JPS5918319A - Heat-cooking utensil - Google Patents

Heat-cooking utensil

Info

Publication number
JPS5918319A
JPS5918319A JP12809382A JP12809382A JPS5918319A JP S5918319 A JPS5918319 A JP S5918319A JP 12809382 A JP12809382 A JP 12809382A JP 12809382 A JP12809382 A JP 12809382A JP S5918319 A JPS5918319 A JP S5918319A
Authority
JP
Japan
Prior art keywords
heating
sensor
heating chamber
sensor element
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12809382A
Other languages
Japanese (ja)
Other versions
JPS6329169B2 (en
Inventor
Mitsuo Akiyoshi
秋吉 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12809382A priority Critical patent/JPS5918319A/en
Publication of JPS5918319A publication Critical patent/JPS5918319A/en
Publication of JPS6329169B2 publication Critical patent/JPS6329169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices

Abstract

PURPOSE:To improve the time efficiency of automatic cookig utensil equipped with a moisture and gas sensor and the like, by constituting such that a sensor element may be cleaned after a cooking start signal is inputted and the ventilation of heating compartment may be stopped until the sensor recovers its sensing capability. CONSTITUTION:An operation is started to clean a sensor simultaneously with a continuous heating of heat-cooking utensil after its cooking operation is started. The ventilation fan of heating compartment is kept inoperative until the sensor recovers its sensing capability. That is, the fan is rendered inoperative at the moment that a relative humidity inside the heating compartment is increased. This manner of operation can raise a humidity inside a room. Upon the sensor recovering its sensing capability, the fan is brought into operation again. All these controls are performed by microcomputer. This constitution can eliminate the risk of smoking and firing because the utensil emits no exhaust gas while the senser lacks its sensing capability, whereby permitting the utensil to heat a foodstuff continuously after started and to improve its time efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動加熱器に関し、特に被加熱物から出る水蒸
気やガスに感応するセンサ手段を用いて自動的に加熱調
理を制御する加熱調理器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an automatic heater, and more particularly to a heating cooker that automatically controls cooking using sensor means that is sensitive to water vapor or gas emitted from an object to be heated. It is.

従来例の構成とその問題点 従来一般に電子レンジには第1図に示すように被加熱物
2から出る水蒸気に感応する相対湿度検知センサ12は
加熱室1又は排気ダクト11内に取付けられるため長時
間使用すると被加熱物2がら出た飛沫や、揮発生物質、
油煙等によってセンサ12が汚染され、使用するうちに
初期の性能。
Conventional Structure and Problems Conventionally, as shown in FIG. 1, in a microwave oven, a relative humidity detection sensor 12 that is sensitive to water vapor emitted from an object to be heated 2 is installed inside the heating chamber 1 or exhaust duct 11, so it is long. When used for a long time, droplets from the heated object 2 and volatile substances,
The sensor 12 becomes contaminated with oil smoke, etc., and its initial performance deteriorates during use.

感度が得られなくなるという問題がある。そこでセンサ
素子13の周囲近傍に第2図に示すようにコイルヒータ
14を設けて、調理開始直後にコイルヒータ14に通電
し、センサ素子13 i 4000C以上に加熱して、
付着した汚れを焼き切り性能・感度を常に良好に保つク
リーニング方法が考えられ電子レンジ等に実施されてき
ている。ところで、このセンサ12のクリーニングが終
了し、コイルヒータ14への通電を停止した後、センサ
12はすぐには安定した良好な検知性能を得ることはで
きない。この理由を第3図aに基づき説明する。
There is a problem that sensitivity cannot be obtained. Therefore, a coil heater 14 is provided near the sensor element 13 as shown in FIG. 2, and the coil heater 14 is energized immediately after the start of cooking to heat the sensor element 13 to 4000C or more.
A cleaning method has been devised and implemented for microwave ovens and the like that burns away the adhering dirt and maintains good performance and sensitivity at all times. By the way, after the cleaning of the sensor 12 is completed and the power supply to the coil heater 14 is stopped, the sensor 12 cannot immediately obtain stable and good detection performance. The reason for this will be explained based on FIG. 3a.

第3図aは横軸に時間、縦軸に相対湿度をとったもので
、加熱を開始してからの排気ダクト11内の相対湿度の
変化を表わしたものである。A点から加熱開始するわけ
であるが、同時にセンサ12のクリーニングも開始され
るのでセンサ12の周囲温度はコイルヒータ14の加熱
により温度が急激に上昇し、相対湿度はB点に向ってど
んどん下ってゆく。B点はセンサ12部が所定の温度に
達し、クリーニングが終了した点である。B点でコイル
ヒータ14の通電が終了するため若干のオーバーシュー
トはあるものの、今度はセンサ12が排気風によって冷
却され、徐々に常温に戻ってゆくため相対湿度は0点に
向って上昇してゆく。0点に達しセンサ12が定常状態
に戻った後は加熱の進行によって排気風の温度が徐々に
ではあるが上昇してゆくため、D点に向って下ってゆく
。D点は被加熱物2から出る水蒸気による相対湿度の上
昇分が排気風の温度上昇による相対湿度の下降分音上ま
わる点であり、この後被加熱物2からの水蒸気量が増え
るため相対湿度はE点、F点と上昇していく。
FIG. 3a shows time on the horizontal axis and relative humidity on the vertical axis, and shows the change in relative humidity inside the exhaust duct 11 after heating starts. Heating starts from point A, but cleaning of the sensor 12 also starts at the same time, so the ambient temperature of the sensor 12 increases rapidly due to the heating of the coil heater 14, and the relative humidity gradually decreases toward point B. I'm going to go. Point B is the point at which the sensor 12 reaches a predetermined temperature and cleaning is completed. Although there is a slight overshoot because the coil heater 14 is no longer energized at point B, the sensor 12 is now cooled by the exhaust air and gradually returns to room temperature, so the relative humidity rises toward the 0 point. go. After reaching the 0 point and returning the sensor 12 to a steady state, the temperature of the exhaust air gradually increases due to the progress of heating, and therefore decreases toward point D. Point D is the point where the increase in relative humidity due to water vapor emitted from the object to be heated 2 is greater than the decrease in relative humidity due to the rise in temperature of the exhaust air, and after this the amount of water vapor from the object to be heated 2 increases, so the relative humidity decreases. increases from point E to point F.

一般にD点から相対湿度変化量ΔRHを検知して自動的
にマグネトロン3の出力を制御し、加熱をコントロール
している。
Generally, the relative humidity change amount ΔRH is detected from point D and the output of the magnetron 3 is automatically controlled to control heating.

ところでこの相対湿度変化量ΔRHはクリーニングが終
了して定常状態に戻るまでのB点から0点の間において
も生ずることが第3図aより明白であるがこの間の相対
湿度の変化は被加熱物2から大量に出た蒸気によるもの
ではないので、加熱p検知に利用することはできない。
By the way, it is clear from Fig. 3a that this relative humidity change amount ΔRH also occurs between point B and point 0 until the steady state is returned after cleaning is completed, but the change in relative humidity during this period is due to the change in the heated object. Since it is not caused by a large amount of steam emitted from 2, it cannot be used for heating p detection.

従ってセンサ12による検知は時間t0 だけ待つ必要
がある。
Therefore, it is necessary to wait for the time t0 for detection by the sensor 12.

ところで、今仮に加熱開始から高出力で加熱を始めたと
すると、被加熱物2が小さいものの場合にはセンサ12
が定常状態に戻るまでの時間、すなわち時間t。に達す
るまでに相対湿度が100チに到達し、時間t。に達し
た時には相対湿度変化量△RHが得られないような状態
になってしまうことが考えられる。そこで第3図すに示
すように調理を開始してから時間t。までは零出力でゆ
きt。後高出力にする方法がある。
By the way, if heating is started at high output from the start of heating, if the object to be heated 2 is small, the sensor 12
The time it takes for t to return to a steady state, that is, time t. The relative humidity reaches 100 degrees by the time it reaches time t. It is conceivable that when the relative humidity change amount ΔRH is reached, a situation will arise in which the relative humidity change amount ΔRH cannot be obtained. Therefore, as shown in FIG. 3, time t has elapsed since the start of cooking. Until then, the output will be zero. There is a way to make it higher output.

ところが上記の方法では加熱を開始してからt までの
間は実際には加熱を全く行っていないので加熱に要する
時間はまるまるt。たけ余計にかかることになり時間効
率が悪くなるという欠点があった。そこで、従来、第3
図Cに示すように、時間t。に達する前の時間t1  
から高出力で加熱し始め(1cm11)だけ時間効率を
良くする手段があった。ところが、t1ffi決定する
に当っては実際に加熱される被加熱物2等から時間(1
,−11)の間の高出力加熱によって大量の水蒸気が出
ないように注意して決定しなければならない。従って時
間(1o−11)は1o秒程度しか取れないのが現状で
あり、時間効率は良くなるとはいうものの大幅な時間効
率の向上には至っていないという問題があった・ さらに第3図dに他の従来例を示す。所定時間t′の間
は低出力PLで加熱しその後、高出力に切換えて加熱す
るという方法である。
However, in the above method, no heating is actually performed from the start of heating to t, so the time required for heating is the entire time t. This has the disadvantage that it takes a lot more time and is less time efficient. Therefore, conventionally, the third
As shown in Figure C, at time t. Time t1 before reaching
There was a way to improve time efficiency by starting heating at high output (1 cm11). However, when determining t1ffi, the time (1
, -11) must be determined carefully to avoid producing large amounts of water vapor due to high-power heating between . Therefore, the current situation is that the time (1o-11) can only be taken about 1o seconds, and although the time efficiency has improved, there has been a problem that the time efficiency has not been significantly improved. Another conventional example will be shown. This is a method of heating at a low output PL for a predetermined time t' and then switching to a high output for heating.

また、第3図eに示す従来例もある。これは、所定の時
間11″の間はT1時間はオン、12時間はオフの断続
運転で加熱しt1L/後は高出力で連続運転に切換える
という方法である。この場合も、前述の従来例と同様に
低出力PL、 t1’ 、 tl” 山。
There is also a conventional example shown in FIG. 3e. This is a method of heating in an intermittent operation for a predetermined time period of 11'', with T1 on and off for 12 hours, and after t1L/time, switching to continuous operation at high output.In this case, too, the above conventional example Similarly, low output PL, t1', tl'' mountains.

T2の各要素は被加熱物2を対象に決定しなければなら
ない。つまり、被加熱物2から大量の水蒸気が出ないよ
うに、出力を決定するわけであるが、調理開始からt。
Each element of T2 must be determined with the object to be heated 2 in mind. In other words, the output is determined so that a large amount of steam does not come out from the object to be heated 2, but from the start of cooking.

までの間に被加熱物2に吸収されるエネルギーが所定の
レベル以上を越えると大量の水蒸気が発生するため、第
3図Cに示す従来例と同程度にしか時間効率を改善する
ことはできない。
If the energy absorbed by the heated object 2 during this period exceeds a predetermined level, a large amount of water vapor will be generated, so the time efficiency can only be improved to the same extent as the conventional example shown in Fig. 3C. .

又、土述した欠点を解消すべく、排気ダクトに工夫をこ
らした従来例を第4図a、bと共に説明する。
In addition, a conventional example in which the exhaust duct has been devised in order to eliminate the above-mentioned drawbacks will be explained with reference to FIGS. 4a and 4b.

同図aにおいて1は加熱室で、中に入れた食品2をマグ
ネトロン3から発振された高周波エネルギーで加熱する
。4はファンでありマグネトロン3企冷却するとともに
送風ダクト5を通り、一方は送風口6を通り加熱室1内
に送風し、排出口10を通り排気ダクト11に排出され
る。他の一方は、送風ダクト6を通り排気ダクト11に
向う。排気ダクト11は仕切板16により一部上下に分
割されている。センサ12は一部2分割された排気ダク
ト11の上部に取付けられている。排気ダクト11と送
風ダクトは連通されている。排気ダクト内には弁17が
構成され、ソレノイド18により駆動される。弁17に
よりセンサ12に送風される空気は送風ダクトからの空
気と加熱室からの排気とに切換えられる。
In the figure a, reference numeral 1 denotes a heating chamber in which food 2 placed therein is heated with high frequency energy oscillated from a magnetron 3. Reference numeral 4 denotes a fan which cools three magnetrons and blows air through a blower duct 5, one blows air into the heating chamber 1 through a blower port 6, and is discharged through an exhaust port 10 into an exhaust duct 11. The other side passes through the ventilation duct 6 and heads toward the exhaust duct 11 . The exhaust duct 11 is partially divided into upper and lower parts by a partition plate 16. The sensor 12 is attached to the upper part of the exhaust duct 11, which is partially divided into two parts. The exhaust duct 11 and the ventilation duct are in communication. A valve 17 is constructed within the exhaust duct and is driven by a solenoid 18. The air blown to the sensor 12 by the valve 17 is switched between air from the ventilation duct and exhaust from the heating chamber.

以上の構成により、七/す12のクリーニングが終わり
、その後上記センサ12が感知可能になるまでの間は、
第4図aのように、加熱室1内の蒸気8に、さらされる
ことが無く、その後においては、同図すのように弁17
の動作により、上記加熱室1内の蒸気8にさらされる。
With the above configuration, after the cleaning of the 7/12 is finished, until the sensor 12 becomes capable of sensing,
As shown in FIG. 4a, the valve 17 is not exposed to the steam 8 in the heating chamber 1, and thereafter, as shown in the same figure, the valve 17
As a result of this operation, the heating chamber 1 is exposed to the steam 8 in the heating chamber 1.

すなわち、センサ12が検知可能になるまでの間に、被
加熱物2から発生する蒸気量が最大になっていたとして
も、少なくとも弁1アの動作反転時に、蒸気変化量とし
て、センサ12は感知が可能である。これは、調理スタ
ート同時に、最大出力の加熱動作を開始し、かつ連続し
て加熱することを、はぼ可能とすることができた。
In other words, even if the amount of steam generated from the heated object 2 reaches its maximum before the sensor 12 can detect it, the sensor 12 will detect it as the amount of change in steam at least when the operation of the valve 1a is reversed. is possible. This made it possible to start the heating operation at the maximum output at the same time as cooking started, and to perform continuous heating.

しかし、上記構成においても、まだ解消しきれない欠点
を有していた。それは、極めて水分の少ない被加熱物、
例えばスルノの加熱等においては、はとんど初期の加熱
動作のみで上記被加熱物の水分が無くなってしまい、蒸
気の発生がほぼ無くなることがあった。このような場合
は、いかに排気ダクト11等の工夫をしても、センサ1
2は感知できず、ひいては、発煙、発火に至ることとな
り重大な欠点といえた。
However, even with the above configuration, there were still drawbacks that could not be resolved. It is a heated material with extremely low moisture content.
For example, in the heating of heat sinks, the moisture content of the object to be heated disappears only in the initial heating operation, and there are cases where almost no steam is generated. In such a case, no matter how devised the exhaust duct 11, etc., the sensor 1
2 could not be detected, which could lead to smoke and ignition, which could be said to be a serious drawback.

発明の目的 本発明は、上述したような従来例の欠点を解消し、時間
効率の大巾な改善を図ることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to eliminate the drawbacks of the conventional example as described above and to significantly improve time efficiency.

発明の構成 上記目的を達するため、本発明の加熱調理器は被加熱物
を収納する加熱室と、前記加熱室内を加熱する手段と、
前記加熱室内全換気する送風手段と、前記加熱室内に連
通ずる排気部と、前記排気部に設けられ前記加熱室内に
発生する水蒸気およびガスに感応するセンサ素子および
前記セ/す素子をクリーニングする手段とを有するセン
サ手段と、前記センサ素子からの信号によって前記加熱
する手段の加熱出力を制菌する制御部とを備え、調理開
始の入力信号が入力されてから前記センサ素子のクリー
ニングを行ない、かつ前記センサ手段が感知可能状態に
戻るまでの間に、前記加熱室内を換気する送風手段を少
なくとも一時的に停止する構成であり、水分の非常に少
ない食品の自動加熱を可能とするものである。
Structure of the Invention In order to achieve the above object, the heating cooker of the present invention includes a heating chamber for storing an object to be heated, a means for heating the inside of the heating chamber,
An air blowing means for completely ventilating the heating chamber, an exhaust section communicating with the heating chamber, a sensor element provided in the exhaust section and sensitive to water vapor and gas generated within the heating chamber, and means for cleaning the sensor element. and a control unit for controlling the heating output of the heating means according to a signal from the sensor element, and cleaning the sensor element after an input signal for starting cooking is input, and The air blowing means for ventilating the heating chamber is at least temporarily stopped until the sensor means returns to a sensing state, thereby making it possible to automatically heat food with very low moisture content.

実施例の説明 以下、本発明の一実施例について、第5図〜第7図に基
づき説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 5 to 7.

第5図において、加熱室1内にて一被加熱物2はマグネ
トロン3から発生する高周波により、蒸気8を発生する
。77ン4から発生する風は、マグネトロン3を冷却し
た後、送風ダクト5を通り、加熱室1内の換気をしなが
ら、排気ダクト11を通って外部へ排気される。センサ
12は、排気ダクト11の下部に位置しており、かつ上
記排気ダクト11上部には仕切板19が設けである。
In FIG. 5, a heated object 2 generates steam 8 in a heating chamber 1 by high frequency waves generated from a magnetron 3. In FIG. After cooling the magnetron 3, the wind generated from the 77 chamber 4 passes through the ventilation duct 5 and is exhausted to the outside through the exhaust duct 11 while ventilating the inside of the heating chamber 1. The sensor 12 is located at the bottom of the exhaust duct 11, and a partition plate 19 is provided at the top of the exhaust duct 11.

さて、第6図および第7図と共に、本発明の特徴である
加熱動作による蒸気の発生とファン回転動作との関係を
説明する。
Now, the relationship between the generation of steam by the heating operation, which is a feature of the present invention, and the fan rotation operation will be explained with reference to FIGS. 6 and 7.

第7図aは加熱動作を示すもので調理スタートから連続
して加熱する。図中に示す時間tFから1、1での間は
、ファン4の回転を止めて、さらに時間t。以降は再び
ファン4の回転を開始する。
FIG. 7a shows the heating operation, in which heating is performed continuously from the start of cooking. From time tF shown in the figure to 1, 1, the rotation of the fan 4 is stopped, and then the rotation is continued for a further time t. After that, the fan 4 starts rotating again.

これらの制御は、第6図に示すマイクロコンピュータを
含む制御□□部20からの信号全リレー21に送ること
により側聞する。なお22はダイオートミ23はコンデ
ンサ、24は高圧トランスを夫々示す。
These controls are performed by sending signals from a control section 20 including a microcomputer shown in FIG. 6 to all relays 21. Note that 22 represents a diode automaton 23 a capacitor, and 24 represents a high voltage transformer.

手記ファン4の動作制御によって、各部の蒸気の状態を
示すものが第7図のす、c、dである。
7, c, and d show the state of steam in each part by controlling the operation of the notebook fan 4.

まず同図すは水分が極めて少ない被加熱物2の加熱を行
なった場合の、被加熱物2から発生する水蒸気量の推移
を示すもので、同図に示すように図中時間t。までの間
に、発生蒸気量は減少方向に向かい、上記t。時点を過
ぎた項には完全に蒸気発生は無くなってし甘う。次に同
図Cは加熱室1内部の相対湿度変化を示しており、同図
に示すごとく、加熱開始と同時に除々に上昇し時間tF
経過後、すなわち、ファン4を止めた時から急激に上昇
する。これは、ファン4の回転で加熱室1内の水蒸気が
薄められてめるものが、急にファン4が止まり、加熱室
1内部に、こもってしまう為である。さらに、同図Cに
おいて、tc からファンが回転スタートすると、それ
までに留っていた水蒸気は、排気ダクト11内へ逃げる
為、相対湿度は、又急激に低下していく。
First, this figure shows the transition of the amount of water vapor generated from the heated object 2 when heating the heated object 2 with extremely low moisture content, and as shown in the figure, the time t in the figure. Until then, the amount of steam generated is decreasing, until the point t above. After this point, steam generation completely disappears. Next, C in the same figure shows the relative humidity change inside the heating chamber 1, and as shown in the figure, it gradually increases at the same time as the heating starts, and the relative humidity increases at the time tF.
After a certain period of time has elapsed, that is, when the fan 4 is stopped, it rises rapidly. This is because the water vapor in the heating chamber 1 is diluted by the rotation of the fan 4, but the fan 4 suddenly stops and the water vapor in the heating chamber 1 is trapped inside the heating chamber 1. Furthermore, in FIG. C, when the fan starts rotating from tc, the water vapor that has remained until then escapes into the exhaust duct 11, so that the relative humidity rapidly decreases again.

さて、同様にして、同図dに示すセンサ12近傍の相対
湿度変化を説明する。加熱がスタートして、しばらくは
、加熱室1内の相対湿度変化と共に上昇するが、同図中
時間tFがら時間t。にがけて下降していく。これは、
ファン4が止まった為、排気ダクト11の下部には、水
蒸気を含んだ空気が回らなくなる為である。さらに同図
t。全過き゛ると、前記加熱室1内に溜っていた水蒸気
が一気に排気開始となる為、センサ12近傍の相対湿度
は急激に上昇する。この相対湿度の変化ΔRHは、前記
被加熱物2の含む水蒸気が極めて少なくてもだくわえら
れた水蒸気によるものであるから大きいものとなり、セ
ンサ12感知に充分な量となる。
Now, in the same manner, the change in relative humidity near the sensor 12 shown in d of the same figure will be explained. After the heating starts, the relative humidity in the heating chamber 1 increases for a while as the relative humidity changes, but the temperature changes from time tF to time t in the figure. It continues to descend. this is,
This is because since the fan 4 has stopped, air containing water vapor cannot circulate to the lower part of the exhaust duct 11. Furthermore, the figure t. When the temperature has completely passed, the water vapor accumulated in the heating chamber 1 starts to be exhausted all at once, and the relative humidity near the sensor 12 rapidly increases. This change in relative humidity ΔRH is large because it is due to the stored water vapor even if the heated object 2 contains very little water vapor, and is large enough for the sensor 12 to sense.

以上の動作説明で明らかなように、センサ12が感知可
能となる10点までに、被加熱物2がら発生する水蒸気
が完全に無くなるという最悪状態が生じても、ファン4
を止めて水蒸気を外へ逃がさないので、ためておき、セ
ンサ12が感知可能となった時に、−挙に排気すること
により、感知できないまま、発煙、発火に至るという問
題も無く、かつ、加熱動作は、スタートから常に連続し
て行なうことが可能となり、極めて効率が向上した。
As is clear from the above explanation of the operation, even if the worst situation occurs in which the water vapor generated from the object to be heated 2 completely disappears by the time the sensor 12 becomes able to sense the 10 points, the fan 4
By stopping the water vapor and preventing it from escaping, it is stored and then exhausted all at once when the sensor 12 becomes able to detect it. This eliminates the problem of smoke and ignition occurring without the sensor 12 being able to detect it. Operations can now be performed continuously from the start, greatly improving efficiency.

又、第5図に示す排気ダクト11のように仕切板19を
、上記排気ダクト11の上部に設ければ、前述した加熱
室1内の水蒸気を、自然排気で逃がすことを、防ぐこと
ができ、さらに効果的である。
Furthermore, if a partition plate 19 is provided at the top of the exhaust duct 11 like the exhaust duct 11 shown in FIG. 5, it is possible to prevent the water vapor in the heating chamber 1 described above from escaping by natural exhaust. , even more effective.

又、センサ12は上記排気ダクト11の下部に設ければ
、ファン4を回転した時のみ、センサ12に蒸気が至る
ようになり、効果的である。
Further, if the sensor 12 is provided at the lower part of the exhaust duct 11, steam will reach the sensor 12 only when the fan 4 is rotated, which is effective.

なおマグネトロ/3は、短時間冷却風を止めても、熱容
量が大きいので急激如温度上昇することは無く、実使用
なんら問題は無い。
In addition, even if the cooling air is stopped for a short time, Magnetro/3 has a large heat capacity, so the temperature will not rise suddenly, and there will be no problem in actual use.

発明、の効果 以上のように本発明によれば加熱初期において水蒸気を
加熱室内に滞めることにより水分の少ない被加熱物の自
動加熱調理を可能とし、自動調理のメニューをさらに拡
大するものである。
Effects of the Invention As described above, according to the present invention, by retaining water vapor in the heating chamber at the initial stage of heating, it is possible to automatically heat and cook objects with low moisture content, further expanding the menu of automatic cooking. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の加熱調理器を示す側面断面図、第2図は
同器のセンサ手段を示す外観斜視図、第3図a−eは同
器の動作説明図、第4図a、bは従来の他の加熱調理器
を示す側面断面図、第5図は本発明の一実施例である加
熱調理器を示゛す側面断面図、第6図は同回路図、第7
図a−dは同動作説明図である。 1・・・・・加熱室、2・・・・・・被加熱物、3・・
・・・・マグネトロン(加熱する手段)、4・・・・・
・ファン(送風手段)、5・・・・・送風ダクト、11
・・・・・排気ダクト(排気部)、12・・・・・・セ
ンサ(センサ手段)、13・・・・・・センサ素子、1
4・・・・・・コイルヒータ(クリーニングする手段)
、2o・・・・・・制倒部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第4図 第5図
Fig. 1 is a side sectional view showing a conventional heating cooker, Fig. 2 is an external perspective view showing the sensor means of the same, Figs. 3 a-e are explanatory views of the operation of the same, Figs 4 a and b 5 is a side sectional view showing another conventional heating cooker, FIG. 5 is a side sectional view showing a heating cooker which is an embodiment of the present invention, FIG. 6 is the circuit diagram, and FIG.
Figures a to d are explanatory diagrams of the same operation. 1...Heating chamber, 2...Heated object, 3...
... Magnetron (heating means), 4...
・Fan (air blowing means), 5...Blower duct, 11
...Exhaust duct (exhaust part), 12...Sensor (sensor means), 13...Sensor element, 1
4... Coil heater (means for cleaning)
, 2o...Suppression club. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)被加熱物を収納する加熱室と、前記加熱室内を加
熱する手段と、前記加熱室内を換気する送風手段と、前
記加熱室内に連通ずる排気部と、前記排気部に設けられ
前記加熱室内に発生する水蒸気およびガスに感応するセ
ンサ素子および前記センサ素子をクリーニングする手段
とを有するセンサ手段と、前記センサ素子からの信号に
よって前記加熱する手段の加熱出力を制御する制御部と
を備え、調理開始の入力信号が入力されてから前記セン
サ素子のクリーニングを行ない、かつ前記センサ手段が
感知可能状態に戻る壕での間に、前記加熱室内を換気す
る送風手段を一時的に停止する構成とした加熱調理器。
(1) A heating chamber for storing an object to be heated, a means for heating the inside of the heating chamber, an air blowing means for ventilating the inside of the heating chamber, an exhaust section communicating with the inside of the heating chamber, and a heating section provided in the exhaust section for heating the inside of the heating chamber. A sensor means having a sensor element that is sensitive to water vapor and gas generated indoors and a means for cleaning the sensor element, and a control section that controls the heating output of the heating means based on a signal from the sensor element, After the input signal to start cooking is input, the sensor element is cleaned and the air blowing means for ventilating the heating chamber is temporarily stopped while the sensor element returns to a sensing state. A heating cooker.
(2)排気部には、上部に自然排気を妨げる じゃへい
部を有する排気ダクトヲ設け、前記排気ダクトの下方に
センサ素子を設ける構成とした特許請求範囲1に記載の
加熱調理器。
(2) The heating cooker according to claim 1, wherein the exhaust section is provided with an exhaust duct having a barrier section at the upper part that prevents natural exhaust, and a sensor element is provided below the exhaust duct.
(3)センサ手段が感知可能状態に戻る直前の一定時間
のみ、加熱室内の換気をストツプする構成とした特許請
求範囲第1項記載の加熱調理器。
(3) The heating cooking device according to claim 1, wherein ventilation in the heating chamber is stopped only for a certain period of time immediately before the sensor means returns to a sensing state.
JP12809382A 1982-07-21 1982-07-21 Heat-cooking utensil Granted JPS5918319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12809382A JPS5918319A (en) 1982-07-21 1982-07-21 Heat-cooking utensil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12809382A JPS5918319A (en) 1982-07-21 1982-07-21 Heat-cooking utensil

Publications (2)

Publication Number Publication Date
JPS5918319A true JPS5918319A (en) 1984-01-30
JPS6329169B2 JPS6329169B2 (en) 1988-06-13

Family

ID=14976222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12809382A Granted JPS5918319A (en) 1982-07-21 1982-07-21 Heat-cooking utensil

Country Status (1)

Country Link
JP (1) JPS5918319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129619A1 (en) * 2014-02-26 2015-09-03 シャープ株式会社 Heating cooker
JP2015161453A (en) * 2014-02-27 2015-09-07 シャープ株式会社 heating cooker
JP2015161434A (en) * 2014-02-26 2015-09-07 シャープ株式会社 heating cooker
US10128072B2 (en) 2014-11-07 2018-11-13 Kabushiki Kaisha Saginomiya Seisakusho Pressure switch and method of forming a diaphragm therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129619A1 (en) * 2014-02-26 2015-09-03 シャープ株式会社 Heating cooker
JP2015161434A (en) * 2014-02-26 2015-09-07 シャープ株式会社 heating cooker
JP2015161453A (en) * 2014-02-27 2015-09-07 シャープ株式会社 heating cooker
US10128072B2 (en) 2014-11-07 2018-11-13 Kabushiki Kaisha Saginomiya Seisakusho Pressure switch and method of forming a diaphragm therein

Also Published As

Publication number Publication date
JPS6329169B2 (en) 1988-06-13

Similar Documents

Publication Publication Date Title
CN111870140A (en) Control method of cooking apparatus, and computer-readable storage medium
CA1068351A (en) Microwave oven control system
US6875968B2 (en) Method of controlling microwave oven
JPS5918319A (en) Heat-cooking utensil
US6878912B2 (en) Method of controlling microwave oven
US6878913B2 (en) Method of controlling microwave oven
JPS5856059B2 (en) Heater
JP2005016788A (en) Heating cooker
JP2561535Y2 (en) Cooker
JPS58140521A (en) Heating cooker
JP2001349556A (en) Heating and cooking appliance
KR102576076B1 (en) Method to Auto Control of Range Hood Fan
JPS6029854B2 (en) High frequency heating device
JPS6243101B2 (en)
JP3102644B2 (en) Cooking device
JP2531707B2 (en) Cooking device
JPH0833206B2 (en) Cooking device
JPH08159481A (en) Heating and cooking device
JPS5813934A (en) Composite heater
JP2000070150A (en) Automatic fish roaster
JPS5938483B2 (en) High frequency heating device
JPS5941094B2 (en) High frequency heating device
JPS644002Y2 (en)
JPH09329340A (en) Microwave oven
JPS6040772B2 (en) Cooking device