JPH02293527A - Automatic heating device - Google Patents

Automatic heating device

Info

Publication number
JPH02293527A
JPH02293527A JP1114708A JP11470889A JPH02293527A JP H02293527 A JPH02293527 A JP H02293527A JP 1114708 A JP1114708 A JP 1114708A JP 11470889 A JP11470889 A JP 11470889A JP H02293527 A JPH02293527 A JP H02293527A
Authority
JP
Japan
Prior art keywords
pyroelectric sensor
heating
receiving surface
gas
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1114708A
Other languages
Japanese (ja)
Other versions
JP2523870B2 (en
Inventor
Isao Kasai
笠井 功
Masaaki Yamaguchi
公明 山口
Takashi Kashimoto
隆 柏本
Koji Yoshino
浩二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1114708A priority Critical patent/JP2523870B2/en
Priority to DE69015876T priority patent/DE69015876T2/en
Priority to US07/519,230 priority patent/US5140120A/en
Priority to EP90304824A priority patent/EP0397397B1/en
Priority to AU54746/90A priority patent/AU613268B2/en
Priority to CA002016154A priority patent/CA2016154C/en
Priority to KR1019900006465A priority patent/KR940000174B1/en
Publication of JPH02293527A publication Critical patent/JPH02293527A/en
Application granted granted Critical
Publication of JP2523870B2 publication Critical patent/JP2523870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Ovens (AREA)

Abstract

PURPOSE:To prevent an over-heating of a heated item by a method wherein a direction of a flow of evacuation air flowing from a stable part toward a heat receiving surface of pyroelectric sensor is not coincided with a vertical direction of the heat receiving surface. CONSTITUTION:A stable part 5 having a specified range of a sectional area arranged at a heating chamber 1 of a varying part 4 acting as a part where the sectional are a varies is arranged in the midway part of a fast passage 2 and a passage port 6 acting as an interface changing-over from the stable part 5 to a varying part 4 is provided. The varying part 4 is provided with a pyroelectric sensor 3 for use in detecting water vapor and heat from gas. This configuration is made such that a vertical direction perpendicular to a flat receiving surface 28 of the pyroelectric sensor 3 is not coincided with a linear arrangement of the stable part 5 and the passage port 6. A flow of evacuation air passing through a gas passage 2 and flowing out of a machine body is not struck against a front surface at the heat receiving surface 28 of the pyroelectric sensor 3 and is smoothly flowed out of the machine body. Hot gas of the water vapor from the heated item 13 generated in the heating chamber 1 is rapidly transmitted to the heat receiving surface 28 of the pyroelectric sensor 3, the heating condition of the heated item 13 is detected and the heating is stopped under the most appropriate state.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は被加熱物の加熱状態に応じて出てくる水蒸気お
よびガスに含まれる熱気を検出して被加熱物の加熱終了
時間を適宜決定し良好な加熱状態を実現する自動加熱装
置に関するものである.従来の技術 従来より自動加熱装置においては、被加熱物たる食品の
加熱状態を検出する検出手段が必要であり、この手段と
して加熱室から機体外へ加熱室の空気を排気するための
排気用気体通路の途中に、検出手段としてのセンサを配
置し、食品が加熱されることにより発生する水蒸気ガス
等の発生及び濃度変化等を検出することにより食品の加
熱具合または出来具合を間接的に知らしめるという情報
に基づいて加熱手段を切り変えたり、加熱を停止したり
する自動加熱調理を行うことになる.以下第3〜5図と
ともに従来例について説明する. 第3図に示すように箱型の機体27には加熱室1の開口
には開閉自在のドア26と、加熱手段および加熱時間お
よび加熱方法を選択設定したり、加熱の開始および停止
の指示を入力設定するための操作部2lを機体27の前
面に備えている.また機体27の側壁は外郭板7にて囲
まれている.第4図では機器の構成要素を示している.
被加熱物13を収納した加熱室lには高周波加熱手段と
してのマグネトロン11が取り付け給電結合されている
.そして高電圧発生用の高圧トランス9がマグネトロン
11の傍に配置されている。また加熱室l内の被加熱物
13を照明するランプ10が加熱室lの側壁部に配置さ
れている.また被加熱物l3を載せた回転台を回転させ
る電動機12が加熱室1の下に配置されている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention detects the hot air contained in steam and gas that comes out depending on the heating state of the object to be heated, and appropriately determines the heating end time of the object to be heated. This article relates to an automatic heating device that achieves a heating state that is consistent with the heating conditions. Conventional technology Conventionally, automatic heating devices require detection means to detect the heating state of the food to be heated, and this means uses exhaust gas to exhaust air from the heating chamber to the outside of the machine. A sensor is placed as a detection means in the middle of the passage, and by detecting the generation and concentration change of water vapor gas etc. generated when the food is heated, it indirectly informs the heating condition or doneness of the food. Based on this information, automatic cooking will be performed by switching the heating method or stopping heating. A conventional example will be explained below with reference to Figures 3 to 5. As shown in FIG. 3, the box-shaped body 27 has a door 26 that can be opened and closed at the opening of the heating chamber 1, and a door 26 for selecting and setting the heating means, heating time and heating method, and instructions for starting and stopping heating. An operating section 2l for input settings is provided on the front of the aircraft body 27. Further, the side wall of the fuselage 27 is surrounded by an outer shell plate 7. Figure 4 shows the components of the equipment.
A magnetron 11 as a high-frequency heating means is attached and connected to a heating chamber l in which an object to be heated 13 is housed. A high voltage transformer 9 for generating high voltage is placed near the magnetron 11. Further, a lamp 10 for illuminating the object to be heated 13 in the heating chamber 1 is arranged on the side wall of the heating chamber 1. Further, an electric motor 12 that rotates a rotary table on which an object to be heated 13 is placed is arranged below the heating chamber 1.

ここで、構成要素と動作を併せて説明する.被加熱物1
3としての食品を加熱室lに置きドア26を閉じて、操
作部2lの自動加熱調理のスイッチ部を選択して押し、
さらに加熱を開始させるスタートスイッチを操作する.
このスタートスイッチの操作信号が制御手段22に伝え
られ、この制御手段22からマグネトロン11、高圧ト
ランス9、電動機12さらに送風機8等を駆動するため
の駆動信号を駆動手段23から出力する.そして、加熱
が始まると送風機8が機体外部から外郭板7に設けた孔
29を通り空気を吸い込み、マグネトロン11,高圧ト
ランス9、ランプ10などを空気整流壁としてのオリフ
ィスl8を生かして冷却しながら加熱室1内へ空気を送
り込んでいる.そして、加熱室1に送り込まれた空気は
被加熱物13から出てくる水蒸気ガスを含み、加熱室1
の壁面に設けられた排気孔14とか排気孔l9を経て外
郭板7に設けた排出口l5および排出口20から機体2
7の外に排出される.そして、気体通路2が加熱室1の
排気孔l4、19から外郭板7の排出口l5、20まで
の間に設けられている.この気体通路2の途中に設けた
断面積の変化している部分としての変化部4の加熱室l
側に設けた断面積の一定な範囲としての安定部とを備え
、この変化部に水蒸気およびガスの熱気を検出する焦電
センサ3を配置している. ここで第5図について説明を行う.熱気を検出する焦電
センサ3の受熱面28の平面部に対して垂直方向に安定
部5があり、加熱室1から気体通路2を通り機体27の
外へ出てゆく排気空気の流れは変化部4で焦電センサ3
の受熱面28に正面衝突するかたちになる.また、この
気体通路2には加熱室lから水蒸気ガスを集める第1通
路16と第1通路16で集めた水蒸気ガスを焦電センサ
3の近くまで導く第2通路17とがあり、加熱室1に設
けた徘気孔l4から気体通路2の途中に設けた安定部5
までの空気の流れを流れ易くするために、第1通路l6
と第2通路l7と安定部5との間には通路断面積の3割
以上の差異を有しない構成としている.気体通路2の加
熱室1の排気孔l4から排出される排気量Q.は、第1
通路l6と第2通路17と安定部5と通路口6を経て焦
電センサ3の受熱面28に当たり変化部4を過ぎて後に
外郭板7の排出口15から排気量Q8として排出される
. このように、送風機8によって生じた空気の流れの中に
、被加熱物13の加熱が進み食品から水蒸気ガスが出て
くると気体通路2を経て焦電センサ3の受熱面28に水
蒸気ガスが当たる.焦電センサ3は水蒸気ガスおよび熱
気に触れることによりパルス電圧信号を発生する.この
発生した電気信号はセンサ信号処理手段24に伝えられ
電圧増幅回路とか周波数フィルター回路とか直流カット
回路などを経て制御千段22に伝えられる.そして制御
千段22の中でセンサ信号電圧の状態を判断して加熱を
継続するか、もしくは加熱を停止するかの選択をして、
最終的に最も望ましい加熱状態が得られた段階で加熱を
停止することになる. 以上のような加熱動作を行うときの焦電センサ3として
、熱エネルギーが与えられると素子の内部分極の平衡状
態が乱れて、素子表面に設けた電極部にパルス電圧を発
生するという焦電性効果を持つ素子を使用している.一
般に知られている品物としては誘電体セラミックスの中
の圧電ブザーとか超音波振動素子とか超音波検出素子に
使用される圧電セラミックスとか圧電樹脂膜などが焦電
センサとして十分に役割を果たす. 発明が解決しようとする課題 しかしながら上記のような構成では、加熱室1からの排
気空気の流れが焦電センサ3の受熱面28に正面衝突す
る形になり、送風機8にて発生した空気の流れが焦電セ
ンサ3の受熱面にて一端堰き止められるようになること
で、排気空気の円滑な流れが得られなくなり、加熱室1
にて発生する被加熱物l3の水蒸気ガスが焦電センサ3
の受熱面28に到達するのが遅くなり、さらに被加熱物
l3の加熱仕上がり状態を間接的に検出するための被加
熱物l3からの水蒸気ガスによる熱気を検出するのが遅
くなる。このように、水蒸気ガスの熱気検出の時間が遅
くなれば被加熱物13の加熱状態が加熱を停止させるべ
き状態であっても焦電センサ3ではこの状態検出が出来
ないことになる。よって被加熱物13の加熱し過ぎにな
り自動加熱装置としては本来の機能を発揮出来なくなる
という課題があった. そこで、本発明では気体通路の中を通る加熱室からの排
気空気の流れを円滑にして加熱室にて発生する被加熱物
からの水蒸気ガスが速やかに焦電センサの受熱面に到達
することで、被加熱物を加熱し過ぎることのない自動加
熱装置を提供することを目的としている. 課題を解決するための手段 そこで前記目的を達成するために本発明は、加熱室の空
気を機体外へ排気導くための気体通路内に受熱面を露出
した焦電センサと、この焦電センサより加熱室側の気体
通路であり通路断面積の安定な安定部とを設け、この安
定部から焦電センサの受熱面に向かって流れる排気空気
流の方向は受熱面の垂直方向とは一致しないように構成
配置するものである. 作用 本発明の自動加熱装置は、安定部から焦電センサの受熱
面に向かって流れる排気空気流の方向が受熱面の垂直方
向とは一致しないように構成配置されているため、排気
空気の流れが変化部にて焦電センサの受熱面に正面衝突
しないことになる.そのため、排気空気の流れが受熱面
のところで一旦停止をすることなく円滑な排気空気の流
れが実現できることになる.このことにより、送風機に
て発生した空気の流れが焦電センサの受熱面にて一旦堰
き止められなくなることで、排気空気の円滑な流れが得
られて、加熱室にて発生する被加熱物の水蒸気ガスが焦
電センサの受熱面に到達するのが遅れな《なり、さらに
被加熱物の加熱仕上がり状態を間接的に検出するための
被加熱物からの水蒸気ガスによる熱気を検出するのが遅
くなくなる.このように、水蒸気ガスの熱気検出の時間
が遅くなくなれば被加熱物の加熱状態が加熱を停止させ
るべき状態のときには焦電センサによりこの状態検出が
出来ることになる.よって、被加熱物の加熱し過ぎが防
止出来るため自動加熱装置としての本来の機能が十分発
揮出来るという効果がある. 実施例 以下、本発明の一実施例における自動加熱装置について
図面とともに説明する. 第2図に示すように被加熱物l3を収納した加熱室1に
は高周波加熱手段としてのマグネトロン11が取り付け
給電結合されている.そして高電圧発生用の高圧トラン
ス9がマグネトロン11の傍に配置されている.また加
熱室l内の被加熱物13を照明するランプ10が加熱室
1の側壁部に配置されている.また被加熱物l3を載せ
た回転台を回転させる電動機12が加熱室lの下に配置
されている.ここで、構成要素と動作を併せて説明する
.被加熱物13としての食品を加熱室1に置きドア26
を閉じて、操作部2lの自動加熱調理のスイッチ部を選
択して押し、さらに加熱を開始させるスタートスイッチ
を操作する.このスタートスイッチの操作信号が制御手
段22に伝えられ、この制御手段22からマグネトロン
l1、高圧トランス9、電動機l2さらに送風1a8等
を駆動するための駆動信号が駆動手段23から出力する
.そして、加熱が始まると送風機8が機体外部から外郭
板7に設けた孔29を通り空気を吸い込み、マグネトロ
ンIL高圧トランス9、ランプlOなどを空気整流壁と
してのオリフィス18を生かして冷却しながら加熱室1
内へ空気を送り込んでいる。そして、加熱室1に送り込
まれた空気は被加熱物l3から出てくる水蒸気ガスを含
み、加熱室1の壁面に設けられた排気孔14と排気孔1
9壱経て外郭板7に設けた排出口l5および排出口20
から機体27の外に排出される.そして、気体通路2が
加熱室lの排気孔14、19から外郭板7の排出口l5
、20までの間に設けられている.この気体通路2の途
中に設けた断面禎の変化している部分としての変化部4
の加熱室l側に設けた断面禎の一定な範囲としての安定
部5と安定部5から変化部4に切り替わる境である通路
口6とを備え、この変化部4に水蒸気およびガスの熱気
を検出する焦電センサ3を配置している.ここで第1図
について説明を行う。熱気を検出する焦電センサ3の受
熱面2Bの平面部に対しての垂直方向と、安定部5と通
路口6の直線配置方向とは一致していない配置構成であ
り、加熱室1から気体通路2を通り機体27の外へ出て
いく排気空気の流れは変化部4で焦電センサ3の受熱面
28にて正面衝突することなく円滑に機体の外へ流れ出
ていくことになる. 気体通路2には加熱室1から水蒸気ガスを集める第1通
路l6と第1通路16で集めた水蒸気ガスを焦電センサ
3の近くまで導《第2の通路l7とがあり、加熱室lに
設けた排気孔14から気体通路2の途中に設けた安定部
5までの空気の流れを流れ易くするために、第1通路1
6と第2通路17と安定部5との間には通路断面積の3
割以上の差異を有しない構成としている. 気体通路2に加熱室1の排気孔l4から排出される排気
量Q.は、第1通路16と第2通路17と安定部5と通
路口6を経て焦電センサ3の受熱面28に当たり変化部
4を過ぎて後に外郭板7の排出口15から排気量Q2と
して排出される. このように、送風[8によって生じた空気の流れの中に
被加熱物13の加熱が進み食品から水蒸気ガスが出てく
ると気体通路2を経て焦電センサ3の受熱面28に水蒸
気ガスが当たる。焦電センサ3は水蒸気ガスおよび熱気
に触れることによりパルス電圧信号を発生する.この発
生した電気信号はセンサ信号電圧処理手段24に伝えら
れ電圧増幅回路とか周波数フィルター回路とか直流カッ
ト回路などを経て制御手段22に伝えられる.そして制
御手段22の中でセンサ信号電圧の状態を判断して加熱
を継続するか、もしくは加熱を停止するかの選沢をして
、最終的に最も望ましい加熱状態が得られた段階で加熱
を停止することになる.以上のような加熱動作を行うと
きの焦電センサ3として、熱エネルギーが与えられると
素子の内部分極の平衡状態が乱れて、素子表面に設けた
電掻部にパルス電圧を発生するという焦電性効果を持つ
素子を使用している.一般に知られている品物としては
誘電体セラミックスの中の圧電ブザーとか超音波振動素
子とか超音波検出素子に使用される圧電セラミックスと
か圧電樹脂膜などが焦電センサ3として十分に役割を果
たす. 次に第6図により、本発明の他の実施例を説明する. 第6図に示すように、排気空気の流れる方向が焦電セン
サ3の受熱面28の垂直方向とはほぼ直角方向に交差し
た状態であり、安定部5から通気口6に向かって流れる
排気空気の流れは変化部4に入っても流れる方向が極端
に変えられることなく外郭1j7の排出口15にまで直
進して排出口15から機体27の外へ出ていくことにな
る.このように排気空気の流れを遮ることなく機体外部
へ空気が排出されることにより、加熱室1内に発生する
水蒸気ガスの熱気が速やかに焦電センサ3に伝えられる
ことになり、被加熱物13の加熱状態が遅れることなく
検出されるため、被加熱物l3が加熱され過ぎになるこ
とが防止される効果がある.発明の効果 以上のように本発明の自動加熱装置によれば次の効果が
得られる. 熱気を検出する焦電センサの受熱面の平面部に対する垂
直方向と、安定部と通路口の直線配置方向とは一致しな
い配置構成としているので、加熱室から気体通路を通り
機体の外へ出てい《排気空気の流れは変化部で焦電セン
サの受熱面に正面衝突することなく、排気空気抵抗が小
さくなるために、排気空気が円滑に機体の外へ流れ出て
いくことになり、加熱室に発生する被加熱物からの水蒸
気ガスの熱気が速やかに焦電センサの受熱面に伝えられ
ることになって、被加熱物の加熱状態が検出されて被加
熱物の加熱状態の最適な状態で加熱が停止されるという
効果がある。
Here, we will explain the components and operations. Heated object 1
Place the food item No. 3 in the heating chamber l, close the door 26, select and press the automatic cooking switch on the operation unit 2l,
Furthermore, operate the start switch to start heating.
The operation signal of this start switch is transmitted to the control means 22, and the control means 22 outputs a drive signal from the drive means 23 for driving the magnetron 11, the high voltage transformer 9, the electric motor 12, the blower 8, etc. When heating starts, the blower 8 sucks air from outside the fuselage through the hole 29 provided in the outer shell plate 7, and cools the magnetron 11, high voltage transformer 9, lamp 10, etc. by making use of the orifice 18 as an air rectifying wall. Air is sent into heating chamber 1. The air sent into the heating chamber 1 contains water vapor gas coming out from the object to be heated 13, and the air is fed into the heating chamber 1.
Aircraft 2 from the exhaust port 15 and exhaust port 20 provided on the outer shell plate 7 through the exhaust hole 14 and exhaust hole 19 provided on the wall of the aircraft.
7 is discharged outside. A gas passage 2 is provided between the exhaust holes l4 and 19 of the heating chamber 1 and the exhaust ports l5 and 20 of the outer shell plate 7. A heating chamber l of a changing section 4, which is a portion with a changing cross-sectional area, provided in the middle of this gas passage 2.
It has a stable part as a constant range of cross-sectional area provided on the side, and a pyroelectric sensor 3 for detecting hot water vapor and gas is arranged in this changing part. Here, we will explain Figure 5. There is a stable part 5 in a direction perpendicular to the flat part of the heat receiving surface 28 of the pyroelectric sensor 3 that detects hot air, and the flow of exhaust air flowing from the heating chamber 1 through the gas passage 2 to the outside of the fuselage 27 changes. Pyroelectric sensor 3 in section 4
This results in a head-on collision with the heat receiving surface 28. The gas passage 2 also includes a first passage 16 that collects steam gas from the heating chamber l and a second passage 17 that guides the steam gas collected in the first passage 16 to the vicinity of the pyroelectric sensor 3. A stable part 5 provided in the middle of the gas passage 2 from the wandering hole l4 provided in the
In order to facilitate the flow of air up to
The structure is such that there is no difference of more than 30% in the cross-sectional area of the passage between the second passage l7 and the stable part 5. The amount of exhaust gas discharged from the exhaust hole l4 of the heating chamber 1 of the gas passage 2 Q. is the first
It passes through the passage l6, the second passage 17, the stable part 5, and the passage opening 6, hits the heat receiving surface 28 of the pyroelectric sensor 3, passes through the changing part 4, and is then discharged from the discharge port 15 of the outer shell plate 7 as an exhaust amount Q8. In this way, as the object to be heated 13 is heated and water vapor gas comes out from the food in the air flow generated by the blower 8, the water vapor gas passes through the gas passage 2 and reaches the heat receiving surface 28 of the pyroelectric sensor 3. It's true. The pyroelectric sensor 3 generates a pulse voltage signal when exposed to water vapor gas and hot air. The generated electrical signal is transmitted to the sensor signal processing means 24, and is transmitted to the control stage 22 via a voltage amplification circuit, a frequency filter circuit, a DC cut circuit, etc. Then, in the control stage 22, the state of the sensor signal voltage is judged and a selection is made as to whether to continue heating or to stop heating.
Heating is ultimately stopped when the most desirable heating state is achieved. The pyroelectric sensor 3 used in the heating operation described above is a pyroelectric sensor in which when thermal energy is applied, the equilibrium state of the internal polarization of the element is disturbed and a pulse voltage is generated at the electrode section provided on the element surface. It uses elements that have an effect. Generally known products such as piezoelectric buzzers in dielectric ceramics, ultrasonic vibrating elements, piezoelectric ceramics used in ultrasonic detection elements, and piezoelectric resin films play a sufficient role as pyroelectric sensors. Problems to be Solved by the Invention However, in the above configuration, the flow of exhaust air from the heating chamber 1 collides head-on with the heat receiving surface 28 of the pyroelectric sensor 3, and the air flow generated by the blower 8 is blocked at one end by the heat receiving surface of the pyroelectric sensor 3, making it impossible to obtain a smooth flow of exhaust air and causing the heating chamber 1
The water vapor gas of the heated object l3 generated in the pyroelectric sensor 3
It is delayed in reaching the heat receiving surface 28 of the object to be heated, and furthermore, it is delayed in detecting the hot air due to steam gas from the object to be heated 13 for indirectly detecting the heated state of the object to be heated 13. In this way, if the time for detecting the hot air of water vapor gas is delayed, even if the heating state of the object to be heated 13 is such that heating should be stopped, the pyroelectric sensor 3 will not be able to detect this state. Therefore, there was a problem in that the object to be heated 13 was heated too much and the automatic heating device could not perform its original function. Therefore, in the present invention, the flow of exhaust air from the heating chamber through the gas passage is made smooth so that the water vapor gas from the heated object generated in the heating chamber quickly reaches the heat receiving surface of the pyroelectric sensor. The purpose is to provide an automatic heating device that does not overheat the heated object. Means for Solving the Problems To achieve the above object, the present invention provides a pyroelectric sensor having a heat receiving surface exposed in a gas passage for exhausting and guiding air in a heating chamber to the outside of the aircraft, and a pyroelectric sensor that A stable part, which is a gas passage on the heating chamber side and has a stable cross-sectional area of the passage, is provided, and the direction of the exhaust air flow flowing from this stable part toward the heat receiving surface of the pyroelectric sensor does not coincide with the vertical direction of the heat receiving surface. The structure and arrangement are as follows. Function: The automatic heating device of the present invention is constructed and arranged so that the direction of the exhaust air flowing from the stable part toward the heat receiving surface of the pyroelectric sensor does not coincide with the vertical direction of the heat receiving surface. will not collide head-on with the heat-receiving surface of the pyroelectric sensor at the changing part. Therefore, a smooth flow of exhaust air can be realized without the exhaust air flow stopping once at the heat-receiving surface. As a result, the flow of air generated by the blower is no longer blocked by the heat-receiving surface of the pyroelectric sensor, and a smooth flow of exhaust air is obtained, which allows the object to be heated generated in the heating chamber to flow smoothly. There is a delay in the water vapor gas reaching the heat receiving surface of the pyroelectric sensor, and furthermore, there is a delay in detecting the hot air due to the water vapor gas from the heated object to indirectly detect the heated state of the heated object. It disappears. In this way, if the time for detecting the hot air of water vapor gas is reduced, the pyroelectric sensor will be able to detect when the heating state of the object to be heated is such that heating should be stopped. Therefore, it is possible to prevent the object to be heated from being overheated, so that the automatic heating device can fully demonstrate its original function. EXAMPLE Below, an automatic heating device according to an example of the present invention will be explained with reference to the drawings. As shown in FIG. 2, a magnetron 11 as a high-frequency heating means is attached and connected to the heating chamber 1 in which the object to be heated 13 is housed. A high voltage transformer 9 for generating high voltage is placed near the magnetron 11. Further, a lamp 10 for illuminating the object to be heated 13 in the heating chamber 1 is arranged on the side wall of the heating chamber 1. Further, an electric motor 12 for rotating a rotary table on which an object to be heated 13 is placed is arranged below the heating chamber 1. Here, we will explain the components and operations. Food as the object to be heated 13 is placed in the heating chamber 1 and the door 26 is opened.
Close the , select and press the automatic heating cooking switch on the operating section 2l, and then operate the start switch to start heating. The operation signal of this start switch is transmitted to the control means 22, and from this control means 22, a drive signal for driving the magnetron l1, the high voltage transformer 9, the electric motor l2, the air blower 1a8, etc. is outputted from the drive means 23. When heating starts, the blower 8 sucks air from outside the fuselage through the hole 29 provided in the outer shell plate 7, and heats the magnetron IL high-voltage transformer 9, lamp lO, etc. while cooling them by utilizing the orifice 18 as an air rectifying wall. Room 1
It's blowing air in. The air sent into the heating chamber 1 contains water vapor gas coming out from the object to be heated l3, and the air is connected to an exhaust hole 14 provided on the wall of the heating chamber 1 and an exhaust hole 1.
9. Discharge port 15 and discharge port 20 provided in outer shell plate 7
It is ejected from the fuselage 27. The gas passage 2 is connected from the exhaust holes 14 and 19 of the heating chamber l to the exhaust port l5 of the outer shell plate 7.
, up to 20. A changing section 4 provided in the middle of this gas passage 2 as a section where the cross-sectional diameter changes.
The heating chamber l side is provided with a stable part 5 as a constant range of cross-sectional diameter and a passage opening 6 which is the boundary where the stable part 5 switches to the changing part 4. A pyroelectric sensor 3 for detection is installed. Here, FIG. 1 will be explained. The arrangement is such that the direction perpendicular to the flat surface of the heat receiving surface 2B of the pyroelectric sensor 3 that detects hot air does not match the linear arrangement direction of the stable part 5 and the passage opening 6, and the gas from the heating chamber 1 The flow of exhaust air passing through the passage 2 and exiting the fuselage 27 smoothly flows out of the fuselage without colliding head-on with the heat receiving surface 28 of the pyroelectric sensor 3 at the transition section 4. The gas passage 2 has a first passage l6 that collects steam gas from the heating chamber 1 and a second passage l7 that guides the steam gas collected in the first passage 16 to the vicinity of the pyroelectric sensor 3. In order to facilitate the flow of air from the provided exhaust hole 14 to the stable part 5 provided in the middle of the gas passage 2, the first passage 1
6, the second passage 17 and the stable part 5 have a passage cross-sectional area of 3
The configuration is such that there is no difference of more than 30%. The amount of gas discharged from the exhaust hole l4 of the heating chamber 1 into the gas passage 2 is Q. passes through the first passage 16, the second passage 17, the stable part 5, and the passage opening 6, hits the heat receiving surface 28 of the pyroelectric sensor 3, passes through the changing part 4, and is then discharged from the discharge port 15 of the outer shell plate 7 as an exhaust amount Q2. It will be done. In this way, when the heated object 13 is heated in the air flow generated by the air blower [8] and water vapor gas comes out from the food, the water vapor gas passes through the gas passage 2 and reaches the heat receiving surface 28 of the pyroelectric sensor 3. It's true. The pyroelectric sensor 3 generates a pulse voltage signal when exposed to water vapor gas and hot air. This generated electric signal is transmitted to the sensor signal voltage processing means 24, and is transmitted to the control means 22 through a voltage amplification circuit, a frequency filter circuit, a DC cut circuit, etc. Then, the control means 22 judges the state of the sensor signal voltage and chooses whether to continue heating or stop heating, and finally starts heating when the most desirable heating state is obtained. It will stop. The pyroelectric sensor 3 used in the heating operation described above is a pyroelectric sensor that, when thermal energy is applied, disturbs the equilibrium state of the internal polarization of the element and generates a pulse voltage on the electric scratching part provided on the surface of the element. It uses elements that have a sexual effect. Generally known products such as piezoelectric buzzers in dielectric ceramics, ultrasonic vibration elements, piezoelectric ceramics used in ultrasonic detection elements, and piezoelectric resin films play a sufficient role as the pyroelectric sensor 3. Next, another embodiment of the present invention will be explained with reference to FIG. As shown in FIG. 6, the direction in which the exhaust air flows is substantially perpendicular to the direction perpendicular to the heat receiving surface 28 of the pyroelectric sensor 3, and the exhaust air flows from the stable part 5 toward the vent 6. Even when the flow enters the changing section 4, the direction of flow is not drastically changed, and it proceeds straight to the outlet 15 of the outer shell 1j7, and exits from the outlet 15 to the outside of the fuselage 27. As the air is discharged to the outside of the aircraft without interrupting the flow of exhaust air, the hot air of the steam gas generated in the heating chamber 1 is quickly transmitted to the pyroelectric sensor 3, and the object to be heated is Since the heating state of the heated object 13 is detected without delay, there is an effect of preventing the heated object 13 from being overheated. Effects of the Invention As described above, the automatic heating device of the present invention provides the following effects. The vertical direction of the heat-receiving surface of the pyroelectric sensor that detects hot air with respect to the flat surface of the sensor does not match the linear arrangement direction of the stable part and the passageway opening, so that the air does not go out of the aircraft from the heating chamber through the gas passageway. 《The flow of exhaust air does not collide head-on with the heat receiving surface of the pyroelectric sensor at the transition part, and the exhaust air resistance is reduced, so the exhaust air flows smoothly out of the aircraft, and the heating chamber The heat of the generated water vapor gas from the heated object is quickly transferred to the heat receiving surface of the pyroelectric sensor, and the heating state of the heated object is detected and the heated object is heated in the optimal state. This has the effect of stopping the

【図面の簡単な説明】 第1図は本発明の一実施例における自動加熱装置の要部
断面図、第2図はその全体構成図、第3図は従来の自動
加熱装置の外観斜視図、第4図はその全体構成図、第5
図はその要部断面図、第6図は本発明の他の実施例の要
部断面図である.l・・・・・・加熱室、2・・・・・
・気体通路、3・・・・・・焦電センサ、4・・・・・
・変化部、5・・・・・・安定部、6・・・・・・通路
口、28・・・・・・受熱部. 代理人の氏名 弁理士 粟野重孝 ほか1名I・・一友
a#!.覧 第 図 2l 第 図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view of essential parts of an automatic heating device according to an embodiment of the present invention, FIG. 2 is an overall configuration diagram thereof, and FIG. 3 is an external perspective view of a conventional automatic heating device. Figure 4 is the overall configuration diagram, Figure 5
The figure is a sectional view of the main part, and FIG. 6 is a sectional view of the main part of another embodiment of the present invention. l... Heating chamber, 2...
・Gas passage, 3...Pyroelectric sensor, 4...
・Variable part, 5... Stable part, 6... Passage opening, 28... Heat receiving part. Name of agent: Patent attorney Shigetaka Awano and one other person I... Kazutomo a#! .. Figure 2l Figure 2

Claims (1)

【特許請求の範囲】[Claims] 被加熱物を載置する加熱室と、この加熱室に発生する前
記被加熱物からの水蒸気やガスを排気するための気体通
路と、前記水蒸気やガスの熱気を検出する焦電センサと
、前記気体通路内壁面の一部となる前記焦電センサの受
熱面と、前記気体通路の中で前記焦電センサよりも前記
加熱室側の安定部と、前記気体通路の中で前記焦電セン
サの範囲である変化部と、前記安定部から前記変化部へ
前記気体通路の通気断面積の変化する境である通路口と
を備え、安定部から通路口に流れる排気空気の直進方向
は焦電センサの受熱面の垂直方向ではないように構成さ
れた自動加熱装置。
a heating chamber for placing an object to be heated; a gas passage for exhausting water vapor and gas from the object to be heated generated in the heating chamber; a pyroelectric sensor for detecting hot air of the vapor and gas; a heat-receiving surface of the pyroelectric sensor that becomes a part of the inner wall surface of the gas passage; a stable part of the pyroelectric sensor in the gas passage that is closer to the heating chamber than the pyroelectric sensor; a changing part that is a range, and a passage opening that is a boundary where the ventilation cross-sectional area of the gas passage changes from the stable part to the changing part, and a pyroelectric sensor detects the straight direction of exhaust air flowing from the stable part to the passage opening. Automatic heating device configured so that the heat receiving surface is not perpendicular to the heating surface.
JP1114708A 1989-05-08 1989-05-08 Automatic heating device Expired - Lifetime JP2523870B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1114708A JP2523870B2 (en) 1989-05-08 1989-05-08 Automatic heating device
US07/519,230 US5140120A (en) 1989-05-08 1990-05-03 Automatic heating apparatus having a system for sensing the temperature of heated air generated by material being heated
EP90304824A EP0397397B1 (en) 1989-05-08 1990-05-03 Automatic heating apparatus
DE69015876T DE69015876T2 (en) 1989-05-08 1990-05-03 Automatic heater.
AU54746/90A AU613268B2 (en) 1989-05-08 1990-05-04 Automatic heating apparatus
CA002016154A CA2016154C (en) 1989-05-08 1990-05-07 Automatic heating apparatus
KR1019900006465A KR940000174B1 (en) 1989-05-08 1990-05-08 Automatic heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114708A JP2523870B2 (en) 1989-05-08 1989-05-08 Automatic heating device

Publications (2)

Publication Number Publication Date
JPH02293527A true JPH02293527A (en) 1990-12-04
JP2523870B2 JP2523870B2 (en) 1996-08-14

Family

ID=14644635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114708A Expired - Lifetime JP2523870B2 (en) 1989-05-08 1989-05-08 Automatic heating device

Country Status (1)

Country Link
JP (1) JP2523870B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302521A (en) * 1989-05-15 1990-12-14 Matsushita Electric Ind Co Ltd Microwave oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302521A (en) * 1989-05-15 1990-12-14 Matsushita Electric Ind Co Ltd Microwave oven

Also Published As

Publication number Publication date
JP2523870B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
KR940000174B1 (en) Automatic heating apparatus
KR930010263B1 (en) Oven
JPH02293527A (en) Automatic heating device
JPH02293528A (en) Automatic heating device
KR960007975B1 (en) A cooking apparatus
JP3762727B2 (en) Cooker
JPH02293526A (en) Automatic heating device
JPH02143025A (en) Automatic heater
KR100524119B1 (en) Apparatus and method for cooling cooking device
JPH0455621A (en) Heating and cooking device
JP2563574B2 (en) Automatic heating device
JPH02122122A (en) Automatic heating device
JP2002295837A (en) High-frequency heater
JP2003176919A (en) Microwave oven
JPS58181293A (en) High frequency heater
JPH0432618A (en) Microwave oven
KR0133441B1 (en) Cooking device of microwave oven
JPH08130087A (en) Microwave oven
JPS60243430A (en) Thermal cooker
JP4165254B2 (en) Cooker
JPH07217899A (en) High frequency wave heating device
JPH07318077A (en) Heating cooker
JP3966365B2 (en) High frequency heating device
JPS5938483B2 (en) High frequency heating device
JPH07217898A (en) High frequency wave heating device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term