of the sensor can be set arbitrarily, but
The ratio of the gap d to the inner diameter dimension r of the guide path 5 is approximately 1.
An effective voltage level can be obtained by setting it to about 71O. In addition, when the gap d and voltage level change due to the ratio of the inner diameter r of the guide path 5 to the diameter 1 of the heat receiving surface of the pyroelectric sensor l, the inner diameter r of the guide path 5 and the pyroelectric sensor If the ratio 1/r of the diameter dimension 1 of the heat-receiving surface of l is 1, that is, if the dimensions are the same, even if the gap d is made small, no sudden change in voltage level will be obtained, but if 1/r is 0.
By setting the value to about 6, the heat of the steam is efficiently propagated to the pyroelectric sensor, and a predetermined level can be obtained.

また、センサ保持ケース4には送風機8の送風による冷
気を混合し排出するための冷気混合排気通路12を設け
、蒸気と混合させる混合部13で通路を狭くして冷気の
風速をあげて部分的に気圧を低くし、冷気と蒸気の混合
後に通路を広げることで蒸気を吸引し、焦電センサ1へ
の蒸気の流れをスムーズにしている。
In addition, the sensor holding case 4 is provided with a cold air mixing exhaust passage 12 for mixing and discharging cold air blown by the blower 8, and a mixing section 13 for mixing the cold air with steam narrows the passage and increases the wind speed of the cold air. By lowering the atmospheric pressure and widening the passage after mixing the cold air and steam, the steam is sucked in and the flow of steam to the pyroelectric sensor 1 is made smooth.

発明の効果 以上のように本発明の高周波加熱装置によれば次の効果
が得られる。
Effects of the Invention As described above, the high frequency heating device of the present invention provides the following effects.

気体通路に焦電センサの受熱面の面積より小さい面積の
波路の誘導路を接続して焦電センサ上方に対向して配置
し、誘導路の下端と焦電センサの間隔を誘導路の流路の
内径寸法の約1710に設定することにより、通気路か
ら導かれた蒸気は誘導路と焦電センサとの狭い空間を流
れることになり、蒸気を含む気体の風圧が弱い場合でも
誘導路と焦電センサとの空間の風速が速くなり焦電セン
サへの熱エネルギーの伝達が安定したものになり、被加
熱物の加熱状態が遅れることなく検出されるため、被加
熱物が加熱されすぎることを防止する効果がある。
A waveguide with an area smaller than the area of the heat-receiving surface of the pyroelectric sensor is connected to the gas passage, and the waveguide is placed facing above the pyroelectric sensor. By setting the inner diameter to approximately 1710, the steam led from the ventilation path will flow through the narrow space between the guideway and the pyroelectric sensor, and even if the wind pressure of the gas containing steam is weak, The wind speed in the space between the electric sensor and the pyroelectric sensor becomes faster and the transfer of thermal energy to the pyroelectric sensor becomes more stable, and the heating state of the heated object is detected without delay, making it possible to prevent the heated object from being overheated. It has the effect of preventing

また焦電センサ受熱面での風速が速くなるので蒸気の雫
が付着しにくくなり、雫により熱気の状態変化の検出が
鈍くなるということを防ぐことがきる。
In addition, since the wind speed on the heat receiving surface of the pyroelectric sensor becomes faster, it becomes difficult for vapor drops to adhere to the sensor, and it is possible to prevent the detection of changes in the state of hot air from becoming slow due to drops.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における高周波加熱装置の概
略断面図、第2図(a)は誘導路と焦電センサの位置関
係を表す要部詳細図、同図(ハ)は誘導路と焦電センサ
とのすきまdと誘導路の寸法rの比率による電圧レベル
の変化を示す図、第3図(a)。 (ロ)は焦電センサの上面図および断面図、第4図は従
来例における高周波加熱装置の概略断面図であ1・・・
・・・焦電センサ、2・・・・・・気体通路、5・・・
・・・誘導路、6・・・・・・被加熱物。
FIG. 1 is a schematic cross-sectional view of a high-frequency heating device according to an embodiment of the present invention, FIG. FIG. 3(a) is a diagram showing changes in voltage level depending on the ratio of the gap d between the pyroelectric sensor and the guide path dimension r. (b) is a top view and a cross-sectional view of a pyroelectric sensor, and FIG. 4 is a schematic cross-sectional view of a conventional high-frequency heating device.
...Pyroelectric sensor, 2... Gas passage, 5...
...Guidance path, 6...Heated object.

Claims (1)

【特許請求の範囲】[Claims]  被加熱物を載置する加熱室と、この加熱室に発生する
被加熱物からの水蒸気やガスを排気するための気体通路
と、前記水蒸気やガスの熱気を検出する焦電センサと、
前記気体通路の水蒸気やガスを焦電センサに導く誘導路
とを備え、前記誘導路流路の面積は焦電センサの受熱面
の面積よりも小さくし、更に前記焦電センサを前記誘導
路と対向して配置し、前記焦電センサと誘導路の間隔を
誘導路の流路の内径寸法の約1/10に設定した自動調
理機能を有する高周波加熱装置。
A heating chamber in which an object to be heated is placed, a gas passage for exhausting water vapor and gas from the object to be heated generated in the heating chamber, and a pyroelectric sensor that detects hot air of the water vapor and gas;
a guide path that guides water vapor or gas in the gas passage to the pyroelectric sensor, the area of the guide path flow path is smaller than the area of the heat receiving surface of the pyroelectric sensor, and the pyroelectric sensor is connected to the guide path. A high-frequency heating device having an automatic cooking function, in which the pyroelectric sensor and the guide path are arranged facing each other, and the distance between the pyroelectric sensor and the guide path is set to about 1/10 of the inner diameter dimension of the flow path of the guide path.
JP1223525A 1989-08-30 1989-08-30 High frequency heating equipment Expired - Fee Related JP2558887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223525A JP2558887B2 (en) 1989-08-30 1989-08-30 High frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223525A JP2558887B2 (en) 1989-08-30 1989-08-30 High frequency heating equipment

Publications (2)

Publication Number Publication Date
JPH0387522A true JPH0387522A (en) 1991-04-12
JP2558887B2 JP2558887B2 (en) 1996-11-27

Family

ID=16799512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223525A Expired - Fee Related JP2558887B2 (en) 1989-08-30 1989-08-30 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP2558887B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271017A (en) * 2009-05-25 2010-12-02 Hoshizaki Electric Co Ltd Heating cooker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271017A (en) * 2009-05-25 2010-12-02 Hoshizaki Electric Co Ltd Heating cooker

Also Published As

Publication number Publication date
JP2558887B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
CA2016154C (en) Automatic heating apparatus
JPH0387522A (en) Microwave oven
KR960007975B1 (en) A cooking apparatus
JP2538016B2 (en) Heating cooker
JPH02293528A (en) Automatic heating device
JPH02302521A (en) Microwave oven
JPH06109262A (en) Heating device
JPH0659704U (en) High frequency heating device
JP2851626B2 (en) High frequency heating device with sensor
JPH02253128A (en) Pyroelectric type steam sensor and high-frequency heater with pyroelectric type sensor
JP2529370B2 (en) High frequency heating equipment
JPH02278690A (en) Microwave oven
JP2563574B2 (en) Automatic heating device
JP2563572B2 (en) Finish detection system for heating equipment
JP2523870B2 (en) Automatic heating device
US20200205242A1 (en) Microwave heating device
JP2548368B2 (en) microwave
JPH02293526A (en) Automatic heating device
JPH02143025A (en) Automatic heater
JP2523831B2 (en) Automatic heating device
JPH02279920A (en) Microwave heater
JPS5858569B2 (en) High frequency heating device
JPH01294394A (en) Cooker
JPS5847612B2 (en) High frequency heating device
JPH0656608U (en) High frequency heating cooker

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees