JPS58140521A - Heating cooker - Google Patents

Heating cooker

Info

Publication number
JPS58140521A
JPS58140521A JP2233082A JP2233082A JPS58140521A JP S58140521 A JPS58140521 A JP S58140521A JP 2233082 A JP2233082 A JP 2233082A JP 2233082 A JP2233082 A JP 2233082A JP S58140521 A JPS58140521 A JP S58140521A
Authority
JP
Japan
Prior art keywords
heating
sensor
output
time
returns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2233082A
Other languages
Japanese (ja)
Other versions
JPH0228767B2 (en
Inventor
Kenji Watanabe
賢治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2233082A priority Critical patent/JPS58140521A/en
Priority to PCT/JP1983/000028 priority patent/WO1983002818A1/en
Priority to AU11536/83A priority patent/AU549194B2/en
Priority to CA000421488A priority patent/CA1212406A/en
Publication of JPS58140521A publication Critical patent/JPS58140521A/en
Publication of JPH0228767B2 publication Critical patent/JPH0228767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/642Cooling of the microwave components and related air circulation systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6458Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using humidity or vapor sensors

Abstract

PURPOSE:To enhance time efficiency, by a method wherein a sensing element is cleaned before starting cooking to constantly obtain a stable detecting performance, and heating is conducted without waiting for a sensor to return to an operative condition. CONSTITUTION:The interior of a heating chamber 1 is ventilated by a blowing means 4, a relative temperature sensor 12 comprised of the sensing means 13 capable of responding to steam and gases generated in the chamber 1 and a coil heater for cleaning the element 13 is provided at an exhaust part 11, and the heating output of a magnetron 3 is controlled in accordance with a signal from the element 13. The sensing element 13 is cleaned in the period from the moment an input signal for starting cooking is inputted to the moment the sensor 12 returns to the operative condition, and the magnetron 3 is operated for a predetermined period of time. The heating output of the magnetron 3 is set at a low output or the operation of the magnetron is stopped immediately before the sensor 12 returns to the operative condition, thereby momentarily reducing the quantity of steam or the like generated from an object 2 to be cooked, and then the heating output is increased after the sensor 12 returns to the operative condition.

Description

【発明の詳細な説明】 本発明は自動加熱器に関し、特に被加熱物から出る水蒸
気に感応゛するセンサ手段を用いて自動的に加熱調理を
制御する加熱調理器に関するものである0 従来一般に電子レンジには第1図に示すように被加熱物
2から出る水蒸気に感応する相対湿度検知センサ12は
加熱室1又は排気ダクト11内に取付けられるため長時
間使用すると被加熱物2から出た飛沫や、揮発生物質、
油煙等によってセンサ12が汚染され、使用するうちに
初期゛の性能。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic heating device, and more particularly to a heating cooking device that automatically controls cooking using sensor means that is sensitive to water vapor emitted from an object to be heated. As shown in FIG. 1, in the microwave oven, a relative humidity sensor 12 that is sensitive to water vapor emitted from the object to be heated 2 is installed in the heating chamber 1 or inside the exhaust duct 11, so if the oven is used for a long time, droplets emitted from the object to be heated 2 will be detected. and volatile substances,
The sensor 12 becomes contaminated with oil smoke, etc., and its initial performance deteriorates during use.

感度が得られな(くなるという問題がある。そこでセ/
す素子13の周囲近傍に第2図に示すようにコイルヒー
タ14を設けて、調理開始直後にコイルヒータ14に通
電し、センサ素子13を400℃以上に加熱して、付着
した汚れを焼き切り性能・感度を常に良好に保つクリー
ニング方法が考えられ電子レンジ等に実施されてきてい
る。ところで、このセンサ12のクリーニングが終了し
、コはすぐには安定した良好な検知性能を得ることはで
きない。、この理由を第3図aに基づき説明する。
There is a problem that the sensitivity cannot be obtained.
As shown in FIG. 2, a coil heater 14 is provided near the sensor element 13, and immediately after the start of cooking, the coil heater 14 is energized to heat the sensor element 13 to 400°C or higher to burn off the attached dirt.・Cleaning methods that maintain good sensitivity at all times have been devised and implemented for microwave ovens, etc. By the way, after the cleaning of this sensor 12 is completed, stable and good detection performance cannot be obtained immediately. , the reason for this will be explained based on FIG. 3a.

第3図龜は横軸に時間、縦軸に相対湿度をとったもので
、加熱を開始してからの排気ダクト11内の相対湿度の
変化を表わしたものである。A点から加熱開始するわけ
であるが、同時にセンサ12のクリーニングも開始され
るのでセンサ12の周囲温度はコイルヒータ14の加熱
により温度が急激に上昇し、相対湿度はB点に向ってど
んどん下ってゆく。B点はセンサ12部が所定の温度に
達し、クリーニングが終了した点である。B点でコイル
ヒータ14の通電が終了するため若干のオーバーシュー
トは゛あるものの、今度は七/す12が排気風によって
冷却され、徐々に常温に戻ってゆくため相対湿度は0点
に向って上昇してゆく。0点に達しセンサー12が定常
状態に戻った後は加熱の進行によって排気風の温度が徐
々にではあるが上昇してゆ欠ため、D点に向って下って
ゆく00点は被加熱物2から出る水蒸気による相対湿度
6 ページ の上昇分が排気風の温度上昇による相対湿度の下降外を
上まわる点であり5、この後被加熱物2からの水蒸気量
が増えるため相対湿度はE点、F点と上昇していく。
Figure 3 shows time on the horizontal axis and relative humidity on the vertical axis, and represents the change in relative humidity inside the exhaust duct 11 after heating started. Heating starts from point A, but cleaning of the sensor 12 also starts at the same time, so the ambient temperature of the sensor 12 increases rapidly due to the heating of the coil heater 14, and the relative humidity gradually decreases toward point B. I'm going to go. Point B is the point at which the sensor 12 reaches a predetermined temperature and cleaning is completed. Although there is a slight overshoot because the coil heater 14 is no longer energized at point B, the 7/12 is now cooled by the exhaust air and gradually returns to room temperature, so the relative humidity rises toward the 0 point. I will do it. After reaching the 0 point and returning the sensor 12 to a steady state, the temperature of the exhaust air gradually increases due to the progress of heating. This is the point at which the increase in relative humidity due to water vapor from the heated object 6 exceeds the decrease in relative humidity due to the rise in temperature of the exhaust air 5. After this point, the amount of water vapor from the heated object 2 increases, so the relative humidity is at point E, It increases to point F.

一般にD点から相対湿度変化量ΔRHを検知して自動的
にマグネトロン3の出力を制御し、加熱をコントロール
している。
Generally, the relative humidity change amount ΔRH is detected from point D and the output of the magnetron 3 is automatically controlled to control heating.

ところでこの相対湿度変化量△RHはり+7− ユング
が終了して定常状態に戻るまでのB点から0点の間にお
いても生ずることが第3図aより明白であるがこの間の
相対湿度の変化は被加熱物2から大量に出た蒸気による
ものではないので、加熱の検知に利用することはできな
い0従ってセンサ12による検知は時間t。たけ待つ必
要がある0ところで、今仮に加熱開始から高出力で加熱
を始めたとすると、被加熱物2が小さいものの場合には
セ/す12.が定常状態に戻るまでの時間、すなわち時
間t。に達するまでに相対湿度が100チに到達し、時
間t。に達した時には相対湿度変化量ΔRHが得られな
いような状態になってしま6 −’−i’ うことが考えられる。そこで第3図すに示すように調理
を開始してから時間toまでは零出力でゆきt 後高出
力にする方法がある。
By the way, it is clear from Figure 3a that this relative humidity change △RH beam +7- also occurs between point B and point 0 until the Jungian cycle ends and returns to the steady state, but the change in relative humidity during this period is Since it is not caused by a large amount of steam emitted from the object to be heated 2, it cannot be used to detect heating. Therefore, the detection by the sensor 12 occurs at time t. However, if we were to start heating at high output from the start of heating, if the object to be heated 2 is small, it would be necessary to wait for a long time. The time it takes for t to return to a steady state, that is, time t. The relative humidity reaches 100 degrees by the time it reaches time t. When it reaches 6 -'-i', it is conceivable that the relative humidity change amount ΔRH cannot be obtained. Therefore, as shown in FIG. 3, there is a method of using zero output from the start of cooking until time t and then increasing the output to high output after t.

C。C.

ところが上記の方法では加熱を開始してから1oまでの
間は実際には加熱を全く行っていないので加熱に要する
時間はまるまるt。だけ余計にかかることにな9時間効
率が悪くなるという欠点があった。そこで、従来、第3
図Cに示すように、′時間1cに達する前の時間t1か
ら高出力で加熱し始め(1,−11)だけ時間効率を良
くする手段があった。ところが、tl を決定するに当
っては実際に加熱される被加熱物2等から時間(1C−
1、)  の間の高出力加熱によって大量の水蒸気が出
ないように注意して決定しなければならない。
However, in the above method, no heating is actually performed from the start of heating to 1o, so the time required for heating is t. There was a drawback that it took an extra 9 hours and the efficiency deteriorated. Therefore, conventionally, the third
As shown in Figure C, there is a means to improve time efficiency by starting heating at high output from time t1 before reaching time 1c (1, -11). However, when determining tl, the time (1C-
1) Care must be taken to ensure that a large amount of water vapor is not released due to high-power heating during (1).

従って時間(1o−1,)は10秒程度しか取れないの
が現状であり、時間効率は良くなるとはいうものの大幅
な時間効率の向上には至っていないという問題があった
Therefore, the current situation is that the time (1o-1,) is only about 10 seconds, and although the time efficiency has improved, there has been a problem that the time efficiency has not been significantly improved.

さらに第3図dに他の従来例を示す。所定時間t1/の
間は低出力PLで加熱しその後、高出力に切換えて加熱
するという方法である。
Furthermore, another conventional example is shown in FIG. 3d. This is a method of heating at a low output PL for a predetermined time t1/, and then switching to a high output for heating.

また、第3図eに示す従来例もある。これは、所定の時
間t11の間はT1時間はオン、72時間はオフの断続
運転で加熱しt1′後は高出力で連続運転に切換えると
いう方法である。この場合も、前述の従来例と同様に低
出力PL、 t1’、 t1’、 T1゜T2の各要素
は被加熱物2を対象に決定しなければならない。つまり
、被加熱物2から大量の水蒸気が出ないように、出力を
決定するわけであるが、調理開始からt。までの間に被
加熱物2に吸収されるエネルギーが所定のレベル以上を
越えると大量の水蒸気が発生するため、第3図Cに示す
従来例と同程度にしか時間効率を改善することはできな
い。
There is also a conventional example shown in FIG. 3e. This is a method in which heating is performed in an intermittent operation during a predetermined time t11, with the heating being turned on for the time T1 and turned off for 72 hours, and switching to continuous operation at high output after t1'. In this case as well, the elements of low output PL, t1', t1', T1°T2 must be determined for the object to be heated 2, as in the conventional example described above. In other words, the output is determined so that a large amount of steam does not come out from the object to be heated 2, but from the start of cooking. If the energy absorbed by the heated object 2 during this period exceeds a predetermined level, a large amount of water vapor will be generated, so the time efficiency can only be improved to the same extent as the conventional example shown in Fig. 3C. .

そこで本発明は上記欠点を解消し、時間効率の大幅な改
善を図ることを目的とする0 以下本発明の実施例について図面に基づき説明する。
Therefore, the present invention aims to eliminate the above-mentioned drawbacks and significantly improve time efficiency.Embodiments of the present invention will be described below with reference to the drawings.

(第1実施例) 第1図において1は加熱室で、中に入れた被加ネルギー
で加熱する。、4はファンモータであり、マグネトロン
3等を冷却するとともに、送風ダクト6、送風口6を通
って換気風7を加熱室内に送風する0食品2から出た水
蒸気8を含んだ排気風9は排気口10を通って排気ダク
ト11に排出される。12は相対湿度検知センサーであ
り排気風9の相対湿度に感応する。第2図に相対湿度検
知センサ(以下、単にセンサと呼ぶ)12の拡大したも
のを示す。13はセンサ素子、14はセン世素子13の
周囲近傍に設けられたコイルヒータ、15は上2ミック
材から成る支持部である。
(First Embodiment) In FIG. 1, reference numeral 1 denotes a heating chamber, which is heated by applied energy placed therein. , 4 is a fan motor which cools the magnetron 3 etc. and blows ventilation air 7 into the heating chamber through the air duct 6 and the air outlet 6. The exhaust air 9 containing water vapor 8 from the food 2 is The air is discharged through the exhaust port 10 into the exhaust duct 11. Reference numeral 12 is a relative humidity detection sensor that is sensitive to the relative humidity of the exhaust air 9. FIG. 2 shows an enlarged view of the relative humidity detection sensor (hereinafter simply referred to as sensor) 12. 13 is a sensor element, 14 is a coil heater provided near the periphery of the sensor element 13, and 15 is a support portion made of an upper 2-mick material.

次に本発明の特徴である加熱パワーのコントロールを第
4図a、 bに基づき説明する。
Next, control of heating power, which is a feature of the present invention, will be explained based on FIGS. 4a and 4b.

図において、調理開始と同時に高出力で所定の時間t2
まで加熱しその後相対湿度検知センサ12が定常状態に
戻る時間t。まで加熱を停止し、toに達した後再び高
出力で加熱を再開する。
In the figure, at the same time as the start of cooking, high output is applied for a predetermined time t2.
The time t for the relative humidity detection sensor 12 to return to a steady state after heating to Heating is stopped until t, and after reaching t, heating is resumed at high output.

すなわち加熱室1内の水蒸気量の変化は第4図−に示さ
れる。R理開始時の水蒸気量!。は電子レンジの置かれ
た環境によシ決定される。調理開始からt2までの高出
力による加熱により水蒸気量はT2まで増加する。しか
し、t2からセンサ12が感知可能状態になるt。まで
は零出力となっているため、この間は蒸気が発生せず、
また加熱室1内の蒸気はファンモータ4により加熱室1
の外に排気され、従って、加熱室1内の水蒸気量は初期
の水蒸気量x0に戻るので、調理開始からt までの加
熱は相対湿度の検知にはなんら影響を及ぼさない。しか
も、調理開始からt2までの加熱により大量の水蒸気量
が発生してもt2からt までの間に、はぼ初期の環境
粂件に戻すことができるため、調理開始からt2までの
間に充分゛にエネルギーを加えることができる。従って
t2の時間だけ加熱時間が短くなり、時間効率が良くな
るというものである。
That is, changes in the amount of water vapor in the heating chamber 1 are shown in FIG. Amount of water vapor at the start of R treatment! . is determined by the environment in which the microwave oven is placed. The amount of water vapor increases to T2 due to high output heating from the start of cooking to t2. However, from t2 the sensor 12 becomes capable of sensing t. Since the output is zero until then, no steam is generated during this time.
In addition, the steam in the heating chamber 1 is transferred to the heating chamber 1 by a fan motor 4.
Therefore, the amount of water vapor in the heating chamber 1 returns to the initial amount x0 of water vapor, so the heating from the start of cooking to t has no effect on the detection of relative humidity. Moreover, even if a large amount of water vapor is generated due to heating from the start of cooking to t2, it is possible to return to the initial environmental condition between t2 and t2, so that there is sufficient water vapor between the start of cooking and t2. Energy can be added to ゛. Therefore, the heating time is shortened by the time t2, and time efficiency is improved.

第6図にこのような電気回路の実施例を示す。FIG. 6 shows an embodiment of such an electric circuit.

16は商用電源、17は主回路に挿入された接点で、調
理開始と共にUNL、ファンモータ4に電入を印加する
。19は高圧トランス、20は高圧1゜ コンデンサ、21はスタックダイオードであり、マグネ
トロン3への陽極電源となっている。23は高圧リード
リレーの接点で、マグネトロン3への陽極電圧をオン、
オフしている。22はそのコイルでマイクロコンピユー
タラ含ムコントロール部18によっゑて制御されている
16 is a commercial power source, and 17 is a contact inserted into the main circuit, which applies electricity to the UNL and fan motor 4 at the start of cooking. 19 is a high voltage transformer, 20 is a high voltage 1° capacitor, and 21 is a stack diode, which serves as an anode power supply to the magnetron 3. 23 is the contact point of the high voltage reed relay, which turns on the anode voltage to the magnetron 3.
It's off. The coil 22 is controlled by a microcomputer control section 18.

また第6図には上記電気回路の他の実施例を示す。26
はリレーであり24はそのコイルで、コントロール部1
8によって制御されている。また、リレー26とそのコ
イル24はトライアックで亀実施可能である。
Further, FIG. 6 shows another embodiment of the above electric circuit. 26
is a relay, 24 is its coil, and control section 1
8. Further, the relay 26 and its coil 24 can be implemented with a triac.

上記第4図および第6図に示す回路構成により調理開始
した後t2までは第4図では高圧リードリレー23、第
6図ではリレー26をオンして、マグネトロン3を発振
させ、t2後オフして発振停止状態にし、tC後再度オ
ンしてマグネトロン3を発振させ高出力にて加熱するこ
とができる。
With the circuit configurations shown in FIGS. 4 and 6 above, after the start of cooking, the high voltage reed relay 23 in FIG. 4 and the relay 26 in FIG. 6 are turned on until t2 to oscillate the magnetron 3, and then turned off after t2. The magnetron 3 is turned on again after tC to cause the magnetron 3 to oscillate and heat at a high output.

上記第5図の回路ではリレー26が高圧トランス19の
次側である低圧側にあるので、特殊なりレースインチが
要らず経済的であるといえる。
In the circuit shown in FIG. 5, the relay 26 is located on the low voltage side next to the high voltage transformer 19, so it does not require a special race inch and can be said to be economical.

11ページ (第2実施例) 第4図Cに他の実施例を示す。この実施例では調理開始
と同時に高出力で所定の時間t2′まで加熱し、その後
、センサ12が定常状態に戻る時間t まで低出力PL
′で加熱を行い、1C後高出力、に切換えて加熱する。
Page 11 (Second Embodiment) Another embodiment is shown in FIG. 4C. In this embodiment, heating is performed at high output until a predetermined time t2' at the same time as cooking starts, and then at low output PL until time t when the sensor 12 returns to a steady state.
Heating is performed with ', and after 1C, switch to high output and heat.

被加熱物2から発生する水蒸気量は被加熱物2に加わる
熱量により決定されるものであるから、低出力PL′を
水蒸気がほとんど発生しないような出力とすれば、前述
の第4図すの実施例で説明したのと同様に、10時には
調理開始直後と同等の環境条件に戻すことができる。
Since the amount of water vapor generated from the object to be heated 2 is determined by the amount of heat applied to the object to be heated 2, if the low output PL' is set to such an output that almost no water vapor is generated, the amount of water vapor generated from the object to be heated 2 will be the same as that shown in Figure 4 above. As described in the embodiment, the environmental conditions can be returned to the same conditions as immediately after the start of cooking at 10 o'clock.

この実施例を実現する電気回路を第7図に示す。An electric circuit for implementing this embodiment is shown in FIG.

28はパワー切換リレーの接点でオン時は第1の高圧コ
ンデンサ2oと第2のコンデンサ26が並列に接続され
るので合成容量が大きくな9、マグネトロン3から発振
される高周波が高出力となり、オフ時は低出力となる。
28 is the contact point of the power switching relay, and when it is on, the first high-voltage capacitor 2o and the second capacitor 26 are connected in parallel, so the combined capacitance is large. The output is low at times.

27はパワーリレー切換リレーのコイルでコントロール
部18からの信号で駆動される。
27 is a coil of a power relay switching relay, which is driven by a signal from the control section 18.

(第3実施例) と同時に高出力で所定の時間りまで加熱し、その後、七
〇、まで13時間はオフ、74時間はオンの断続運転で
加熱しt。後高出力に切換えるものである。tliらt
。までは実質的に低出力であり、時間T1.T2を決定
するにあたっては前述の第4図Cに示す実施例の低出力
PL′と同じにする必要がある。この実施例を実現する
だめの電気回路は前述の第6図および第6図に示される
ものでよい。
(Third Example) At the same time, it was heated at high output until a predetermined period of time, and then heated intermittently until 70 days, with OFF for 13 hours and ON for 74 hours. After that, the output is switched to high output. tli et al.
. The output is substantially low until time T1. In determining T2, it is necessary to make it the same as the low output PL' of the embodiment shown in FIG. 4C described above. The electric circuit for realizing this embodiment may be that shown in FIGS. 6 and 6 described above.

上述の第1〜第3実施例で明らかなように、t2′から
toおよびt2′からt。までの間に実質的に低出力で
加熱することにより、いっそうの調理時間効率の向上が
図れる。
As is clear from the first to third embodiments described above, from t2' to to and from t2' to t. By heating at substantially low output during this period, cooking time efficiency can be further improved.

(第4実施例) 第8図a、bに本発明のさらに他の実施例を示す0 同図aにおいて1は加熱室で、中に入れた食品2をマグ
ネトロン3から発振された高周波エネルギーで加熱する
。4はフ、アンモータでありマグネ13ページ トロ/3を冷却するとともに送風ダクト6を通り、一方
は送風口6を通り加熱室1内に送風し、排出口1oを通
り排気ダクト11に排出される。他の一方は、送風ダク
ト6を通シ排気ダクト11に向う。排気ダクト11は仕
切板29により一部上下に分割されている。センサ12
は一部2分割された排気ダクト11の上部に取付けられ
ている。排気ダクト11と送風ダクトは連通されている
。排気ダクト内には弁3oが構成さえ、ソレノイド31
により駆動される。弁3oによりセンサ12に送風され
る空気は送風ダクトからの空気と加熱室からの排気とに
切換えられる。
(Fourth Embodiment) Still another embodiment of the present invention is shown in FIGS. 8a and 8b. In FIG. Heat. Reference numeral 4 denotes an unmotor which cools the magnet 13 and passes through the air duct 6. One side blows air through the air outlet 6 into the heating chamber 1, and the other side blows air into the heating chamber 1 through the outlet 1o and is discharged into the exhaust duct 11. . The other side passes through the ventilation duct 6 and goes toward the exhaust duct 11 . The exhaust duct 11 is partially divided into upper and lower parts by a partition plate 29. sensor 12
is attached to the upper part of the exhaust duct 11 which is partially divided into two parts. The exhaust duct 11 and the ventilation duct are in communication. Inside the exhaust duct, there is a valve 3o and a solenoid 31.
Driven by. The air blown to the sensor 12 by the valve 3o is switched between air from the ventilation duct and exhaust from the heating chamber.

上記構成において、次に述べる動作を行なう。In the above configuration, the following operations are performed.

調理開始時は弁3oは第8図aに示す位置に置かれ、セ
/す12にはマグネトロ/3の冷却風のみが送風され、
センサ12が感知可能状態に戻った後、弁3oは第8図
すの位置に移動しセンサ12には加熱室の排気のみが送
風される。この時、高周波エネルギーは第9図aに示す
ように加えられ、゛ ψ蒸気の発生の状況は第9図b1
セ/す12近傍14ぺ一2゛ の相対湿度の変化は第9図Cに示す0調理開始から七〇
までの加熱により水蒸気量はIoからIoに増加し、こ
れに対し相対湿度の変化は初期の相対湿度RHOからセ
/す12のクリーニングにより一旦は低湿側に向うが送
風ダクト6からの送風によりセンサ12は冷却され、t
 時にはほぼ初期の相対湿度RH□に戻る。その後、弁
3oが切換えられ、センサ12には加熱室1からの排気
風が送くられる。従って、七〇時に発生していた水蒸気
!。により相対湿度RH(2に増加する。もし4(RH
c−RHo)が所定の相対湿度変化量ΔRHに達してい
れば、被加熱物2がある調理状態に達したものと判断し
自動的に加熱をコントロールする。
At the start of cooking, the valve 3o is placed in the position shown in FIG.
After the sensor 12 returns to the sensing state, the valve 3o moves to the position shown in FIG. 8, and only the exhaust air from the heating chamber is blown to the sensor 12. At this time, high frequency energy is applied as shown in Figure 9a, and the situation of steam generation is shown in Figure 9b1.
The change in the relative humidity of the 14th floor near the cell/seat 12 is shown in Figure 9C.The amount of water vapor increases from Io to Io due to heating from the start of cooking to 70, as shown in Figure 9C. The initial relative humidity RHO shifts to a lower humidity side by cleaning the sensor 12, but the sensor 12 is cooled by the air blown from the air duct 6, and the temperature rises to t.
Sometimes the relative humidity returns to almost the initial relative humidity RH□. Thereafter, the valve 3o is switched, and the exhaust air from the heating chamber 1 is sent to the sensor 12. Therefore, water vapor was generated at 70 o'clock! . increases to relative humidity RH(2. If 4(RH
c-RHo) reaches a predetermined relative humidity change amount ΔRH, it is determined that the object to be heated 2 has reached a certain cooking state, and the heating is automatically controlled.

もしΔRHに達していなければ第9図Cに示すように、
排気風の温度上昇により徐々にではあるが相対湿度は下
降する。水蒸気による相対湿度の上昇分が温度上昇を上
まかる点の相対湿度RHm i nを最低値とし、その
後急激な水蒸気の増加により相対湿度111(は増加し
、RHm i nから△RHの増重を検知して自動的に
加熱をコントロールする。
If ΔRH has not been reached, as shown in Figure 9C,
As the temperature of the exhaust air increases, the relative humidity gradually decreases. The relative humidity RHmin at the point where the rise in relative humidity due to water vapor exceeds the rise in temperature is taken as the lowest value, and then the relative humidity 111 (increases due to the rapid increase in water vapor, and the weight increase of △RH from RHmin Detects and automatically controls heating.

このように、センサ12が感知可能状態に戻った後排気
風にさらし、それまでは、初期とほぼ同等の雰囲気中に
さらしておくことにより、to以前に大量の水蒸気が発
生しても、セ/す12は常にt0時には初期の環境を一
旦検知した後、排気風の検知を行うため、1.以前の水
蒸気の発生も検知することができる。またt0以後に大
量の水蒸気が発生した場合にも、前述の第1実施例と同
様に相対湿度の検知を行うことができる0このような構
成とすることにより、調理開始から七〇、またその後も
連続して加熱することができるため、時間効率が全く損
なわれないという効果がある0以上説明したように本発
明によれば、次のような効果を得ることができる。
In this way, by exposing the sensor 12 to the exhaust air after it returns to a sensing state, and until then exposing it to an atmosphere that is almost the same as the initial atmosphere, even if a large amount of water vapor is generated before /S 12 always detects the initial environment at time t0 and then detects the exhaust air, so 1. Previous water vapor evolution can also be detected. Furthermore, even if a large amount of water vapor is generated after t0, the relative humidity can be detected in the same manner as in the first embodiment described above.With this configuration, the detection of relative humidity can be performed for 70 minutes from the start of cooking, and after that. As described above, according to the present invention, the following effects can be obtained.

(1)  本発明により調理開始時にセンサ素子をクリ
ーニングするので、常に安定した検知性能が得られ、し
かもセンサが感知可能状態に戻るまで待たずに加熱して
いるため、時間効率が良い。
(1) According to the present invention, since the sensor element is cleaned at the start of cooking, stable detection performance is always obtained, and since heating is performed without waiting until the sensor returns to a sensing state, it is time efficient.

(2)  センサが感知可能状態に戻る直前には常に調
理開始直後の環境条件とほぼ同等となるように構ニー− 後の検知は、従来例で示した検知と同様の正確な検知か
で今、しかも、センサが感知可能状態に戻る前に大量の
エネルギーを加えることができるため大幅な加熱調理時
間の短縮が可能である。
(2) Immediately before the sensor returns to a sensing state, the environmental conditions are always almost the same as those immediately after the start of cooking. Furthermore, since a large amount of energy can be applied before the sensor returns to a sensing state, the cooking time can be significantly shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である加熱調理器の側面断面
図、第2図は同器のセンサ部の拡大外観斜視図、第3図
a−eは従来の加熱調理器の相対湿度の変化および加熱
パターンを示す特性図、第4図aは本発明の第1実施例
である加熱調理器の水蒸気量の変化を示す特性図、第4
図すは同器の加熱パターンを示す特性図、第4図Cは本
発明の第2実施例における加熱パターンを示す特性図、
第4図dは本発明の第3実施例における加熱パターンを
示す特性図、第6図は本発明の第1実施例における電気
回路図、第6図は同第1実施例における他の電気回路図
、第7図は同第2実施例における電気回路図、第8図a
、bは本発明の第4実施例における加熱調理器の側面断
面図、第9図a。 17 ペーミ b、cは同器の加熱パターン、水蒸気量および相対湿蜜
の変化を示す特性図である。 1・・・・・・加熱室、2・・・・・・被加熱物、3・
・・・・・マグネトロン(加熱する手段)、4・・・・
・・7アンモータ(排風手段)、11・・・・・・排気
ダクト(排気部)、12・・中・相対湿度検知センサ(
センサ手段)、13・・・・・・セ/す素子、14・・
・・・・コイルヒータ、18・・・・・・コントロール
部(制御部)。 代理人の氏名 弁理土中尾敏男 縁か1名 liIFIIJ 113図 684図 @5図 第7図 第8図 第9図
Fig. 1 is a side sectional view of a heating cooker according to an embodiment of the present invention, Fig. 2 is an enlarged external perspective view of the sensor section of the same, and Figs. 3 a-e are relative humidity of a conventional heating cooker. FIG. 4a is a characteristic diagram showing changes in the amount of water vapor in the heating cooker according to the first embodiment of the present invention, and FIG.
Figure 4C is a characteristic diagram showing the heating pattern of the same device, Figure 4C is a characteristic diagram showing the heating pattern in the second embodiment of the present invention,
FIG. 4d is a characteristic diagram showing a heating pattern in the third embodiment of the present invention, FIG. 6 is an electric circuit diagram in the first embodiment of the present invention, and FIG. 6 is another electric circuit in the first embodiment. Fig. 7 is an electric circuit diagram in the second embodiment, Fig. 8a
,b is a side sectional view of a heating cooker according to a fourth embodiment of the present invention, and FIG. 17 Pemi b and c are characteristic diagrams showing changes in the heating pattern, water vapor amount, and relative humidity of the same vessel. 1... Heating chamber, 2... Heated object, 3.
... Magnetron (heating means), 4...
...7 Unmotor (air exhaust means), 11...Exhaust duct (exhaust part), 12...Medium/relative humidity detection sensor (
sensor means), 13...S/S element, 14...
... Coil heater, 18 ... Control section (control section). Name of agent: Patent Attorney Toshio Tsuchinakao LiIFIIJ 113 Figure 684 Figure @ 5 Figure 7 Figure 8 Figure 9

Claims (4)

【特許請求の範囲】[Claims] (1)被加熱物を収納する加熱室と、前記加熱室内を加
熱する手段と、前記加熱室内を換気する送風手段と、前
記加熱室内に連通ずる排気部と、前記排気部に設けられ
前記加熱室内に発生する水蒸気およびガスに感応するセ
ンサ素子および前記センサ素子をクリー二/グする手段
とを有するセンサ手段と、前記センサ素子からの信号に
よって前記加熱する手段の加熱出力を制御する制御装置
とを備え、調理開始の入力信号が入力されてから前記上
/す手段が感知可能状態に戻るまでに要する時間内に前
記セ/す素子のクリーニングを行ないかつ前記加熱する
手段を所定の時間だけ作動する構成とするとともに前記
センサ手段が感知可能状態に戻る直前には前記加熱する
手段の加熱出力を低出力あるいは停止し前記被加熱物か
ら発生する水蒸気量あるいはガス量?一時的に低減し前
記セ/2 ・ す手段が感知可能状態に戻った後前記加熱出力を増大す
る構成とした加熱調理器。
(1) A heating chamber for storing an object to be heated, a means for heating the inside of the heating chamber, an air blowing means for ventilating the inside of the heating chamber, an exhaust section communicating with the inside of the heating chamber, and a heating section provided in the exhaust section for heating the inside of the heating chamber. A sensor means having a sensor element sensitive to water vapor and gas generated indoors and a means for cleaning/cleaning the sensor element, and a control device controlling the heating output of the heating means based on a signal from the sensor element. cleaning the heating element within the time required from inputting an input signal to start cooking until the heating means returns to a sensing state and operating the heating means for a predetermined period of time; Immediately before the sensor means returns to a sensing state, the heating output of the heating means is reduced or stopped to determine the amount of water vapor or gas generated from the object to be heated. 2. A heating cooker configured to temporarily reduce the heating output and then increase the heating output after the heating output returns to a detectable state.
(2)調理開始の入力信号が入力されてからセンサ手段
が感知可能状態に戻るまでに要する時間内に加熱出力を
所定の時間だけ高出力としかつ前記所定の時間が経過し
てから前i己セ/す手段が感知可能状態に戻るまでの間
を零出力とした特許請求の範囲第1項記載の加熱調理器
(2) The heating output is set to high for a predetermined period of time within the time required for the sensor means to return to a sensing state after the input signal to start cooking is input, and after the predetermined period of time has elapsed, The heating cooker according to claim 1, wherein the output is zero until the sensing means returns to a sensing state.
(3)調理開始の入力信号が入力されてからセ/す手段
が感知可能状態に戻るまでに要する時間内に加熱出力を
所定の時間だけ高出力としかつ前記所定の時間が経過し
てから前記センサ手段が感知可能状態に戻るまでの間を
実質的に低出力とした特許請求の範囲第1項記載の加熱
調理器。
(3) The heating output is set to high for a predetermined period of time within the time required for the control means to return to a sensing state after the input signal for starting cooking is input, and after the predetermined period of time has elapsed, The heating cooker according to claim 1, wherein the output is substantially low until the sensor means returns to a sensing state.
(4)調理開始の入力信号が入力されてからセンサ手段
が感知可能状態に戻るまでに要する時間内は前記センサ
手段の検出部への排気風の供給を停止しかつ連続して加
熱するとともに前記センサ手段が感知可能状態に戻った
後は前記排気風を前記センサ手段の検出部へ供給する構
成とした特許請求3ページ の範囲第1項記載の加熱調理器。
(4) During the time required for the sensor means to return to a sensing state after the input signal to start cooking is input, the supply of exhaust air to the detection section of the sensor means is stopped and the heating is continued. 3. The cooking device according to claim 1, wherein the exhaust air is supplied to a detection section of the sensor means after the sensor means returns to a sensing state.
JP2233082A 1982-02-15 1982-02-15 Heating cooker Granted JPS58140521A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2233082A JPS58140521A (en) 1982-02-15 1982-02-15 Heating cooker
PCT/JP1983/000028 WO1983002818A1 (en) 1982-02-15 1983-01-31 Cooking device
AU11536/83A AU549194B2 (en) 1982-02-15 1983-01-31 Cooking device
CA000421488A CA1212406A (en) 1982-02-15 1983-02-11 Heating appliances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2233082A JPS58140521A (en) 1982-02-15 1982-02-15 Heating cooker

Publications (2)

Publication Number Publication Date
JPS58140521A true JPS58140521A (en) 1983-08-20
JPH0228767B2 JPH0228767B2 (en) 1990-06-26

Family

ID=12079691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2233082A Granted JPS58140521A (en) 1982-02-15 1982-02-15 Heating cooker

Country Status (4)

Country Link
JP (1) JPS58140521A (en)
AU (1) AU549194B2 (en)
CA (1) CA1212406A (en)
WO (1) WO1983002818A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144221A (en) * 1989-10-27 1991-06-19 Matsushita Electric Ind Co Ltd Heating apparatus with sensor
JPH07254159A (en) * 1995-03-02 1995-10-03 Sony Corp Objective lens driving device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120438A (en) * 1978-03-10 1979-09-19 Matsushita Electric Ind Co Ltd Heating apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120438A (en) * 1978-03-10 1979-09-19 Matsushita Electric Ind Co Ltd Heating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144221A (en) * 1989-10-27 1991-06-19 Matsushita Electric Ind Co Ltd Heating apparatus with sensor
JPH07254159A (en) * 1995-03-02 1995-10-03 Sony Corp Objective lens driving device
JP2661581B2 (en) * 1995-03-02 1997-10-08 ソニー株式会社 Objective lens drive

Also Published As

Publication number Publication date
CA1212406A (en) 1986-10-07
AU549194B2 (en) 1986-01-16
JPH0228767B2 (en) 1990-06-26
AU1153683A (en) 1983-08-25
WO1983002818A1 (en) 1983-08-18

Similar Documents

Publication Publication Date Title
US4463238A (en) Combined microwave and electric heating oven selectively controlled by gas sensor output and thermistor output
EP0031156B1 (en) Cooking oven with a ceramic humidity sensor
JPS58140521A (en) Heating cooker
JPS6329169B2 (en)
JPS5856059B2 (en) Heater
JPS594839B2 (en) Heater
JP2001349556A (en) Heating and cooking appliance
JP2720672B2 (en) Cooker
JP2561535Y2 (en) Cooker
JPS6126804Y2 (en)
JPS6138379B2 (en)
JP2538650B2 (en) Cooking device
JPS5927129A (en) Heating cooker
JPS6231254B2 (en)
JPS63172830A (en) Cooking apparatus
JP3102644B2 (en) Cooking device
JPS644002Y2 (en)
JPH0138217B2 (en)
JPS6222050B2 (en)
JPS6040772B2 (en) Cooking device
KR910017129A (en) Heating cooker
JPS6243101B2 (en)
JPS6135850Y2 (en)
JP3156339B2 (en) Electric cooker
JPS6115326B2 (en)